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We propose a novel method to identify functionally related genes based on comparisons of neighborhoods in gene
networks. This method does not rely on gene sequence or protein structure homologies, and it can be applied to
any organism and a wide variety of experimental data sets. The character of the predicted gene relationships
depends on the underlying networks; they concern biological processes rather than the molecular function. We used
the method to analyze gene networks derived from genome-wide chromatin immunoprecipitation experiments, a
large-scale gene deletion study, and from the genomic positions of consensus binding sites for transcription factors of
the yeast Saccharomyces cerevisiae. We identified 816 functional relationships between 159 genes and show that these
relationships correspond to protein–protein interactions, co-occurrence in the same protein complexes, and/or
co-occurrence in abstracts of scientific articles. Our results suggest functions for seven previously uncharacterized
yeast genes: KIN3 and YMR269W may be involved in biological processes related to cell growth and/or maintenance,
whereas IES6, YEL008W, YEL033W, YHL029C, YMR010W, and YMR031W-A are likely to have metabolic functions.

[Supplemental material is available online at www.genome.org.]

The function of many genes is still unknown; even for the well
studied yeast Saccharomyces cerevisiae, about one-third of all genes
are still uncharacterized (Ball et al. 2001). Functions of unchar-
acterized proteins are usually inferred computationally on the
basis of sequence similarities, common structural motifs, gene
order, gene fusion events, or similarities in gene expression (Bork
and Koonin 1998; Enright et al. 1999; Marcotte et al. 1999; Ge et
al. 2001; Ponting 2001; Kemmeren et al. 2002; Valencia and
Pazos 2002; Wu et al. 2002; Huynen et al. 2003). Here we intro-
duce a simple and general statistical method for functional pre-
dictions based on scoring the similarity of gene neighborhoods
in various gene networks. It allows us to utilize recently pub-
lished biological data from high-throughput technologies. This
method allows us to perform functional predictions for proteins
independent of homologies in protein structure or sequence and
provides a way to characterize proteins that have not been stud-
ied previously.

Many biological data sets can be represented as gene net-
works, where nodes represent genes or proteins, and the connec-
tions between the nodes represent relationships between these
entities. Directed relationships such as “protein A activates gene
B” are represented by arcs (A → B), whereas symmetric relation-
ships such as “protein A and protein B bind to each other” are
represented by edges (A—B; Schwikowski et al. 2000; Walhout
and Vidal 2001; Gerstein et al. 2002; Schlitt and Brazma 2002;
von Mering et al. 2002).

We compared the neighborhoods of genes in networks de-
rived from microarray experiments on gene deletion mutants
(Hughes et al. 2000), the localization of transcription factor bind-
ing sites (Pilpel et al. 2001), and chromatin immunoprecipitation
(ChIP) experiments for the yeast Saccharomyces cerevisiae (Ren et
al. 2000; Iyer et al. 2001; Simon et al. 2001; Lee et al. 2002). By
neighborhood of a gene A we mean the set of genes that are di-

rectly connected to gene A in the network. If two genes share
many neighbors in a network, it suggests that these genes might
be functionally related (Fig. 1).

Validation of functional relationships is problematic, be-
cause various aspects andmeanings are subsumed under the term
“function” of a gene or protein. This is mainly due to different
experimental approaches that focus either on the effects of mu-
tations or on biochemical activities (Ashburner et al. 2000). Un-
like in protein structure prediction, there are no established stan-
dards for the evaluation of functional predictions (Blaschke et al.
2002).

We use three approaches to validate the predicted func-
tional relationships: We compare the gene pairs that are pre-
dicted to be related (1) with protein–protein interaction data, (2)
with protein complexes, and (3) with a literature network. Many
biological functions involve protein–protein interactions, and
several large protein–protein interaction data sets are available
(Uetz et al. 2000; Ito et al. 2001; Gavin et al. 2002; Ho et al. 2002).
These data sets are a valuable resource, although they may con-
tain a large number of false positives and are far from being
complete (Bader and Hogue 2002; Edwards et al. 2002; von Me-
ring et al. 2002). For protein complexes, a manually annotated
data set of high quality is available from the Munich Information
Centre on Protein Sequences (MIPS; http://mips.gsf.de/; Mewes
et al. 2002). Protein function is not restricted to protein–protein
interactions, and for that reason we included knowledge from
published scientific articles in our verification procedure. We
analyzed the frequency of co-occurrences of gene names in ab-
stracts of scientific articles on S. cerevisiae to construct a literature
network. Similar approaches have been used before under the
assumption that functionally related genes occur more often in
the same abstract than unrelated genes do (Blaschke et al. 1999;
Jenssen et al. 2001).

Here we describe how the comparison of gene neighbor-
hoods from different gene networks can be used to identify func-
tionally related genes. We provide evidence that gene pairs with
similar network neighborhoods occur more frequently together
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in article abstracts and more frequently encode proteins that in-
teract physically than do genes with dissimilar neighborhoods.
Our method allowed us to identify 816 functional relationships
between 159 genes and to assign biological process annotation to
seven previously uncharacterized genes. We examine some of the
predictions in detail, and show that for the networks studied here
the predicted functions concern biological processes rather than
biochemical activities.

RESULTS
Our aim was to study the similarity of genes or proteins by as-
sessing the similarity of their neighborhoods in gene networks
(Fig. 2). Here we studied relationships between genes/proteins in
six different networks of three different types for the yeast Sac-
charomyces cerevisiae (Table 1):

1. Mutant network: An arc from a gene A to gene B means that
in a mutant where A is deleted, the expression level of B is
significantly changed (Rung et al. 2002). The network is de-
rived from microarray studies of yeast mutants by Hughes et
al. (2000).

2. In silico network: An arc from gene A to B means that A is a
transcription factor, and its binding site is predicted in the
putative promoter of B (Palin et al. 2002). The network is
derived from the data of Pilpel et al. (2001), who matched
binding sites against all upstream sequences in the entire yeast
genome computationally. We included only the empirically
known binding sites.

3. Four different ChIP networks: These were constructed from
genome-wide transcription factor localization data based on
ChIP experiments (Ren et al. 2000; Iyer et al. 2001; Simon et
al. 2001; Lee et al. 2002). In ChIP networks, an arc from gene
A to gene B means that transcription factor A was empirically
found to bind to the putative promoter region of B.

All networks listed above are represented as directed graphs. In a
directed graph, a node can have incoming and outgoing arcs, and
thus we can divide the neighborhood of a node depending on

the orientation of the arcs. We call the
genes with outgoing arcs source genes,
and for every source gene s1 we define
the target set T1 as the set of genes which
have incoming arcs from s1 (see Figs. 1, 2).
All of the networks described above are
asymmetric: Although source genes are
an a priori selected subset of the genome
(particular for each network), the whole
genome is tested for targets. We call such
networks comprehensive target networks.

For every pair of source genes s1
and s2, we test whether their target sets
T1 and T2 intersect more than expected
by chance, using the hypergeometric dis-
tribution (Sokal and Rohlf 1995) and
Holm’s correction (Holm 1979) for mul-
tiple testing (which leads to some P-
values being greater than 1).

We performed 23,758 target-set
comparisons for 15,061 source gene
pairs within and between the networks
(Table 2). For 816 (5.4%) source gene
pairs, we found a strong target-set simi-
larity (P � 0.01). We provide the results
of our target-set comparisons for all
source gene pairs within our Supple-
mental data (full-table-long.txt), avail-
able at www.genome.org.

When we compared target sets for the same source gene
from different networks, we found that 34 out of 80 target-set
pairs are highly similar. The similarities occur more frequently
between the ChIP networks and between the in silico network
and the ChIP networks. According to this comparison, the ChIP
networks are similar to each other, and to the in silico network,
whereas the mutant network is most different from the others.
This is consistent with the small intersection of the mutant net-
work and the ChIP networks: They share 16 source genes, but
only 78 connections, although there are on average between 51
and 145 connections per source gene in both networks (Table 1).

To test whether the target-set similarity can be used to iden-
tify functionally related genes, we used three additional networks
as reference networks:

4. Protein–protein interaction networks: Two proteins are con-
nected by an edge if they physically interact. We integrated
protein–protein interaction data from several large-scale ex-

Table 1. Number of Source Genes, Total Number of Genes,
Number of Connections, and the Ratio of Connections per
Source Gene in Each Comprehensive Target Network

Network
in silico
network

mutant
network

ChIP network

ren simon iyer lee

Source genes 38 187 2 9 3 83
Genes 5583 5555 130 567 207 2351
Connections 23446 27252 131 1208 453 4235
Connections per
source gene

617.0 145.7 65.5 134.2 151.0 51.0

The maximal possible number of target genes in each network is the
complete gene set of the yeast Saccharomyces cerevisiae (∼6200
genes).

Figure 1 Illustration of the correspondence between functionally related genes and similarity of the
target sets. Pairs of functionally unrelated genes have smaller target-set overlaps. Large overlaps can be
used to predict a functional relationship between the respective genes (top).
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periments, including yeast two-hybrid screens (Uetz et al.
2000; Ito et al. 2001) and complex purifications with subse-
quent protein identification by mass spectrometry (TAP;
Gavin et al. 2002; HMS-PCI; Ho et al. 2002). We used two
different networks, ppi1 and ppi2. In ppi1, each identified
interaction is represented by an edge, whereas ppi2 contains
an edge only if two or more experiments identified the same
interaction. Thus, edges in network ppi2 are more reliable, but
consequently ppi2 is much sparser than ppi1.

5. mips network: This was derived from manually annotated
complexes at MIPS (Mewes et al. 2002); two proteins are con-
nected by an edge if they are components of the same com-
plex. A similar network was used by von Mering et al. (2002)
to assess the quality of recent large-scale experiments on pro-
tein–protein interaction in yeast; unfortunately the full refer-
ence network which was used is no longer publicly available.

6. Cocitation networks: Here, two genes are connected by an
edge if they have been cocited in at least a specified number of
abstracts (n). Again we constructed two different networks,
mi2 and mi3. For mi2, we required cocitations in at least two
abstracts (n=2), and for the more stringent but sparser network
mi3, we required cocitations in at least three abstracts (n=3).

Functionally related genes are connected in these reference
networks, and therefore we validated the results of the target-set
comparison by comparing them with the connectivity in the

reference networks. The proportion of
genes with similar target sets increases
four- to eightfold if we consider only
gene pairs present in the reference net-
works, instead of all possible source
gene pairs (Table 3). This indicates that
functionally related genes, that is, genes
connected in the reference networks,
have similar target sets. In order to test
our hypothesis, we ranked all source
gene pairs according to their best target-
set similarity, that is, from high similar-
ity (low P-values) to low similarity (high
P-values). All source gene pairs with a
reported interaction were counted as
true positive (tp) if their corrected P-
value was smaller than a chosen thresh-
old or as false negative (fn) if their cor-
rected P-value was greater than this
threshold. Pairs lacking an interaction
were counted as false-positive (fp) if
their corrected P-value was smaller than
the chosen threshold or as true negative
(tn) if their corrected P-value was greater
than the threshold. We calculated the
true-positive rate (sensitivity) as tp/
(tp+fn) and the false-positive rate (1 �

specificity) as fp/(fp+tn) at each row of
the ranking, using the P-value of the re-
spective row as a threshold. An ROC
curve displays the true-positive rate ver-
sus the false-positive rate in Figure 3.
Ideal prediction methods have a high
true-positive rate and a low false-
positive rate, with ROC curves getting
close to the upper left corner of the plot,
whereas randomized predictions would
produce ROC curves close to the diago-
nal from the lower left corner to the up-
per right corner (Witten and Eibe 1999).

The ROC curves in Figure 3 show the false-positive rate and
the true-positive rate for our prediction method with respect to
the different reference networks. A true-positive rate of 82% with
a corresponding false-positive rate of 32% is found when using a
verification network that is a union of ppi2, mips, and mi3 (Fig.
3C). If we use the more stringent reference sets ppi2 or mi3, the
quality of our predictions is better (i.e., the ROC curve is further
away from the diagonal). This effect may be due to high error
rates in the reference sets; the accuracy of the protein–protein
interaction network increases if several methods report the same
interactions (Edwards et al. 2002; von Mering et al. 2002). We
conclude that target-set similarity can be used as an indication of

Table 2. Number of Target Set Comparisons Which Have
Been Performed (Total) and the Number and Proportion of
Highly Similar Target Sets (P ≤ 0.01)

Source gene pairs Total P ≤ 0.01 %

s1 = s2, from different networks 46 17 36.9
s1 � s2, from the same network 7838 741 9.5
s1 � s2, from different networks 10405 143 1.3
All pairs s1, s2 15061 816 5.4

The source genes s1 and s2 are chosen from the same or from different
networks.

Figure 2 Transcription factors with known binding sites and mutated genes form two sets of source
genes (lefthand side). (A) The set T1 on the right represents all the genes in the genome that have
binding sites for selected transcription factor s1 in their putative promoter regions (i.e., the target set
of s1). The set T2 represents all the genes whose expression levels are changed in the deletion mutant
of gene s2 (i.e., the target set of s1). If the target sets T1 and T2 overlap more than expected by chance,
we can hypothesize that the two genes s1 and s2 are related. (B) The case when we compare two target
sets from different networks, but for one gene s1.
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protein–protein interactions (pp1, ppi2, mips) and of cocitations
(Fig. 3). This means that we can predict protein–protein interac-
tion or a functional relationship based on target-set similarity.

If we base the predictions on target-set comparisons be-
tween different networks, we greatly expand the number of
source gene pairs for which we perform target-set comparisons,
but the false-positive rate also increases (Fig. 3B). This increase in
false positives is higher for protein–protein interactions than for
cocitations.

The data indicate that for the identification of protein–
protein interactions, a comparison of source genes within the
ChIP networks yield the best results. However, comparisons of
target sets in the mutant network perform best for the iden-
tification of interactions in MIPS complexes and literature
data. Generally, comparisons between different networks per-
form worse than comparisons within the same network (see
netComparison.pdf in our Supplemental data). It should be
noted that there is not enough data available for a reliable analy-
sis of which network combinations yield the best predictions.

The correlation between target-set similarity and functional
similarity is evident in the graph representation of the predic-
tions (Fig. 4, fig4.txt in Supplemental data). Genes involved in
the same biological processes such as pheromone response or
cell-cycle control are linked by several target-set similarities, and
are therefore close to each other in the graph. Applying a guilt-
by-association approach, we used proximity in the graph to infer
gene function (Oliver 2000): We predict function (using a P-value
threshold of 10�12) for four genes (KIN3, YEL008W, YEL033W,
and YHL029C) which are currently not assigned to a biological
process in SGD.4 YEL033W is connected to only one other gene,
BUD21,which is involved in rRNA processing; KIN3 shows strong
target-set similarity to GAS1, a 1,3-�-glucanosyltransferase in-
volved in cell wall organization and biogenesis, and to BUD14,
which is involved in bud site selection according to SGD (http://
www.yeastgenome.org/). This would imply that Kin3p may be
involved in cell growth, budding, or related processes.

It is difficult to find terms describing a set of genes appro-
priately and objectively; therefore we use the “SGD Gene Ontol-
ogy Term Mapper” (http://db.yeastgenome.org/cgi-bin/SGD/
GO/goTermMapper). SGD uses the Gene Ontology (GO) terms
from the Gene Ontology Consortium to annotate yeast genes
(Dwight et al. 2002; Blake and Harris 2003). GO terms are orga-

nized hierarchically, which allows an investigator to find higher-
level terms starting from amore specific GO term.GOTermMapper
does exactly this; starting from the GO annotation for each gene in
the group, it identifies GO terms which are shared by the whole
group (or at least the majority of the genes). When we query GO
Term Mapper for the genes that have similar target sets as KIN3, it
returns “cell growth and/or maintenance” as a common annota-
tion, which is consistent with the conclusion we reached above.
The same approach applied to the target sets of YEL008W and
YHL029C suggests that these genes are involved in metabolism
(Table 4). Four additional uncharacterized genes show high target-
set similarities (at a P-value threshold of 0.01) to several other
source genes. Using GO Term Mapper as described above, IES6,
YMR010W, and YMR031W-A can be mapped to “metabolism,”
whereas YMR269W can be mapped to “cell growth and/or mainte-
nance” (see predictions.pdf in Supplemental data).

Lastly, we examined some source gene pairs with high tar-
get-set similarity in detail to illustrate the nature of our predic-
tions: There are 14 source gene pairs for which both genes are
present in the protein interaction network ppi2, but no interac-
tion between them is reported in this network, although they are
connected in cocitation network mi3. Of these 14 pairs, six have
highly similar target sets (P � 0.01). The pair with the lowest
P-value (linked by 11 abstracts in the cocitation network) is
MBP1-SWI4. Both genes encode related transcription factors, and
each of them can form a complex with Swi6p: MBF (Swi6p-
Mbp1p) and SBF (Swi6p-Swi4p; Koch et al. 1993). The second pair
consists of the homologous transcription factors Ace2p and
Swi5p (linked by three articles in cocitation network mi3; Still-
man et al. 1994; Measday et al. 2000). The next two pairs are
between genes involved in pheromone signaling: Ste12p-Ste4p
(four abstracts) and Ste4p-Ste7p (four abstracts). The pheromone
signal in yeast is transmitted from the receptor via a G-protein-
complex (Ste4p and others) and a MAP kinase cascade (Ste7p and
others) to the transcription factor Ste12p (Sprague and Thorner
1992). The two proteins of the fifth pair—repressor Sum1p and
activator Ndt80p (three abstracts)—compete for the transcrip-
tional control of genes containing a middle sporulation element
(MSE) in their promoters (Xie et al. 1999; Lindgren et al. 2000).
Mig1p (three abstracts) was shown to repress the expression of
the SUC2 gene synergistically with the Ssn6p-Tup1p repressor
complex (Alepuz et al. 1997). Thus, all six source gene pairs with
high target-set similarity are in fact functionally related, but do
not show protein–protein interactions.

DISCUSSION
We conclude that the comparison of target sets in gene networks
can be used to find functionally related proteins: We predict 816

4The SGD database has been recently updated and the KIN3 gene is now
assigned to the biological process “chromosome segregation” based on an
experimental analysis performed by Chen et al. 2002. This annotation is cor-
responding well with our functional prediction. “Chromosome segregation” is
a child process of “DNA replication and chromosome cycle,” which itself is a
child process of “cell cycle” according to SGD and GO.

Table 3. Source Gene Pairs With High Target Set Similarity Correspond More Frequently to Edges in Reference Networks (ppi1, ppi2,
mips, mi2, mi3)

Reference
network

All pairs Confirmed pairs
Increase

% conf/% alTotal-all P ≤ 0.01 % all Total-conf P ≤ 0.01 % conf

A B C D E F G
ppi1 10762 631 5.86 151 37 24.50 4.18
ppi2 5804 341 5.88 38 10 26.32 4.48
mips 1283 75 5.85 31 15 48.39 8.28
mi2 8546 474 5.55 267 63 23.60 4.25
mi3 6701 400 5.97 172 50 29.07 4.87

Columns A–C refer to all source gene pairs, where both genes are present in the particular reference network; columns D–F refer only to source gene
pairs which are connected in the particular reference network (= confirmed source gene pairs). The proportion of pairs with highly similar target sets
is increased between four- and eight-fold for the confirmed source gene pairs.
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relations for 159 genes (P � 0.01). The nature of the predicted
functional relationships is dependent on the nature of the com-
prehensive target networks. The Gene Ontology consortium dif-
ferentiates between three major subcategories “cellular localiza-
tion,” “biological process,” and “molecular function” (Ashburner
et al. 2000). For the networks studied here, the predicted func-
tions concern biological processes rather than molecular func-
tions. In this respect our method is similar to other nonhomol-
ogy methods (Marcotte 2000). We demonstrated that the prod-
ucts of genes with similar network neighborhoods often interact
physically, are likely to be part of the same protein complex,
and/or are often reported together in the literature. These results
are in agreement with the recent finding that protein–protein
interactions correlate with protein–DNA interactions (Manke et
al. 2003). The proposed method can be used to identify function-
ally related candidate genes using a guilt-by-association ap-
proach.

Our method can be used for the comparison of data from a
variety of methods. Large-scale experiments can vary extensively
in terms of data quality, as has been described by several groups
(Edwards et al. 2002; von Mering et al. 2002). We employ a well

established statistical method to cope with the high error rates in
the underlying data. We do not believe that simple intersections
or unions of networks constructed from large-scale high-
throughput approaches are a reliable way to integrate these data
of variable quality. Our method allows one to score interactions
by comparing them to previously observed data obtained by the
same or different experimental techniques.

With the proposed method we did not identify all func-
tional relationships reported in the reference networks. It there-
fore remains an open question as to how many of the errors are
due to limitations of the available data or due to the method.
There are several reasons why not all of the target-set pairs de-
rived from the same source gene, or from two genes having a
known functional relationship, were highly similar. One reason
is that we combined experimental data from different types of
experiments, and certain interactions are only observable under
very specific conditions not necessarily attained in a given ex-
periment. For example, some transcription factors may bind
DNA only if they are phosphorylated.

One advantage of this method is that we can use and inte-
grate a wide variety of different experimental data sets, as long as

Figure 3 ROC plots of true-positive rate (sensitivity) vs. false-positive rate (1 � specificity) for the prediction of protein–protein interaction (ppi1,
ppi2), protein complexes (mips), and “co-citation” (mi2, mi3). The source genes s1, s2 are chosen from same (A) or different networks (B). (C) An ROC
plot using the union of ppi2, mips, and mi3 as verification network, with source genes s1, s2 chosen from the same network (all-same) or different
networks (all-diff).
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they can be represented as comprehensive target networks. Even
small data sets can be successfully included; unlike clustering of
microarray data, there is no need for extensive experiments con-
sisting of tens of microarray hybridizations to provide biologi-
cally meaningful results. Our method is versatile; in the present
study, for instance, we were able to explore which transcription
factor deletions lead to predicted effects on the basis of the lo-
calization of its binding sites. We can also look for transcription
factors which act in combination with other factors and eluci-
date possible upstream regulatory mechanisms.

Although sequence information may be important for the
design of the experiments which underlie the comprehensive
target networks, this is not a prerequisite for our method, which
is completely independent of sequence or structural homology. A

limitation of this method is that the data sets used for our pre-
dictions must be represented as comprehensive target sets. This
means that, for example, large-scale protein-interaction networks
cannot be used, because of the way these experiments are per-
formed. Only positive interactions are reported, and we do not
know which protein interactions do not occur. In contrast, the
data sets we included for the predictions always report a signal
for all genes in the genome. Therefore, within the limitations of
the experimental methods, we always have information regard-
ing the individual behavior of all genes.

The possibility of integrating data derived from different
experimental methods and conditions allows the exploration of
the complexity of cellular regulatory mechanisms. It is feasible to
perform repeated analysis of data from different experimental

Figure 4 Visualization of the source gene pairs with highly similar target sets as a graph. Genes involved in the same biological processes are often
connected and are thus close in the resulting graph; e.g., pheromone response genes or cell-cycle genes (encircled). Genes sharing highly similar target
sets (P � 10�12) are connected by gray edges or, if there is also a corresponding edge in one of the reference networks ppi2, mi3, and mips, by black
edges. The thicker edges indicate that the respective source gene pair had significantly similar target sets in several network comparisons. White nodes:
genes which are not present in any of the reference networks; these genes therefore are not adjacent to any confirmed edges. Gray nodes: genes present
in at least one of the reference networks. Rectangular nodes: genes with unknown molecular function (BUD14, ERG28, RMD7, BUD22, and AEP2).
Arrow-shaped nodes: genes of unknown biological process (KIN3, YEL008W, YEL033W, YHL029C).
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conditions and then use the variations in conditions to explain
the changes in interactions predicted. This would lead to a dy-
namic rather than a static view of protein function.

METHODS

Construction of the Networks
The mutant network was constructed with data from Hughes et
al. (2000). Target sets T contain genes whose expression level
changed significantly; that is, the ratio of gene expression in the
mutant divided by the background standard deviation in the
wild-type strain has an absolute value larger than 2.5 (Rung et al.
2002).

The in silico network was compiled from data reported by
Pilpel et al. (2001) on the occurrence of known binding sites in
putative promoter regions of yeast genes.

The four ChIP networks were constructed from data pub-
lished by Ren et al. (2000), Simon et al. (2001), Iyer et al. (2001),

and Lee et al. (2002) derived for two, nine, three, and 106 tran-
scription factors, respectively.

Experimental data on yeast protein–protein interactions was
retrieved from the following databases and publicly available
data sets: DIP (Xenarios et al. 2001), MINT (Zanzoni et al. 2002),
MDS (Ho et al. 2002), and cellzome (Gavin et al. 2002). Although
DIP and MINT contain binary interactions, the data from the
Gavin and Ho studies contain sets of proteins from a number of
immunoprecipitations. These were broken down into a complete
set of binary interactions.

The MIPS network was derived from manually annotated
complexes at MIPS (Mewes et al. 2002) and provided to us by
Christian von Mering (von Mering et al. 2002).

The cocitation network: Using a synonym dictionary for
gene/protein names in yeast, we scanned over 70,000 journal
abstracts from Medline for co-occurrences of genes/proteins, us-
ing the SRS server (http://srs.ebi.ac.uk). We compiled a synonym
dictionary containing the complete set of unique yeast ORF iden-
tifiers, the corresponding gene names, and their synonyms from

Table 4. Part of the Data Shown in Figure 4

Source
gene 1 Network 1

Source
gene 2 Network 2 P value ppi mi mips goTermMapper

Genes for which the biological process is unknown (SGD)
YEL033W mutant BUD21 mutant 2.18E-14

KIN3 mutant GAS1 mutant 9.16E-26 cell growth/maintenance
KIN3 mutant BUD14 mutant 1.12E-20

YEL0008W mutant CLB2 mutant 1.41E-20 metabolism
YEL008W mutant ERG2 mutant 2.08E-18
YEL008W mutant ERG28 mutant 3.64E-25
YEL008W mutant SWI4 mutant 1.12E-21
YEL008W mutant GCN4 mutant 1.61E-15

YHL029C mutant ANP1 mutant 1.28E-26 metabolism
YHL029C mutant CKB2 mutant 9.49E-18
YHL029C mutant CLB2 mutant 7.38E-43
YHL029C mutant ERG2 mutant 1.57E-34
YHL029C mutant ERG28 mutant 1.18E-50
YHL029C mutant ERG3 mutant 1.12E-20
YHL029C mutant GCN4 mutant 3.44E-30
YHL029C mutant RTG1 mutant 3.44E-32
YHL029C mutant SPF1 mutant 1.52E-13
YHL029C mutant SWI4 mutant 2.56E-64
YHL029C mutant UBR1 mutant 8.29E-25

Genes with similar target sets as SWI6
SWI6 ChIP (Simon) FKH2 ChIP (Simon) 5.02E-76 no no cell cycle
SWI6 ChIP (Simon) MBP1 ChIP (Lee) 1.14E-65 yes yes yes cel growth/maintenance
SWI6 ChIP (Lee) MBP1 ChIP (Lee) 8.60E-54 yes yes yes metabolism
SWI6 ChIP (Simon) SWI4 ChIP (Iyer) 3.24E-51 no yes
SWI6 ChIP (Lee) SWI4 ChIP (Lee) 4.82E-49 no yes
SWI6 ChIP (Simon) ACE2 ChIP (Simon) 3.28E-48 no yes
SWI6 ChIP (Simon) SWI6 ChIP (Lee) 6.01E-46 no no no
SWI6 ChIP (Lee) SWI6 ChIP (Simon) 6.01E-46 no no no
SWI6 ChIP (Simon) NDD1 ChIP (Simon) 4.12E-45 no
SWI6 ChIP (Simon) NDD1 ChIP (Lee) 1.54E-28 no
SWI6 ChIP (Simon) SWI5 ChIP (Simon) 7.51E-28 no yes
SWI6 ChIP (Simon) ACE2 ChIP (Lee) 1.71E-20 no yes
SWI6 ChIP (Simon) FKH2 ChIP (Lee) 4.99E-20 no no
SWI6 ChIP (Simon) SKN7 ChIP (Lee) 3.48E-19 no
SWI6 ChIP (Lee) SWI4 ChIP (Iyer) 5.79E-18 no yes
SWI6 ChIP (Simon) MCM1 ChIP (Simon) 1.94E-17 no no no
SWI6 ChIP (Lee) MBP1 in-silico 1.03E-16 yes yes yes
SWI6 ChIP (Simon) STB1 ChIP (Lee) 1.82E-16 no no
SWI6 ChIP (Simon) SWI5 ChIP (Lee) 2.52E-15 no yes

The target set similarity for the particular source gene/network combination is indicated by the P value. yes; the particular interaction is confirmed
by a reference network, no: both genes are present in the respective reference network, but no interaction is reported; ppi2, protein-protein
interaction network, mi3, co-citation network, mips, mips network; the last column contains the GO term describing the set of genes according to
GO Term Mapper http://genome-www4.stanford.edu/cgi-bin/SGD/GO/goTermMapper).
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publicly available information in the following databases: SGD
(http://www.yeastgenome.org/), MIPS (http://mips.gsf.de/proj/
yeast/), and EBI Proteome Analysis Database (http://www.
ebi.ac.uk/proteome/). Each Medline entry was required to con-
tain at least one ORF/gene name or one of its associated syn-
onyms in the text body of the abstract or in the title; in addition,
we required the MESH term ‘Saccharomyces cerevisiae’ to limit
the search to our chosen model organism. A co-occurrence be-
tween two different gene/protein identifiers was counted if they
or any of their respective synonyms were found in the same
abstract. This resulted in 41,129 associations, among which
about 10285 pairs were co-occurring at least twice for 3616 genes.
All networks are available from our Web supplement.

Network Comparison
Assessing the similarity between target sets using the hypergeo-
metric distribution: The null hypothesis for testing the similarity
of target sets T1 and T2 is that the genes in the sets are picked
from the genome independently, randomly with equal probabili-
ties. Under this null hypothesis, the number of genes in the in-
tersection of T1 and T2 is distributed according to the hypergeo-
metric distribution with the size of the genome, the size of T1,
and the size of T2 as parameters (Palin et al. 2002). With this
distribution we can compute the probabilities of observing an
intersection at least this large, given that the null hypothesis is
true. The pairwise P-values need to be corrected, because we
evaluate multiple hypothesis tests. For the adjustment of the P-
values, we used the sequential Holm’s correction (Holm 1979). In
order to be more stringent we only compared set target sets with
10 or more genes.
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