Concurrent Programming (R10)

13.11.2009

Lesson 5

Deadlocks

Ch 6 [Stall 05]

Problem

Dining Philosophers
Deadlock occurrence
Deadlock detection
Deadlock prevention
Deadlock avoidance

Motivational Example

* New possible laptop for CS dept use

— Lenovo 400, dual-core, Intel Centrino 2 technology

— Ubuntu Linux8.10
« Wakeup from suspend/hibernation, freezes often

http://ubuntuforums.org/showthread.php?t=959712

* Read, study, experiment —some 15 hours?

— No network?, at home/work?, various units?,, ???

— Problemwith Gnome desktop, not with KDE, ..., ???
« Could two processors cause it?

— Shutdown one processor during hibernation/wakeup

— Wakeup works fine now
« Same problem with many new laptops running Linux

— All new laptops with Intel Centrino 2 with same Linux driver?
« Concurrency problem in display driver startup?

— Bugnot found yet, use 1-cpu work-around

http://gitkermel. 2p: lqit/tory 2.6.qit; :fladlﬂd%ﬁw 1
13.11.2009 Copyright TeemuKerola 2009 1 13.11.2009 Copyright TeemuKerola 2009 (search 1915_enable_vblark...)
_ Deadlock: an Example w0
po— processes — Q object? p
P Q
buffer f
/ ' objects for
—
/ (PRI 3 exclusive use El
\ user input, A2 0K]
critic. section reserve A: \ N
} disk driver / reserve B? OK.
T 5 | &
=3 scanner, v “
e message, reserve B? Wait.-" 3 l
[[[(for resource ‘reserve A? Wait.
objects for exclusive use held by Q) i (forresource
. : . : Yy heldbyP
Basic problem: a process needs multiple objects at the same time YF)
Mutex: competition for one object (critical section)
13.11.2009 Copyright TeemuKerola 2009 3 13.11.2009 Copyright TeemuKerola 2009 4

Resource Reservation Graph

Resource

Process ° »Q Process

e’
~._p Resource

"Ve/;;s\ N

Deadlock cycle in resource reservation graph

13.11.2009 Copyright TeemuKerola 2009 5

Resource Reservation Graph

Resource

Does this graph contain a deadlock?

13.11.2009 Copyright TeemuKerola 2009 6

Lecture 5: Deadlocks

Concurrent Programming (R10)

13.11.2009

Resource Reservation Graph
Resource

. é
O /
™ h@”/s /

/
.

“
@

S Resource
Wasies

Does this graph contain a deadlock?

13.11.2009

Copyright TeemuKerola 2009 7

Gridlock

Reallife gridlock: http://img209.i

us/img209/5781

(Fig. 6.1 [Stal06])

nafarialibh3.jpg

() Deadlock possible

* Processes: cars 1, 2, 3 and 4
* Resources: quadrants a, b, ¢, d

— Car 4 needs quadrants d and a (exclusive use for each)

(b) Deadlock

13.11.2009 Copyright TeemuKerola 2009 8
Consequences Resources
» Reusable resources uudelleen-
Limited b t kaytettava
» The processes do not advance — Limited number or amoun resurssi
_ Cars do not move — Wait for it, allocate it, qeallocat? (free) it
Resources remain reserved — Memory, buffer space, intersection quadrant
.) - -
— Critical section code segment execution
— Cpu? Street quadrant? _
— Memory? 1/O-devices? » Consumable resources kulutettava
— Logical resources (semaphores, critical sections, ...)? _ Unlimited number or amount resurssi
e The computation fails — Created and consumed
— Execution never finishes? — Someone may create it, wait for it, destroy it
« Oneapplication? — Message, interrupt, turn for critical section
— The system crashes? Traffic flow becomes zero? -
13.11.2009 Copyright TeemuKerola 2009 9 13.11.2009 Copyright TeemuKerola 2009 10
Proeet | 1: scenario Q alone (Fig. 6.2 [Stal06]) Progress (Fig. 6.3 [Stal06])
A;l A
Release Release Q gets B
A 4 when
A Release A > [Rhasiey
Regquired § Rm‘uiml Release Prelease A,
\ W Qugets A
GetA 4 q
N\ Qrequests B Geta Pand Q Qrelease B
B 3 o pm_,,q when TR Agets B
Required el '“‘” P has A&B s Arelease B
Get B “4 &\ & Required .
QgetsB ___ —F— " 6
when » Palone >
Phas A . Progress »
¥ ofP o Progress
Y7 =bomh ? and Q want sesouee & Getd GetB Relomsed RelenseB ° GetA (ReleaseA Get B DRelease B TP
A
\ = both P and Q want resource
& are i Reauired k/Y—\J Z =both Pand Q want resource A A Required B Required
[0 = acadiocicinevitabie egicn B Required w — both P and Q want resource B = possible progress path of Pand Q
e = possible progress path of Pand Q N Horizonal pation.of pth idicates Pis exceuting and Q s waiing
Horizontal portion of path indicates P is executing and Q is waiting. Vertical portion of path indicates Q) is executing and Pis waiting
Vertical portion of path indicates Q is executing and Pis waiting.
13.11.2009 Copyright TeemuKerola 2009 11 13.11.2009 Copyright TeemuKerola 2009 12

Lecture 5: Deadlocks

Concurrent Programming (R10)

13.11.2009

Definitions

* Deadlock lukkiintuminen
— Eternal wait in blocked state
— Doesnotblock processor (unlessone resource is processor)
« Livelock "elolukko”

— Two or more processes continuously change their state
(execute/wait) as response to the other process(es),
but never advance to real work

- E.g.,ping-pong "you first—no, you first- ...”
« two processes alternate offering the turn to each other - no
useful work is started

— Consumes processor time

« Starvation nalkiintyminen
— theprocess will never get its turn
— E.g.,inready-to-run queue, but never scheduled

13.11.2009 Copyright TeemuKerola 2009 13

Deadlock Problems

* How to know if deadlock exists?
— How to locate deadlocked processes?
« How to prevent deadlocks?
« How to know if deadlock might occur?
* How to break deadlocks?
— Without too much damage?
— Automatically?

« How to prove that your solution is free of
deadlocks?

13.11.2009 Copyright TeemuKerola 2009 14

Good Deadlock Solution

* Prevents deadlocks in advance, or
detects them, breaks them, and fixes the system

» Small overhead
« Smallest possible waiting times

« Does not slow down computations when no danger
exists

« Does not block unnecessarily any process when the
resource wanted is available

13.11.2009 Copyright TeemuKerola 2009 15

Conditions for Deadlock
« Three policy conditions Coffman, 1971

— S1. Mutual exclusion yksi kayttaja
« oneuser of any resource at a time (not just code)
— S2. Hold and wait pidé ja odota

« aprocess may hold allocated resources E.G. Coffman
while waiting for others

— S3. No preemption ei keskeytettavissa
« resource can not be forcibly removed from a process
holding it
< A dynamic (execution time) condition takes
place kehaodotus
— D1. Circular wait: a closed chain of processes exists,
each process holds at least one resource needed
by the next process in chain

E.g., slide 5

http://portal.acm. cfm?id=356588&coll=GUIDE&dI=GUIDE&CFID=4442763&CFTOKEN=75849639&ret=1#Fullte xt
13.11.2009 Copyright TeemuKerola 2009 16

Dining Philosophers (Dijkstra)

Philosopher:
think

take two forks ...

... one from each side
eat rice until satisfied
return the forks

Problem:
how to reserve the forks
without causing

- deadlock
- starvation
and everybody may be
| See philosopherartin web | present
hl%.fl?zo’(’)gw Copy;iT;theremuKierolgz‘(H)aOgr 17

Dining Philosophers in Java

* Tapio Lehtoméki,

. s sa 120l - (0l x|
MikroBitti
« Load program @ I Fﬁ
from course nota d B

schedule page N ~
¢ Modify pathsin |- |

script . ‘g?“
philosophers.bat)

and run it e / \
L

* Modify program

Ao

for homework? Ruokatalu [— —

Nalansieto [« b

— Nextyear? Ruokailun kesto a0 i]

hittp://www.cs helsinki.fi Jriol i/Lehtomaki.zip

13.11.2009 Copyright TeemuKerola 2009 18

Lecture 5: Deadlocks

Concurrent Programming (R10)

13.11.2009

/* program diningphilosophers */
semaphore fork [5] = {1}; /*mutex, one at a time */
int 1;

void philosopher (int i)

(Fig. 6.12 [Stal06])

while (true) o o
U iy Trivial
wait (fork[i]); I* left fork */ .

i : A o
Z:é?)ﬁf"“‘ [(i+1) mod 51);/*right fork */ Solutlon

signal(fork [(i+l) mod 5]);

) signal(fork[i]); #1

void main()

parbegin (philoscpher (0), philesopher (1), philesopher (2),
philosopher (3), philosopher (4));
}

« Possible deadlock — not good
— AIllI5 grab left fork “at the same time”

/% program diningphilosophers */

semaphore fork[5] = {l}; (Fig. 6.13 [Stal06])
Se'zal?h"re room = {4}; /*only 4 at a time, 5th waits */
int i;

void philosopher (int I)
while (true)
{
think();
wait (fork[i]);
wait (fork [(i+1l) mod 5]);

eat();
signal (fork [(i+l) mod 5]);

signal (fork[i]);
«m»
}

void main()

parbegin (philosopher (0), philosopher (1), philesopher (2),
philosopher (3), philosopher (4));

}
« Nodeadlock, no starvation, and no company while eating — not good
* Waiting when resourcesare available — not gooa\ which scenario?
13.11.2009 Copyright TeemuKerola 2009 19 13.11.2009 Copyright TeemuKerola 2009 20
Deadlock Prevention Disallow S1 (mutual exclusion)
< Can not do always
« How to prevent deadlock occurrence in advance? — There are reasons for mutual exclusion!
« Deadlock possible only when « Can notsplitphilosophers fork into 2 resources
all 4 conditions are met: + Can do sometimes
_ S1. Mutual exclusion poissulkemistarve — Too high granularity blocks too much
. — « Resource room intrivial solution#2
— S§2. Hold and wait pida ja odota . . .
_ : . . — Finer granularity allows parallelism
— S3. No preemption ei saa ottaa pois kesken kaiken « Smallerareas, parallel usage, more locks
— D1. Circular wait kehaodotus More administration to manage more locks
« Solution: disallow anv one of the conditions * Toofine gfanularity may c-ause too much administrationwork
any one — Normal design approach in data bases, for example
- S1, 82, S3, or D1? . L.
. . . ¢ Get more resources, avoid mutex competition?
— Which is possible to disallow? .
L . . — Buy another fork for each philosopher?
— Which is easiest to disallow?
13.11.2009 Copyright TeemuKerola 2009 21 13.11.2009 Copyright TeemuKerola 2009 22
Disallow S2 (hold and wait) Disallow S3 (no preemption)
R I needed . « Allow preemption in crisis
* Requestallneeded resources at onetime + Release of resources => fallback to some earlier state
« Waituntil all can be granted simultaneously _ Initial reservation of these resources
— Can lead to starvation — Fall back to specific checkpoint
« Reserve both forks at once (simultaneous wait!) ~ Checkpoint must have been saved earlier
« Neighbouring philosophers eat all the time alternating - Must know when to fall back!
S— « OK, if the system has been designed for this
N'a — Practical, if saving the state is cheap and the chance of
@R‘-) 37 deadlock is to be considere
l o 2 iy — Standard procedure for transaction processing
+ Inefficient
A . B .
- long wait for resources (to be used much later?) B :?,?;tll(zg:llzglt)éken” then
— worst case reservation (long wait period for resources which are “remove fork” from philosopher [i®1]
possibly needed - who knows?) wait (fork[i1])
« Difficult/impossible to implement? o . o Th o Ears i
— advance knowledge: resources of all possible execution paths of ~ What will philosapheri@1 do now? Think? Eat? Die?
all related modules...
13.11.2009 Copyright TeemuKerola 2009 23 13.11.2009 Copyright TeemuKerola 2009 24

Lecture 5: Deadlocks

Concurrent Programming (R10)

13.11.2009

Disallow D1 (circular wait)

¢ Linear ordering of resources
— Make reservations in this order only —no loops!
« Pessimistic approach — prevent “loops” in advance
— Advance knowledge of resource requirements needed
— Reserve all at once in given order
— Prepare for "worst case” behavior
Forks in global ascending order
philosophers 0,1, 2, 3: last philosopher 4:

wait (fork[i]); wait (fork[0]);
wait (fork[i+1]); wait (fork

« Optimistic approach — worry only at the last moment
— Reservation dynamically as needed (but in order)
— Reservation conflict => restart from some earlier stage
* Must have earlier state saved somewhere

Deadlock Detection and Recovery «

« Let the system run until deadlock problem occurs

— “Detect deadlock existance”

— “Locate deadlock and fix the system”

Detection is not trivial:

— Blocked group of processes is deadlocked? or

— Blocked group is just waiting for an external event?

* Recovery

— Detection is first needed

— Fallback to a previous state (does it exist?)

— Killing one or more members of the deadlocked group
* Must be able to do it without overall system

damage
Needed: information about resource allocation
— Inaform suitable for deadlock detection!

13.11.2009 Copyright TeemuKerola 2009 25 13.11.2009 Copyright TeemuKerola 2009 26
Resource Allocation [HowmenyRavesources exisis?] m m m mi s
R R R3\me Rs PL[L]O[TI/N]oO
« Processes Pie P1..Pn il] 2S \é) . l\i}] 0
2
* Resources (or objects) Rje R1..Rm Resource vector R a0 [P [0 [q[o0
. 2 R3 4 5
« Number of resources of type Rj |311 | é‘ | I; | IEJ R Al\scanonma\nx\—\
- total amount of resources R =(ry, ..., I;y) - Available vector v Which Who has
— currently free resources V= (v .., V) resources TR
- - RI R2 R3 R4 B5 |arepowfree? | D22
 Allocated resources (allocation matrix) o Tt ToTl o1 =
- A =/[a;] “process Pi has a; units of resource Rj" 2o [0 [|o]| T \Pz has now R1and R2 |
i P3 0 0 0 0 1 — =
. Outstandmg requestg (request mgtrlx) i e P2 wants now R3 and R
- Q =/4q;] "process Pi requests g; units of

resource Rj”

13.11.2009 Copyright TeemuKerola 2009 27

Request matrix Q

Is there now a
deadlock or not?

(Fig. 6.10 [Stalo6])

13.11.2009 Copyright TeemuKerola 2009 28

Deadlock Detection (Di ijtI’a) @

1. Find a (any) process that could terminate

« All of its current resource requests can
be satisfied

2. Assume now that

a. This process terminates, and

b. Itreleases all of its resources
3. Repeat 1&2 until can not find any more such processes
4. Ifany processes still exist, they are deadlocked

a. They all each need something

b. The process holding that something is waiting for
something else

« That process can not advance and release it

13.11.2009 Copyright TeemuKerola 2009 29

Deadlock Detection Algorithm (DDA)

DL1. [Remove the processes with no resources]
Mark all processes with null rows in A.

DL2. [Initialize counters for available objects]
Initialize a working vector W = V

DL3. [Search for a process Pi which could get
all resources it requires]
Search for an unmarked row i such that
0ij < W j=1l.n

If none is found terminate the algorithm.
DLA4. [Increase W with the resources of the chosen process]
~~— SetW=W+A, ie.w =w+a; when j=1.n

Mark process Pi and return to step DL3.

When the algorithm terminates, unmarked processes
correspond to deadlocked processes. Why?
13.11.2009 Copyright TeemuKerola 2009 30

Lecture 5: Deadlocks

Concurrent Programming (RIO) 13.11.2009

Example: Initial state Example: Deadlock Detection
allocation matrix request matrix A DL3: no request
A Q Q can be satisfied:
E.g., iV gisw
row 1: 01001 ”process 2 has > Deadluock‘
2: 004 j) resources1 & 2, .
3: 00001| |anditwants DL4'. mark | DL3: this request
4 10101 resources3 & 5” Dk 1: mark can be satisfied:

< W V)
R EEEER "V

all resources
all resources R |[PEEIEREY |/hoholds
resource 4?

free resources
free resources V Which resources >DL2: copy
aeiiEs may become free
(Fig. 6.10 [Stal06]) Deadlock or not? DLA: new W
13.11.2009 Copyright TeemuKerola 2009 31 13.11.2009 Copyright TeemuKerola 2009 32
Example: Deadlock Detection (phases) Example: Deadlock Detection (phases)
A Q A Q
/ /

DL1: mark

all resources 21121 all resources R: AN
free resources V: I:I free resources V: I:I

may become free W:

may become free W:

13.11.2009 Copyright TeemuKerola 2009 33 13.11.2009 Copyright TeemuKerola 2009 34
Example: Deadlock Detection (phases) Example: Deadlock Detection (phases)
A Q A Q
/ /
| DL3: this request
DL1: mark DL1: mark can be satisfied:
< W, Vj
all resources 21121 all resources R EEEER "V
free resources V: free resources V:
> DL2: copy > DL2: copy
may become free W: may become free W:
13.11.2009 Copyright TeemuKerola 2009 35 13.11.2009 Copyright TeemuKerola 2009 36

Lecture 5: Deadlocks

Concurrent Programming (R10)

13.11.2009

Example: Deadlock Detection (phases)

A Q

| DL3: this request
can be satisfied:

< W V)
R EEEER "V

free resources V:

DL 1: mark

all resources

> DL2: copy
may become free W:

DL4: new W 1

13.11.2009 Copyright TeemuKerola 2009 37

Example: Deadlock Detection (phases)

A Q

DL3: this request
can be satisfied:

< W V)
R EEEER "V

>DL2: copy

all resources
free resources

may become free

13.11.2009 Copyright TeemuKerola 2009 38

Example: Deadlock Detection (phases)

DL3: no request
Q can be satisfied:

Vi g sw
- Deadlock

| DL3: this request
can be satisfied:

< W V)
all resources R EEEER "V

free resources V:

may become free W:

DL4: new W

13.11.2009 Copyright TeemuKerola 2009 39

Example: Breaking Deadlocks

Processes P1 and P2 are in deadlock

— What next?

Abort P1 and P2

— Most common solution

Rollback P1 and P2 to previous safe state, and try again
— Rollback states must exist

— May deadlock again (or may not!)
Abort P1 because it is less important

— Must have some basis for selection

— Who makes the decision? Automatic?
Preempt R3 from P1

— Must be able to preempt (easy if R3 is CPU?)

— Must know what to preempt from whom

— How many resources need preemption?

13.11.2009 Copyright TeemuKerola 2009 40

Deadlock Avoidance with DDA

 Use Dijstra’s algorithm to avoid
deadlocks in advance?
» Banker’s Algorithm
— Originally for one resource (money)
— Why "Banker’s”?
« “Ensure that a bank never allocates its available

cash so that it can no longer satisfy the needs of
all its customers”

Pankkiirin algoritmi

13.11.2009 Copyright TeemuKerola 2009 41

Banker’s Algorithm ¢

« Keep state information on resources
allocated to each process]

 Keep state information on number of resources
each process might still allocate

 For each resource allocation, first find an ordering
which allows processes to terminate, if that
allocation is made

— Assume that allocation is made and then use DDA to
find out if the system remains in a safe state even in the
worst case

— Ifdeadlock is possible, reject resource request
— If deadlock is not possible, grant resource request

13.11.2009 Copyright TeemuKerola 2009 42

Lecture 5: Deadlocks

Concurrent Programming (R10) 13.11.2009

Deadlock Avoidance with ’ i
Banker’s Algorithm o Banker’s Algorithm Example
Matrices as before, and some more QllloiétmRZAm R5 RlRe:zu e;;s 84 R5 R’1vI a:zal Iggat;:tnr?s
« Foreach process: the maximum needs of resources PLIo[1]0]0]0 1]/ofo]o]0O 2]1]o]1]0
- C=[cy], “Pimay request c; units of Rj” P211]1]0]0/0 0/0/0]0]1 1]1/0/0]1
. . P3lojo|1]0]1 o[oJoJ1]o0 1/of1]1]1
« The current hypothesis of resources in use Possible P4 0lOl11]0 ololololz 0ol21l1]1
- A"=T[a’;], “if this allocation is made, ~ [allocation
S P R R[2]3]2]1]2
Pi would have a’;; units of Rj” ceouiees
* The current hypothesis of future maximum demands Avaiablev[1 [10]0]1]
- Q =1[qg’;], “Picould still request g’; units of Rj”
Q, = C-A’ = ol (Fig. 16.11, Bacon, Concurrent Systems, 1993)
- ossible request
« Apply DDAto A’ and Q’ P1 requests R1. Is request granted?
— Ifno deadlock possible, grant resource request Could system deadlock, if R1 is granted?
13.11.2009 Copyright TeemuKerola 2009 43 13.11.2009 Copyright TeemuKerola 2009 44
, -
Banker’s Algorithm Example Avoidance: Problems
If P1 request for R1 approved, can deadlock occur? "
)) Q=C-A) * Each allocation: a considerable overhead
P;fs'lgz agzca:fné r':f sségle;qu:fts;g erwaszuo;;uo; 4CR5 — Run Banker’s algorithmfor 20 processes and 100 resources?
PLID 1 feletel-T]o]o[1][0op [2[1]0[1]0 » Knowledge of maximum needs
P2l1latefoteT qO|0[o0[0[IP [1]1]0]0]1 - Inadvance?
PPlolol++o++—<1|0]|o[1[OpP 110|111 « An educated guess? Worst case?
Palo{ot+it+T1o] <{0[2|0]0[ITP [O[2]1[1]1 - Dynamically?
« Evenmore overhead
ResourcesR| 2 |3 |2 |1 |2
&R R / « Asafe allocation does not always exist
R T FEEIE B oniid
w([1]2]0]0[1]|ooAZwmarkP4 y !
w 1 | DDA-4: mark P1 ; Another Banker’s Algorithm example: B. Gray, Univ. of Idaho
-- » R1 R2 R3 R4 R5 http://www.if.uidaho.edu/~bgray/classes/cs341/doc/banker.html
w|2|3 DDA-4: mark P3 Possibly
available V' [@]nm
w DDA: no deadlock, allocation request OK
13.11.2009 Copyright TeemuKerola 2009 45 13.11.2009 Copyright TeemuKerola 2009 46
Summary
« Difficult real problem
 Can detect deadlocks Dijkstra’s DDA
— Need specific data on resource usage
« Difficult to break deadlocks
— How will killing processes affect the system?
* Can prevent deadlocks Bankers
— Prevent any one of those four conditions
« E.g., reserve resources always in given order
— Can analyze system at resource reservation time
to see whether deadlock might result
« Complex and expensive
13.11.2009 Copyright TeemuKerola 2009 47

Lecture 5: Deadlocks 8

