Big Data Frameworks: Developing Spark Algorithms

31.03.2015
Eemil Lagerspetz

These slides: http://is.gd/bigdataalgo
Outline

- Part I: Intro
 - Use Cases
 - Spark Vision
 - MLlib
 - Some Algorithms

- Part II: How to Design Spark Algorithms
 - Designing Spark algorithms
 - Important numbers
 - The Hard Part
 - Idioms and Patterns
 - Tips
Developing Spark algorithms: Why?

- Why not Hadoop or <Insert another framework here>?
 - Richer programming model
 - Not just Map and Reduce (and Combine)
 - Speed and In-Memory computation
- With Hadoop/Map-Reduce, it is difficult to represent complex algorithms
Spark Algorithms: Use Cases

- Analytics and Statistics, Data Mining, Machine Learning, ...
 - Pattern recognition, anomaly detection (spam, malware, fraud)
 - Identification of key or popular topics
 - Content classification and clustering, recommender systems
- Large-scale, Scalable Systems
- More Efficient Parallel Algorithms
 - You don't need to implement the parallelism every time
- Cost Optimization, Flexibility – Cloud instead of Grid
Analytics and Statistics

- The aim of data analytics is to find new information in data
- The process builds on statistics
- Why Spark? Processing large datasets
 - Past and current data
- The overall process has many steps
 - Data selection, preprocessing, transformations, data mining and development of patterns and models, interpretation and evaluation
- This sounds a lot like Spark: a **pipeline of phases**
Data mining techniques

- Classification, Clustering
- Collaborative filtering
- Dimensionality reduction
- Frequent pattern mining
- Regression, Anomaly detection
- Supervised learning, Feature learning, Online learning
- Topic models
- Unsupervised learning
- All of this can probably be done with Spark, but **may require case-by-case algorithm redesign**
 - Why? *Ability to process very large datasets*
MLlib

- **MLlib**: An API for Distributed Machine Learning
- Evan Sparks, Ameet Talwalkar, et al.
- International Conference on Data Mining (2013)
Algorithms in MLlib v1.0

• Classification
 • logistic regression, linear support vector machines (SVM), naïve Bayes, least squares, decision trees
• Regression
 • linear regression, regression trees
• Collaborative filtering
 • alternating least squares (ALS), non-negative matrix factorization (NMF)
• Clustering
 • k-means
• Optimization
 • stochastic gradient descent (SGD), limited memory BFGS
• Dimensionality reduction
 • singular value decompositon (SVD), principal component analysis (PCA)
Spark K-Means Example

```scala
val data = sc.textFile("kmeans.txt")
val parsedData = data.map(_.split(" ")).map(_.toDouble()).cache()

val clusters = KMeans.train(parsedData, 2, numIterations=20)

val cost = clusters.computeCost(parsedData)

println("Sum of squared errors: " + cost)
```

Source: MLlib and Distributing the Singular Value Decomposition, Reza Zadeh, ICME and Databricks, 2014.
Without MLLib

```java
// Initialize K cluster centers
centers = data.takeSample(false, K, seed)
while (d > epsilon) {
    // assign each data point to the closest cluster
    closest = data.map( p =>
        (closestPoint(p, centers), p))
    // assign each center to be the mean of its data points
    pointsGroup = closest.groupByKey()
    newCenters = pointsGroup.mapValues( ps => average(ps))
    d = distance(centers, newCenters)
}
```

Part II

- Developing Spark Algorithms
- How to convert existing local algorithms to the Spark parallel model
Developing Spark Algorithms

- Do not duplicate work
- Check if it exists in MLlib
- Is there a Spark Package for it? http://spark-packages.org/
- Has someone made it for Hadoop?
- If no, then…
 - Find a pseudocode or the math
 - Think it through in a parallel way
 - The hard part
The Hard Part: Global State 1/2

- Check for immutable global data structures
- and replace them with Broadcasts in Spark

```java
int[] supportData = {0, 1, 2, 3, 4} →
val supportArray = Array(0, 1, 2, 3, 4)
val supportData = sc.broadcast(supportArray)
```
The Hard Part: Global State 2/2

- Check for mutable global data structures
 - Change them to Broadcasts, and only change their content after a transformation/action is complete

```scala
int[] mutableData = {0, 1, 2, 3, 4} →
var mut = sc.broadcast(Array(0, 1, 2, 3, 4))
val updated: Array[(Int, Int)] = dataRdd.map{x =>
  x%5 -> mut.value(x%5)*x
  /* which index was updated, and what is the new value */
}.reduceByKey(_ + _).collect.sortBy(_.1)
mut = sc.broadcast(updated.map(_.2))
```

- And then loop again ...
Dealing with sliding windows

```java
int[] data = input;
int[] result = new int[data.length];
for (int i = 1; i < data.length; i++) {
    result[i-1] = data[i] * data[i-1];
}
```

- The above takes pairs starting from 0, 1
- In Spark we can use zip to do this
Dealing with sliding windows

```scala
val data0 = 12
val rdd = sc.textFile("input")
val paired: RDD[(Int, Int)] = rdd.dropRight(1).zip(rdd.drop(1))
paired.map(p => p._1*p._2).saveAsTextFile("result")
```

- If we also need ordering, we need to
 - Have line numbers in the original file, or
 - Use `rdd.zipPartitions(rdd2).mapPartitionsWithIndex(...)`
Dealing with ordering

```scala
val ord = rdd.mapPartitionsWithIndex{part =>
  val (idx: Int, items: Iterable[(Int, Int)]) = part
  items.toArray.zipWithIndex.map{p =>
    val ((p1, p2), index) = p
    (idx, index) -> p._1*p._2 }
}
```

Now items are prefixed with file part and their position in that part, e.g. (0, 0), (0, 1), (0, 2), … (1, 0), (1, 1), (1, 2), …

We can sort by this and save the results to preserve order

```scala
ord.sortBy(_.1).map(_.2)
  .saveAsTextFile("results")
```
The Hard Part: Interdependent loops

- Check for state dependencies in loops

```java
int[] data = new int[n];
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++)
        data[i] += i * data[j];
}
```

- This depends on all the previously calculated values
- It will be very hard to convert this kind of algorithm to Spark, perhaps find another approach
- Or figure it out case-by-case...
The Hard Part: Figuring it out

```java
int[] data = new int[n];
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++)
        data[i] += i * data[j];
}
```

- The above just does \(i \times \text{sum}(0 \text{ until } i)\) (\(i\) is not included)
- We can do that in Spark easily:
  ```scala
  val rdd = sc.parallelize(0 until n)
  val finalData = rdd.map(i => i * (0 until i).sum)
  ```
- So, even interdependent loops can be converted, if you figure them out
Hard Part over ...

- Spark Practicals next
- (You can wake up now)
Important Numbers 1/3

- Data size: How many GB? How large files? How many files?
 - Hadoop/Spark prefers ~ 500MB files

- How many tasks?
 `sc.textFile("data", tasks)`
 - Minimum: 2xCPU cores in cluster
 - Optimal: Each computer's memory is used fully for tasks
 - Maximum: Too large → high overhead

- Spark does not tune this for you – It depends on your job
Important Numbers 2/3

- How many objects? How large are they? How many cores per computer, how many objects does each process?
 - `--conf spark.task.cpus=X` to control this
- Example VM: 8 cores/tasks, 32GB RAM → Spark has 4GB / core. Too little?
 - Set `cpus=2` and Spark will assign $8/2 = 4$ tasks to the node at a time.
Important Numbers 3/3

- Does your task cause the data size to grow? How much?
 - Deserialization, data grouping, data multiplication with cartesian() or tasks size possibly doubling with join()
- `rdd.mapPartitions(func)` makes one task handle one file/partition, this is more efficient if your objects are small
 - With this, all the objects of one partition are available at the VM
- `rdd.mapPartitions(part => part.map(x => x*2))`
- Results in the same thing as

  ```javascript
  rdd.map( x => x*2 )
  ```
- Tip: mapPartitions returns an Iterable, so you can do filtering too before returning it
Practicals: import SparkContext._

Import org.apache.spark.SparkContext
Import SparkContext._

- The above is needed so that RDDs have groupByKey etc advanced operations

- This imports Spark's implicit imports, like PairedRDD functions (key-value stuff)
Practicals: Keys and Values

- In Spark, any RDD of type (a, b) is an RDD of keys and values
 - Keys can be used in groupByKey, reduceByKey, etc.
- Example:
  ```scala
  val data = Array(((0,1), "first"),((1,0), "second"))
  val rdd = sc.parallelize(data)
  // rdd: RDD[((Int, Int), String)]
  ```
- Here (Int, Int) is the key
- Key can be any class that implements hashCode, for example, any Tuple (of any length), or any case class
 - Optionally, you can implement Ordering to allow sortByKey
Spark key-value RDD pattern

- Use RDDs of type k -> v to allow reduceByKey, groupByKey, sortByKey, ...
 - Cleaner than rdd.groupBy(_.x)
- Load text data directly to (k, v) RDD:

```scala
case class MovieInfo(title: String, genres: Array[String])
val txt = sc.textFile("moviedata")
val movies = txt.map{ line => line.split("::") match {
  case Array(id, title, genres, _) =>
    id.toInt -> new MovieInfo(title, genres.split("|"))
}
} // movies: RDD[(Int, MovieInfo)]
```
Naming Tuple Fields in Transformations

```scala
something.map{ x =>
    val (a, b, c, d, e) = x
    (a, c, d) }
```

- Allows splitting a tuple to elements on the first line
- Naming: no need to get confused by tuple indices

```scala
something.map{ x =>
    val (a, (b, c, d, e)) = x
    (c, (a, e)) }
```

- Supports nested tuples like above. Can be done with case too:

```scala
something.map{ case (a, (b, c, d, e)) => (c, (a, e)) }
```
Tips: Joining two datasets

```-scala
val xrdd = sc.textFile(p).map(x => x.head -> x.tail)
val yrdd = sc.textFile(q).map(y => y.head -> y.tail)
```

- First element is always key, second the data

```scala
val grouped = xrdd.groupWith(yrdd)
```

// grouped: RDD[(Char, (Iterable[String], Iterable[String]))]

- This is the same as

```scala
val xg = xrdd.groupByKey
val yg = yrdd.groupByKey
val grouped = xg.join(yg)
```
Idioms

- Text data parsing: Scala pattern match Idiom

```scala
case class Movie(id: Int, title: String, genres: Array[String])

val txt = sc.textFile("moviedata")
val movies = txt.map{
  line =>
    line.split("::") match {
      case Array(id, title, genres) =>
        new Movie(id.toInt, title, genres.split("|"))
    }
}
```

- The use of the pattern matcher avoids array size exceptions
- Allows naming fields of the split Array directly at the case statement
Idioms

- Self-contained text formatting and print statement

```scala
println(s""""First items are: ${xrdd.take(5).mkString("", ")}
And the mean is ${xrdd.reduce(_+_)/xrdd.count}"""")
```

- `s"$var"` (String interpolation)
 allows complex code inside a String

- Multiline Strings (""") help make this readable

- Separate `mkString` and other string formatting logic from main program logic (to reduce clutter)

- Keep printing and formatting-related code in a single place
Bring argument class fields to scope

// x is a
case class Movie(movieId: Int, title: String, genres: Array[String])

something.map{ x =>
 import x._
 movieId -> title
}
Tips: Changing data path and master

- Main program structure for running on a cluster plus testing locally

```scala
main(args: Array[String]) {
  val dataPath = args(0)
  val conf = new SparkConf().setAppName(getClass.getName)
  val sc = new SparkContext(conf)
  val dataRdd = sc.textFile(dataPath)
  //...
}
```
Thanks

- These slides: http://is.gd/bigdataalgo
- Spark API: http://spark.apache.org/docs/latest/api/scala/index.html
- Eemil Lagerspetz Eemil.lagerspetz@cs.helsinki.fi
- IRC channel: #tkt-bdf
- After Thu 2015-04-02, this slideset will include converting the Pearson correlation algorithm to Spark
- Contact us for more tips :)
Converting Pearson to Spark

- Start with the math (Wikipedia)

\[r = r_{xy} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}} \]

- Required components:
 - Two datasets with equal length (n)
 - Mean of both datasets (mx and my)

- Upper:
 - Product of difference from mean at each index i of both datasets

- Lower:
 - Standard deviation (sqrt of square difference sum) of each dataset separately, multiplied
Converting Pearson to Spark

- Mean is needed before calculating SD and the upper side, so do it separately:

$$ r = r_{xy} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}} $$

```scala
val xdata = Array(0.0, 2.0, 4.0, 6.0, 8.0, 10.0)
val xrdd = sc.parallelize(xdata)
val ydata = Array(1.0, 3.0, 5.0, 7.0, 9.0, 9.0)
// Correct result for these is $r=0.982$
val yrdd = sc.parallelize(ydata)
val mx = xrdd.reduce(_ + _) / xrdd.count // 5.0
val my = yrdd.reduce(_ + _) / xrdd.count // 5.67
```
Converting Pearson to Spark

$$r = r_{xy} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}}$$

- Upper part needs us to combine both datasets by index. We do this with zip:

```scala
val both = xrdd.zip(yrdd)
val upper = both.map{ pair =>
    (pair._1 - mx)*(pair._2 - my)}.reduce(_+_).reduce(_+_) // 60.0
```

- The lower part has similar components, but the difference is squared before summing up:

```scala
val (lowerx, lowery) = both.map{ pair =>
    math.pow((pair._1 - mx), 2) -> math.pow((pair._2 - my), 2)}
    .reduce((a, b) => (a._1+b._1, a._2+b._2)) // 70.0, 53.33
```

```scala
val r = upper / (math.sqrt(lowerx) * math.sqrt(lowery))
// 0.9819805060619657
```

- Correct result.
Optimizing Pearson

- We ran three map-reduces (mean, upper, lower). What if we could do it in two?
 (mean, upper+lower)

```scala
val (upper, lowerx, lowery) = both.map{ pair =>
  val up = (pair._1 - mx)*(pair._2 - my)
  val lowx = math.pow((pair._1 - mx), 2)
  val lowy = math.pow((pair._2 - my), 2)
  (up, lowx, lowy)}.reduce{ (a, b) =>
    (a._1+b._1, a._2+b._2, a._3+b._3)
}
// 60.0, 70.0, 53.33
val r = upper / (math.sqrt(lowerx) * math.sqrt(lowery))
// 0.9819805060619657
```
val xrdd = sc.parallelize(Array(0.0, 2.0, 4.0, 6.0, 8.0, 10.0))
val yrdd = sc.parallelize(Array(1.0, 3.0, 5.0, 7.0, 9.0, 9.0))
val mx = xrdd.reduce(_+_) / xrdd.count // 5.0
val my = yrdd.reduce(_+_) / xrdd.count // 5.67
val (upper, lowerx, lowery) = xrdd.zip(yrdd).map{ pair =>
val up = (pair._1 - mx)*(pair._2 - my)
val lowx = math.pow((pair._1 - mx), 2)
val lowy = math.pow((pair._2 - my), 2)
(upper, lowerx, lowery)}.reduce{(a, b) => (a._1+b._1, a._2+b._2, a._3+b._3)}
// 60.0, 70.0, 53.33
val r = upper / (math.sqrt(lowerx) * math.sqrt(lowery))
// 0.9819805060619657