Fig 1: Acks of Acks trigger False fast rexmit, resulting in

Flightsize = anything

between 18 and n

data segment

v

Ack

v

Ack of Ack

n
>

unnecessarily rexmitted
data segment

v

0 .
20(000) 322 unnecessary rexmits
A |2 B
24 7 ==
— o
26 e -
z o
22 == //j’ <
= e g
32 II/ // d /I 7 %
36 = /, e /'/ —
- 7

data 1
data 2
data 3
data 4

data 100
data 101 limited xmit (extra segment)

*" L7
l’ s 30\(\ L .
’,I’, // data 102 limited xmit (extra segment)
g

data 1 false fast rexmit (unnecessary rexmit)

any extra dupacks break fast recovery logic;
results in incorrect cwnd increase

data 2; unnecessary rexmit
data 3; unnecessary rexmit
data 4; unnecessary rexmit
data 5; unnecessary rexmit

Fig 2. Acks of acks create unnecessary packets and A . B
add to the network load for no actual reason .

n data packets,
e.g., n=180

data
G —

up to n/2 acks w/ CE

(Original Acks for data 100, 101, etc. _
aCk are likely not sent as pure Acks but w/ (90’ when n=1 80)

ata 2000, 2000+n, etc. from B to A)
ack&CE
to n/6 acks of acks
ack of ack o> Ao ’
I (acks of acks are (30, when n=180)
Figure is missing d.”paCkf Ia”dfmay
the subsequent tr;lggﬁtrqi ;2 ast i
rounds of ACKs of unnecessarily) n data packets,
ACKs after each [e.g. n=180
1st round of ACKs J &9

of ACKs
up to n/2 acks w/ CE
(90, when n=180)

}up to n/6 acks of acks,

If A w/ cwnd=1MSS (30’ when n=180)

reacts to acks of acks
reporting congestion by
reducing its data rate,
then next data request
from A is unnecessarily
delayed (while reducing
ack rate from A would
be the reasonable thing
to do)

data %

ack ek —
ack&CE o E—

— w%
ack of ack (dupAck)
B ——

33 0+

C
ac +n+

— data 101

Qata 10
datg 103
Claitr—AA
—
RTO— RTO :
data 2g "
S
— .
— F-RTO incorrectly SAXmit dofs 101 |
declares RTO not
spurious
data 103
F-RTO detects % it_data 04
spurious RTO SEXMit daty 105

r'exmit data 106

S [exmit datq 107
W n
37
D,

1
elep JO Pum ||n}
JO uolIssiwsuesal
Alessadsauun

rexmit datg 200

Fig 3 a) F-RTO correctly detects spurious RTO Fig 3 b) Extra DupAck breaks F-RTO detection

PTO —

DupACK
201 arrives
(case 2)

data
C——

ack
e

ack&CE

C——

ack of ack (dupAck)
e —

PTO —

. End of flight
End of flight fromAto B

fromAtoB

New ACK 202
(> TLP.end_seq)
arrives, A reacts
to congestion ——

Fig 4 a) B does not implement DSACK, TLP
correctlv detects snurious PTO

Fig 4 b)) B does not implement DSACK, TLP
correctly detects loss (of data 200) and reacts to

congestion

. %’
9& dt 13
<212 104 4
ack : L
P -
ack&CE PTO — /
ack of ack (dupAck) data 204 / */d End of fiight
D -] fromAtoB
S S
S V4§
PTO — /Aol
— Xmj da 20)
End of flight S
fromAto B S IS \D’
s /S 5
Y S
<
—— 1,CE
fo. ce &
aCk 2001+
Genuine <X <000+n5 745 L
DupACK 201 i
arrives but Fake AoA
ACE delta DupACK 201
>=3 rule — arrives and
ignores it conceals real
_ _ loss -
Fig 5 a) B does not implement DSACK or
SACK removed, TLP incorrectly ignores Fig 5 b) B does not implement DSACK, TLP
genuine DupACK 201 (per ACE delta >=3 rule) incorrectly does not detect loss (of data 200)

and does not detect spurious PTO and does not react to congestion

