Verifying Concurrent Programs
Advanced Critical Section Solutions

Ch 4.1-3, App B [BenA 06]
Ch 5 (no proofs) [BenA 06]

Propositional Calculus
Invariants
Temporal Logic
Automatic Verification
Bakery Algorithm & Variants
Propositional Calculus

- Atomic propositions
 - A, B, C, …
 - True (T) or False (F)
- Operators
 - not
 - disjunction, or
 - conjunction, and
 - implication
 - equivalence

Boolean algebra

<table>
<thead>
<tr>
<th></th>
<th>(v(A_1))</th>
<th>(v(A_2))</th>
<th>(v(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg A_1)</td>
<td>T</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>(\neg A_1)</td>
<td>F</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>(A_1 \lor A_2)</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>(A_1 \land A_2)</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>(A_1 \rightarrow A_2)</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>(A_1 \leftrightarrow A_2)</td>
<td>(v(A_1) = v(A_2))</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(propositiolaskenta, propositiologiikka totuusarvoilla laskeminen)

atominen propositio, tilapropositio

4.11.2008
Copyright Teemu Kerola 2008
Propositional Calculus

• Implication
 – Premise or antecedent
 – Conclusion or consequent

• Formula
 – Atomic proposition
 – Atomic propositions or formulaes combined with operators

• Assignment $v(f)$ of formula f
 – Assigned values (T or F) for each atomic proposition in formula
 – Interpretation $v(f)$ of formula f computed with operator rules
 – Formula f is true if $v(f) = T$, false if $v(f) = F$
Propositional Calculus

• Formula
 – Implication
 • Premise or antecedent
 • Conclusion or consequent
 – Formula f is true/false if it’s interpretation $v(f)$ is true/false
 • Given assignment values for each argument
 – Formula is **valid** if it is tautology
 • Always true for all interpretations (all atomic propos. values)
 – Formula is **satisfiable** if true in some interpretation
 – Formula is **falsifiable** if sometimes false
 – Formula is **unsatisfiable** if always false

\[(A_1 \land A_2 \land \cdots \land A_n) \rightarrow B\]
Methods for Proving Formulae Valid

• Induction proof $F(n)$ for all $n=1, 2, 3, \ldots$
 - $F(1)$
 - $F(n) \rightarrow F(n+1)$

• Dual approach: f is valid $\leftrightarrow \neg f$ is unsatisfiable
 - Find one interpretation that makes $\neg f$ true
 - Go through (automatically) all interpretations of $\neg f$
 - If such interpretation found, $\neg f$ is satisfiable, i.e., f is not valid
 - O/w f is valid

• Proof by contradiction
 - Assume: f is not valid
 - Deduce contradiction with propositional calculus
 $\neg X \land X$
Methods for Proving Formulaes Valid

• Deductive proof
 - Deduce formula from axioms and existing valid formulaes
 - Start from the “beginning”

• Material implication
 - Formula is in the form “p → q”
 - Can show that “¬(p → q)” can not be (or can not become): \(v(p) = T \) and \(v(q) = F \)
 • if \(v(p) = v(q) = T \) and \(v(q) \) becomes \(F \), then \(v(p) \) will not stay \(T \)
 • if \(v(p) = v(q) = F \) and \(v(p) \) becomes \(T \),
Correctness of Programs

- **Program P is partially correct**
 - If P halts, then it gives the correct answer

- **Program P is totally correct**
 - P halts and it gives the correct answer
 - Often very difficult to prove (“halting problem” is difficult)

- Program P can have
 - preconditions $A(x_1, x_2, \ldots)$ for input values (x_1, x_2, \ldots)
 - postconditions $B(y_1, y_2, \ldots)$ for output values (y_1, y_2, \ldots)

- Partial and total correctness with respect to $A(\ldots)$ and $B(\ldots)$

More? Se courses on specification and verification
Verification of Concurrent Programs

- State diagrams can be very large
 - Can do them automatically
- Making conclusions on state diagrams is difficult
 - Mutex, no deadlock, no starvation?
 - Can do automatically with temporal logic based on propositional calculus
- Model checker programs (not covered in this course!)

Spin
STeP
mallin tarkastin
Atomic propositions

- **Boolean variables**
 - Consider them as atomic propositions
 - *Proposition* \(\text{wantp} \) is true, iff variable \(\text{wantp} \) is true in given state

- **Integer variables**
 - Comparison result is an atomic proposition
 - Example: proposition “\(\text{turn} \neq 2 \)” is true, iff variable \(\text{turn} \) value is not 2 in given state

- **Control pointers**
 - Comparison to given value is an atomic proposition
 - Example: proposition \(p1 \) is true, iff control pointer for \(P \) is \(p1 \) in given state

Idea: system state described with propositional logic
Formulaes

- **Formula**: $p_1 \land q_1 \land \neg \text{wantp} \land \neg \text{wantq}$
 - True only in the starting state

- **Formula**: $p_4 \land q_4$
 - True only if mutex is broken
 - Mutex condition can be defined: $\neg(p_4 \land q_4)$
 - Must be true in all possible states in all possible computations
 - Invariant

Algorithm 3.8: Third attempt

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p_1: non-critical section</td>
<td>q_1: non-critical section</td>
</tr>
<tr>
<td>p_2: wantp \leftarrow true</td>
<td>q_2: wantq \leftarrow true</td>
</tr>
<tr>
<td>p_3: await wantq = false</td>
<td>q_3: await wantp = false</td>
</tr>
<tr>
<td>p_4: critical section</td>
<td>q_4: critical section</td>
</tr>
<tr>
<td>p_5: wantp \leftarrow false</td>
<td>q_5: wantq \leftarrow false</td>
</tr>
</tbody>
</table>

4.11.2008

Copyright Teemu Kerola 2008
Mutex Proof

- **Invariant** \(\neg (p4 \land q4)\)
 - If this is proven correct (true in all states), then mutex is proven
- **Inductive proof**
 - True for *initial state*
 - Assuming true for *current state*, prove that it still applies in *next state*
 - Consider only statements that affect propositions in invariant

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-critical section</td>
<td>non-critical section</td>
</tr>
<tr>
<td>wantp (\leftarrow) true</td>
<td>wantq (\leftarrow) true</td>
</tr>
<tr>
<td>await wantq = false</td>
<td>await wantp = false</td>
</tr>
<tr>
<td>critical section</td>
<td>critical section</td>
</tr>
<tr>
<td>wantp (\leftarrow) false</td>
<td>wantq (\leftarrow) false</td>
</tr>
</tbody>
</table>
Mutex Proof

• Invariant \(\neg(p4 \land q4) \)
 - Can not prove directly (yet) - too difficult

• Need proven Lemma 4.3
 - Lemma 4.1: \(p3..5 \rightarrow wantp \) is invariant
 - Lemma 4.2: \(wantp \rightarrow p3..5 \) is invariant
 - Lemma 4.3: \(p3..5 \leftrightarrow wantp \) and \(q3..5 \leftrightarrow wantq \) are invariants

• Can now prove original invariant \(\neg(p4 \land q4) \)
 - Inductive proof with Lemma 4.3
 - Details on next slide

<table>
<thead>
<tr>
<th>()</th>
<th>loop forever</th>
<th>non-critical section</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p1)</td>
<td>wantp (\leftarrow) true</td>
<td></td>
</tr>
<tr>
<td>(p2)</td>
<td>await wantq = false</td>
<td></td>
</tr>
<tr>
<td>(p3)</td>
<td>critical section</td>
<td></td>
</tr>
<tr>
<td>(p4)</td>
<td>wantp (\leftarrow) false</td>
<td></td>
</tr>
<tr>
<td>(p5)</td>
<td>non-critical section</td>
<td></td>
</tr>
<tr>
<td>(q1)</td>
<td>wantq (\leftarrow) true</td>
<td></td>
</tr>
<tr>
<td>(q2)</td>
<td>await wantp = false</td>
<td></td>
</tr>
<tr>
<td>(q3)</td>
<td>critical section</td>
<td></td>
</tr>
<tr>
<td>(q4)</td>
<td>wantq (\leftarrow) false</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm 3.8: Third attempt

boolean wantp \(\leftarrow \) false, wantq \(\leftarrow \) false

lemma, apulause
Mutex Proof

• **Lemma 4.3:** $p_{3..5} \iff \text{want}_p$ and $q_{3..5} \iff \text{want}_q$ invariants

• **Theorem 4.4:** $\neg(p_4 \land q_4)$ is invariant
 - Prove $(p_4 \land q_4)$ inductively false in every state
 - Initial state: trivial
 - Only states $\{p_3, \ldots\}$ need to be considered
 - p_4 may become true only here, i.e., state $\{p_4, q?, \ldots\}$
 - States $\{\ldots, q_3, \ldots\}$ similar, symmetrical
 - Can execute $\{p_3, \ldots\}$ only if $\text{want}_q=false$ (i.e., $\neg \text{want}_q$)
 - Because $\text{want}_q=false$, q_4 is also false (Lemma 4.3)
 - Next state can not be $\{p_4, q_4, \ldots\}$, i.e., $(p_4 \land q_4)$ is false

Algorithm 3.8: Third attempt

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p_1: non-critical section</td>
<td>q_1: non-critical section</td>
</tr>
<tr>
<td>p_2: want$_p \leftarrow$ true</td>
<td>q_2: want$q \leftarrow$ true</td>
</tr>
<tr>
<td>p_3: await want$q = \text{false}$</td>
<td>q_3: await want$\text{p} = \text{false}$</td>
</tr>
<tr>
<td>p_4: critical section</td>
<td>q_4: critical section</td>
</tr>
<tr>
<td>p_5: want$\text{p} \leftarrow$ false</td>
<td>q_5: want$\text{q} \leftarrow$ false</td>
</tr>
</tbody>
</table>
Temporal Logic

- Propositional logic with **extra temporal operators**

- **Computation**
 - Infinite sequence of states: \(\{ s_0, s_1, s_2, \ldots \} \)

- **Temporal operators**
 - Value (T or F) of given predicate does not necessarily depend only on current state
 - It may depend on also on (some or all) future states
 - **Always or box (□) operator**
 - □A true in state \(s_i \) if A true in all \(s_j, j \geq i \)
 - E.g., mutex must always be true
 - **Eventually or diamond (◊) operator**
 - ◊A true in state \(s_i \) if A true in some \(s_j, j \geq i \)
 - E.g., no starvation means that something eventually will become true

\[(p_2 \lor p_4) \land \neg (p_4 \land q_4) \]

\(\square (p_2 \rightarrow \Diamond p_4) \)
Other Temporal Logic Operators

• True in next state (O) operator
 - $\text{Op } p$ true in state s_i, if p is true in the state s_{i+1}

• Until eventually (U) operator
 - $p U q$ true in state s_i, if p is true in every state in future until eventually q becomes true

• Not used (needed) in this course...

More? See courses on specification and verification.
Some Laws of Temporal Logic

- **deMorgan**
 \[\neg(A \land B) \iff (\neg A \lor \neg B) \]
 \[\neg(A \lor B) \iff (\neg A \land \neg B) \]

- **Distributive Laws**
 \[\Box(A \land B) \iff (\Box A \land \Box B) \]
 \[\Diamond(A \lor B) \iff (\Diamond A \lor \Diamond B) \]

- **Duality**
 - Not always is equivalent to eventually not
 \[\neg \Box A \iff \Diamond \neg A \]
 - Not eventually is equivalent to always not
 \[\neg \Diamond A \iff \Box \neg A \]
Sequence

- **Eventually always**
 - Will come true and then stays true forever

- **Always eventually**
 - Always will become true some times in future (again)
More Complex Proofs

- State diagrams become easily too large for manual analysis
- Use model checkers
 - Spin for Promela programs (algorithms)
 - Java PathFinder for Java programs
- More details?
 - Course
 - An Introduction to Specification and Verification
Advanced Critical Section Solutions

Ch 5 [BenA 06] (no proofs)

Bakery Algorithm

Bakery for N processes

Fast for N processes
Bakery Algorithm

- **Environment**
 - Shared memory, atomic read/write
 - No HW support needed
 - Short exclusive access code segments
 - Wait in busy loop (no process switch)

- **Goal**
 - Mutex and Customers served in request order
 - Independent (distributed) decision making

- **Solution idea**
 - Get queue number, service requests in ascending order

- **Possible problems**
 - Shared, distributed queuing machine, will it work?
 - Get same queue number as someone else? Problem?
 - Some number skipped? Problem or not?
 - Will numbers grow indefinitely (overflow)?

(Leslie Lamport)

Very strong requirement!
Bakery Algorithm (2 processes)

Algorithm 5.1: Bakery algorithm (two processes)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer np ← 0, nq ← 0</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1:</td>
<td>non-critical section</td>
</tr>
<tr>
<td>p2: np ← nq + 1</td>
<td>q1: non-critical section</td>
</tr>
<tr>
<td>p3:</td>
<td>await nq = 0 or np ≤ nq</td>
</tr>
<tr>
<td>p4:</td>
<td>critical section</td>
</tr>
<tr>
<td>p5:</td>
<td>np ← 0</td>
</tr>
<tr>
<td>q in non-critical section</td>
<td>q4: critical section</td>
</tr>
<tr>
<td></td>
<td>q in q3 or q4</td>
</tr>
</tbody>
</table>

- Can enter CS, if ticket (np or nq) is “smaller” than that of the other process
- Priority: if equal tickets, both compete, but P wins
 - Fixed priority not so good, but acceptable (rare occurrence)
Correctness Proof for 2-process Bakery Algorithm

• Mutex?
• No deadlock?
• No starvation?
• No counter overflow?

• What else, if any?
 - Temporal logic

Alg. 5.1

Spesifioinnin ja verifiioinnin perusteet
(Slides Conc.Progr. 2006)
(for those who really like temporal logic…)

4.11.2008
Bakery for n Processes

<table>
<thead>
<tr>
<th>Algorithm 5.2: Bakery algorithm (N processes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer array[1..n] number ← [0,..,0]</td>
</tr>
</tbody>
</table>

| p1: non-critical section |
| p2: number[i] ← 1 + max(number) |
| p3: for all other processes j |
| p4: await (number[j] = 0) or (number[i] ≪ number[j]) |
| p5: critical section |
| p6: number[i] ← 0 |

- No **write** competition to shared variables
 - Load/store assumed atomic
- Ticket numbers increase continuously while critical section is taken – danger?
- All other processes polled
 - Not so good!

- when equality, give priority to smaller number[x]
- in non-critical section?
- in q3..q6?
Bakery for n Processes

• Mutex OK?
 – Yes, because of priorities at competition time

• Deadlock OK?
 – Yes, because of priorities at competition time

• Starvation OK?
 – Yes, because
 • Your (i) turn will come eventually
 • Others (j) will progress and leave CS
 • Next time their number[j] will be bigger than yours

• Overflow
 – Not good. Numbers grow unbounded if some process always in CS
 • Must have other information/methods to guarantee that this does not happen.

 e.q., max 100 processes, CS less than 0.01% of executed code ??
• Concurrent read & write may result to bad read
 – Correct behaviour in p7 even if number[j] value read wrong!
• Assuming that await is in busy loop

Performance Problems with Bakery Algorithm

- Problem
 - Lots of overhead work, if many concurrent processes
 - Check status for all possibly competing other processes
 - Other processes (not in CS) slow down the one process trying to get into CS – not good
 - Most of the time wasted work
 - Usually not much competition for CS

- How to do it better?
 - Check competition in fixed time
 - In a way not dependent on the number of possible competitors
 - Suffer overhead only when competition occurs
• Assume atomic read/write
• 2 shared variables, both read/written by P and Q
• Block at gate1, if contention
 – Last one to get there waits
• Access to CS, if success in writing own id to both gates

Algorithm 5.4: Fast algorithm for two processes (outline)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>non-critical section</td>
<td>non-critical section</td>
</tr>
<tr>
<td>p1: gate1 ← p</td>
<td>q1: gate1 ← q</td>
</tr>
<tr>
<td>p2: if gate2 ≠ 0 goto p1</td>
<td>q2: if gate2 ≠ 0 goto q1</td>
</tr>
<tr>
<td>p3: gate2 ← p</td>
<td>q3: gate2 ← q</td>
</tr>
<tr>
<td>p4: if gate1 ≠ p</td>
<td>q4: if gate1 ≠ q</td>
</tr>
<tr>
<td></td>
<td>if gate2 ≠ q goto q1</td>
</tr>
<tr>
<td>p5: if gate2 ≠ p goto p1</td>
<td>critical section</td>
</tr>
<tr>
<td>p6: gate2 ← 0</td>
<td>q6: gate2 ← 0</td>
</tr>
</tbody>
</table>
Algorithm 5.4: Fast algorithm for two processes (outline)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td></td>
<td>non-critical section</td>
</tr>
<tr>
<td>p1: gate1 ← p</td>
<td>q1: gate1 ← q</td>
</tr>
<tr>
<td>p2: if gate2 ≠ 0 goto p1</td>
<td>q2: if gate2 ≠ 0 goto q1</td>
</tr>
<tr>
<td>p3: gate2 ← p</td>
<td>q3: gate2 ← q</td>
</tr>
<tr>
<td>p4: if gate1 ≠ p</td>
<td>q4: if gate1 ≠ q</td>
</tr>
<tr>
<td>p5: if gate2 ≠ p goto p1</td>
<td>q5: if gate2 ≠ q goto q1</td>
</tr>
<tr>
<td></td>
<td>critical section</td>
</tr>
<tr>
<td>p6: gate2 ← 0</td>
<td>q6: gate2 ← 0</td>
</tr>
</tbody>
</table>

- No contention for P, if P alone (i.e., gate2 = 0)
- Little overhead in entry
- 2 assignments and 2 comparisons
Algorithm 5.4: Fast algorithm for two processes (outline)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>non-critical section</td>
<td>non-critical section</td>
</tr>
<tr>
<td>p1: gate1 ← p</td>
<td>q1: gate1 ← q</td>
</tr>
<tr>
<td>p2: if gate2 ≠ 0 goto p1</td>
<td>q2: if gate2 ≠ 0 goto q1</td>
</tr>
<tr>
<td>p3: gate2 ← p</td>
<td>q3: gate2 ← q</td>
</tr>
<tr>
<td>p4: if gate1 ≠ p goto p1</td>
<td>q4: if gate1 ≠ q</td>
</tr>
<tr>
<td>p5:</td>
<td>q5: if gate2 ≠ q goto q1</td>
</tr>
<tr>
<td>critical section</td>
<td>critical section</td>
</tr>
<tr>
<td>p6: gate2 ← 0</td>
<td>q6: gate2 ← 0</td>
</tr>
</tbody>
</table>

- **Q pass gate2 (q3), when P tries to get in**
- P blocks at p2, until Q releases gate2
- Q will advance even if P gets to p1 before q4 executed
Algorithm 5.4: Fast algorithm for two processes (outline)

integer gate1 ← 0, gate2 ← 0

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>non-critical section</td>
<td>non-critical section</td>
</tr>
<tr>
<td>p1: gate1 ← p</td>
<td>q1: gate1 ← q</td>
</tr>
<tr>
<td>p2: if gate2 ≠ 0 goto p1</td>
<td>q2: if gate2 ≠ 0 goto q1</td>
</tr>
<tr>
<td>p3: gate2 ← p</td>
<td>q3: gate2 ← q</td>
</tr>
<tr>
<td>p4: if gate1 ≠ p</td>
<td>q4: if gate1 ≠ q</td>
</tr>
<tr>
<td>p5: if gate2 ≠ p goto p1</td>
<td>q5: if gate2 ≠ q goto q1</td>
</tr>
<tr>
<td>critical section</td>
<td>critical section</td>
</tr>
<tr>
<td>p6: gate2 ← 0</td>
<td>q6: gate2 ← 0</td>
</tr>
</tbody>
</table>

- Q arrives at the same time with P
 - Competition on who wrote to gate1 and gate2 last
 - P & P: P advances, Q blocks at q5
 - P & Q: P advances, Q advances, i.e., no mutex (ouch!)
<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>(\text{gate}_1 \leftarrow p)</td>
<td>(\text{gate}_1 \leftarrow q)</td>
</tr>
<tr>
<td></td>
<td>(\text{want}_p \leftarrow \text{true})</td>
<td>(\text{want}_q \leftarrow \text{true})</td>
</tr>
<tr>
<td>p2</td>
<td>if (\text{gate}_2 \neq 0) (\text{want}_p \leftarrow \text{false})</td>
<td>if (\text{gate}_2 \neq 0) (\text{want}_q \leftarrow \text{false})</td>
</tr>
<tr>
<td></td>
<td>goto p1</td>
<td>goto q1</td>
</tr>
<tr>
<td>p3</td>
<td>(\text{gate}_2 \leftarrow p)</td>
<td>(\text{gate}_2 \leftarrow q)</td>
</tr>
<tr>
<td>p4</td>
<td>if (\text{gate}_1 \neq p) (\text{want}_p \leftarrow \text{false})</td>
<td>if (\text{gate}_1 \neq q) (\text{want}_q \leftarrow \text{false})</td>
</tr>
<tr>
<td></td>
<td>await (\text{want}_q = \text{false}) (\text{critical section})</td>
<td>await (\text{want}_p = \text{false}) (\text{critical section})</td>
</tr>
<tr>
<td>p6</td>
<td>(\text{gate}_2 \leftarrow 0)</td>
<td>(\text{gate}_2 \leftarrow 0)</td>
</tr>
<tr>
<td></td>
<td>(\text{want}_p \leftarrow \text{false})</td>
<td>(\text{want}_q \leftarrow \text{false})</td>
</tr>
</tbody>
</table>

P last at gate1
Q last at gate 2

Q blocks here
Fast N Process Baker

• Expand Alg. 5.6
 – Still with just 2 gates

P: \(\text{await wantq=false} \) \quad \rightarrow \quad \text{Pi: For all other } j \text{ \ await want}[j]=\text{false} \\

• Still fast, even with “for all other”
 – Fast when no contention (\(\text{gate2} = 0 \))
 • Entry: 3 assignments, 2 if’s
 – Awaits done only when contention
 • \(p4: \text{ if } \text{gate1} \neq i \)