
Computer Organization II 11.10.2002

Ch 15, IA-64 Architecture 1

111.10.2002 Copyright Teemu Kerola 2002

IA-64 and Crusoe Architectures
Ch 15

IA-64 General Organization
Predication, Speculation

Software Pipelining
Example: Itanium

Crusoe General Architecture
Emulated Precise Exceptions

211.10.2002 Copyright Teemu Kerola 2002

General Organization

• EPIC - Explicit Parallel Instruction Computing
– parallelism visible at instruction level, not ”secrectly”

implement in processor
• new instruction stream semantics

– compiler prevents many ”hazards” (dependency
problems), hardware can depend on it

• VLIW (Very Long Instruction Word)
• Branch predication – many speculative execution

tracks
• Speculate on memory data loads

Fig 15.1

311.10.2002 Copyright Teemu Kerola 2002

IA-64 General Organization

• 128 64-bit (+ Not a Thing bit) registers
– integer, logical, general purpose

• 128 82-bit registers
– floating point (IEEE double extended)
– graphics

• 64 1-bit predicate registers
• 8 64-bit branch registers

0.0
1.0

f0:
f1:

Fig 15.1

Slide 9 [Lamb00]

411.10.2002 Copyright Teemu Kerola 2002

Instruction Format

• Instruction (41 bits)
– operation & predicates
– up to 6 instruction executions in parallel

• Instruction bundle (128 bits)
– three instructions & template
– smallest unit to fetch instructions from memory

• Instruction group
– machine instructions that could be issued in parallel
– end of group marked with ”;;” in symbolic assembly

language code

Slide 8 [Lamb00]

Fig 15.2

Tbl 15.3

511.10.2002 Copyright Teemu Kerola 2002

Predicated Execution

• Execute each branch
– if-then-else gives two predicates, and each path will

advance with its own predicate
• Predicate values known only after branch

instruction completes
• Discard ”wrong” path, commit ”right” path

– known always before
commit time?

Fig 15.3 (a)

Slide 18 [Lamb00]

611.10.2002 Copyright Teemu Kerola 2002

Speculative Loading, I.e.,
Control Speculation

• Start loading from memory in advance so that data
is available earlier
– load instruction ”hoisted” earlier in code, before some

branch instruction
– interrupts are delayed (via NaT bit in register), and

handled only at the time when they would have been
handled normally

Fig 15.3 (b)

je L2
ld8 r1 = [r5]

ld8.s r1 = [r5]
je L2
chk.s r1, recovery Slides 27, 28

[Lamb00]

Computer Organization II 11.10.2002

Ch 15, IA-64 Architecture 2

711.10.2002 Copyright Teemu Kerola 2002

Data Speculation
• Start loading from memory in advance so that data

is available earlier
– load instruction ”hoisted” earlier in code, before a store

instruction that might alter just that memory location
– Advanced Load Address Table (ALAT, special

hardware) keeps track of data speculation addresses
– each store will clear target address in ALAT (if any)
– at original load instruction time, a new load is initiated

if ALAT entry was cleared

je L1
st8 [r3] = r13
ld8 r1 = [r5]

ld8.a r1 = [r5]
je L1
st8 [r3] = r13
ld8.c r1 = [r5]

Slides 29-30
[Lamb00]

Slide 26 [Lamb00]

Slide 31 [Lamb00]

alias
problem:

811.10.2002 Copyright Teemu Kerola 2002

IA-64 Register Set

• 128 general purpose regs (stacked, rotated)
• 128 floating point regs (rotated)
• 64 predicate regs
• 8 branch regs
• instruction pointer (bundle address)

Fig 15.7

Slides 15-17 [Lamb00]

Tbl 15.5

911.10.2002 Copyright Teemu Kerola 2002

Software Pipelining
• Unwrap loops in hardware, so that multiple

iterations are done in parallel
– code is not unrolled
– each iteration done with different registers

(automatic register renaming)
– beginning and end of loop handled as

special cases (with predicates)
– each iteration execution is spread enough to make room

for ILP
– loop branches are replaced with special loop

terminating instructions that control sw pipelining
– why is this called software pipelining?

Fig 15.6

Slide 25 [Lamb00]

code p. 559
code p. 560

1011.10.2002 Copyright Teemu Kerola 2002

1111.10.2002 Copyright Teemu Kerola 2002

Itanium
• 1st implementation of IA-64 architecture
• ”Simpler” than conventional superscalar

– no reservation stations, reorder buffers
– no large renamed register set for architecture registers
– no dependency issue logic
– dependencies solved by compiler, and

explicitly solved in code
• Very large memory address space

– explicit control over memory hierarchies
– explicit memory op fences Slides 10-12 [Lamb00]

Slide 40 [Lamb00]

1211.10.2002 Copyright Teemu Kerola 2002

Itanium
• Powerful cache hierarchy

– split L1: 16KB + 16KB, 4-way set assoc, 32B lines
– unified L2: 96KB, 6-way set assoc, 64B lines
– off-chip unified L3: 4MB, 4-way set assoc

• TLB hierarchy
– instruction TLB: 64 entry full assoc
– data L1 TLB: 32 entry direct assoc
– data L2 TLB: 96 entry full assoc
– Hardware Page Walker – use mem hierarchy to locate

address mapping
• 10-stage in-order pipeline Slides 43-44 [Lamb00]

Slide 42 [Lamb00]

Computer Organization II 11.10.2002

Ch 15, IA-64 Architecture 3

1311.10.2002 Copyright Teemu Kerola 2002

Itanium 2
• Upgraded cache hierarchy

– split L1: 16KB + 16KB, 4-way set assoc, 64B lines
– unified L2: 256KB, 8-way set assoc, 128B lines
– on-chip unified L3: 3MB, 12-way set assoc

• TLB hierarchy
– instruction L1 TLB: 32 entry full assoc
– instruction L2 TLB: 128 entry full assoc
– data L1 TLB: 32 entry full assoc
– data L2 TLB: 128 entry full assoc

1411.10.2002 Copyright Teemu Kerola 2002

Itanium 2
• Max 6 issues per cycle

– 11 issue ports
• Many functional units, all fully pipelined

– 6 general purpose ALU’s
– 4 data cache memory ports
– 6 multimedia FU’s
– 4 FPU’s
– 3 branch units

• Perfect loop prediction
• Lots of branch prediction hints in code

1511.10.2002 Copyright Teemu Kerola 2002

IA-64 Summary
• Parallel semantics for ISA (Instr Set Arch)
• Lots of explicit ILP (Instr Level Parallelism)
• Memory hierarchy (cache) controls in ISA
• Memory synchronization primitives in ISA

– normal access temporal locality hint (E.g., ifetch.t1)
suggests to keep data in L1D, L2, and L3

– less important hint (E.g., Fpload.nt1) suggests to keep
data only in L2 and L3.

1611.10.2002 Copyright Teemu Kerola 2002

IA-64 Summary (contd)

• Lots of speculative work, that may be wasted
– predicated execution
– miss-prediction costs mostly avoided
– branch prediction hints in ISA
– load speculation: ”hoist” loads above branch or store

• Large visible register set – no hidden rename regs
– automatic stack frame save/restore

• HW-controlled software pipelining

1711.10.2002 Copyright Teemu Kerola 2002 1811.10.2002 Copyright Teemu Kerola 2002

Crusoe Architecture

Major Ideas
General Architecture

Emulated Precise Exceptions
What to do with It

Computer Organization II 11.10.2002

Ch 15, IA-64 Architecture 4

1911.10.2002 Copyright Teemu Kerola 2002

Background
• Transmeta Corporation

– Paul Allen (Microsoft), George Soros (Soros Funds)
– David R. Ditzel (Sun)
– Edmund J. Kelly, Malcolm John Wing,

Robert F. Cmelik
– Linus B. Torvalds, February 1997 → ...

• Patent 5832205
– applied August 20, 1996
– granted November 3, 1998
– many (a few) other patents …

• Crusoe processor
– published January 19, 2000

Orig. CEO, now CTO

2011.10.2002 Copyright Teemu Kerola 2002

Basic Idea(s) (5)

• Create a new processor which, when coupled with
“morph host” emulator, can run Intel/Windows
code faster than state-of-the-art Intel processor,
or with same speed but with less electric power

• New processor can be implemented with
significantly fewer gates than competitive
processors

• Compete with Intel, friendly with Microsoft
– sell chip with emulator code to system manufacturers

(Dell, IBM, Sun, etc etc)
• X86 (IA-32) binary is new binary standard
• Native OS not so important

– services from target OS: E.g., Windows or Linux

faster

cheaper

2111.10.2002 Copyright Teemu Kerola 2002

Major General Ideas
• Emulation can be faster than direct execution
• TLB used to solve new problems

– track memory accesses for memory mapped I/O
– track memory accesses for self-modifying code

• Most of executed code generated “on-the fly”
– not compiled before execution begins
– extremely optimized dynamic code generation

• Optimized code allows for simpler machine
– smaller, faster, uses less power?

2211.10.2002 Copyright Teemu Kerola 2002

Major General Ideas (contd)
• Self-modified code (dynamically created code)

can be generated so that it is extremely optimized
for execution
– issue dependencies, reorder, reschedule problems

solved at code generation (not in HW)
– processor HW does not need to solve these

• Optimize for speed, but only when needed
– do not optimize for speed when exact state change is

required (this is the tricky part!)
• Alias detection to assist keeping globals is

registers

2311.10.2002 Copyright Teemu Kerola 2002

Major General Ideas (contd)

• NOT: faster and with less power

Class action suit (5.7.2001) ... stating that ... a
revolutionary process that delivered longer battery
life in Mobile Internet Computers while delivering
high performance

http://www.theregister.co.uk/content/3/20058.html

2411.10.2002 Copyright Teemu Kerola 2002

Major Emulation Ideas
• Target processor (I.e., Intel processor) state kept in

dedicated HW registers
– working state (“speculated” state?), committed state

• Memory store buffer keeps uncommitted
(“speculated”) emulated memory state

• Specific instructions support emulation
– commit, rollback (exact exceptions)
– prot (aliases)

• TLB (and VM) designed to support emulation
– A/N-bit (mem-mapped I/O), T-bit (self-mod. code)

Computer Organization II 11.10.2002

Ch 15, IA-64 Architecture 5

2511.10.2002 Copyright Teemu Kerola 2002

General Architecture
• VLIW implementation

– VLIW = Very Long Instruction Word
– 4 simultaneous RISC instructions in ”molecule”

• one each of float, int, load/store, branch
– large L3 Translation Cache for VLIW ”molecules”

• 8-16 MB
• similar to Pentium 4 Trace Cache?

– no circuitry for issue dependencies, reorder, optimize,
reschedule

• compiler takes care of these
• data & structural dependencies under compiler

control?

2611.10.2002 Copyright Teemu Kerola 2002

General Architecture (contd)

• Large register set
– native regs: 64 INT, 32 FP

• extra regs for renaming
– target architecture regs: complete CPU state

• INT, FP, control
• working regs for normal emulation
• committed regs for saving emulated processor state

Reax, Recx, Rseq, Reip

2711.10.2002 Copyright Teemu Kerola 2002

General Architecture (contd)
• TLB

– new features to solve new problems
• before used to solve also memory protection

problems in addition to plain VM address mapping
– A/N-bit for memory-mapped I/O detection

• trap to emulator, which creates precise code
• memory-mapped I/O requires precise emulated

processor state changes
– T-bit for self-modifying code detection

• trap to emulator, which recreates emulating code in
instruction cache (“translation buffer”)

2811.10.2002 Copyright Teemu Kerola 2002

General Architecture (contd)

• Target memory store buffer
– implemented with special register(s) to support

emulation
– keep track on which target processor memory

stores are committed and which are not
– uncommitted memory stores can be discarded

at rollback
• modify HW registers implementing it
• commit & rollback controlled from outside of the

processor, not internally as is usual with speculative
instructions

2911.10.2002 Copyright Teemu Kerola 2002

General Architecture (contd)
• RISC instruction set

– explicitly parallel code (VLIW)
– commit instruction supports emulation

• commits emulated processor and memory state
• use when coherent target processor (Intel) state!

– rollback instruction (?) supports emulation
• some or all of it can be in emulator code
• recover latest committed emulated target register

state
• delete uncommitted writes from store buffer
• retranslate emulation code for precise state changes

– commit now after every emulated instruction?
– prot instruction for alias detection

3011.10.2002 Copyright Teemu Kerola 2002

Ordinary Program Execution
memory

processor
instruction
exec. circuits

device regs
cache

LDA R1, =543
ADD R2, R4, R5
…

Computer Organization II 11.10.2002

Ch 15, IA-64 Architecture 6

3111.10.2002 Copyright Teemu Kerola 2002

Execution of Ordinary Emulator
Program

LDA R1, =543
ADD R2, R4, R5
…

memory

processor

mov %exc1, >%ebp+0xc!
add %eax!, #4
…

emulator program x86 program (target)

x86 machine
registers

instruction
exec. circuits

device regs
cache

data
structure

code

3211.10.2002 Copyright Teemu Kerola 2002

Ordinary Emulator
x86-emulator (program)

emulated x86
mach regs
as data
structures

LDA R1, =543
ADD R2, R4, R5
…

static subroutine
for each x86
mach instr

Procedural main program,
where (in loop forever)
one gets x86 instructions
from memory and emulates
them one at a time with
proper subroutine

3311.10.2002 Copyright Teemu Kerola 2002

Crusoe Emulator

Dynamically generated
(optimized) instruction
sequences for x86
instruction sequences

Event oriented main program, that
supervises emulation and generates
executable machine instructions into cache

if emulating fast machine instruction
sequence has not yet been generated,
translate it and start executing it

if emulated imprecise exception, roll
back to saved state, generate slow
but precise emulating (interpreting)
code, and start executing it

if emulated precise exception, handle
it and continue with fast code generated
earlier and still stored code buffer

(emulated x86 mach
regs in hardware)

JumpAddStore
brEquftMulSub

ftSubAddLoad

3411.10.2002 Copyright Teemu Kerola 2002

Execution of Crusoe Emulator
Program

memory

processor

instr execution
circuits

mach
regs

mov %exc1, >%ebp+0xc!
add %eax!, #4
…

emulator program X86 program

x86 mach regs

cache

JumpAddStore
brEqftMulSub

ftSubAddLoad

3511.10.2002 Copyright Teemu Kerola 2002

Crusoe Logical Structure

Code
generator

Translation
buffer

Event based
main
program

Morph-host emulator

Native OS
(needed?)

HW
machine instructions interrupts

application
to emulate

OS
to emulate

3611.10.2002 Copyright Teemu Kerola 2002

Crusoe Physical Structure

native,
own regs

Emulated
x86 regs

ALIAS-
regs

mem/transl.
buffer cache

TLB cache
memory
buffer

translation
buffer

Committed
x86 regs

processor

code
genera-
tor

emu-
lator

application
to emulate

native
OS

OS
to emulate

memory

memory bus

instruction
exec. circuits

5400_diag.jpg 5400_die.jpg [sandpile.org]

Computer Organization II 11.10.2002

Ch 15, IA-64 Architecture 7

3711.10.2002 Copyright Teemu Kerola 2002

Crusoe Summary
• Emulation can be done faster or with less energy

than the ”real thing”
• VLIW (EPIC?) core architecture
• Special HW to speed up emulation

– x86 regs
– memory-mapped I/O detection
– alias and self-modifying code detection

• Special HW for precise interrupts
– 2nd set of x86 regs
– target memory store buffer
– commit and rollback instruction in ISA

3811.10.2002 Copyright Teemu Kerola 2002

Crusoe Summary (contd)

• Complex overall structure
• ”Code Morphing Software”

– JIT optimized code generation
– compiler and interpreter resident in memory
– fast but imprecise, or slow and precise emulation

• Optimize for speed or size (power, electricity)?
– Small size ⇒ cheaper, less power

TM3200, TM5400, …, TM5600 low power
TM5800 high speed

3911.10.2002 Copyright Teemu Kerola 2002

-- IA-64 and Crusoe End --
”Aqua 3400 Portable Wireless Internet
Access Device, Transmeta 400MHz,
8.4" TFT touch-screen”

”NEC Versa DayLite combines the
power-saving 600 Mhz Crusoe
TM5600 processor with dual battery
systems that NEC claims will extend
battery life to up to 7.5 hours on a
single charge”

