Lecture 12 Summary

Goals

- To understand basic features of a computer system, from the point of view of the executing program
- To understand, how a computer systems executes the program given to it
- To understand the execution time program representation in system
- To understand the role and basic functionalities of the operating system

What use is this course for?

- Program execution speed is based on <u>machine</u> instructions executed by the processor (CPU), and not in the program representation format in high level language
 - High level language representation is still important
- Understanding higher level topics is easier, once one first understands what happens at lower levels of the system

- System as a whole, speed differences
 - Example machine and its use
- Program execution at machine language level
 - Processor, registers, bus, memory
 - Fetch-execute cycle, interrupts
 - Activation record stack, subroutine implementation
- Data representation formats (program vs. hardware)
- I/O devices and I/O implementation
 - Device drivers, I/O interrupts, disk drive
- Operating system fundamentals
 - Process and its implementation (PCB)
 - Execution of programs in the system
 - Compilation, linking, loading
 - Interpretation, emulation, simulation

Examples on the following slides

Speed differences: Teemu's Cheese Cake

The speed of registers, cache, disk drive and web as compared to finding cheese for cheese cake. *Europa*

2008:

22.4.2010

Assembly language programming

I DC 0

• • •

LOAD R1, =20 STORE R1, I

for (int i=
$$20$$
; i < 50 ; ++i)
T[i] = 0;

Loop LOAD R2, =0
LOAD R1, I
STORE R2, T(R1)

variables, constants, arrays (2D), records

in memory, in registers?

selection, loops, subroutines, SVC's, parameters, local variables LOAD R1, I ADD R1, =1 STORE R1, I

LOAD R3, I COMP R3, =50 JLES Loop

Activation record (Activation record stack)

int funcA (int x,y);

• Subroutine implementation (ttk-91)

function return value(or all return values)

Parameter types?

call-by-value, call-byreference, call-by-name all (input and output) parameter values

return address

previous activation record all local variables and

data structures

 saved registers values for recovering them at return return val
param x
param y
old PC
old FP
local var i1
local var i2
old R1
old R2

Instruction fetch-execute cycle

PC++

Fetch

Processor execution mode

- User mode (normal mode)
 - Can use only ordinary instructions
 - Can reference only user's own memory areas (MMU controls)

When and how mode changes?

- Privileged or kernel mode
 - Can use only <u>all instructions</u>, including
 privileged instructions (e.g., clear_cache, iret)
 - Can reference <u>all memory areas</u>, including kernel memory
 - Can (also) use direct (physical) memory addresses

Data representation formats

1/8 = 0.1250 $1/16 = 0.062\overline{5}$ "0.1875" = "0.0011 0.1875 mantissa or significand exponent integers so that ... floating points mantissa exponent character ely character strings 0.0011 pictures, sounds "12" .1000 non-standard data? "17" 1000 which data is (not) 24 bit mantissa! understood by the processor?

Process, prosess States and Life Time

When will state change?
What happens in state change (at instr. level)?
Who or what causes the state change?

Prosesses in Queues, PCB

scheduling:

<u>select</u> next process in Ready-to-Run queue and <u>move</u> it to CPU for execution(copy <u>processor state</u> for this process into processor registers)

I/O Implementation, Device Controller and Device Driver

Disk Use

- A file is composed of multiple blocks
 - block per disk sector (2-4 sectors?)
- Disk directory contains information on all blocks used by each file
 - blocks are read in correct order

Topic Dependencies

Course Dependencies

- 2nd year students
 - Elective course in BSc or MSc studies
- Prerequisites: CO-I
- In most universities combined with CO-I
- One level down from CO-I in implementation hierarchy
 - "How will hardware clock cycle make the processor to execute instructions?"
 - "How is processor arithmetic implemented?"
 - Many instructions in execution concurrently (in many ways!)
 - How is this implemented, what problems does it cause, and how are those problems solved?

Operating Systems (OS), 4 cr

- 4th year students
 - Compulsory for graduate (M.Sc.) students of the distributed systems and telecommunication specialisation area
- Prerequisites
 - CO-I
 - Concurrent Programming
 - Introduction to Data Communication
- OS role as process and resource controller
- Concurrent processes using shared resources
- Use of system resources
- Process scheduling
- More?
 - Distributed Systems, 4 cr

OS ...

Intro to Data Communication, 4 cr

- 2nd year students
 - Obligatory undergraduate course
- Computer network basic services to users and applications
- Basic tools for data communication
- Network architecture layer structure and services at each layer
- More?
 - Internet-protocols, 2 cr

Introduction to Data Communication

TCP/IP -layers

- 2nd year students
 - Obligatory undergraduate course
- Prerequisites: CO-I
- Problems caused by concurrency
 - System just freezes ... why?
- Concurrency requirements for system
- Process synchronization
 - Busy wait or process switch? Why?
- Prosess communication
 - Shared memory? Messages? Why?
 - Over the network?
- More?
 - Distributed Systems, 4 cr

semaphores
monitors
rendezvous
guarded statements
rpc, messages
Java concurrent progr.

CP - Synchronization Problem Solution with Test-and-Set Instruction

• TAS Ri, L (ttk-91 extension)

```
Ri := mem[L] for this instruction if Ri == 1 then \{Ri := 0, mem[L] := Ri, jump *+2\}
```

address

Critical section

```
LOOP: TAS R1, L # L: 1 (open) 0 (locked)

JUMP LOOP # wait until lock open

# lock is locked for me

critical section: one process at a time

LOAD R1,=1 # open lock L

STORE R1,L
```

- Will it work, if interrupt occurs at "bad spot"?
 - What is a "bad spot"?

- 4th year students
 - Elective graduate level (M.Sc.) course
- Prerequisites
 - Understanding the problematics of distribution and concurrency
 - Introduction to Data Communication, Concurrent Programming
- Model processes with transitional systems
 - step: machine instruction? Method? Transaction? Program?
- Principles of automatic verification
- Verification of simple protocols
- More?
 - Semantics of Programs, 6 cr (lectured 1999)
 - Automatic Verification, 6 cr (lectured 2002)

Computational Theory ... (5)

Memory contents before P's execution:

X = very large integer(500M digits?)

Memory contents after P's execution: Y = some othervery large integer

P is integer valued function $P: \longrightarrow \square$

 $P: N \rightarrow N$

Program P representation in memory: large integer, P∈□

Computational Theory ... (5)

 Properties of any programs can be deduced from properties of integers or integer valued functions

- Proven properties of programs (<u>any</u> programs)
 - valid for <u>all</u> computers
 - valid <u>always</u>: now and in future

Proven theorems in computational theory and algorithm analysis (4)

- With any preselected time span or memory size, there exists a problem such that
 - (1) it has a solution, and
 - (2) all programs solving it will take more time or space than those preselected maximum limits
- There exists programs that can never be solved with any computer
- There exists a large class of know problems such that we do not yet know how difficult they really are

http://www.retroweb.com/apollo_retrospective.html

End of Lecture 12 and End of Course

http://study.for.exam.edu/intime.html

Teemu Kerola, Copyright 2010