# Heuristically Optimized Tradeoffs Power Laws in graphs

**Kimmo Palin** 

Department Of Computer Science University of Helsinki

### Introduction

- It has been observed that the degree distribution of the Internet graph follows *power law*. i.e. For node *i*,  $Pr(deg(i) > D) = cD^{-\beta}$ .
- This distribution has strong tails. i.e. There are relatively few nodes for which there is very high degrees.
- Same property has been observed also for example in metabolic and gene networks, income distribution, city populations, word frequencies and computer file sizes.
- Power laws are known to show up in situations that require reliability but the redundancy has costs. (Highly Optimized Tolerance)
- Next we show that power laws can also come up in locally optimized tradeoffs.

#### **Internet model**

- Following model and theorem is by Alex Fabrikant, Elias Koutsoupias, Christos Papadimitriou: Heuristically Optimized Tradeoffs: A New Paradigm for Power Laws in the Internet
- After the early begining there hasn't been much need for extra robustness in the internet, still the degrees are distributed as power law.
- Consider Internet as nondirected tree where each node, first coming to the Net, wants to be (topologically) close to the "center" of the network but has to pay for the cable between itself and the center.
- In reality one might want to minimize the average or maximum hop—count instead of hops to the center.
- Nodes coming on-line define sequence of internet trees  $T_i$ .

# **Sequence of trees** *T<sub>i</sub>*

- Sequence of nodes (points)  $p_0, p_1, \ldots, p_n$  arrive uniformly at random to a unit square.
- New node p<sub>i</sub> connects to some previous node by minimizing the joint cost of the "last mile" and number of hops. That is, to p<sub>j</sub> that minimizes

$$f_i(j) = \alpha \cdot d(i,j) + h(j)$$

Image d(i, j) is the euclidean distance between  $p_i$  and  $p_j$  and h(j) is the graph distance from  $p_j$  to  $p_0$ .



#### Theorem

**Theorem** If  $T_n$  is generated as above, then:

- 1. If  $\alpha < 1/\sqrt{2}$ , then  $T_n$  is a star with  $p_0$  as its center.
- 2. If  $\alpha = \Omega(\sqrt{n})$ , then the degree distribution of  $T_n$  is exponential, that is, the expected number of nodes that have degree at least D is at most  $n^2 e^{-cD}$  for some constant c.
- 3. If  $\alpha \ge 4$  and  $\alpha = o(\sqrt{n})$ , then the degree distribution of  $T_n$  is a power law. i.e. the expected number of nodes with degree at least D is greater than  $c \cdot (D/n)^{-\beta}$  for some constants c and  $\beta$ .

Case 1  $\alpha < 1/\sqrt{2}$ 



Case 2  $\alpha = \Omega(\sqrt{n})$ 



 $n = 1000 \text{ ja } \alpha = 40$ 

Case 3  $4 \le \alpha = o(\sqrt{n})$ 



n = 1000 ja  $\alpha = 4$ 

**Case 1**  $\alpha < 1/\sqrt{2}$ 

- Maximum distance between any two nodes is  $\sqrt{2}$ . Especially  $d(i,0) < \sqrt{2}$  for all *i*.
- For incoming node  $p_i$  function  $f_i(j)$  is

 $f_i(0) < 1/\sqrt{2} \cdot d(i,0) + h(0) \le 1 \le f_i(j)$ 

where  $j \neq 0$ .

Thus, each incoming node  $p_i$  connects straight to  $p_0$  and the topology of  $T_n$  is  $p_0$  centered star.



# **Case 2** $\alpha = \Omega(\sqrt{n})$ **I**

- Let neighborhood  $N_k(i) = \{j | [i, j] \in T_k\}.$
- Short links  $S_k(i) = |\{j \in N_k(i) | d(i,j) \le \frac{4}{\alpha}\}|.$
- Long links  $L_k(i) = |\{j \in N_k(i) | d(i,j) > \frac{4}{\alpha}\}|.$
- By the union bound

 $\Pr(\deg(i) \ge D) \le \Pr(S_n(i) \ge D/2) + \Pr(L_n(i) \ge D/2)$ 

# Case 2 $\alpha = \Omega(\sqrt{n})$ II

- Solution Nodes contributing to S<sub>n</sub>(i) have to fall in to circle of area  $\pi(\frac{4}{\alpha})^2 ≤ 16\pi n^{-1}$
- Because of i.i.d new nodes,  $S_n(i)$  is bounded by sum of Bernoulli trials with  $ES(i) = \Theta(n\alpha^{-2}) < c.$
- By the Chernoff-Hoeffding bound, for  $D > 3c, \Pr(S(i) > D/2) \leq \exp(-\frac{(D-2c)^2}{D+4c}) \leq e^{-D/21}.$



# Case 2 $\alpha = \Omega(\sqrt{n})$ III

• Let  

$$L_x(i) = |\{j \in N_n(i) | x \le d(i, j) \le \frac{3}{2}x\}|.$$

- Show that  $L_x(i) < 14$  for all i and  $x \ge \frac{4}{\alpha}$ .
- Let points  $p_j$  and  $p_{j'}$ ,  $j \le j'$  lie between x and  $\frac{3}{2}x$  away from  $p_i$ .

• If  $|\angle p_j p_i p_{j'}| < c = \cos^{-1}(43/48)$ , then  $p_{j'}$  prefers  $p_j$  over  $p_i$ , since  $h(j) - h(i) \le 1$  and  $\alpha d(i, j') > \alpha d(j, j') + 1$ .

• Because  $\cos^{-1}(43/48) > \frac{2\pi}{14}$ ,  $L_x(i) < 14$  for all  $x \ge \frac{4}{\alpha}$ .



# Case 2 $\alpha = \Omega(\sqrt{n})$ IV

• Let  $\delta_i = \max\{\frac{4}{\alpha}, \min_j d(i, j)\}$  and bind L(i) by

$$L(i) = \sum_{k=1}^{-\log_{\frac{3}{2}} \delta_i} L_{(\frac{3}{2})^{-k}}(i) \le -14\log_{\frac{3}{2}} \delta_i$$

Since points are distributed uniformly and independently,  $\Pr(\delta_i \leq y) \leq 1 - (1 - \pi y^2)^{n-1} \leq \pi (n-1)y^2.$ 

Therefore

$$\Pr(L(i) \ge D/2) \le \Pr(-14 \log_{\frac{3}{2}} \delta_i \ge D/2) \le \pi(n-1)(\frac{3}{2})^{D/14}$$

# Case 3 $4 \le \alpha = o(\sqrt{n})$

• Let 
$$r(i) = d(i,0) - \frac{1}{\alpha}$$
. If  $r(i) < 0$ , then *i* will connect to 0. Next consider  $p_i$  such that  $\frac{1}{\alpha} < d(i,0) < \frac{3}{2\alpha}$  and connects to  $p_0$ .

**Lemma 1:** Every point arriving after  $p_i$  inside the circle of radius  $\frac{1}{4}r(i)$  around  $p_i$  will link to  $p_i$ .

**Lemma 2:** No point  $p_j$  will link to  $p_i$  unless  $|\angle p_j p_0 p_i| \leq \sqrt{2.5\alpha r(i)}$  and  $d(j,0) \geq \frac{1}{2}r(i) + \frac{1}{\alpha}$ .



Case 3  $4 \le \alpha = o(\sqrt{n})$ 

• For simplicity, we consider only the case  $\alpha = o(\sqrt[3]{n})$  which leads to  $\Pr(\deg(i) > D) = cD^{-\frac{1}{6}}$ 

• Let 
$$D \leq \frac{n^{1-\epsilon}}{256\alpha^3}$$
 and  $\rho = 4\sqrt{D/n}$  and  $m = \lceil \frac{1}{2\rho} \rceil$ . Now consider  $T_m$ .

- Observe  $p_0$  centered circles  $A_0$ , A and A' of with radii in range  $[\frac{1}{\alpha}, \frac{1}{\alpha} + \rho]$ ,  $(\frac{1}{\alpha} + \rho, \frac{1}{\alpha} + \rho^{2/3}], (\frac{1}{\alpha} + \rho, \frac{1}{\alpha} + 0.5\rho^{2/3}]$
- Each point in  $T_m$  that is connected to  $p_0$  and lies in A' has region of influence of size  $\pi D/n$  (lemma 1) and is expected to be linked to  $\pi D/2$  nodes in  $T_n$ .



# Case 3 $4 \le \alpha = o(\sqrt{n})$

- By lemma 2 and triangle inequality, all points arriving to A' connects to some point in A
- Each point that arrives to A and connects to neighbour of  $p_0$  claims a sector no larger than  $\sqrt{10\alpha}\rho^{1/3}$  of A' for itself (lemma 2).
- There are at most  $\frac{1}{8}\sqrt{\alpha}\rho^{1/3}$  such sectors.
- By Chernoff bounds it is possible to show that in these sectors there are enough points with expected degree of  $\pi D/2$  in  $T_n$ . (With exponentially high probability)

... for  $C = \frac{1}{2^{16/33}n^{5/6}\sqrt{\alpha}}$ , and any *D* in the above specified range, the probability that a randomly chosen point in  $T_n$  has degree at least *D* is at least ...  $CD^{-1/6}$ .