Oracle WebServer
User’'s Guide

Release 2.0.2 Production

Part No. A23646-2

ORACLE

Enabling the Information Age

Oracle WebServer User's Guide, 2.0.2
Part No. A23646-2

Copyright © Oracle Corporation 1996
All rights reserved. Printed in the U.S.A.

If you have not read this copyright page, you should reiadti entirety If you have
read this page, you can go directly to the Table of Contents.

If you find any errors, omissions, or have any suggestions on how the information in this
manual can be improved, please e-aicle WebServer Documentation.

Primary Authors: Martin Gruber, Kennan Rossi

Contributors: Seshu Adunuthula, Mala Anand, Matt Bookman, Walter Hudson, Kelly
Ireland, Magnus Lonnroth, Raymond Ng, Mary Owen, Robert Pang, Charles Prael,
Ankur Sharma, John Zussman

This software was not developed for use in any nuclear, aviation, mass transit,
medical, or other inherently dangerous applications. It is the customer’s responsibility to
take all appropriate measures to ensure the safe use of such applications if the
programs are used for such purposes.

This software/documentation contains proprietary information of Oracle Corporation; it
is provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Depart-
ment of Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights LegendJse, duplication, or disclosure by the Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in
Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights”, as defined in FAR
52.227-14, Rights in Data - General, including Alternate 11l (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation
does not warrant that this document is error-free.

Adobe and Acrobat are trademarks of Adobe Systems Incorporated.
Java is a trademark of Sun Microsystems Incorporated

Netscape Navigator is a trademark of Netscape Corporation.

Oracle, SQL*Forms, SQL*DBA, SQL*Loader, SQL*Net andSQL*Plus are registered
trademarks of Oracle Corporation.

PL/SQL, Oracle7, Web Request Broker, LiveHTML, Web Access Manager, Oracle
Browser, Oracle WebServer Option, Oracle WebServer, Web Agent, Web Desktop, and
Web Listener are trademarks of Oracle Corporation.

NOTICE
Copyright 1995 by: Massachusetts Institute of Technology (MIT), INRIA.

This W3C software is being provided by the copyright holders under the following li-
cense. By obtaining, using and/or copying this software, you agree that you have read,
understand, and will comply with the following terms and conditions.

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee or royalty is hereby granted, provided that the full text of
this NOTICE appears on ALL copies of the software and documentation or portions
thereof, including modifications, that you make.

THIS SOFTWARE IS PROVIDED “AS IS,” AND COPYRIGHT HOLDERS MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY
OF EXAMPLE, BUT NOT LIMITATION, COPYRIGHT HOLDERS MAKE NO REP-
RESENTATION OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR
DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. COPYRIGHT HOLDERS
WILL BEAR NO LIABILITY FOR ANY USE OF THIS SOFTWARE OR DOCU-
MENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or pub-
licity pertaining to the software without specific, written prior permission. Title to copy-
right in this software and any associated documentation will at all times remain with
copyright holders.

CERN ACKNOWLEDGEMENT

This product includes computer software created and made available by CERN. This ac-
knowledgment shall be mentioned in full in any product which includes the CERN com-
puter software included herein or parts thereof.

Oracle WebServer 2.0.2 contains encryption and/or authentication engines from RSA
Data Security, Inc. Copyright 1996 RSA Data Security, Inc. All rights reserved.

All other products or company names are used for identification purposes only, and may
be trademarks of their respective owners.

Preface

The Oracle WebServer User’s Guide is part of the Oracle WebServer
documentation set, which contains:

= This book, the Oracle WebServer User’s Guide
e The Oracle WebServer online documentation
e The Oracle WebServer Quick Reference

= The Oracle WebServer Installation Guide for your platform.

The online documentation is provided in both html and pdf formats. To view
the html files, you can use any standard web browser program that supports
tables. Once you have installed the Oracle WebServer, you can follow the link
from the product home page to the online documentation.

This Preface discusses this Guide’s:

= Organization
= Typographic conventions

e Related documents

How this Guide is Organized

= Chapter 1, “Oracle WebServer Concepts” defines and explains WebServer
terms and concepts, and provides background information. This chapter
gives an orientation to the product.

vi

Chapter 2, “Using the Oracle WebServer Manager” provides a brief
introduction to the Oracle WebServer Manager and lists the tasks you can
perform with it.

Chapter 3, “Setting Up a Secure Oracle WebServer” describes how to
configure your Oracle WebServer to accept secure connections using the
Secure Sockets Layer (SSL).

Chapter 4, “Developing Applications for the Oracle WebServer” describes
in detail how to develop applications to run on the Oracle WebServer.

Chapter 5, “Sample Applications” provides an overview of the sample
WebServer back-end applications provided with the documentation.

Chapter 6, “The PL/SQL Web Toolkit Reference” provides a detailed
reference for the PL/SQL procedures you can use to write programs that
generate HTML documents dynamically.

Chapter 7, “Oracle WebServer Messages” provides a lookup reference for
errors and messages that the Oracle WebServer can display to the user or
log to files.

Appendix A, “Glossary” provides a lookup reference for terms and
concepts used throughout this book.

Appendix B, “Overview of the Oracle7 Server, SQL, and PL/SQL”
summarizes the capabilities of the Oracle7 database server and provides a
syntax summary of the SQL and PL/SQL languages.

Appendix C, “Introduction To HTML” summarizes the capabilities of
HTML, gives usage examples, and provides a brief syntax reference.

Oracle WebServer 2.0 User’s Guide

Conventions Used in This Manual

Feature Example Explanation

monospace | enum Identifies code elements.

boldface mna.h Identifies file names and function

timeout arguments when used in text.

italics filel Identifies a place holder in command or
function call syntax; replace this place
holder with a specific value or string.

ellipses n,... Indicates that the preceding item can be
repeated any number of times.

Table 1: Conventions

Example Conventions

This Guide shows code in this font:

applet.addParam("text", "This is an applet test.");

Related Documents

Part No.

Document Title

A44047-1

Oracle WebServer Quick Reference

Table 2: Related Documents

vii

Your Comments Are Welcome

viii

We value and appreciate your comments as an Oracle user and reader of the
manuals. As we write, revise, and evaluate our documentation, your opinions
are the most important input we receive. At the back of our printed manuals is
a Reader’s Comment Form, which we encourage you to use to tell us what you
like and dislike about this manual or other Oracle manuals. If the form is not
available, please use the following address or FAX number.

Oracle WebServer Documentation Manager
Oracle Corporation

500 Oracle Parkway

Redwood City, CA 94065

US.A.

FAX: 415-506-7200

Oracle WebServer 2.0 User’s Guide

Contents

Oracle WebServer Concepts. 1-1
OVBIVIBW o e e 1-2
The Web Listener. 1-3
The Secure SOCKetS Layer. e 1-7
The Web Server Manager. e 1-9
The CGlINterface e 1-10
The Web Request Broker (WRB). 1-11
PL/ZSQL AQENT. . oo 1-13
JAVA L 1-15
LIVEHT ML .o 1-16
Using the Oracle WebServer Manager., 2-1
Setting Up a Secure Oracle WebServer 3-1
Developing Applications for the Oracle WebServer 4-1
Application Development-an Overview, 4-1
Server EXtENSIONSot 4-2
The PL/ZSQL AgeNt. e e e 4-4
The Java™ Interpreter 4-15
The LiveHTML Interpreter e 4-30

Sample Applications. 5-1

The PL/SQL Web ToolkitReference............. it 6-1

Installing the Oracle WebServer PL/SQL Web Toolkit 6-3
Procedure and Function Reference i it 6-5
Head Related Tagso oo e e 6-10
BOAY TagS . .ottt 6-13
Frame Tags 6-29
1 R 1= T £ P 6-31
Character FOrmat Tags ovt e 6-37
Physical Format Tags.ot 6-41
FOrm Tags 6-42
Table Tagso 6-51
OWA _UTIL PaCKageo 6-55
OWA_PATTERN Package 6-63
OW A TEXT . o e 6-75
OWA IMAGE. . . e 6-78
OWA _COOKIE. . ..t 6-79
OW A INIT o e 6-81
Oracle WebServer Messages. vve it 7-1
00001 - 00600 Generic Oracle WebServer Configuration Messages 7-1
5000 - 5499 : Oracle Web Agent errors.oouiiieiineinenn.. 7-3
5500 - 5599 : Oracle Web Agent Administration errors and messages. 7-5
5600 - 5699 : Oracle Web Database Administrationerrors............... 7-7
5700 - 5799 : Oracle Web Listener Configuration errors and messages 7-8
5800 - 5899 : Oracle Web Request Broker Administration messages 7-10
5900 - 5999 : Oracle WebServer Registration errors and messages. 7-11
7500 - 7599 : Oracle Web Server Proxy errors and messages. 7-11
Oracle Java Web Toolkit Messages 7-11
GlOSSaNY . ottt A-1
Overview of the Oracle7 Server, SQL,and PL/SQL B-1
OraCleT SEIVEr . . oot B-1
10] B-5
PLZSQL e B-12
Basic Structure and Syntax B-14
The DECLARE Sectiono B-14
The EXECUTABLE Section. ... B-21
The EXCEPTION Sectionot B-25
Storing Procedures and Functions in the Database. B-28
Database TriggersS.ottt e B-33

Oracle WebServer 2.0 User’s Guide

Contents

Introduction TOHTML C-1

What is HTML? e e C-2
Getting Started. C-3
Document STruCture C-4
BOAY TagS. -« ottt C-5
3 A 1= T £ P C-8
Hypertext LinKing.o C-10
Reviewing Changes to Your HTML Document...................... C-15
Adding Style to Your HTML Document C-15
Special HTML Tags. . .« .o v et C-16
TablES .. C-17
FOIMS C-20
Creating Your Own HTML Document, C-25
More Information about HTML i, C-26

Xi

xii

Oracle WebServer 2.0 User’s Guide

CHAPTER

Oracle WebServer
concepts

This section offers a conceptual overview of the Oracle WebServer. Itis intended
to give you a context for the more specific task-oriented information that follows.
The subsequent sections of this book are specifically targeted at those who
manage Oracle WebServer sites (WebServer Administrators) and those who
write application programs for them (application developers). This section
covers:

Overview.

The Web Listener. This is the portion of the WebServer that interfaces to the
local network or the World Wide Web.

The Secure Sockets Layer. Introduction to SSL public key encryption.

The Web Server Manager. The set of Web pages you can use to perform most
WebServer administration.

The CGl Interface. The standard Web mechanism for executing applications
on a Web server.

The Web Request Broker (WRB). The core of the WebServer. An
asynchronous request broker with an open API that Oracle WebServer
uses to execute applications on the server.

= The PL/SQL Agent. The program the Oracle WebServer uses to execute
procedures written in PL/SQL, Oracle’s application development
language, on the Oracle7 Server.

=« Java. A new language for developing distributed network applications.
Oracle WebServer enables you to execute Java either on the WebServer
itself or on the client’s browser.

= LiveHTML. A way to embed dynamic content in Web pages. This content
can be either other Web pages or the output of scripts run by the Operating
System. LiveHTML is an Oracle extension of the NCSA standard Server
Side Includes functionality.

Overview

1-2

The Oracle WebServer is a HyperText Transfer Protocol (HTTP) Internet Server
with unprecedented database integration and a powerful development
environment. When the WebServer receives a Uniform Resource Locator (URL)
from a browser located either on the World Wide Web or on a local network
using the Web’s protocol (HTTP), it draws on information from the database and
the operating system’s (OS) file system as necessary to respond to the request.
The file system can be used for static (hardcoded) Web pages, or for CGI scripts
that do not access the database, and the database is used for Web pages that are
generated at runtime using “live” data. Although you can run the Oracle
WebServer without Oracle7, one of the great advantages of the product is its
tight integration with the Oracle7 Server, the leading database product in the
world.

The Web Listener is the component that receives a URL from a Web browser and
sends back the appropriate output. When the Web Listener receives a URL, it
determines whether the request requires the use of a Service to be accessed
through the Web Request Broker (WRB), a program to be accessed through the
CGl interface, or whether access to the file system of the machine on which the
Listener resides is sufficient. If WRB access is required, the Listener passes the
request to WRB Dispatcher for processing; then it returns to the task of listening
for more incoming HTTP requests.

The WRB Dispatcher handles requests with the aid of a pool of processes called
WRB Executable Engines (WRBXs). Each WRBX interfaces to a back-end
application using the WRB API. These applications are called WRB cartridges.
The WRB API is designed so third parties can add their own cartridges. The
combination of a cartridge and the WRB API is known as a WRB Service.
Currently, Oracle WebServer support three kinds of WRB Services:

Oracle WebServer 2.0 User’s Guide

= PL/SQL cartridges. These execute stored PL/SQL procedures to generate
HTML dynamically using Oracle data.

= Java™ cartridges. These execute Java code on the Server.

= LiveHTML. These embed Web pages within one another, and store in Web
pages the output of scripts executed by the Operating System.

The Web Listener

The Oracle Web Listener is a HyperText Transfer Protocol (HTTP) engine that
responds to requests for hypermedia documents from web browsers (clients).
This section summarizes the Web Listener’s capabilities.

Network Communication

Ports

IP Addresses

Every Oracle Web Listener process accepts connections from web browsers
(clients) on one or more IP address/port combinations using HTTP to encode
requests for hypertext documents, and the Transmission Control Protocol/
Internet Protocol (TCP/IP) as the underlying connection protocol. Several Web
Listener processes may run on single host computer at the same time (see the
Oracle Web Listener Administration Form for more information).

A port is a number that TCP uses to identify a communication channel associated
with a specific program. For example, the login program usually accepts login
requests on port 49, and the Domain Name Service (DNS) usually accepts name
lookup requests on port 53. HTTP engines, such as the Oracle Web Listener,
usually accept ordinary connections on port 80 and secure connections on port
443.

Programs must execute with root permissions to access port numbers 1 through
1023, whereas any program can access port numbers 1024 through 65535.

An Internet Protocol (IP) address is a unique number that identifies exactly one
computer on the Internet, although each computer can be represented on the
Internet by several addresses. A computer can use different addresses for
different Internet functions. For example, a single computer might have one IP
address on which it acts as an email routing server, and another address on
which it acts as a DNS server.

Oracle WebServer Concepts 1-3

DNS Host and Domain Names

Secure Connections

Proxies

File Handling

14

A fully qualified host name is a unique character string that identifies exactly one
computer on the Internet, although each computer can be represented on the
Internet by several host names. The Domain Name Service (DNS) maintains a
distributed database that maps host names to IP addresses. DNS servers provide
Internet computers with lookup services for this database. hal.us.oracle.com

is an example of a fully qualified host name.

A domain is a named DNS host name space, such as us.oracle.com . All host
names within a domain must be unique. For example, there must be only one
host named hal in the us.oracle.com domain.

The Oracle Web Listener can accept secure connections using the Secure Sockets
Layer (SSL), an emerging standard for secure data transmission. (The
combination of IP address and port number is called a socket.) See The Secure
Sockets Layer for more information on the Oracle WebServer’s implementation of
SSL.

Clients use a secure version of HTTP called HTTPS to establish secure
connections with SSL. To establish a secure connection with a Web Listener
process, a request URL must use “https” instead of “http” must specify a port on
which the Web Listener has enabled SSL, for example:

https://www.blob.com:443/

You can configure an Oracle Web Listener process to act as a proxy server, an
HTTP engine running on a firewall machine that allows clients inside the
firewall to access web sites outside the firewall. The Oracle Web Listener
implements the proxy behavior defined by Luotonen and Altis in World-Wide
Web Proxies (http://www.w3.0rg:80/hypertext/WWW/Proxies/) under the
auspices of the World-Wide Web Consortium (W3C).

The Oracle Web Listener uses a virtual file system to keep track of the files it
makes available to clients. The virtual file system maps the pathnames used in
request URLs (Uniform Resource Locators) to the file system maintained by the
host machine’s operating system.

Oracle WebServer 2.0 User’s Guide

File Memory Mapping

The Web Listener uses the host operating system’s memory mapping capability
when opening a file requested by a client so that the Web Listener’s virtual
address space refers directly to the file’s contents. This speeds access, and makes
it possible for several clients to share the same copy of the file, which conserves
the Web Listener’s memory resources.

File Caching

Ordinarily, when the Web Listener opens a requested file, the file remains open
and mapped into memory until all clients using the file are finished with it, at
which point the Web Listener closes the file and frees the memory mapping
associated with it. The Web Listener allows you to specify files to be cached.
Cached files are opened when a client requests them, and remain open for the
life of the Web Listener process. This optimizes access times for files, such as
your home page, that are requested often.

File Protection

The Oracle Web Listener allows you to make secure specific virtual files or
directories by assigning authentication and/or restriction schemes to protect
them.

Authentication Schemes

When a file or directory is protected by an authentication scheme, a client
requesting access to it must provide a user name and password. Authentication
schemes allow you to define named groups of user name/password
combinations, and named realms that are groups of these groups. You can then
assign user, group, and realm names to virtual files and directories, requiring
any client requesting access to input one of the specified user name/password
combinations.

The Web Listener supports two authentication schemes: basic authentication and
digest authentication. Both schemes are identical, except that digest authentication
transmits passwords from client to server in an encrypted form called a digest,
whereas basic authentication sends unencrypted passwords, making it
considerably less secure.

Some older web browsers don’t support digest authentication, but for files or
directories that require authentication, you should use digest authentication
whenever possible.

Oracle WebServer Concepts 1-5

Restriction Schemes

When afile or directory is protected by a restriction scheme, only a client accessing
the Web Listener from a trusted group of host machines may access it. The two
restriction schemes that the Web Listener supports are 1P-based restriction and
Domain-based restriction. IP-based restriction allows you to define groups of
trusted hosts identified by IP address, whereas Domain-based restriction allows
you to define groups of trusted hosts identified by DNS host or domain name.

File Format Negotiation

Language Formats

MIME Formats

Encodings

Filename Extensions

1-6

The Oracle Web Listener can maintain several versions of a document in
different formats, and provide it to clients in the formats they prefer.

For example, if a client requests a document in French, the Web Listener checks
to see if it has a French version of the document, and if so, returns that version
to the client. Otherwise, the Web Listener returns the version of the documentin
its own default language (usually English).

Similarly, a client can request a document of a particular Multipurpose Internet
Mail Extensions (MIME) type. If the Web Listener can find a version of the
requested file in the requested MIME format, it returns that version to the client.
Otherwise, it returns the version of the file that has the smallest size.

The Web Listener can also maintain versions of a document that have been
encoded by programs such as a compression utilities. For example, if a client can
uncompress a document that has been compressed by the gzip program, the
Web Listener can return to the client the compressed version of document
instead of the uncompressed document, saving transfer time.

The Web Listener uses filename extensions to identify a file’s format, which can
represent language, MIME type, or encoding. For ease of maintenance, it’s best
to advertise a file to clients only by its base name, allowing clients and server to
negotiate formats transparently.

Oracle WebServer 2.0 User’s Guide

Dynamic Document Generation

Using the Oracle Web Listener, your web site can respond to client requests by
generating HTML documents dynamically. This allows you to customize your
WebServer’s responses.

Like most HTTP engines, the Oracle Web Listener allows clients to use the
Common Gateway Interface (CGI) to run programs on the server machine to
perform special processing and return data to the client.

The Web Request Broker

Unlike other HTTP engines, the Oracle Web Listener provides an interface called
the Oracle Web Request Broker (WRB), which allows clients to run programs on
the server machine and return data much more efficiently than CGl allows. To
do this, the Web Listener passes requests intended for these programs to the
WRB Dispatcher, which maintains a pool of processes to which it can assign the
requests. See The Web Request Broker (WRB) for more information.

The Secure Sockets Layer

The Secure Sockets Layer (SSL) is an emerging standard for secure data
transmission over the Internet.

One problem with communicating sensitive information over the Internet is that
almost every connection between two computers over a network involves many
intermediate steps—a chain of computers that successively receive and forward
the information until it reaches its destination. This process, called routing, is
fundamental to all Internet communication, and any computer in the routing
chain has complete access to all the data it receives.

This makes it easy for the unscrupulous to intercept your private conversations,
steal your credit card numbers, or illegally obtain confidential or proprietary
information.

The Oracle WebServer’s implementation of SSL addresses this problem by
scrambling data sent from the server to clients (web browser programs) in such
a way that the clients can unscramble the information when they receive it. This
way, any intermediate computers involved in routing the information see only
gibberish that they can’t decipher.

This kind of security has three aspects:

= Encryption—a mechanism for scrambling and unscrambling data.

Oracle WebServer Concepts 1-7

Encryption

= Authentication—a mechanism by which the one party proves its identity
to another party.

= Dataintegrity—a mechanism for verifying that all of the data transmitted,
and only the data transmitted, is received correctly.

A traditional encryption system, called a secret-key system, uses a single large
number called a key both to scramble (encrypt) and unscramble (decrypt)
messages. Secret-key encryption systems are very fast, but they rely on one party
communicating the secret key to another party, often by way of a third party
such as a courier, before the two parties can exchange encrypted messages. This
makes keys vulnerable to theft or tampering while in transit.

Public-Key Encryption

1-8

To avoid this problem, SSL uses a form of encryption called public-key encryption
to encrypt and decrypt transmitted data. Unlike secret-key encryption systems,
a public-key system uses pairs of keys (key pairs). One key, called the public key,
is used to encrypt messages, while the other, called the private key, is used to
decrypt messages. The two keys are large numbers that are related
mathematically in such a way that it takes a very long time to calculate the
private key from the public key.

If you want to receive encrypted messages using public-key encryption, you
must first run a program that generates a key pair. You must then publish the
public key in a public database or directory, and store the private key in a secure
location on your computer. This is critical. The effectiveness of public-key
encryption depends entirely on the secrecy of the private key.

Anyone who wants to send you an encrypted message must look up your public
key in a directory, use it encrypt the message, and send you the encrypted
message. Only your private key can decrypt the message, so if you have kept
your private key secret, no one else can read the message.

Because public key encryption is much slower than secret-key encryption, SSL
uses it only when the client first connects to the WebServer to exchange a secret
key called a session key, which both client and server use to encrypt and decrypt
transmitted data.

Oracle WebServer 2.0 User’s Guide

Authentication

Another application of encryption is authentication. Authentication using
public-key encryption involves using a digital signature, an electronic proof of
identity analogous to a handwritten signature.

If you want to “sign” an electronic document in a verifiable and legally binding
way, you must first possess a key pair. You must then run a program that
generates a digital signature using the private key and the document itself. You
can then attach the digital signature to the document and send it. Anyone who
receives this document, together with its digital signature, can then use the your
public key to verify your identity, and to verify that the document has not been
tampered with.

Certificates and Certifying Authorities

When clients connect to your web site for a transactions that require them to
transmit sensitive information, they must be assured that they haven’t
connected to an impostor pretending to be you. Clients therefore require your
WebServer to authenticate itself before such transactions can proceed.

To authenticate itself, your WebServer must present the client with the proper
credentials, called a certificate.

When you set up a secure WebServer, you must obtain a certificate from a
trusted third-party company called a certifying authority (CA).

When you contact a certifying authority to request a certificate, you must
provide them with certain legal information about your organization, which
they can use to certify that your organization is legitimate and should be
certified (see Setting Up a Secure Oracle WebServer in the online documentation).

The Web Server Manager

To help you manage your Web site, the Oracle WebServer provides a set of Web
pages that you can use to perform most common administration tasks. These
pages are simply an easy way to edit the configuration files that the WebServer
uses, so you can always use another tool to edit those files directly, although
Oracle discourages this.

The WebServer Manager can be used from any Web browser. It has the
following sections:

e The Listener Pages

Oracle WebServer Concepts 1-9

The Listener Pages

The WRB Pages

< The WRB Pages
e The PL/SQL Agent Pages

e The Oracle7 Server Pages

The largest group of pages deal with administering the Web Listener. For the
most part, however, these pages are just forms where you fill in the values for
various configuration parameters. The exception is the security pages, where
you specify which sorts of security schemes will be used, including the
following:

< If you select Restriction, the IP addresses or domain names that are
granted various levels of access.

= If you select Authentication, the user names and passwords that are
granted various levels of access.

These pages let you specify the actual and virtual directories for WRB cartridges,
as well as the number of WRBXs to assign to each.

The PL/SQL Agent Pages

Administering the PL/SQL Agent means administering the Database Connection
Descriptors (DCDs) that it uses to establish its identity when communicating with
the database.

The Oracle7 Server Pages

The Oracle7 Server is an extremely sophisticated product, and it is properly
administered using Oracle Server Manager or directly through the SQL
language. The pages provided here enable you to do a few basic things, such as
start up and shut down database instances, and browse database contents.

The CGI Interface

1-10

The Common Gateway Interface (CGlI) is the standard technique used by an
HTTP server to execute a program that generates HTML output. Using CGI, you
can run PL/SQL, and thus interface to the Oracle7 Server, from Internet servers

Oracle WebServer 2.0 User’s Guide

that do not support the WRB. This technique provides dynamic content rather
than static content from files on disk. Oracle WebServer is fully compliant with
CGl version 1.1.

When the Web Listener recognizes an incoming URL as a request to execute a
CGl application, it spawns a separate process to perform the operation (The Web
Request Broker (WRB) circumvents this need to spawn a new process for each
request, thereby improving performance). The Web Listener passes the URL to
the process it spawned and maintains communication with it through standard
input and output. Therefore, the CGI process can get the input it needs from the
URL itself and/or the standard input. It sends its output back to the Listener
through the standard output, and the Listener transmits it in turn to the client’s
Web browser.

The fact that CGI applications spawn a nhew process each time they are used is
costly in terms of performance. For this among other reasons, Oracle
recommends that you use the WRB instead.

The Web Request Broker (WRB)

The WRB (Web Request Broker) is an asynchronous request handler with an API
(Application Program Interface) that enables it to interface dynamically and
seamlessly to various back-end technologies called “WRB Services”.

Whenever the Web Listener receives a URL that calls for the WRB, it passes
execution of the request to the WRB Dispatcher or simply Dispatcher. The
Dispatcher maintains communication with a pool of processes called WRB
Executable Engines (WRBXs).The Dispatcher finds a free WRBX that is configured
to run the desired WRB Service and passes execution to it. The result is that the
Listener can receive and validate URLs coming in, while each request is handed
off to a process that executes it in the background. Each WRBX uses the WRB API
to interface to a WRB cartridge. WRB cartridges can be of the following types:

e The PL/SQL Agent. This cartridge executes PL/SQL commands stored in
the database. It is better optimized for database access than the Java
cartridge, but doesn’t have all of Java’s functionality.

= TheJava™ Interpreter. This cartridge lets you execute Java on the server to
generate dynamic Web pages. You can also execute PL/SQL from within
Java using this cartridge.

e The LiveHTML Interpreter. This cartridge is Oracle’s implementation and
extension of the industry-standard Server Side Includes functionality.

Oracle WebServer Concepts 1-11

WRB Services

LiveHTML enables you to include in your Web pages the output of any
program that your Operating System can execute.

The combination of a cartridge and its WRB API constitute the WRB Service.
WRBXs are instances of WRB Services, so that there are three WRB Services
corresponding to the three WRB cartridges, while the WRBXs are created and
destroyed according to the workload.

The Dispatcher determines which WRB Service to send a given request to on the
basis of the path and the file extension (MIME type) specified in the URL. You
configure the WRB in the WebServer Manager to determine which combinations
of path and extension correspond to which Services.

The WRB API is designed so that third parties can write their own extensions to
the WebServer. The three cartridges listed above come with the WebServer, but
you can obtain additional cartridges from third parties or write your own.

The WRB Services can also augment the access control specified by the Listener
with Service-specific control. The Services included with the WebServer do not
do this, but the WRB API provides a callback routine that enables you to put this
functionality in cartridges that you write. This routine enables your cartridge to
do any of the following:

< Prompt for a username and password, using either a Basic or a Digest
scheme. The difference between Basic and Digest is that a Digest scheme
encrypts the password (for more information on these terms, see the
discussion of the Listener earlier in this section).

= Specify by name some restriction scheme to be applied to this request.
Such restriction schemes are defined in the Listener and limit access by IP
address or Domain Name.

For more information on how WRB cartridges work and how to write your own,
refer to the WRB specification that accompanies the WebServer online
documentation.

WRB Executable Engines

1-12

The Dispatcher creates and maintains the WRBXs. The data passed to a WRBX
when a request comes in consists of:

< The URL triggering the request. This can include a file extension
indicating the desired MIME type of the result.

Oracle WebServer 2.0 User’s Guide

= The desired language of the result.

= The desired character set of the result (how the language is encoded, for
example, ISO or Unicode).

= CGl environment variables, which allow WRB cartridges to be run by
applications written for CGI.

= Ifthe requestinvolves the use of the PL/SQL Agent, which of the Database
Connection Descriptors (DCDs) to use.

The Dispatcher continually adjusts the load by controlling how many WRBXs
are running at a given time, subject to certain parameters. These parameters are
set by the WebServer Administrator, who sets the maximum and minimum
number of WRBXs running for each WRB Service. The Dispatcher creates new
WRBXs as needed and connects them to the appropriate WRB Services. The
Dispatcher also keeps track of which WRBXs are executing requests and which
are free. The WRBXs are single-threaded processes that communicate with the
WRB Dispatcher using the dataflow mechanism appropriate to the Operating
System (such as a pipe in Unix).

PL/SQL Agent

The PL/SQL Agent can be invoked through either the WRB or CGl, as
determined by the directory and MIME type mappings set by the WebServer
Administrator. If it is through CGI, the script name specified in the URL must be
“owa”. If it is through the WRB, the directory and MIME type mappings are
sufficient to specify the PL/SQL Agent. The PL/SQL Agent executes application
code written in PL/SQL and returns the output in HTML form for the Web
Listener to output as a Web page.

PL/SQL procedures are stored in the database. The PL/SQL Agent invokes
them by issuing commands to the database, which then performs the actual
execution and sends the output and status messages back to the PL/SQL Agent.

Since PL/SQL is actually executed in the database, the PL/SQL Agent, whether
executed through the WRB or CGI, must connect to the Oracle7 Server to run. If
the PL/SQL Agent uses the WRB, the WRBX connects to the database in the
following two stages:

« |t establishes the connection. The WRBX does this as soon as it is created.

=« Itlogsonto the database. This is a separate operation, and the WRBX does
not do this until a request comes in, so as to give each request a separate

Oracle WebServer Concepts 1-13

database session. Once the request is handled, the WRBX logs off of the
database, but keeps the connection intact.

Since the first stage actually takes most of the time involved in establishing a
database session, this technique speeds execution considerably, yet the effect is
as though each request connected to the database independently. If run through
CGl, the PL/SQL Agent must go through the entire procedure for each request.
The username, schema, and password that the PL/SQL Agent uses to connect is
specified by the URL through the use of a DCD, as explained below.

Specifying the Database Connection

A URL that invokes the PL/SQL Agent must specify a DCD (Database
Connection Descriptor). This is an OS file maintained by the WebServer that
provides the username, password, database, and other information to be used to
establish the database connection. The DCD determines both the database access
privileges the PL/SQL Agent has when executing this request and the schema
(portion of the database) that it accesses. The filename of the DCD is given in the
URL as a file within the directory configured for the PL/SQL Agent. The file
need not actually reside in that directory; its association with the PL/SQL Agent
is set in the WebServer Manager PL/SQL Agent configuration page. If the PL/
SQL Agent is invoked through CGlI, the DCD precedes the script name “owa”,
with the two separated by a slash (/).

Oracle WebServer also provides you with Java classes that can invoke PL/SQL.
For more information, see Java or the Java Interpreter.

The PL/SQL WebToolKit

1-14

To make it easier for you to develop Web applications using Oracle data, Oracle
WebServer provides you a group of PL/SQL packages that you can use to easily
generate Web pages from data stored in an Oracle database. These packages are
called the PL/SQL Web Toolkit. The intent is for you to create PL/SQL
procedures that access and process the Oracle data you wish to place on the Web.
From within these procedures, you call the PL/SQL Web Toolkit procedures
you need to create the HTML you want. You store the procedures you write in
the database, just as other PL/SQL packages, including the toolkit, are stored.
You also design your Web pages, including the dynamically-generated ones, to
produce URLSs that call the PL/SQL procedures you want in response to
specified user actions. Having your code executed within the database brings
many performance, security, and portability benefits. For more information on
the PL/SQL Web Toolkit, see The PL/SQL Web Toolkit Reference.

Oracle WebServer 2.0 User’s Guide

Java

Java is an object-oriented language for creating distributed applications on the
Internet or other networks. Modules of Java code known as “applets” can be
downloaded from the Internet or a local network in real time and locally
executed. Java applets themselves can call and execute other applets, so that a
Java application as executed on the user’s machine can be constructed “on the
fly” from a repertoire of standard parts that reside on the net. You might call this
the “building block™ approach to programming. Among the important features
of Java are the following:

It is extremely portable. Java code is compiled to a form known as
“bytecode”. This is a sort of generalized computer code that is not
executable by any particular machine, but is recognized by the “Java
Virtual Machine”. Itis as bytecode that Java applets transverse the net. The
Java Virtual Machine (VM) resides on the computer where the applet is to
be executed and converts the bytecode to the native code for that machine.
Currently, Java VMs exist or are planned for all current versions of
Windows, Solaris, MacOS, OS/2, Linux, Amiga, and other platforms.

It is fully object-oriented. Languages like C++ that add object-oriented
features to non-object-oriented languages must make compromises. Java
applets do not allow violation of object-oriented principles such as
“encapsulation”.

It uses a C-like syntax. This makes the language easier for C programmers
to learn.

It is multi-threaded, in effect executing several chains of control flow
concurrently. The Java language itself provides tools for managing the
threads, rather than relying exclusively on the OS.

It prohibits direct memory manipulation. In Java, there are no pointers
and no direct memory allocation. This eliminates a rich source of C’s
functionality, and an even richer source of its bugs.

You can embed calls to Java applets in Web pages, and the applet will be
executed by the browser, provided it is Java-enabled. Most major
browsers plan to support Java.

Note: Though powerful, Java is a young technology. Oracle WebServer supports
it because of its rich features and wide acceptance. However, you should be
aware that it may be somewhat less stable than more mature technologies.

Oracle WebServer Concepts

1-15

Client vs. Server Side Java

Oracle WebServer supports the use of Java either on the client, which is to say
any Java-enabled Web browser, or on the server. Code to be executed on the
client is for the most part extracted and manipulated like other data. The best
way to handle such code is to store it in the OS file system and extract it in real
time.

You can also execute Java as a WRB cartridge on the WebServer itself. You might
want to do this, for example, to perform graphical manipulation for which PL/
SQL is ill-suited. For example, you can combine several graphics from the
database into a single image. Each region of the image would be a separate
button that the user can click, and each button clicked would produce a different
effect. In HTML, this is called an “image map”. Using Java on the server, you
could generate such image maps dynamically, with the components of the image
being based on the results of a database query.

To execute Java on the server, you use the WRB API to interface directly to the
Java Interpreter residing in the WebServer. This interpreter finds and executes the
Java code and returns the results, through the WRB interface, to the Web
Listener.

To make it easier for you to develop Java applications, Oracle WebServer
provides the Java Web Toolkit, a group of Java packages containing classes to aid
in database access and dynamic HTML generation.

Using PL/SQL Within Java

Since PL/SQL code is actually part of the database, you can call it from within
Java, which enables you to create applications that combine the strengths of both
languages. Because PL/SQL execution takes places in the database, doing this
does not hinder the portability of the application. A PL/SQL application can
execute without modification on any platform where the Oracle7 Server runs, just
as alJavaapplet can execute without modification on any platform that has a Java
Virtual Machine (VM).

LiveHTML

LiveHTML is Oracle’s implementation and extension of the standard Server Side
Includes functionality defined by the NCSA. The LiveHTML Interpreter enables
you to include dynamic content in otherwise static Web pages. At the point in

1-16 Oracle WebServer 2.0 User’s Guide

your Web page where you want to interject dynamic content, you place a tag that
points to one of the following:

= A static Web page.
= Another LiveHTML Web page.

= Ascriptthat is executed on the server and outputs HTML. This script may
but need not conform to the CGI standard.

= Asystem variable, for example: FMODDATE.

You can use a variable to determine at runtime the Web page, variable, or script
to which the tag points. This enables you to have a Web page that selects
dynamically from among any number of static Web pages or scripts, based, for
example, on values a user provides in an HTML form. The result is a dynamic
Web page built of static Web page components, variables, and HTML output
from scripts.

A Web page that is to use LiveHTML must be parsed by the WebServer. For this
reason, it differs slightly from ordinary Web pages written in HTML, which the
WebServer simply delivers to the browser. To have the LiveHTML tags executed
on the server, you must use the WebServer Manager to specify that a given Web
Listener is to parse files for LiveHTML. You have the option of having the
Listener parse all files or just those with certain extensions.

Enabling users to execute scripts on the server can create security and other
risks. For this reason, you can specify that a specific Listener allows only
“crippled” includes. This means that LiveHTML parsed by that Listener will be
able only to call static HTML, environment variables, or other server parsable
files, not executable scripts.

You frequently use LiveHTML when you have standard components, such as
menus, that you want on many pages. If desired, you can use LiveHTML to run
the PL/SQL Agent under CGI, and thereby incorporate dynamic Oracle data in
hardcoded Web pages.

Oracle WebServer Concepts 1-17

1-18 Oracle WebServer 2.0 User’s Guide

cwarrer [N

Using the Oracle
WebServer Manager

The Oracle WebServer Manager is a collection of HTML forms you can use to
configure your Oracle WebServer. The following links go to WebServer
Manager forms that allow you to:

= Start and stop Oracle7 databases.

= Configure Oracle Web Listener processes.
= Configure the PL/SQL Agent.

= Configure the Web Request Broker.

Starting and Stopping Oracle7 Databases

The Oracle WebServer Database Administration Form provides a convenient way to
start and stop Oracle7 databases that your WebServer uses. To perform other
database administration tasks, see the Oracle7 Server Administrator’s Guide.

Configuring Oracle Web Listener Processes

The Oracle Web Listener is the Oracle WebServer’s HTTP engine, which handles
connections from clients (web browsers). You can run several Web Listener
processes at once on your WebServer host computer. Using the Oracle Web
Listener Administration Form, you can create and configure a new Web Listener

process, or choose an existing Web Listener process from a list and either modify
its configuration, or delete it.

Configuring the PL/SQL Agent

The PL/SQL Agent allows the Oracle Web Listener to access an Oracle7
database in response to an HTTP request, and return the results to the requestor
in HTML form. There are two versions of the PL/SQL Agent:

= The PL/SQL Agent WRB Service—uses the Web Request Broker (WRB)
interface to communicate with the Web Listener.

e The PL/SQL Agent CGI Program—uses the Common Gateway Interface
(CGI) to communicate with the Web Listener.

The PL/SQL Agent WRB Service is the preferred version because it takes
advantage of the high performance of the Web Request Broker interface. The
PL/SQL Agent CGI Program is provided only for backward compatibility to
version 1.0 of the Oracle WebServer.

Configuring the Web Request Broker

The Web Request Broker provides a programming interface for writing
WebServer back-end applications. You can use the Web Request Broker
Administration Form to perform general Web Request Broker configuration,
and to configure specific WRB cartridges.

Oracle WebServer Manager Tasks

The following list is a summary of the configuration tasks you can perform using
the Oracle WebServer Manager. Following one of these task category links will
take you to a form where you can perform the tasks in that category:

Oracle7 Database Administration
= Starting up an Oracle7 database
= Shutting down an Oracle7 database
Oracle Web Listener Administration
= Creating a new Web Listener
< Modifying a Web Listener configuration
= Configuring Web Listener network parameters

= Configuring Web Listener logging parameters

2-2 Oracle WebServer 2.0 User’s Guide

Configuring Web Listener user and group parameters
Configuring Web Listener virtual directory mappings
Configuring Web Listener file caching

Defining Web Listener file extensions for language formats
Defining Web Listener file extensions for MIME types
Defining Web Listener file extensions for encoding formats
Configuring Web Listener security

Controlling access to virtual files and directories
Configuring port security (SSL)

Starting a Web Listener process

Stopping a Web Listener process

Deleting a Web Listener

Enabling Web Listener proxy behavior

Enabling LiveHTML parsing for a Web Listener

PL/SQL Agent Administration

Creating a new Database Connection Descriptor (DCD)
Creating a default DCD

Creating a DCD for database administration

Creating a new DCD from an existing configuration
Modifying a DCD

Deleting a DCD

Web Request Broker Administration

Configuring the Web Request Broker
Configuring a new WRB cartridge
Modifying a WRB cartridge configuration
Deleting a WRB cartridge

Using the Oracle WebServer Manager

2-3

Oracle WebServer 2.0 User’s Guide

cwarrer [N

Setting Up a Secure Oracle
WebServer

You can up an Oracle WebServer process to accept secure connections on a
particular TCP/IP port by configuring it to use the Secure Sockets Layer (SSL)
on that port. SSL is an emerging standard for encrypted data transmission—see
The Secure Sockets Layer for an introduction to the terms and concepts involved
in this kind of security.

To set up your Oracle WebServer to use SSL, you must do the following:

1. Generate a certificate request.

2. Send the request to VeriSign, Inc., a Certifying Authority (CA).
3. Physically secure and prepare your WebServer host machine.
4. Install the certificate granted you by the CA.

5. Activate SSL on at least one WebServer port.

Generating a Certificate Request

To generate a certificate request, run the interactive utility genreq and enter the
information for which it prompts you. When the prompt specifies a default
value, you can just press return to enter that value, or enter a different value if
you prefer. For an example of how to use genreq, see the sample genreq session
that accompanies this document. To run genreq , do the following:

3-2

10.

Type genreq to start the utility.
Type Gto begin creating a certificate request.

When prompted, type a password, used in generating the private key. Just
choose a random string of characters—you need only remember this
string long enough to repeat it in the next step.

Retype the password for confirmation.

Choose the public exponent you want to use in generating the key pair.
The only two recognized exponents are 3 and 65537, commonly called
Fermat 4 or F4.

Enter the size in bits of the modulus you want to use in generating the key
pair. For the version of genreq sold in the United States of America, the
size may be from 1 to 1024. The default size is 768 bits and the maximum
is 1024 bits. A modulus size between these two values is recommended.

For versions of genreq sold outside the USA, the maximum (and default)
modulus size is 512 bits.

Choose one of three methods for generating a random seed to use in
generating the key pair:

- F—genreq prompts you to enter the full pathname of a file in your
local file system. This can be any file that is at least 256 bytes in size,
does not contain any secret information, and has contents that cannot
easily be guessed.

- K—genreq prompts you to enter random keystrokes. genreq uses the
variation in time between keystrokes to generate the seed. Don’t use
the keyboard’s autorepeat capability, and don’t wait longer than two
seconds between keystrokes. genreq prompts you when you have
typed enough keystrokes. You must delete any unused characters
typed after this prompt.

- B—genreq prompts you to enter both a file name and random
keystrokes. This option is recommended.

Enter the name of a file in which to store your WebServer’s distinguished
name. You can choose the default, or enter any filename with a .der
extension. genreq creates this file in the current directory, though you
may later move it to any convenient location.

Enter the name of a file in which to store your WebServer’s private key.
You can choose the default, or enter any filename with a .der extension.
genreq creates this file in the current directory, though you may later
move it to any convenient location.

Enter the name of a file in which to store the certificate request. You can
choose the default, or enter any filename with a .pkc extension.

Oracle WebServer 2.0 User’s Guide

11. Enter the requested identification information for you organization:

= Common Name—the fully qualified host name of your organization’s
Internet point of presence as defined by the Domain Name Service (DNS),
for example, www.oracle.com

= Email Address—the email address where the CA can contact you.

= Organization—the official, legal name of your company or organization.
Most CAs require you to verify this name by providing official
documents, such as a business license.

= Organizational Unit—(optional) the name of the group, division, or other
unit of your organization responsible for your Internet presence, or an
informal or shortened name for your organization.

=« Locality—(optional) the city, principality, or country where your
organization is located.

= State or Province—the full name of the state or province where your
organization is located. VeriSign does not accept abbreviations.

= Country—the two-character ISO-format abbreviation for the country
where your organization is located. The country code for the United States
is “US.”

= Email Address—the email address where VeriSign can contact you.

= Thename and version number of the application for which you are getting
the certificate (you should accept the default value).

When you have entered all the requested information, genreq responds
with Thank you , and processes the data you have entered. When it is
finished, it outputs done and returns you to the main menu.

12. Type Qto quit the program.
Requesting a Certificate

To request a certificate, email the request generated by genreq to VeriSign, Inc.
a subsidiary of RSA Data Security, Inc.

The certification process can take time, from a few days to several weeks. The
more organized and complete your paperwork, the better your chances are for
quick certification.

Preparing Your WebServer Host Machine

For your WebServer to be secure as advertised to clients, you must make sure
that no unauthorized person has access to your WebServer’s host machine. Here
are some suggestions:

Setting Up a Secure Oracle WebServer 3-3

Installing Your Certificate

3-4

Place the machine in a locked server room.

Limit distribution of keys or combinations to the server room to a few
trusted individuals.

Set up a secure area of the machine’s file system that can be accessed only
by the root user. This is where you will store your private key and your
certificate when you receive it.

Set a secure root password on the machine, using at least six characters
and mixing numbers, legal punctuation marks, and mixed-case letters. Try
not to use a character string that is a proper name or a word in any
language. Change passwords frequently, and never write a password on
paper.

Strictly limit the programs that are installed and allowed to run on the
machine.

Limit TCP/IP connections to the machine to port 443, the default port for
secure connections. Disable all other ports.

To learn how to implement these suggestions on your WebServer machine, see
your machine’s operating system reference manual.

When you receive your certificate from VeriSign, you must use the Oracle Web
Server Manager to install it.

1.

Use your email reader to save the message from the CA containing the
certificate to a file with a .der extension, such as cert.der

Use a text editor to remove the header information before the BEGIN
CERTIFICATE line and the footer information after the END
CERTIFICATE line. Do not delete the BEGIN CERTIFICATE and END
CERTIFICATE lines themselves.

Using your web browser, go to the Oracle WebServer Administration page.
Follow the link to the Oracle Web Listener Administration Form.

Select a Web Listener process from the list and click its Configure button
to go to the Oracle Web Listener Advanced Configuration Form.

Follow the link to the Oracle Web Listener Configure Security Form.

Go to the Secure Sockets Layer section of the form and follow the
instructions.

Go back to the Oracle Web Listener Advanced Configuration Form.

Go to the Addresses and Ports section.

Oracle WebServer 2.0 User’s Guide

10. Set the Security pull-down menu to SSL in the entry for at least one port.
Note: For increased security, it is best to activate SSL only on port 443.

11. Go back to the Oracle Web Listener Administration Form and repeat the
process for all Web Listener processes that you want to make secure.

Setting Up a Secure Oracle WebServer 3-5

Oracle WebServer 2.0 User’s Guide

cuarrer [

Developing Applications
for the Oracle WebServer

This section covers the development of applications for the WebServer. It has the
following sections:

« Application Development - an Overview

Server Extensions
The PL/SQL Agent

The Java™ Interpreter

The LiveHTML Interpreter

Application Development - an Overview

Applications developed for the Oracle WebServer have two general types of
components:

= Web pages, whether statically coded or generated at runtime from PL/
SQL or Java. These constitute both the user interface and the final product.
Using LiveHTML, these can reference applications executed on the server
when the page is accessed.

= Code executed on the server. There are several kinds of code that can be
so executed, but all of them eventually produce HTML that is sent to the
browser as Web pages.

The Web pages you create will themselves generate URLs that determine what
other Web pages are retrieved and what code is executed on the server.
Therefore, you must write your Web pages to generate URLSs that contain
information that the server needs to find the desired Web pages or execute the
desired code. These are the general ways your Web pages can produce such
URLs:

= They can be explicitly given as part of hypertext anchors. In this case, the
URL is transmitted whenever the user triggers the hypertext link.

= They can come from a user typing them directly into a search dialog box.

= They can come from HTML forms.

From the viewpoint of the client, all of these techniques specify the retrieval of a
Web page. What determines whether a Web page is simply fetched from the file
system or generated by some code executed on the server is the location
specified in the URL. The WebServer understands that some locations contain
files and others reference WRB Services or CGI programs. It is the configuration
of the WebServer that determines which is which. You could say that the server
extensions s appear to the client as “virtual files.”

Server Extensions

4-2

There are three basic techniques for executing applications on the server to
dynamically generate Web pages:

e The PL/SQL Agent

e TheJava™ Interpreter
e The LiveHTML Interpreter

The first two are languages that the WebServer can cause to be executed. The last
isan HTML technique for passing execution to another process at a certain point
in the scanning of a Web page, and embedding the output of that process in the
calling page. LiveHTML can also execute programs, but its programs are written
in some language, such as Perl for Unix or Visual Basic for Windows NT, that is
executed by the OS itself rather than the WebServer.

Generally speaking, you can combine these techniques. For example, the Java
Interpreter can execute PL/SQL in the database.

Oracle WebServer 2.0 User’s Guide

The PL/SQL Agent and the Java Interpreter can use either of two interfaces:
WRB or CGI. Which interface is used is determined by the mapping of the “file”
the URL requests; this mapping is part of the WebServer configuration.

How URLs Specify Applications

Once the Listener has determined that a URL specifies that an application is to
be executed on the server, it interprets the URL to extract path information and
arguments to be passed to the application on start-up.

URLSs that specify applications are split into three different parts:
= The virtual path
= The extra path information

< The query string

The syntax is as follows:

virtual_path extra_path_information?query_string
Here are the explanations of the syntax components:
virtual path

This is similar to a path you would use to access a regular document or image.
That is, it is a pathname that identifies the application that you want executed.

extra path information

This is optional additional information embedded in the URL after the
pathname. This consists primarily of various environment variables that you can
use to pass information to the application.

query string

This is another optional part of the URL. This is used to directly supply
parameter values (as opposed to environment variable values) to the requested
application. The parameters are specified in the following form;
<parameter name>=<value>

Example of a URL Invoking an Application
This section provides an example of a URL that invokes a PL/SQL Agent to
access the database. Here is the URL in question:
http://lwww.nhl.com:8080/ows-bin/nhl/owa/hockey_pass?person=Gretzky

1. The substring http://www.nhl.com:8080 in the above URL signals the
Web browser to connect to the www.nhl.com host's port 8080 using the

Developing Applications for the Oracle WebServer 4-3

The PL/SQL Agent

The WebServer employs the PL/SQL Agent to execute PL/SQL procedures
stored in the database. If you install the PL/SQL Web Toolkit with your PL/SQL
Agent, you can use a set of predefined PL/SQL packages to generate HTML
formatted output, leaving you free to focus on the logic of your application. Even
using the PL/SQL Web Toolkit, you need a conceptual understanding of HTML.
For example, you must know at what points in your page anchors are necessary,
although you needn't write the actual code for the anchors. The PL/SQL Agent
takes care of interfacing to the needed environment variables and generating the
HTML code.

4-4

HTTP protocol.

When the Oracle Web Listener that is running on www.nhl.com receives
the request, the substring Zows-bin/nhl/owa signals the Web Listener to
connect to the PL/SQL Agent instead of returning a file to the browser as
it normally would have done with a static HTML document.

The URL is processed as follows:

The Listener is configured so that the string Zows-bin/nhl/owa causes it
to invoke the WRB Dispatcher. The WRB Dispatcher understands “owa”
to mean it should pass execution to a WRBX interfaced to the PL/SQL
Service. It passes the WRBX the following information in the form of CGI
environment variables (For the sake of compatibility, WRB understands
CGl environment variables):

- The string Zows-bin/nhl/owa is passed as the environment variable
SCRIPT_NAME. The PL/SQL Agent parses the SCRIPT_NAME to
extract the DCD, which is nhl The DCD is passed as the directory
name immediately preceding /owa, but is actually a file containing
database connection information; owa is the name of the PL/SQL
Agent itself. The use of DCDs is specific to the PL/SQL Agent.

- The string /hockey_pass is passed as the environment variable
PATH_INFO. This indicates that hockey_pass is the specific
application to be executed. This application is a PL/SQL procedure
stored in the database, that the PL/SQL Agent executes.

- The string “person=Gretzky” is passed as the environment variable
QUERY_STRING. This indicates that the value “Gretzky” is to be
passed to the hockey_pass application for the parameter person. This
will correspond in name and be compatible in datatype to a PL/SQL
parameter used in the application.

Oracle WebServer 2.0 User’s Guide

Database Connection Descriptors (DCDs)

Whenever a URL invokes the PL/SQL Agent, it specifies a DCD. Creating and
maintaining the DCDs is the responsibility of the WebServer administrator. As
an application developer, all you need be concerned with is generating URLs
that specify the correct DCD to achieve the result you want. The following is the
information the DCD provides:

username
password

ORACLE_HOME

ORACLE_SID

SQL*Net V2 Service Name or Connect String

owa_err_page
owa_valid_ports
owa_log_dir
owa_nls_lang

username

All SQL and PL/SQL statements are executed by the database under the
auspices of some database user. This name identifies that user. The
username determines the schema (logical section of a database) that the
PL/SQL Agent connects to, the actions it can perform, the resources (disk
space and so on) it can use, and the level of monitoring of its activities that
the database performs.

password

This is provided if you want to password protect the DCD, ensuring that
only certain people connect as the user identified by username. Keep in
mind, however, that the users who connect to the database as username
still will be able to do only what the application gives them the ability to
specify through URLs.

ORACLE_HOME

This is the root of the Oracle7 Server code tree in the OS file system.

ORACLE_SID

If the PL/SQL Agent is to connect to a local database, this determines that
database. If the WRB is used, the request will be handed off to a process
connected already to this database, if possible

Developing Applications for the Oracle WebServer 4-5

SQL*Net V2 Service Name or Connect String

If the PL/SQL Agent is to connect to a remote database, this determines
that database.

owa_err_page

This is the pathname of the HTML document that the PL/SQL Agent is to
return to the client's browser when an error occurs in the PL/SQL
procedure that the PL/SQL Agent invoked. This is the actual path as
understood by the OS, not the virtual path as configured in the Web
Listener

owa_valid_ports

The valid Web Listener network ports to which the PL/SQL Agent will
respond. The network port is, of course, specified in the URL. You must
make sure that the URLs your applications generate provide port numbers
that are valid for the WRB Service or CGI program they specify.

owa_log_dir

The directory where the PL/SQL Agent writes its error file. The error file
differs from the page in that it is for the WebServer administrator's
attention, rather than the clients.

owa_nls_lang

The NLS_LANG of the Oracle7 database to which the PL/SQL Agent
connects. If not specified, the PL/SQL Agent administration program
looks up the database NLS_LANG when the service is submitted. The
NLS_LANG indicates the language to be used.

How the PL/SQL Agent Uses Environment Variables

Note: These are CGI standard environment variables. However, the PL/SQL
Agent can use them whether it is invoked through CGI or through the Web
Request Broker (WRB).

The PL/SQL Agent uses the environment variables shown below:

CGl Variables Used by the Oracle PL/SQL Agent

Variable Contains
REQUEST_METHOD GET or POST
PATH_INFO the name of PL/SQL procedure to invoke

4-6 Oracle WebServer 2.0 User’s Guide

Variable Contains

SCRIPT_NAME contains the DCD the PL/SQL Agentisto
use when logging on to Oracle7

QUERY_STRING parameters to the PL/SQL procedure (for
GET method only. POST method
parameters are passed via standard
input.)

Passing Parameters to PL/SQL

A PL/SQL procedure usually requires parameters in order to execute and
generate the appropriate HTML document. The following section discusses
several key concepts and tips that a PL/SQL developer should understand with
respect to how parameters get passed to the specified PL/SQL routine.

These key concepts and tips are:

e Getting Parameters from the Web Browser to the PL/SQL Agent

e Passing Parameters Using an HTML Form

e Providing Default Parameter VValues

e Multivalued Parameters

e QOverloading Procedures

Getting Parameters from the Web Browser to the PL/SQL Agent

Depending on the REQUEST_METHOD used, parameters are passed from the
Web Browser to the Web Listener to the PL/SQL Agent in one of two ways:

= Through the QUERY_STRING environment variable. If the GET method
is used by the Web browser, the Web Listener passes the parameters to the
PL/SQL Agent in this environment variable.

= Through standard input. If the POST method is used, the Web Listener
passes the parameters to the PL/SQL Agent using standard input.

It is transparent to the PL/SQL procedure that is the actual consumer of these
parameter(s) which method is used to pass the parameters from the Web
Listener to the PL/SQL Agent and which protocol, the WRB or CGl, is used. This
is an important feature of the Oracle PL/SQL Agent: the PL/SQL programmer
need not be aware of whether GET or POST is used and need not be concerned
with parsing either the QUERY_STRING environment variable or standard
input. Thus, the PL/SQL programmer can concentrate on what he or she knows

Developing Applications for the Oracle WebServer 4-7

best: developing the logic to extract data from the Oracle database, based on pre-
parsed parameters passed by the Oracle PL/SQL Agent.

It is recommended that you use POST whenever possible. GET is the method
used for links and non-form URLs. For HTML forms, one has a choice. Because
the GET method uses operating system environment variables, there are limits
on the length of the QUERY_STRING.

Passing Parameters Using an HTML Form

The following example is analogous to the one in the previous section, except
that it uses an HTML form that employs the POST REQUEST _METHOD.

<FORM METHOD="POST" ACTION="http://www.nhl.com:8080/ows-bin/nhl/owa/
hockey_pass">

Please type the name of the person you wish to search for:

<INPUT TYPE="text" NAME="person"><P> To submit the query, press this

button: <INPUT TYPE="submit" VALUE="Submit Query">. <P> </[FORM>

The above form does the same thing as the previous example, except that instead
of populating the QUERY_STRING environment variable with
“person=Gretzky,” the Web Listener writes “person=Gretzky” to standard
input.

Note that the name of the HTML input variable, in this case “person”, has to be
the same as the PL/SQL parameter it is to match.

The PL/SQL procedure that is the recipient of the above parameters follows:

create or replace procedure hockey_pass (person in varchar2) is
n_assists integer;
begin
select num_assists into n_assists
from hockey_stats
where name=person;
htp.print(person||' has '||to_char(n_assists)||" assists this season')
end;

Providing Default Parameter Values

4-8

If you cannot guarantee that a value will be passed from a Web Browser for a
particular PL/SQL procedure parameter, then you should give the parameter a
default value. For example:

create or replace procedure showvals(a in varchar2 DEFAULT NULL,
b in varchar2 DEFAULT NULL) is

begin
htp.print(‘a = '||a||htp.br);
htp.print('b = '||b][htp.br);
end;

Suppose the PL/SQL Agent receives a request to call procedure showvals with
no value for “a” and the value of 'Hello' for “b”, and there was no DEFAULT

Oracle WebServer 2.0 User’s Guide

NULL clause in the procedure's definition. Then the request would generate an
error with the following message:
OWS-05111: Agent : no procedure matches this call

OWA SERVICE: test_service
PROCEDURE: showvals

PARAMETERS: =========== B: Hello
By “defaulting” the parameters, the above request would properly output:

a=

b = Hello

which to the end user would look like:

a=
b = Hello

Multivalued Parameters

Generally, you need not be concerned with the order in which the Oracle PL/
SQL Agent receives parameters from a URL. The only case where it might be
relevant is when passing multiple values for the same form field. In this case, all
the values for that form field should be together, and if the order of the values in
that field is significant, that order must be preserved in the URL.

There are a number of instances where you can have such multiple values for the
same HTML variable. The HTML tag “SELECT” allows users to select from a set
of possible values for an HTML form field. If the SIZE parameter of that SELECT
tag is greater than one, the form allows multiple selection, and the user can
choose to select more than one value. For example, if you ask a user to indicate
her hobbies, she may well have more than one. In this case, you pass the multiple
values to asingle PL/SQL parameter, which must be a PL/SQL table. APL/SQL
table is a data structure similar to an array.

Example of a Multivalued Field

Another case where one has a set of values corresponding to a single form field
is shown in this example:

QUERY_FORM prints an HTML page with all the columns for the specified
table. Invoke the procedure from a Web Browser with a URL like: http://
yourhost:port_num/service_name/owa/query_form?the_table=emp

create or replace procedure query_form(the_table in varchar2) is
cursor cols is
select column_name
from user_tab_columns
where table_name = upper(the_table);
begin
htp.htmlOpen;
htp.headOpen;
htp.htitle('Query the '||the_table||' table!");

Developing Applications for the Oracle WebServer 4-9

htp.headClose;

htp.bodyOpen;

-- Use owa_util.get_owa_service path to automatically retrieve
htp.formOpen(owa_util.get_owa_service_path||'do_query");

-- Put in the table as a hidden field to pass on to do_query
htp.formHidden('the_table', the_table);

-- Put in a dummy value, as we cannot DEFAULT NULL a PL/SQL table.
htp.formHidden('COLS', 'dummy");
for crec in cols loop

-- Create a checkbox for each column. The form field name

-- will be COLS and the value will be the given column name

-- Will need to use a PL/SQL table to retrieve a set of

-- values like this. Can use the owa_util.ident_arr type

-- since the columns are identifiers.
htp.formCheckbox('COLS',crec.column_name);

htp.print(crec.column_name);
htp.nl;
end loop;
-- Pass a NULL field name for the Submit field; that way, a
-- hame/value pair is not sent in. Wouldn't want to do this
-- if there were multiple submit buttons.
htp.formSubmit(NULL, 'Execute Query');
htp.formClose;
htp.bodyClose;
htp.htmiClose;
end,

Invoking this procedure brings up a page that looks like this:

[
O
[
o
o
[
o
o
I—

4-10 Oracle WebServer 2.0 User’s Guide

In this example, the user has already selected to query the EMPNO, ENAME,
JOB, and SAL columns:

Here is a procedure to process this form submission:

-- DO_QUERY executes the query on the specified columns and
-- tables.The OWA_UTIL.IDENT_ARR datatype is defined as:
-- -- type ident_arr is table of varchar2(30) index by binary_integer
create or replace procedure do_query(the_table in varchar2,

cols in owa_util.ident_arr) is
column_list varchar2(32000);
col_counter integer;
ignore boolean;

begin
-- For PL/SQL tables, have to just loop through until you hit
-- no_data_found. Start the counter at 2 since we put in
-- a dummy hidden field.

col_counter := 2;
loop
-- build a comma-delimited list of columns
column_list := column_list||cols(col_counter)|[',";
col_counter := col_counter + 1;
end loop;
exception
when no_data_found
then
-- strip out the last trailing comma
column_list := substr(column_list,1,length(column_list)-1);
-- print the table - assumes HTML table support
ignore :=

owa_util.tablePrint(the_table,BORDER',
OWA_UTIL.HTML_TABLE, column_list);
end;

Then, after selecting the “Execute Query” button, the user would see the
following:

Developing Applications for the Oracle WebServer 4-11

EMPNO (ENAME JOB SAL
T3AY sMITH |CLERE son

484 ALLEN [SALESKAN (1600
752l WaARD |SALESKMALN 1250
felala JOMNES |MANAGER [2875
7654 MARTIN |SALESKMAN 1250
TEYE ELAEE |MANAGER [2350
e CLARE |[MANAGER [2450
TTEE SCOTT JANALYST (3000
TaEad EING FRESIDEMNT |2000
Tedd TURNER |[SALESKRAN 1500
TaTh ADaMs |CLERE 1100
TE00 JAMES |[CLERE Y50

a0z FORD AMALYST (3000
TH34 MILLER |CLERE 1300

If you cannot guarantee that at least one value will be submitted for the PL/SQL
table, itis a good idea to use a hidden place-holder variable as the first value. The
reason is that you cannot provide a default NULL value for aPL/SQL table, and
a call to this procedure with just one argument (the_table) would cause the PL/
SQL Agent to generate an error.

Note that the PL/SQL Agent can only pass parameters to PL/SQL tables that
have a base type of VARCHAR2. This should not provide a significant
limitation, as the PL/SQL type VARCHAR? is the largest PL/SQL datatype,
with a maximum length of 32K (32767 bytes). The values can then be explicitly
converted to NUMBER, DATE, or LONG within the stored procedure (using
TO_NUMBER or TO_DATE - no conversion needed for LONGS).

Overloading Procedures

As explained in the Overview of the Oracle7 Server, SQL, and PL/SQL under
Overloading Subprograms, PL/SQL allows you to overload procedures and
functions that are in PL/SQL packages. In overloading, multiple procedures or

4-12 Oracle WebServer 2.0 User’s Guide

functions have the same name, but are distinguished by the fact that they take
different parameters. For example:

create or replace package overload is
procedure procl(charval in varchar2);
procedure procl(numval in number);
end;
create or replace package body overload is
procedure procl(charval in varchar2) is
begin
htp.print('The character value is '||charval);
end,
procedure procl(numval in number);
htp.print('The number value is '[|[numval);
end;
end;

Note: The PL/SQL Agent can use this functionality with the following
restriction: if two procedures take the same number of parameters, those
parameters must differ in name as well as datatype (normally a difference in
datatype suffices to distinguish the parameters). For example:
create or replace package overload is

procedure procl(val in varchar2);

procedure procl(val in number);
end,

If executed directly from SQL, this would be acceptable, but when the PL/SQL
Agent attempts to determine which procedure to call, it is not able to distinguish
between the two and will generate an error.

This limitation is imposed by the lack of HTML form datatypes

Oracle PL/SQL Agent Error Handling

Application Errors

There are two types of errors that the Oracle PL/SQL Agent handles:

= Application Errors. These are the responsibility of the application
developer.

= System Errors. These are usually the responsibility of the WebServer
administrator, although they also occur when application errors are not
handled.

Application errors are specific to the PL/SQL application. All PL/SQL
procedures you write should have their own exception handling (see Handling
Exceptions) that produces the appropriate output in HTML form.

Because the PL/SQL Agent does not read the HTML output to determine its
content, and properly handled exceptions themselves generate HTML error
messages, handled exceptions are transparent. As far as the PL/SQL Agent is

Developing Applications for the Oracle WebServer 4-13

System Errors

4-14

concerned, if the PL/SQL code generates HTML output, the operation was
successful. The user will see whatever handled exception message is generated
by the PL/SQL procedure.

System errors are detected by the Oracle PL/SQL Agent itself. These are errors
that occur when the PL/SQL Agent is unable to launch the PL/SQL procedure
orwhenaPL/SQL exception is not handled by the stored procedure, causing the
exception to be propagated back to the PL/SQL Agent as a system error. This
causes a standard HTML error document to be returned to the browser.

For example, if the Oracle PL/SQL Agent cannot make a connection to the
Oracle7 Server, the PL/SQL procedure cannot run and a system error occurs.
The PL/SQL Agent then returns a default error message to the browser or
returns a customized HTML error page (if one was previously configured as part
of the DCD using the OWA_ERR_PAGE parameter).

Oracle WebServer 2.0 User’s Guide

The Java™ Interpreter

The Java Interpreter is a part of the Oracle WebServer that interprets and
executes Java and sends the HTML output to the client’s browser as a Web page.

Oracle WebServer provides a set of Java classes to enable you to access the
database and to generate HTML dynamically using the Java Interpreter. These
classes are called the Java Web Toolkit. Using these Java classes, you can make
PL/SQL calls from within your Java application, effectively combining the
strengths of the two languages. This toolkit also includes a type wrapper for Java
applets, to make it easy for you to store applets in the database, retrieve them
through the Java Interpreter, and send them to the client for execution
embedded in a Web page. You can also store and retrieve Java applets for
execution on the client using the PL/SQL Agent by simply treating the applets
as data.

Generally speaking, you should use Java to handle multimedia operations and
to interface to objects on the net, and you should use PL/SQL for interfacing to
the database. Whether this means using the PL/SQL Agent or the Java
Interpreter will largely be determined by the following:

= Whether you want to pull all of your data from the database (as the PL/
SQL Agent does) or whether you also want to access other data services
such as the OS file system.

= The balance of database-intensive to net or multimedia intensive
operations in your application.

To use the Java Web Toolkit, import the following into your Java code:

= oracle.html.* contains the objects for dynamic HTML generation.
= oracle.rdbms.* contains the objects for database access.

= oracle.plsgl.* contains the objects for PL/SQL access.

Obviously, if you only want to perform some of these functions, you need only
import some of these objects. For more information, see Database Access from Java,
Example of Java Database Access, Dynamic HTML from Java, and Java Dynamic

HTML Examples.

Database Access from Java

Using Java to call PL/SQL circumvents the PL/SQL Agent, and this has a number
of consequences, among them the following:

Developing Applications for the Oracle WebServer 4-15

= PL/SQL Agent processes invoked through the WRB (but not CGI) connect
to the database automatically at startup. Java processes connect to the
database when necessary. This gives a significant performance advantage
to the PL/SQL Agent.

= The PL/SQL Agent uses Database Connection Descriptors (DCDs) to control
the privileges an application runs under and the database schema to
which it connects in a generalized and application-independent way. In
Java, database connections are coded into the application.

Nonetheless, Java can do many things that PL/SQL cannot, like access local files
and manipulate multimedia objects. If you need this functionality executed on
the server, the Java Interpreter is the way to go.

Creating Package Wrappers

4-16

The Java Interpreter interfaces to the Oracle7 Server by running PL/SQL packages
or standalone PL/SQL procedures and functions. Each package an application
is to run must have a package wrapper, which is a Java class containing methods
to call that package’s procedures and functions. Standalone procedures and
functions are all wrapped in a single wrapper. Once you have identified or
created the PL/SQL packages your applications needs, you can create the
package wrappers for them by running the pl2java utility as follows:

pl2java [flags] username/password[@connect-string] packagename...

This utility creates a wrapper class for each package given as an argument to the
command. When your application is run, it creates an instance of this class to
interface to the package. If you have standalone procedures or functions in your
applications, run the pl2java utility without any package names, but using the
class flag as explained below. This will create a single class wrapper for all the
standalone procedures and functions you use.

Here are the component definitions:

flags

Options that control how the wrappers will be created. These are
explained below.

username
The name of the Oracle database user that owns the packages.
password
The password for the Oracle user identified by username.
connect-string

The string that identifies the local or remote database where the packages

Oracle WebServer 2.0 User’s Guide

are located. For local databases, this is the Oracle SID, as described in the
Oracle7 Server Administrator’s Guide. For remote databases, this is the
SQL*Net Connect String, as described in Understanding SQL*Net.

package name...

A list of all the packages that your application references in the schema
identified by username. To wrap standalone procedures and functions
you must omit this component and must use the class flag to name the
class wrapper that will be created. You should not include the containing
schemas in the package names. It is good practice to keep all the packages,
procedures, and functions you want to use in one schema.

flags

All of the flags that pl2java uses are optional, except, under certain conditions,
class. Here are the descriptions of the flags:

-help
Provides help information.
-d <dir>

Sets the directory where the wrapper classes will be stored. The default is
the current directory.

-package <packagename>
Sets the Java package to which the wrapper classes belong.
-class <class>

Sets the Java class to which the wrappers will belong. If the pl2java utility
is run against packages, this flag is optional. Java classes based on
packages inherit by default the names of the packages they encapsulate.
This flag can override that default, but it only applies to the first package
named in the command. If the wrappers are being created for standalone
procedures and functions, then this flag is mandatory, and all procedures
and functions named in the command are grouped into the single class
named by this flag.

The names of the classes follow the capitalization given in the command. Since
PL/SQL is not case-sensitive, this capitalization need not follow that actually
given in the PL/SQL code itself.

Developing Applications for the Oracle WebServer 4-17

Application Structure

4-18

There are certain PL/SQL datatypes that the pl2java utility cannot encapsulate.
These are shown below, along with the recommended substitutes, if any:

Disallowed PL/SQL Datatype

Substitute PL/SQL Datatype

POSITIVE

BINARY INTEGER

PL/SQL table of BINARY
INTEGER, NATURAL or
POSITIVE

PL/SQL table of NUMBER

PL/SQL table of LONG

PL/SQL table of CHAR or
VARCHAR?2

PL/SQL table of BOOLEAN

PL/SQL table of NUMBER, treat 0 as
false, 1 as true

ROWID none
MSLABEL none
PL/SQL table of ROWID none
PL/SQL table of MSLABEL none

Your Java program will be a Java class with a public static method called “main”,
which takes an array of strings, and various methods that are part of the wrapper
classes. All the methods in the Session class throw ServerException. This exception
is triggered when a database error occurs during the execution of the PL/SQL
procedure or function. When invoking these methods, you should handle the

exception appropriately.

The steps your application must go through are as follows:

1. It must create an object of type Session to handle the database connection.
All of the operations performed during this session must be called from
within this object. When the object exits, the database connection is
marked for termination by the Java garbage collector. Since connecting to
the database takes time, try to minimize the number of connections by
grouping into one Session object all of the operations that involve a given

schema.

2. Foreach PL/SQL package used in the application, it must create one
instance of the packagewrapper subtype created for that PL/SQL package

by the pl2java utility.

Oracle WebServer 2.0 User’s Guide

3. Foreach parameter of a PL/SQL package, it must create an instance of the
Java variable that matches that parameter. All classes that encapsulate PL/
SQL values have toString() methods. Therefore, you can concatenate the
PL/SQL values directly in Java strings using Java’s “+” concatenation
operation.

4. Unlike Java and most languages, but like SQL, PL/SQL uses Nulls and
Three-Valued Logic to deal with missing information. NULLSs should be
dealt with differently than known values. When you access a NULL from
Java, it throws the NullValueException runtime exception. Therefore, you
should account for this whenever a PL/SQL value may be NULL. You can
do this in either of the following two ways:

- Using the isNull method to check directly whether the value is NULL.

- Enclosing the operation in a “try {...} catch (...) {...}”" block that traps the
NullValueException.

You must invoke the Session setProperty method to set parameters such as
ORACLE_HOME that the database session requires. For more information on
this method, refer to the standard Java hypertext reference included with this
document.

You should try to logoff from the database explicitly when the session is no
longer needed. Although Java garbage collection disconnects the session when
the Session object is exited, this does not necessarily happen right away. Java
does not perform garbage collection until resources are low or the program idles.
Therefore, itis better to disconnect the session to free up the database connection
resource immediately.

Example of Java Database Access

This section outlines a Java program that uses a PL/SQL package to look up all
employees from a database and generates a report in HTML. In our example,
you have an “EMP” database table and an “Employee” PL/SQL package that
looks up employee information from that table. This table and package are
created by user “scott” with password “tiger” in database “HR_DB”.

Here is the SQL and PL/SQL source code that defines the objects used by this
example.

CREATE TABLE EMP (
emp_nameVARCHAR?2(30) NOT NULL,
emp_numberNUMBER(10),
emp_deptVARCHAR2(30) NOT NULL

)i

CREATE OR REPLACE package Employee as

type string_table is table of varchar2(30) index by binary_integer;

Developing Applications for the Oracle WebServer 4-19

4-20

type number_table is table of number(10) index by binary_integer;

function count_employees(
dept_name in varchar2
) return number;

procedure list_employees(

dept_name in varchar2,
employee_name out string_table,
employee_no out number_table

end;
CREATE OR REPLACE package body Employee as

function count_employees(
dept_name in varchar2
) return number as
employee_count number;
begin

select count(*)

into employee_count

from EMP

where EMP_DEPT = dept_name;

return employee_count;

end;

procedure list_employees(

dept_name in varchar2,
employee_name out string_table,
employee_no out number_table
) as

inumber;

cursor employee_rec(dept_name varchar2) is

select EMP_NAME, EMP_NUMBER

from EMP

where EMP_DEPT = dept_name;

begin

i=1;

for employee in employee_rec(dept_name) loop
employee_name(i) := employee.EMP_NAME;
employee_no(i) :=employee.EMP_NUMBER;

i=i+1;
end loop;
end;
end;

For reference, the commands themselves are considered SQL, but the code
inside the packages is PL/SQL. Since PL/SQL is asuperset of SQL, you can think
of itall as PL/SQL.

This example uses the oracle.html package to generate dynamic HTML. That
package is documented under Dynamic HTML from Java.

The main program

In this example, the program is called EmployeeReport. This program will be
saved in a file called EmployeeReport.java.

Oracle WebServer 2.0 User’s Guide

import oracle.html.*;
public class EmployeeReport {
public static void main (String args|[]) {

HtmIHead hd = new HtmIHead("Employee Listing”);
HtmlIBody bd = new HtmIBody();

HtmlPage hp = new HtmIPage(hd, bd);
hp.printHeader();

hp.print();

}
}

Generating the Java Wrapper Class for the Employee Package

To access the Employee package, you must generate a Java wrapper class for it.
This encapsulates the package as a Java class. The functions and procedures in
the package will appear as methods in the wrapper class under the same names.

PL/SQL datatypes are encapsulated by Java objects. For example, a PL/SQL
VARCHARZ2 string is encapsulated by a Java PStringBuffer object, and a PL/SQL
number is encapsulated by a Java PDouble object.

To generate the Java class wrapper for Employee package, execute the following
command at a command prompt:

pl2java scott/tiger@HR_DB Employee

This generates the class wrapper Employee.class in the current directory. The class
will have 1 constructor and 2 methods for the Employee package:

public class Employee {
public Employee(Session session) { ... }

public PDouble count_employees(PStringBuffer dept_name)
throws ServerException { ... }

public void list_employees(PStringBuffer dept_name,
PStringBuffer employee_namel[],
PDouble employee_numberf[])
throws ServerException { ... }

Notice that the constructor takes a Session object as a parameter to encapsulate
the database connection. This is because each time a PL/SQL package,
procedure, or function is accessed in a session, it is instantiated. In effect, a copy
is created that is the private property of that session. This gives the package a
stable state for that session, while leaving it free to have another state when
called by another session.

Overriding Default Value Sizes

When a PL/SQL function returns a value whose size is variable - for example
VARCHAR2, LONG, RAW, or LONG RAW - the size of the value is set by

Developing Applications for the Oracle WebServer 4-21

4-22

default to 255 bytes. In the wrapper class, you may change the default size by
setting the following variable for the PL/SQL function in question:

<function name >_<overload number>_return_length

The overload number is the number of other functions that exist with the same
name as this one. To find out about overloading of functions in PL/SQL, see
Overloading Subprograms. For more information on overload numbers
specifically, see the PL/SQL User’s Guide and Reference. You can find out what the
overload number of a function is by using the Oracle7 Server standard package
dbms_describe, as covered in the Oracle7 Server Administrator’s Guide. For non-
overloaded functions, the overload number is 0.

For example, assume the following PL/SQL package:

CREATE OR REPLACE package Employee as
function employee_name (
employee_numberinnumber
) return varchar2;

END;

By default, the length of the return value is 255 bytes. You can change this using
the code shown below:

public class EmployeeReport {
public static void main(String argsl[]) {

Session session = new Session("scott”, "tiger”, "HR_DB");

Employee employee = new Employee(session);

PDouble pEmployeeNumber = new PDouble((double)12345);

/I Set VARCHAR?2 return length for function employee_name to 50
employee.employee_name_0_return_length = 50;

System.out.printin("Employee ID: " + pEmployeeNumber +

" name: " + employee.employee_name(pEmployeeNumber)); }

}

Similarly, when a PL/SQL function returns a PL/SQL table, its default length is
40. You can change that length by changing the following variable in the
wrapper class:

<function name>_<overload humber>_return_arraylength

Making a connection to the database

The first thing that you have to do in the EmployeeReport program is to connect
to a database. You do this by using the following code to create a Session object:
import oracle.html.*;

import oracle.rdbms.*;// ADD: import Oracle classes which deal //with
database

public class EmployeeReport {
public static void main (String args[]) {

HtmIHead hd = new HtmIHead("Employee Listing”);
HtmIBody bd = new HtmIBody();

Oracle WebServer 2.0 User’s Guide

HtmIPage hp = new HtmlPage(hd, bd);
hp.printHeader();

/I ADD: defines Oracle session properties like ORACLE_HOME
Session.setProperty("ORACLE_HOME?”, "/user/oracle”);
Session.setProperty("TNS_ADMIN®”, "/user/oracle/network/admin”);

/I ADD: creates a database session and logon
Session session;

try {
session = new Session("scott”, "tiger”, "HR_DB");
} catch (ServerException e) {
bd.addltem(new Simpleltem("Logon fails: ” + e.getSqglerrm()));
hp.print();
return;

y o
hp.print()
}

To handle any errors raised, put the operation in a “try {...} catch (...) {... }” block
and trap any ServerExceptions.

Invoking the Employee package

To invoke the Employee package, you need to create a new instance of the
corresponding wrapper class. Then you can call the procedures and functions in
the package by invoking the methods in the wrapper class. Add the following
code to the program:

import oracle.html.*;

import oracle.rdbms.*;

import oracle.plsql.*;// ADD: import Oracle classes which deal //with PL/
SQL data types

public class EmployeeReport {
public static void main (String args[]) {

HtmlHead hd = new HtmIHead("Employee Listing”);
HtmIBody bd = new HtmIBody();

HtmIPage hp = new HtmlPage(hd, bd);
hp.printHeader();

Session.setProperty("ORACLE_HOME?", "/user/oracle”);
Session.setProperty("TNS_ADMIN”, "fuser/oracle/network/admin™);

Session session;
try {
session = new Session("scott”, "tiger”, "HR_DB");
} catch (ServerException e) {
bd.addltem(new Simpleltem("Logon fails: " + e.getSqglerrm()));
hp.print();
return;

}

/I ADD: create a new instance of Employee package
Employee employee = new Employee(session);

/I ADD: find the department name from the input parameter

String deptName = null;

if ((args.length < 1) || largs[0].startsWith("DEPT=")) {
bd.addltem(new Simpleltem("No department name given”));
hp.print();

Developing Applications for the Oracle WebServer 4-23

return;
}else {

deptName = args[0].substring(5);
}

/I ADD: create objects to encapsulate PL/SQL values that are
I/l used as parameters

PStringBuffer pDeptName = new PStringBuffer(30, deptName);
PStringBuffer pEmployeeName[];

PDouble pEmployeeNumberf];

PDouble pEmployeeCount;

/I ADD: print report header
bd.addltem("Department " + pDeptName + ™:")
.addltem(Simpleltem.Paragraph);

/I ADD: call Employee package to count the number of employees in
/l the department
try {
pEmployeeCount = employee.count_employees(pDeptName);
} catch (ServerException e) {
bd.addItem("Fail to retrieve employee information for department ” +
deptName + ": ” + e.getSqlerrm());
hp.print();
return;

}
int employeeCount = (int)pEmployeeCount.doubleValue();
if (employeeCount == 0) {
bd.addItem("No employee found under department ” + deptName);

hp.print();

return;
}
/I ADD: allocate the arrays for employee names and numbers
pEmployeeName = new PStringBuffer[employeeCount];

pEmployeeNumber = new PDouble[employeeCount];

/I ADD: allocate the buffers to retrieve employee information
for(inti = 0; i < employeeCount; i++) {
/I max length of employee name is 30 (characters)
pEmployeeName[i] = new PStringBuffer(30);
pEmployeeNumber[i] = new PDouble();

I A{DD: call Employee package to look up employees in the dept
try

employee.list_employees(pDeptName, pEmployeeName, pEmployeeNumber);
} catch (ServerException e) {

bd.addItem("Fail to retrieve employee information for department ” +

deptName + ": ” + e.getSqlerrm());
hp.print();
return;

}

/I ADD: generate report

DynamicTable tab = new DynamicTable(2);

TableRow row = new TableRow();

row.addCell(new TableHeaderCell("Employee Name”))
.addCell(new TableHeaderCell("Employee Number"));

tab.addRow(row);

for (inti = 0; i < employeeCount; i++) {
row = new TableRow();
if (hEmployeeNumberf[i].isNull())
row.addCell(new TableDataCell(pEmployeeName][i].toString()))
.addCell(new TableDataCell("new employee”));
else
row.addCell(new TableDataCell(pEmployeeName][i].toString()))
.addCell(new TableDataCell(pEmployeeNumber[i].toString()));
tab.addRow(row);

4-24 Oracle WebServer 2.0 User’s Guide

}
hp.additem(tab);
hp.print();

/I ADD: logoff from database
try {

session.logoff();
} catch (ServerException e);

}
There are a few aspects of the preceding code worth pointing out:

1. You must create an instance of Employee package before you can invoke
the procedures and functions in it. When initiating the package, you need
to specify the database session where the instance of the package is to be
created.

2. Before you invoke a PL/SQL procedure or function, you have to create
Java instance variables for the PL/SQL values that are to be used as
parameters (like “pDeptName” in the above example). PL/SQL tables
map to Java arrays. Remember to allocate the array as well as the
individual elements in the array.

3. Whenyou access a PL/SQL value, remember that the value may be NULL
unless database constraints prevent this. If the value is NULL, and you try
to retrieve it using the value methods (such as doubleValue() of PDouble),
it throws a NullValueException runtime condition. It is better to ensure the
value is not NULL before retrieving the value or to try the
NullValueException.

4. All classes that encapsulate PL/SQL values have toString() methods and
therefore can be concatenated. For an example of this, see the report-
header-generation section above.

5. You should try to logoff from the database explicitly when the session is
no longer needed. When a session is no longer needed, the session is
disconnected when Java performs garbage collection. Java does not,
however, guarantee that any garbage objects will be collected immediately
when they become garbage. In fact, Java’s garbage collector waits until the
program idles, which for a busy Web site could be infrequent, or until
resources are low, before it collects garbage objects. Therefore, it is better
to issue a disconnect statement to free up database resources explicitly.

Dynamic HTML from Java

To generate dynamic HTML from within Java, you create various objects that

use the interface IHtmlltem. All classes that generate dynamic HTML implement
this interface, which has two simple methods: toHTML and print. Both of these
methods produce the content of the object as HTML, but toHTML returns it as a
string, whereas print sends it to system output. Therefore, you use toHTML when

Developing Applications for the Oracle WebServer 4-25

4-26

you want the resulting HTML to be further processed by another method and
use print when you want to output it. In effect, you build your Web page in a
buffer with toHTML and flush the buffer with print.

The oracle.html package provides a standard set of classes based on HTML2,
HTML3, and popular browser-specific extensions. You are not limited to these,
however. You can easily create your own customizable HTML classes by
deriving them from the CompoundItem or Container classes. The oracle.html
package also has the intelligence to generate output that is optimized for the
browser at hand. For example, a browser that does not support tables will get
table data in the form of preformatted strings.

In some cases, interfaces have been used to specify the attributes of HTML tags.
This was done to simplify cases where tag assignments can be complex or where
similar arguments are used by several types of tags.

If you have a body of HTML you want to use repeatedly, you can encapsulate it
in an object of class Compounditem and thereafter treat it as a single HTMLitem.

Oracle WebServer 2.0 User’s Guide

The HTML tags that you can dynamically generate using the supplied objects

are listed below:

HTML FEATURE

JAVA OBJECTS THAT GENER-
ATE

headings HTMLHead

page breaks HTMLPage

main body of page HTMLBody
Comments Comment

links Link

anchors Anchor

client- side Java applets Applet
checkboxes CheckBox

forms Form

lists Java classes exist for various types
frames Frameset; Frame
hidden fields Hidden

GIF graphics Image

select options

Select; Option

passwords

PasswordField

radio buttons

Radio

tables Table; DynamicTable; TableRow; Tg
bleCell; TableDataCell; TableHeade
Cell; TableRowCell

text areas TextArea; TextField

As you can see, the Java objects that generate the main structural HTML tags
begin with HTML; others are chiefly named for the tags they generate.

The general procedure is to use the first three objects to define the basic structure
of your generated Web page to then to use the AddIitem method to add

HTMLItems to the body.

Java Dynamic HTML Examples

Here are examples of how to dynamically generate some HTML text using the

Java Interpreter.

Developing Applications for the Oracle WebServer

4-27

4-28

The following is a basic Java program that produces an HTML page whose title
and content are both the famous “Hello World!"”:

import oracle.html.*;

public class HelloWorld {

public static void main (String argsl[]) {

/I Create an HtmIHead Object titled "Hello World!”
HtmIHead hd = new HtmIHead("Hello World!");

/I Create an HtmIBody Object
HtmIBody bd = new HtmIBody();

/I Create an HtmIPage Object
HtmIPage hp = new HtmlPage(hd, bd);

/I Adds a simple string "Hello World” in this page
bd.addltem("Hello World!");

/I Print out the content of this Page
hp.print();
}

}
The following Java code creates an HTML anchor:

/I Creates an anchor
Anchor anchor = new Anchor("expire_date”, new Simpleltem("Expire Date: 02/
96");

The following Java code creates an HTML form:

/I Create a form object
Form form = new Form("GET”, "http://www.myhom.com/wrb/doit");

/I Create a TextField object and add it to the form
form.addltem(new TextField("textfield"));

// Add the form object to the HtmIBody object
bd.addltem(form);

The following Java code creates an HTML table. To make this example realistic,
we have added some user-defined functions:

/I Some user-defined functions
Product product = getFirstProduct();

/ create a dynamic table with 2 columns
DynamicTable tab = new DynamicTable(2);

/I create the rows and add them to the table
TableRow rows[] = new TableRow[NUM_ROWS];

for (int i=0; i< NUM_ROWS; i++) {
/I allocate TableRow
rows][i] = new TableRow();
/I populate row with data
rows][i].addCell(new TableHeaderCell(product.getProductID()))
.addCell(new TableDataCell(product.getProductDescription()))

Oracle WebServer 2.0 User’s Guide

/I add them to Table
tab.addRow(rowsJi]);

The following Java code creates an HTML menu:

/I Create a MenulList Object

MenuList menulist = new MenulList();

/I Add new items to the list

menulist.additem(new Simpleltem(”"Menu Item 1"))
.addltem(new Simpleltem("Menu Item 2"));

/I Add the list object to the body

bd.addItem(menulist);

The following Java code creates an HTML definition list, encapsulated in a
Container object:

/I Creates a new Container Object

Container dterms = new Container();

dterms.addltem(new Simpleltem("DefTerm1.1"));
dterms.addltem(new Simpleltem("DefTerm1.2"));
DefinitionList dl = new DefinitionList();

/I Creates a new Definition List Object, note the first argument
dl.addDef(dterms, new Simpleltem("Definition1"));

The following Java code creates an HTML ordered list:

/I Create a OrderedList Object

OrderedList orderedlist = new OrderedList();

/I Add new items to the list

orderedlist.addltem(new Simpleltem("Ordered Item 1))
.addltem(new Simpleltem("Ordered Item 2"));

/I Add the list object to the body (assuming it already exists)

bd.addItem(orderedlist);

The following Java code encapsulates a group of HTML tags as a single
component that can be used repeatedly in a page:

/I Create a new Compoundltem object

Compoundltem compounditem = hew Compounditem();

/I Set the default text attribute of all items in Compound Item

/I Note that this operation cannot be done with a Container

compoundltem.setlital();

/I Add a Simpleltem and a TextArea to the Compoundltem

compoundltem.addltem(new Simpleitem("How are you?”).setBold())
.addltem(new TextArea("response”, 30, 10));

/I Add the CompoundItem to the body object (assuming it's been created)

bd.addIltem(compoundltem);

The following Java code specifies an applet of Java bytecode to be included in the
Web page output for execution on the client’s browser.

/I Create a new Applet object with the following attributes:
/I Applet file name: "NervousText.class”

/I Width of Applet Window: 400

/I Height of Applet Window: 75

/I Parameter: Name="text”, Value="This is an applet test”
Applet applet = new Applet("NervousText.class”, 400, 75);

Developing Applications for the Oracle WebServer 4-29

applet.addParam("text”, "This is an applet test.”);

The LiveHTML Interpreter

4-30

Files that the WebServer is to parse for LiveHTML are internally of the following
MIME type:

text/x-server-parsed-html

The WebServer Administrator normally will create file extensions that are
synonyms for this type, and these are what you use in your application code. The
default synonym is SHTML. The administrator can also specify HTML as a
synonym, in which case all HTML files are parsed for LiveHTML. Unless all
your HTML files actually use LiveHTML, this is a bad idea, as it degrades
performance. The WebServer Administrator can also specify that some Web
Listeners are to allow full LiveHTML, some crippled LiveHTML, and some ho
LiveHTML at all. An application developer needs to know which Listeners are
which, so as to specify the correct port numbers in the URLs. You can find this
out by examining the WebServer Manager

LiveHTML code is formatted as SGML comments, so that it is ignored should
the file ever find its way to the browser unparsed. The format for LiveHTML
codes, therefore, is the following:

<l--# command tagl ="valuel” tag2 ="value2” -->

The tags are arguments to the commands, most of which actually only accept one
of the possible tags. The possible commands and their associated tags are as
follows:

= config. This command sets parameters for how the file or script is to be
parsed and therefore is normally the first LiveHTML command in a file.
The possible tags are:

- errmsg. This specifies the error message that is sent to the client if an
error occurs while parsing this document. Here is an example;

<l--#config errmsg="A parse error occurred in the Hockey_Pass file"-->

- timefmt. This specifies a date format. LiveHTML files frequently
include timestamps. The conventions follow the strftime library call
supported in most versions of Unix, even if the WebServer is not
running on a Unix platform.

Oracle WebServer 2.0 User’s Guide

- sizefmt. This specifies the format used when displaying a file size. The
possibilities are bytes, which gives the absolute size in bytes, and
abbrev, which gives the size in kilobytes or megabytes as appropriate.

- cmdecho. This specifies whether non-CGl scripts subsequently
executed have their output incorporated into this HTML page. The
possible values are ON and OFF. ON specifies that the output is
included. The default is OFF.

- cmdprefix. Specifies a string that will be prepended to each line of the
script output.

- cmdpostfix. Specifies a string that will be appended to each line of the
script output.

= include. This command specifies that a file is to be included in the
generated HTML page at this point. The file can any of the following:

- another LiveHTML file like the current one.
- aregular HTML file.
- an ASCII file.

which of these it is determined, as usual, by the extension. The possible
tags are:

- virtual. This gives a virtual path to the file. The directory mappings for
virtual paths are set by the WebServer administrator using WebServer
Manager.

- file. This gives a pathname relative to the current directory. References
to parent directories or uses of absolute pathnames are forbidden.

= echo. This gives the value of an environment variable. This variable is
either one of the standard CGI environment variables or one of the
LiveHTML extensions, which currently are all standard Server Side
Include variables. There is only one tag, var, and it must be present. It
provides the name of the variable. The LiveHTML environment variables
are as follows:

- DOCUMENT_NAME. The current filename.
- DOCUMENT _URL. The virtual path to this file.

- QUERY_STRING_UNESCAPED. If the client sent a query string, this
is an unescaped version of it, with all shell-special characters escaped
with \.

- DATE_LOCAL The current date and local time zone in the format
specified by the most recent config timefmt command.

- DATE_GMT. Same as the above, but in Greenwich mean time.

Developing Applications for the Oracle WebServer 4-31

- LAST_MODIFIED. The last modification date of the file, given in the
format specified in the last config timefmt command.

= fsize. This produces the size of the file in the format specified in the most
recent config filesize command. Tags are the same as for include.

= flastmod. This produces the last modification date of the file in the format
specified in the most recent config timefmt command. Tags are the same as
for include.

= exec. This is the command to execute a script. The tags specify whether or
not the script is CGI.

- c¢cmd. This specifies a non-CGl script. Execution is passed to the
Operating System, and the given string is parsed as though it were
entered at a command-line interface. The full path of the script must
be given. The non-CGI environment variables specified under echo
above can be referenced. Whether the output of the script is included
in the HTML page that the parser outputs, is determined by the most
recently executed config cmdencho.

- cgi. This specifies a CGlI script. The value given will be the virtual path
of the script. URL locations are automatically converted into HTML
anchors.

4-32 Oracle WebServer 2.0 User’s Guide

cuarrer |

Sample Applications

This section provides an overview of the simple applications included with the
Oracle WebServer. These applications fall into the following categories:

e PL/SQL Agent Sample Applications
e LiveHTML Sample Tags

« Java Sample Applications

PL/SQL Agent Sample Applications
There are three sample applications using the PL/SQL Agent:

= Hello World. This creates a simple Web page incorporating an environment
variable.

= Variable Field Forms. This generates varying text depending on which boxes
the user clicks in an HTML form.

< Cookie. This uses a seven-day cookie to tell the user how often he has visited
this sight.

LiveHTML Sample Tags
This provides examples of how to do the following with LiveHTML tags:

e |Include files from the OS.

« Reference environment variables.

= Set Data and Time formats.

= Reference true or virtual document paths.

= Reference sizes and modification dates of OS files.
= Reference information about the WebServer.

« Reference information about the user’s browser.

Java Sample Applications

5-2

There are two sample applications using the Java Interpreter:

= Hello World. This simply outputs a string.

= Advanced Java Applications. This shows how to generate a number of
HTML tags dynamically.

Oracle WebServer 2.0 User’s Guide

CHAPTER

The PL/SQL Web Toolkit
Reference

This section describes the hypertext procedures, hypertext functions, and
utilities that make up the Oracle WebServer PL/SQL Web Toolkit.

One of the main goals of the Oracle PL/SQL Agent is to eliminate the PL/SQL
programmer’s need to be intimately familiar with World Wide Web technology.
To this end, the Oracle WebServer includes a PL/SQL Web Toolkit made up of
several PL/SQL packages that minimize the programmer’s need to know HTML
syntax. Although the programmer is still required to have a working knowledge
of HTML, by using the Toolkit he or she will not need to hard code the exact
syntax of HTML tags into PL/SQL procedures. For instance, a programmer still
needs to realize that an anchor tag is needed, but he or she doesn’t need to know
the exact sequence of characters needed to generate an anchor.

The PL/SQL Web Toolkit includes the following PL/SQL packages:
Hypertext Procedures (HTP)

A hypertext procedure generates a line in an HTML document that contains the
HTML tag that corresponds to its name. For instance, the htp.anchor procedure
generates an anchor tag. The HTP package will be the most commonly used
package of the three.

6-2

Hypertext Functions (HTF)

A hypertext function returns the HTML tag that corresponds to its name.
However, it is not sufficient to call an HTF function on its own because the
HTML tag is not passed to the PL/SQL Agent. The output of an HTF function
must be passed to htp.print in order to actually be part of an HTML document.
Thus, the following line:

htp.print(htf.italic('Title"));
is functionally equivalent to:
htp.italic('Title’);

Every hypertext function (HTF) has a corresponding hypertext procedure
(HTP). Thus, HTF functions are generally used only when the programmer
needs to nest calls, such as:

htp.header(1,htf.italic(Title"));
In this example, ‘htf.italic’ will generate the following character string:
<I>Title</I>

This string is then passed to the ‘htp.header’ procedure and the following line
will appear in the HTML document being formatted:

<H1><I>Title</I></H1>
OWA Utilities (OWA_UTIL)

This is a collection of useful utility procedures and functions. The purposes of
these range from printing a signature tag on HTML pages to easy formatting of
Oracle tables into HTML.

OWA

This is a set of procedures called only by the Oracle PL/SQL Agent itself. None
of the subprograms in this package should be called directly from user-
developed PL/SQL.

Pattern Matching Utilities (OWA_PATTERN)

This is a set of procedures and functions you can use to perform string matching
and substitution with rich regular expression functionality.

Text Manipulation Utilities (OWA_TEXT)

This is a set of procedures, functions, and datatypes used by OWA_PATTERN
for manipulating large data strings. They are externalized so you can use them
directly if you wish.

Oracle WebServer 2.0 User’s Guide

Image Map Utilities (OWA_IMAGE)

This is a set of datatypes and functions for manipulating HTML image maps.

Cookie Utilities (OWA_COOKIE)

This is a set of datatypes procedures, and functions for manipulating HTML
cookies.

Installing the Oracle WebServer PL/SQL Web Toolkit

To install the PL/SQL Web Toolkit, use the Oracle PL/SQL Agent DCD
Administration forms. Both the DCD Creation and DCD Modification pages
provide a checkbox for installing the PL/SQL Web Toolkit. Selecting this button
and submitting the form will do the following:

grantthe CONNECT and RESOURCE roles to the OWA database user For
more information on these roles or on granting roles, see “GRANT (roles)”
in Chapter 4 of the Oracle7 Server SQL Reference.

execute the OWAINS.SQL sql script, which can be found in the ows
Administration directory. If run manually, the script should be run from
SQL*DBA or from Server Manager. If you want to run it from SQL*Plus,
see the header of the script for instructions.

The OWAINS.SQL script installs all of the PL/SQL Web Toolkit packages.

Optimizing Multiple-DCD Installations

If your site has multiple PL/SQL Agent DCDs, you can minimize the amount of
storage space used and enhance PL/SQL performance by doing the following:

1.

Install the PI/SQL Web Toolkit in one database user’s schema. This user
becomes the toolkit owner.

Drop the PI/SQL Web Toolkit PL/SQL from the schemas of the OWA
database users for other PL/SQL Agent DCDs, if you have already
installed them.

connect <user> / <password>
drop package HTF;

drop package HTP;

drop package OWA_UTIL;

drop package OWA;

drop package OWA_PATTERN;
drop package OWA_TEXT,;
drop package OWA_IMAGE;
drop package OWA_COOKIE;

The PL/SQL Web Toolkit Reference 6-3

Security Note

6-4

drop package OWA_INIT;

Grant the system privilege EXECUTE on the PL/SQL packages to OWA
database users for other PL/SQL Agent DCDs. For more information on
this command, see “GRANT (system privileges)” in Chapter 4 of the
Oracle7 Server SQL Reference.

connect <toolkit owner> / <password>

grant execute on HTF to <user>;

grant execute on HTP to <user>;

grant execute on OWA_UTIL to <user>;
grant execute on OWA to <user>;

grant execute on OWA_PATTERN to <user>;
grant execute on OWA_TEXT to <user>;
grant execute on OWA_IMAGE to <user>;
grant execute on OWA_COOKIE to <user>;
grant execute on OWA_INIT to <user>;

Create synonyms for the PI/SQL Web Toolkit PL/SQL packages in the
schemas of all OWA database users who are specified in PL/SQL Agent
DCDs. Synonyms are alternate names that make it possible for the
packages to be referred to without being qualified by schema names. For
more information, see “Ownership and Naming Conventions” in Chapter
of this manual and see “CREATE SYNONYM?” in Chapter 4 of the Oracle7
Server SQL Reference.

connect <user>/<password>

create synonym HTF for <Toolkit owner>.HTF;

create synonym HTP for <Toolkit owner>.HTP;

create synonym OWA_UTIL for <Toolkit owner>.OWA_UTIL;

create synonym OWA for <Toolkit owner>.OWA,

create synonym OWA_PATTERN for <Toolkit owner>.OWA_PATTERN;
create synonym OWA_TEXT for <Toolkit owner>.OWA_TEXT;

create synonym OWA_IMAGE for <Toolkit owner>.OWA_IMAGE;
create synonym OWA_COOKIE for <Toolkit owner>.OWA_COOKIE;
create synonym OWA_INIT for <Toolkit owner>.OWA_INIT;

PL/SQL procedures run with the privileges of the creator of the PL/SQL code.
For the Web Toolkit, this is only an issue for the owa_util package. Two of the
subprograms, showsource and tableprint, access user data. Granting execute
privileges on this package to users allows those users to view the tables, views,
and stored PL/SQL code of the owner of owa_util.

If this is a security issue for your installation, install the owa_util package
separately for each OWA database user.

The scripts to do this are:

PUBUTIL.SQL
PRIVUTIL.SQL

Oracle WebServer 2.0 User’s Guide

Both scripts reside in the OWS Administration directory, and should be run in
the order listed.

Procedure and Function Reference

This section describes each procedure and function in the htp, htf, and owa_util
packages. Please note that for every htp procedure that generates HTML tags, a
corresponding htf function exists with identical parameters. Note that defaulted
parameters do not need to be passed.

The description of each procedure or function is broken down into the following
parts. Note that items for which no “generates” entry is shown are available only
as procedures.

Parameters Passed into Procedures and Functions

All parameters passed into a hypertext procedure or function are of data type
varchar2 (varying-length character string), integer, or date. The data type is
indicated by the first letter of the parameter’s name, “c” for character (varchar2),
“n” for number (integer), and “d” for date. For example:
cname in varchar2

The “c” in cname indicates a character data type (varchar2).
nsize in integer

The “n” in nsize indicates a number data type (integer).

dbuf in date
The “d” in dbuf indicates a date data type (date).

As in BNF notation, a vertical bar (]) in the syntax diagram means “or”.

Note: Many HTML 3.0 tags have a large number of optional attributes that, if
passed as individual parameters to the hypertext procedures or functions would
make the calls quite cumbersome. In addition, some browsers support non-
standard attributes. Therefore, each hypertext procedure or function that
generates an HTML tag has as its last parameter cattributes, an optional
parameter. This parameter enables you to pass the exact text of the desired
HTML attributes to the PL/SQL procedure.

For example, the syntax for htp.em is:

htp.em (ctext, cattributes);

The PL/SQL Web Toolkit Reference 6-5

A call that uses HTML 3.0 attributes might look like the following:

htp.em('This is an example’,'ID="SGML_ID" LANG="en");

This line would generate the following:

<EM ID="SGML_ID" LANG="en">This is an example

Print Procedures

The following print procedures are used in conjunction with htf functions to
generate a line in the HTML document being constructed. They can also be
passed hard-coded text that will appear in the HTML document as-is. The
generated line is passed to the PL/SQL Agent, which sends it to standard
output. As documented in the CGI 1.1 specification, the Oracle Web Listener
takes the contents of standard output and returns it to the Web browser that
requested the dynamic HTML document.

htp.print
Syntax
htp.print (cbuf | dbuf | nbuf);
Purpose
generates a line in an HTML document.
Parameters

cbuf invarchar2 or
dbuf in dateor
nbuf in number

Generates

Generates a line in an HTML document based on the value passed to it.

htp.prn
Alias for htp.print
Syntax
htp.prn (cbuf | dbuf | nbuf);
Purpose

Just like htp.print, but doesn’t put a new line at the end of the value submitted.

6-6 Oracle WebServer 2.0 User’s Guide

htp.prints

htp.ps

Structure Tags

htp.htmIOpen

The PL/SQL Web Toolkit Reference

Syntax
htp.prints (ctext);
Purpose

Generates a line in an HTML document and replaces all occurrences of the
following special characters with the shown escape characters. If not replaced,
the special characters would be interpreted as HTML control characters, and
would produce garbled output.

‘< with "&It;*
> with ’>*
7t with ‘"’
‘&* with ‘&*

Parameters
ctext in varchar2
Generates

Generates a line in an HTML document based on the value passed to it. This
procedure is the same as htp.print or htp.p but first replaces the special
characters listed above with escape characters.

Alias for htp.prints

The following tags are used to identify the major parts of an HTML document.

Note: Although this section shows hypertext procedures (HTP), all of them are
also available as hypertext functions (HTF).

Syntax
htp.htmlOpen;
Purpose

Prints a tag that indicates the beginning of an HTML document

6-7

htp.htmIClose

htp.headOpen

htp.headClose

6-8

Parameters
none

Generates
<HTML>

Syntax

htp.htmIClose;

Purpose

Prints a tag that indicates the end of an HTML document
Parameters

none

Generates
</HTML>

Syntax

htp.headOpen;

Purpose

Prints a tag that indicates the beginning of the HTML document head
Parameters

none

Generates
<HEAD>

Syntax
htp.headClose;
Purpose

Prints a tag that indicates the end of the HTML document head

Oracle WebServer 2.0 User’s Guide

htp.bodyOpen

htp.bodyClose

Parameters
none

Generates
</HEAD>

Syntax
htp.bodyOpen (cbackground, cattributes);
Purpose

Prints the tag that identifies the beginning of the body of an HTML document,
and allows you to specify an image as the background of the document

Parameters

cbackground in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<BODY background="cbackground” cattributes >

Note: If cbackground and cattributes are NULL, this tag generates <BODY>

Example
htp.bodyOpen ('/img/background.gif’);
This line produces:

<BODY background="/img/background.gif">

Syntax

htp.bodyClose;

Purpose

Defines the end of the HTML document body
Parameters

none

The PL/SQL Web Toolkit Reference 6-9

Generates
</BODY>

Head Related Tags

htp.title

htp.base

6-10

The following procedure tags should be placed between the htp.headOpen and
htp.headClose procedure tags.

Note: Although this section shows hypertext procedures (HTP), all of them are
also available as hypertext functions (HTF).

Syntax
htp.title (ctitle);
Purpose

Prints an HTML tag with the text you pass in as the value of TITLE. Most Web
Browsers display the text value enclosed between <TITLE>and </TITLE> at the
top of the document viewing window.

Parameters
ctitle invarchar2

Generates
<TITLE> ctitle </TITLE>

Syntax
htp.base (ctarget, cattributes);
Purpose

Prints an HTML tag that records the URL of the document

Parameters
ctarget in varchar2 DEFAULT NULL
cattributest in varchar2 DEFAULT NULL

Oracle WebServer 2.0 User’s Guide

Generates

Inserts absolute pathname of current document.

htp.isindex
Syntax
htp.isindex (cprompt, curl);
Purpose
Creates a single entry field with a prompting text, such as “enter value,” then
sends that value to the URL of the page or program.
Parameters
cprompt in varchar2 DEFAULT NULL
curl in varchar2 DEFAULT NULL
Generates
<ISINDEX PROMPT="cprompt " HREF=" curl ">
htp.linkRel

Syntax
htp.linkRel (crel, curl, ctitle);
Purpose

Prints the HTML tag that gives the relationship described by the hypertext link
from the anchor to the target. This is only used when the HREF attribute is
present. This tag indicates a relationship between documents, but does not
create a link. To do that, use htp.anchor.

Parameters
crel in varchar2
curl in varchar?2

ctitle in varchar2 DEFAULT NULL

Generates
<LINK REL=" crel "HREF=" curl " TITLE=" ctitle ">

The PL/SQL Web Toolkit Reference 6-11

htp.linkRev

htp.meta

6-12

Syntax
htp.linkRev (crev, curl, ctitle);
Purpose

Gives the relationship described by the hypertext link from the target to the
anchor. This is the opposite of htp.linkRel. This tag indicates a relationship
between documents, but does not create a link. To do that, use htp.anchor.

Parameters
crev in varchar2
curl in varchar2

ctitle in varchar2 DEFAULT NULL

Generates
<LINK REV=" crev "HREF=" curl "TITLE=" ctitle ">

Syntax
htp.meta (chttp_equiv, cname, ccontent);
Purpose

Prints an HTML tag that identifies and embeds document meta-information that
supplies the Web browser with information about the objects returned in HTTP.

Parameters

chttp_equiv in varchar2

chame in varchar?2
ccontent in varchar2
Generates

<META HTTP-EQUIV="chttp_equiv " NAME =" cname” CONTENT="ccontent ">
Example

htp.meta ('Refresh’, NULL, 120);

This line produces:

<META HTTP-EQUIV="Refresh” CONTENT=120>

which on some Web browsers will cause the current URL to be reloaded

automatically every 120 seconds.

Oracle WebServer 2.0 User’s Guide

Body Tags
Body tags are used in the main text of your HTML page. They can format a

paragraph, allow you to add hidden Comments to your text, and add images

within the body of your HTML text.

Note: Although this section shows hypertext procedures (HTP), all of them are

also available as hypertext functions (HTF)

htp.line
Syntax
htp.line (cclear, csrc, cattributes);
Purpose
Prints the HTML tag that generates a line in the HTML document. csrc enables
you to specify a custom image as the source of the line.
Parameters
cclear in varchar2 DEFAULT NULL
csrc in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates
<HR CLEAR="cclear " SRC=" csrc " cattributes >

htp.hr
Alias for htp.line

htp.nl

Syntax
htp.nl (cclear, cattributes);
Purpose

Prints the HTML tag that inserts a new line

Parameters
cclear in varchar2 DEFAULT NULL,
cattributes in varchar2 DEFAULT NULL,

The PL/SQL Web Toolkit Reference

6-13

Generates
<BR CLEAR="cclear " -cattributes >

htp.br
Alias for htp.nl
htp.header
Syntax
htp.header (nsize, cheader, calign, cnowrap, cclear, cattributes);
Purpose
Prints the HTML tag for a heading level, with the value of the heading level
assigned in the nsize parameter. Valid levels are 1 through 6.
Parameters
nsize in integer
cheader in varchar2
calign in varchar2 DEFAULT NULL
cnowrap in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL
cattributesi n varchar2 DEFAULT NULL
Generates
<Hnsize ALIGN=" calign " NOWRAP CLEAR="cclear "
cattributes >cheader </H nsize >
Example
htp.header (1,'Overview’);
produces
<H1>Overview</H1>
htp.anchor
Syntax

htp.anchor (curl, ctext, cname, cattributes);
Purpose

Prints the HTML tag for an anchor to be the start or end destination of a
hypertext link. This anchor can accept several attributes, but either HREF or

6-14 Oracle WebServer 2.0 User’s Guide

NAME is required. HREF specifies where to link to. NAME allows this tag to be
a target of a hypertext link.

Parameters

curl in varchar2

ctext in varchar2

chame in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

ctext

htp.anchor2
Syntax
htp.anchor2 (curl, ctext, cname, ctarget, cattributes);
Purpose
Prints the HTML tag for an anchor to be the start or end destination of a
hypertext link. This anchor can accept several attributes, but either HREF or
NAME is required. HREF specifies where to link to. NAME allows this tag to be
a target of a hypertext link. This procedure differs from htp.anchor in that it
provides a target and therefore can be used for a frame.
Parameters
curl in varchar2
ctext in varchar2
cname in varchar2 DEFAULT NULL
ctarget in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates
ctext
htp.mailto

Syntax

htp.mailto (caddress, ctext, cname, cattributes);

Purpose

Prints the HTML tag for an anchor with ‘mailto’ concatenated ahead of the mail

address argument.

The PL/SQL Web Toolkit Reference 6-15

htp.img

htp.img2

6-16

Parameters

caddress in varchar2
ctext in varchar?2
chame in varchar?2

cattributesi n varchar?2 DEFAULT NULL

Generates

ctext
Example

htp.mailto('pres@white_house.gov’,'Send Email to the President’);
prints

Send Email to the President

Syntax
htp.img (curl, calign, calt, cismap, cattributes);
Purpose

Prints an HTML tag that signals the browser to load an image to be placed into
the HTML page. ALT allows you to specify alternate text to be shown while the
image is being loaded, or instead of the image if the browser does not support
images. The ISMAP attribute indicates that the image is an image map.

Parameters

curl in varchar2 DEFAULT NULL
calign in varchar2 DEFAULT NULL
calt in varchar2 DEFAULT NULL
cismap in varchar2 DEFAULT NULL

cattributes i nvarchar2 DEFAULT NULL

Generates

Syntax

htp.img (curl, calign, calt, cismap, cusemap, cattributes);

Oracle WebServer 2.0 User’s Guide

htp.para

htp.paragraph

Purpose

Prints an HTML tag that signals the browser to load an image to be placed into
the HTML page. ALT allows you to specify alternate text to be shown while the
image is being loaded, or instead of the image if the browser does not support
images. The ISMAP attribute indicates that the image is an image map. The
CUSEMAP parameter specifies a client-side image map.

Parameters

curl in varchar2 DEFAULT NULL
calign in varchar2 DEFAULT NULL
calt in varchar2 DEFAULT NULL
cismap in varchar2 DEFAULT NULL
cusemap in varchar2 DEFAULT NULL

cattributes i n varchar2 DEFAULT NULL

Generates

<IMG SRC="curl " ALIGN=" calign " ALT=" calt "ISMAP USEMAP="cusemap”
cattributes >

Syntax
htp.para;
Purpose

Prints an HTML tag that indicates that the text previous to it should be formatted
as a paragraph.

Parameters
none

Generates

<pP>

Syntax

htp.paragraph (calign, cnowrap, cclear, cattributes);

The PL/SQL Web Toolkit Reference 6-17

htp.address

htp.Comment

6-18

Purpose

Prints the same HTML tag as htp.para except that parameters pass in exact
alignment, leading, wrapping, and attributes.

Parameters

calign in varchar2 DEFAULT NULL
cnowrap in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<P ALIGN=" calign " NOWRAP CLEAR="cclear " cattributes >

Syntax
htp.address (cvalue, cnowrap, cclear, cattributes);
Purpose

Prints an HTML tag that enables you to specify address, author and signature of
document

Parameters

cvalue in varchar?2

cnowrap in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<ADDRESS CLEAR=tclear " NOWRAP cattributes >cvalue </ADDRESS>

Syntax
htp.Comment (ctext);
Purpose

Prints an HTML tag that allows you to store Comments or lines in HTML pages.
These Comments are not visible to the end user.

Oracle WebServer 2.0 User’s Guide

Parameters
ctext invarchar2

Generates

<l-- ctext -->

htp.preOpen
Syntax
htp.preOpen (cclear, cwidth, cattributes);

Purpose

Prints an HTML tag that indicates the beginning of preformatted text in the body

of the HTML page.

Parameters

cclear in varchar2 DEFAULT NULL
cwidth in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<PRE CLEAR="cclear "WIDTH=" cwidth " cattributes >

htp.preClose
Syntax

htp.preClose;

Purpose

Prints an HTML tag that ends the preformatted section of text.

Parameters
none

Generates
</PRE>

htp.blockquoteOpen
Syntax

htp.blockquoteOpen (cnowrap, cclear, cattributes);

The PL/SQL Web Toolkit Reference

6-19

htp.blockquoteClose

htp.base

6-20

Purpose

Prints an HTML tag that precedes a paragraph of quoted text.

Parameters

cnowrap in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL;
Generates

<BLOCKQUOTE CLEAR=clear " NOWRAP cattributes >

Syntax

htp.blockquoteClose;

Purpose

Ends the <BLOCKQUOTE> section of quoted text.
Parameters

none

Generates
</BLOCKQUOTE>

Syntax
htp.base(ctarget, cattributes);
Purpose

Prints an HTML tag that records the URL of the document. The ctarget attribute
establishes a default window name to which all links in this document will be
targeted.

Parameters

ctarget in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

BASE HREF="<current URL>" TARGET="target" cattributes>

Oracle WebServer 2.0 User’s Guide

htp.area

htp.mapOpen

htp.mapClose

Syntax
htp.area(ccoords, cshape, chref, cnohref, ctarget, cattributes);

Purpose

Prints an HTML tag to specify the shape of a client-side image map region.

Parameters

ccoords in varchar2

cshape in varchar2 DEFAULT NULL
chref in varchar2 DEFAULT NULL
cnohref in varchar?2 DEFAULT NULL
ctarget in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<AREACOORDS="ccoords"SHAPE="cshape"HREF="chref'"NOHREF TARGET="ctarget"
cattributes>

Syntax
htp.mapOpen(cname, cattributes);
Purpose

Prints an HTML tag to specify a set of regions in a client-side image map.

Parameters

chame in varchar2

cattributes in varchar2 DEFAULT NULL
Generates

<MAP NAME="cname" cattributes>

Syntax
htp.mapClose;
Purpose

Prints an HTML tag that ends the definition of a client-side image map.

The PL/SQL Web Toolkit Reference

6-21

htp.bgsound

htp.div

htp.listingOpen

6-22

Parameters
none

Generates

</MAP>

Syntax
htp.bgsound(csrc, cloop, cattributes);
Purpose

Prints an HTML tag to include background sound for a web page.

Parameters
csrc in varchar2
cloop in varchar2 DEFAULT NULL

cattributesin varchar2 DEFAULT NULL

Generates

<BGSOUND SRC="csrc" LOOP="cloop" cattributes>

Syntax

htp.div(calign, cattributes);

Purpose

Prints an HTML tag to create document divisions.
Parameters

calign in varchar2 DEFAULT NULL
cattributesi n varchar2 DEFAULT NULL

Generates

<DIV ALIGN="calign" cattributes>

Syntax
htp.listingOpen;

Oracle WebServer 2.0 User’s Guide

Purpose

Prints an HTML tag to indicate the beginning of fixed-width text in the body of
an HTML page.

Parameters
none

Generates
<LISTING>

htp.listingClose
Syntax
htp.listingClose;
Purpose
Prints an HTML tag to end the fixed-width section of text.
Parameters
none

Generates
</LISTING>

htp.nobr
Syntax
htp.nobr(ctext);
Purpose
Prints an HTML tag to turn off line-breaking with a section of text.
Parameters
ctext invarchar2

Generates

<NOBR>ctext</NOBR>

The PL/SQL Web Toolkit Reference 6-23

htp.wbr
Syntax
htp.wbr;
Purpose
Prints an HTML tag to insert a soft linebreak within a section of NOBR text.
Parameters
none

Generates

<WBR>

htp.center
Syntax
htp.center(ctext);
Purpose
Prints a pair of HTML tags to center a section of text within a web page.
Parameters
ctexy invarchar2

Generates

<CENTER>ctext</CENTER>

htp.centerOpen
Syntax
htp.centerOpen;
Purpose
Prints an HTML tag to open a centered section of text within a web page.
Parameters
none

Generates

<CENTER>

6-24 Oracle WebServer 2.0 User’s Guide

htp.centerClose

htp.dfn

htp.big

Syntax

htp.centerClose;

Purpose

Prints an HTML tag to close a centered section of text within a web page.
Parameters

none

Generates
</CENTER>

Syntax
htp.dfn(ctext);
Purpose

Prints a pair of HTML tags that specify the text they surround is rendered as
italics.

Parameters
ctext in varchar2

Generates

<DFN>ctext</DFN>

Syntax
htp.big(ctext, cattributes);
Purpose

Prints a pair of HTML tags that specify the text they surround is rendered using
a big font.

Parameters
ctext in varchar2
cattributes in varchar2 DEFAULT NULL

The PL/SQL Web Toolkit Reference 6-25

Generates

<BIG cattributes>ctext</BIG>

htp.small
Syntax
htp.small(ctext, cattributes);
Purpose
Prints a pair of HTML tags that specify the text they surround is rendered using
a small font.
Parameters
ctext in varchar2
cattributes in varchar2 DEFAULT NULL
Generates
<SMALL cattributes>ctext</SMALL>
htp.sub
Syntax
htp.sub(ctext, calign, cattributes);
Purpose
Prints a pair of HTML tags that specify the text they surround is rendered as a
subscript.
Parameters
ctext in varchar2
calign in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates
_{ctext}
htp.sup

Syntax

htp.sup(ctext, calign, cattributes);

6-26 Oracle WebServer 2.0 User’s Guide

htp.basefont

htp.fontOpen

Purpose

Prints a pair of HTML tags that specify the text they surround is rendered using

as a superscript.

Parameters

ctext in varchar2

calign in varchar2

cattributes in varchar2 DEFAULT NULL
Generates

^{ctext}

Syntax
htp.basefont(nsize);

Purpose

Prints an HTML tag that specifies the base font size for a web page.

Parameters
nsize in integer

Generates

<BASEFONT SIZE="nsize">

Syntax
htp.fontOpen(ccolor, cface, csize, cattributes);

Purpose

Prints an HTML tag that indicates the beginning of a section of text with the

specified font characteristics.

Parameters

ccolor in varchar2 DEFAULT NULL
cface in varchar2 DEFAULT NULL
csize in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL

The PL/SQL Web Toolkit Reference

6-27

htp.fontClose

htp.plaintext

htp.s

6-28

Generates

Syntax
htp.fontClose;
Purpose

Prints an HTML tag that indicates the end of a section of text with the specified
font characteristics.

Parameters
none

Generates

Syntax
htp.plaintext(ctext, cattributes);
Purpose

Prints a pair of HTML tags that specify the text they surround be rendered with
fixed-width type.

Parameters

ctext in varchar?2

cattributes in varchar2 DEFAULT NULL
Generates

<PLAINTEXT cattributes>ctext</PLAINTEXT>

Syntax

htp.s(ctext, cattributes);

Oracle WebServer 2.0 User’s Guide

Purpose

Prints a pair of HTML tags that specify the text they surround be rendered in
strikethrough type.

Parameters

ctext in varchar2

cattributes in varchar2 DEFAULT NULL
Generates

<S cattributes>ctext</S>

htp.strike
Syntax
htp.strike(ctext, cattributes);
Purpose
Prints a pair of HTML tags that specify the text they surround be rendered in
strikethrough type.
Parameters
ctext in varchar2
cattributesi n varchar2 DEFAULT NULL
Generates
<STRIKE cattributes>ctext</STRIKE>
Frame Tags
htp.framesetOpen

Syntax
htp.framesetOpen(crows, ccols, cattributes);
Purpose

Prints an HTML tag to open a container of web page frames.

The PL/SQL Web Toolkit Reference 6-29

Parameters

Crows in varchar2 DEFAULT NULL
ccols in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<FRAMESET ROWS="crows" COLS="ccols" cattributes>

htp.framesetClose
Syntax
htp.framesetClose;
Purpose
Prints an HTML tag to close a container of web page frames.
Parameters
none

Generates

</FRAMESET>

htp.frame
Syntax

htp.frame(csrc, cname, cmarginwidth, cmarginheight, cscrolling, cnoresize,
cattributes);

Purpose

Prints an HTML tag that defines a single frame within a frameset.

Parameters
csrc in varchar?2
chame in varchar2 DEFAULT NULL

cmarginwidth in varchar2 DEFAULT NULL
cmarginheight in varchar2 DEFAULT NULL
cscrolling in varchar2 DEFAULT NULL
cnoresizei n varchar2 DEFAULT NULL
cattributes i n varchar2 DEFAULT NULL

6-30 Oracle WebServer 2.0 User’s Guide

Generates

<FRAME SRC="csrc" NAME="cname" MARGINWIDTH="cmarginwidth"
MARGINHEIGHT="cmarginheight" SCROLLING="cscrolling" NORESIZE cattributes>

htp.noframesOpen
Syntax
htp.noframesOpen;
Purpose

Prints an HTML tag to open a container of content which is viewable by non-
Frame-capable web browsers.

Parameters
none

Generates
<NOFRAMES>

htp.noframesClose
Syntax
htp.noframesClose;
Purpose

Prints an HTML tag to close a container of content which is viewable by non-
Frame-capable web browsers.

Parameters
none

Generates
</NOFRAMES>

List Tags
List tags allow you to display information in any of the following ways:

« ordered: these lists have numbered items

= unordered: these lists have bullets to mark each item

The PL/SQL Web Toolkit Reference 6-31

htp.listHeader

htp.listltem

6-32

« definition: these lists alternate a term with its definition

Note: All the hypertext procedures (HTP) shown in this section are also available
as hypertext functions (HTF).

Syntax
htp.listHeader (ctext, cattributes);
Purpose

Prints an HTML tag at the beginning of the list

Parameters

ctext in varchar?2

cattributes in varchar2 DEFAULT NULL
Generates

<LH cattributes >ctext </LH>

Syntax
htp.listitem (ctext, cclear, cdingbat, csrc, cattributes);
Purpose

Prints an HTML tag that formats a listed item.

Parameters

ctext in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL
cdingbat invarchar2 DEFAULT NULL

csre in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL

Generates
<LI CLEAR=" cclear " DINGBAT=" cdingbat " SRC=" csrc " cattributes >ctext

Oracle WebServer 2.0 User’s Guide

htp.ulistOpen

htp.ulistClose

htp.olistOpen

Syntax

htp.ulistOpen (cclear, cwrap, cdingbat, csrc, cattributes);

Purpose

Prints an HTML tag that is used to open an unordered list that presents listed
items separated by white space and marked off by bullets.

Parameters

cclear in varchar2 DEFAULT NULL
cwrap in varchar2 DEFAULT NULL
cdingbat in varchar2 DEFAULT NULL
csre in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<UL CLEAR=" cclear " WRAP="cwrap " DINGBAT=" cdingbat
cattributes >

Syntax

htp.ulistClose;

Purpose

Prints an HTML tag that ends the unordered list.
Parameters

none

Generates

Syntax

htp.olistOpen (cclear, cwrap, cattributes);

The PL/SQL Web Toolkit Reference

" SRC=" csrc "

6-33

htp.olistClose

htp.dlistOpen

6-34

Purpose

Prints an HTML tag that is used to open an ordered list that presents listed items

marked off with numbers.

Parameters

cclear in varchar2 DEFAULT NULL
cwrap in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<OL CLEAR="cclear "WRAP="cwrap " cattributes >

Syntax

htp.olistClose;

Purpose

Prints an HTML tag that ends an ordered list.
Parameters

none

Generates

Syntax
htp.dlistOpen (cclear, cattributes);
Purpose

Prints an HTML tag that starts a definition list

Parameters

cclear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<DL CLEAR="cclear " cattributes >

Oracle WebServer 2.0 User’s Guide

htp.dlistClose
Syntax

htp.dlistClose

Purpose

Prints an HTML tag that Ends a definition list
Parameters

none

Generates
</DL>

htp.dlistDef
Syntax

htp.dlistDef (ctext, cclear, cattributes);
Purpose

Prints an HTML tag that is used to insert terms, and their corresponding
definitions in an indented list format. The htp.dlistTerm must immediately
follow this tag.

Parameters

ctext in varchar2 DEFAULT NULL
clear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<DD CLEAR="cclear " cattributes >ctext

htp.dlistTerm
Syntax

htp.dlistTerm (ctext, cclear, cattributes);
Purpose

Prints an HTML tag used to insert the definition term inside the definition list.
This tag must immediately follow the htp.dlistDef.

The PL/SQL Web Toolkit Reference 6-35

htp.menulistOpen

htp.menulistClose

6-36

Parameters

ctext in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<DT CLEAR="cclear " -cattributes >ctext

Syntax
htp.menulistOpen;
Purpose

Prints an HTML tag that begins a list that presents one line per item, and appears
more compact than an unordered list. The htp.listitem will follow this tag.

Parameters
none
Generates

<MENG

Syntax

htp.menulistClose;

Purpose

Prints an HTML tag that ends a menu list.
Paramenters

none

Generates
</MENU>

Oracle WebServer 2.0 User’s Guide

htp.dirlistOpen

htp.dirlistClose

Syntax
htp.dirlistOpen;
Purpose

Prints an HTML tag that begins a directory list. This presents information in a
list of items that contain up to 20 characters. Items in this list are typically
arranged in columns, typically 24 characters wide. The or htp.listitem must
appear directly after you use this tag.

Parameters
none

Generates
<DIR>

Syntax

htp.dirlistClose;

Purpose

Prints an HTML tag that closes the directory list tag, htp.dirlistOpen.
Parameters

none

Generates
</DIR>

Character Format Tags

The character format tags are used to specify or alter the appearance of the
marked text. Character format tags have opening and closing elements, and
affect only the text that they surround.

Character format tags give hints to the browser as to how a character or character
string should appear, but each browser determines its actual appearance.
Essentially, they place text into categories such that all text in a given category is
given the same special treatment, but the browser determines what that

The PL/SQL Web Toolkit Reference 6-37

htp.cite

htp.code

6-38

treatment is. For example, the HTML string Here is some text</
STRONG=Might appear as bold in some browsers, or might flash instead.

If a specific text attribute, such as bold is desired, a physical format tag may be
necessary. See the section, ”Physical Format Tags,” for more information.

Note: All the hypertext procedures (HTP) shown in this section are also available
as hypertext functions (HTF).

Syntax
htp.cite (ctext, cattributes);
Purpose

Prints a pair of HTML tags that specify the text they surround as a citation.
Usually rendered as italics.

Parameters

ctext in varchar?2

cattributes in varchar2DEFAULT NULL
Generates

<CITE cattributes >ctext </CITE>

Syntax
htp.code (ctext, cattributes);
Purpose

Prints a pair of HTML tags that specify the text they surround as an example of
code output. Usually rendered in monospace format, e.g. Courier.

Parameters

ctext in varchar2

cattributes in varchar2DEFAULT NULL
Generates

<CODE cattributes >ctext </CODE>

Oracle WebServer 2.0 User’s Guide

htp.emphasis
Syntax

htp.emphasis (ctext, cattributes);
Purpose

Prints a pair of HTML tags that specify the text they surround as requiring
typographic emphasis. This tag is equivalent to htp.em. Usually rendered as

italics.

Parameters

ctext in varchar2

cattributes in varchar2DEFAULT NULL
Generates

<EM cattributes >ctext </[EM>

htp.em
Alias for htp.emphasis

htp.keyboard
Syntax

htp.keyboard (ctext, cattributes);
Purpose

Prints a pair of HTML tags that specify the text they surround as text typed in by
the user, which usually is rendered as monospace. This tag is equivalent to

htp.kbd.

Parameters

ctext in varchar2

cattributes in varchar2DEFAULT NULL
Generates

<KBD cattributes >ctext </KBD>

htp.kbd
Alias for htp.keyboard

The PL/SQL Web Toolkit Reference 6-39

htp.sample

htp.strong

htp.variable

6-40

Syntax
htp.sample (ctext, cattributes);
Purpose

Prints a pair of HTML tags that specify the text they surround as a sequence of
literal characters that must be typed in the exact sequence in which they appear.
Usually rendered as monospace font.

Parameters

ctext in varchar2
cattributesi n varchar2DEFAULT NULL

Generates
<SAMP cattributes >ctext </SAMP>

Syntax
htp.strong (ctext, cattributes);
Purpose

Prints a pair of HTML tags that specify the text they surround as needing strong
typographic emphasis. Usually rendered as bold.

Parameters

ctext in varchar?2

cattributes in varchar2DEFAULT NULL
Generates

<STRONGcattributes >ctext

Syntax
htp.variable (ctext, cattributes);
Purpose

Prints a pair of HTML tags that specify the text they surround as a variable
name, or a variable that might be entered by the user. Usually rendered as italics.

Oracle WebServer 2.0 User’s Guide

Parameters

ctext in varchar2
cattributes in varchar2 DEFAULT NULL
Generates

<VAR cattributes >ctext </VAR>

Physical Format Tags
The physical format tags are used to specify the format of the marked text.

Note: All the hypertext procedures (HTP) shown in this section are also available
as hypertext functions (HTF).

htp.bold
Syntax
htp.bold (ctext, cattributes);
Purpose
Prints a pair of HTML tags that specify the text they surround is to be rendered
as boldface.
Parameters
ctext in varchar2
cattributes in varchar2 DEFAULT NULL
Generates
<B cattributes>ctext
htp.italic
Syntax

htp.italic (ctext, cattributes);
Purpose

Prints a pair of HTML tags that specify the text they surround is to be rendered
as italics.

The PL/SQL Web Toolkit Reference 6-41

Parameters

ctext in varchar2
cattributesi n varchar?2 DEFAULT NULL

Generates

<| cattributes >ctext </I1>

htp.teletype
Syntax

htp.teletype (ctext, cattributes);
Purpose

Prints a pair of HTML tags that specify the text they surround is to be rendered
in a fixed width typewriter font, e.g. Courier.

Parameters

ctext in varchar?2
cattributesi n varchar?2 DEFAULT NULL

Generates

<TT cattributes >ctext </TT>

Form Tags

The form tags are used to create and manipulate an HTML form. Forms are used
to allow interactive data exchange between a Web Browser and a CGI program.

Forms can have the following types of elements:

= Input: used for a large variety of types of input fields, for example:

- single line text

single line password fields

- checkboxes

radio buttons
- submit buttons

= Text area: used to create a multi-line input field.

6-42 Oracle WebServer 2.0 User’s Guide

= Select: used to allow the user to chose one or more of a set of alternatives
described by textual labels. Usually rendered as a pulldown, pop up, or a
fixed size list.

Note: All the hypertext procedures (HTP) shown in this section are also available
as hypertext functions (HTF).

htp.formOpen
Syntax

htp.formOpen (curl, cmethod, ctarget, cenctype, cattributes);
Purpose

Prints an HTML tag that starts the form. The curl value is required and is the
URL of the CGl script, normally owa, to which the contents of the Form will be
sent. The method is either "GET” or ”POST.”

Parameters
curl in varchar2
cmethod in varchar2DEFAULT 'POST
ctarget in varchar2
cenctype in varchar2DEFAULT NULL
cattributes in varchar2DEFAULT NULL
Generates
<FORM ACTION="curl " METHOD="cmethod " TARGET=" ctarget " ENCTYPE=" cenctype "
cattributes>

htp.formClose
Syntax

htp.formClose;

Purpose

Prints an HTML tag that closes the <FORM> tag
Parameters

none

Generates
</FORM>

The PL/SQL Web Toolkit Reference 6-43

htp.formCheckbox

htp.formHidden

htp.formimage

6-44

Syntax
htp.formCheckbox (cname, cvalue, cchecked, cattributes);
Purpose

Prints an HTML tag that inserts a checkbox which the user can toggle off or on.

Parameters

chame in varchar?2

cvalue in varchar2 DEFAULT ’on’
cchecked in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<INPUT TYPE="checkbox” NAME=" cname” VALUE=" cvalue " CHECKED -cattributes >

Syntax
htp.formHidden (cname, cvalue, cattributes);
Purpose

Prints an HTML tag that sends the content of a field along with a submitted
form. The field is not visible to the end user.

Parameters

chame in varchar?2

cvalue in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<INPUT TYPE="hidden” NAME=" cname” VALUE=" cvalue " cattributes >

Syntax

htp.formlmage (cname, csrc, calign, cattributes);

Oracle WebServer 2.0 User’s Guide

htp.formPassword

Purpose

Prints an HTML tag that creates an image field that can be clicked on causing the
Form to be immediately submitted. The coordinates of the selected point are
measured in pixels, and returned (along with other contents of the form) in two
name/value pairs. The x-coordinate is submitted under the name of the field
with ”.x” appended, and the y-coordinate with the ”.y” appended. Any value
attribute is ignored. The image itself is specified by the CSRC attribute.

Parameters

chame in varchar2

csrc in varchar2

calign in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL;
Generates

<INPUT TYPE="image” NAME=" cname” SRC=" csrc " ALIGN=" calign " -cattributes >

Syntax
htp.formPassword (cname, csize, cmaxlength, cvalue, cattributes);
Purpose

Prints an HTML tag that creates a single line text entry field. Text will not be
displayed as it is entered. When the user enters a password, characters are
represented by asterisks on single line text entry field.

Parameters

chame in varchar?2

csize in varchar2

cmaxlength in varchar2 DEFAULT NULL
cvalue in varchar2 DEFAULT NULL

cattributes i nvarchar2 DEFAULT NULL

Generates

<INPUT TYPE="password” NAME=" cname” SIZE=" csize " MAXLENGTH="cmaxlength "
VALUE="cvalue " cattribute s>

The PL/SQL Web Toolkit Reference 6-45

htp.formRadio
Syntax

htp.formRadio (cname, cvalue, cchecked, cattributes);
Purpose

Prints an HTML tag that inserts a radio button on the HTML Form. Used to
create a set of radio buttons, each representing a different value, only one of
which will be toggled on by the user. Each radio button field should have the
same name. Only the selected radio button will generate a name/value pair in
submitted data area. This will require an explicit VALUE attribute.

Parameters

chame in varchar?2

cvalue in varchar?2

cchecked in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<INPUT TYPE="radio” NAME=" cname” VALUE=" cvalue " CHECKED cattributes >

htp.formReset
Syntax
htp.formReset (cvalue, cattributes);
Purpose
Prints an HTML tag that creates a RESET button that, when selected, resets all
the form fields to their initial values.
Parameters
cvalue in varchar2 DEFAULT ’Reset’
cattributes in varchar2 DEFAULT NULL
Generates
<INPUT TYPE=" reset " VALUE=" cvalue " cattributes >
htp.formSubmit

Syntax

htp.formSubmit (cname, cvalue, cattributes);

6-46 Oracle WebServer 2.0 User’s Guide

htp.formText

htp.formSelectOpen

Purpose

Prints an HTML tag that creates a button that, when selected, submits the form.
If a SUBMIT button is selected to submit the Form, and that button has a name
attribute specified, the submit button then contributes a name/value pair to the
submitted data.

Parameters

cname in varchar2DEFAULT NULL
cvalue in varchar2DEFAULT 'Submit’
cattributes in varchar2DEFAULT NULL

Generates

<INPUT TYPE="submit” NAME=" cname’ VALUE=" cvalue " cattributes >

Syntax
htp.formText (cname, csize, cmaxlength, cvalue, cattributes);
Purpose

Prints an HTML tag that creates a field for a single line of text.

Parameters

chame in varchar2

csize in varchar2 DEFAULT NULL
cmaxlength in varchar2 DEFAULT NULL
cvalue in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<INPUT TYPE="text’ NAME=" cname” SIZE=" csize " MAXLENGTH="cmaxlength "
VALUE="cvalue " cattributes >

Syntax
htp.formSelectOpen (cname, cprompt, nsize, cattributes);
Purpose

Prints an HTML tag that begins a Select list of alternatives. Contains the attribute
NAME which specifies the name that will be submitted as a name/value pair.

The PL/SQL Web Toolkit Reference 6-47

Parameters

chame in varchar2

cprompt in varchar2 DEFAULT NULL
nsize in integer DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

cprompt <SELECT NAME="cname ” PROMPT="cprompt” SIZE= "nsize” cattributes>
Example

htp.formSelectOpen('greatest_player’;
'Pick the greatest player:’);
htp.formSelectOption('Messier’);
htp.formSelectOption('Howe’);
htp.formSelectOption('Hull’);.
htp.formSelectOption('Gretzky");.
htp.formSelectClose;

generates:

Pick the greatest player:

<SELECT NAME="greatest_player”>
<OPTION>Messier

<OPTION>Howe

<OPTION>Hull

<OPTION>Gretzky

</SELECT>

Note: See htp.formSelectOption and htp.formSelectClose.

htp.formSelectOption

6-48

Syntax
htp.formSelectOption (cvalue, cselected, cattributes);
Purpose

Prints an HTML tag that represents one choice in the Select element.

Parameters

cvalue in varchar?2

cselected in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<OPTION SELECTED cattributes>cvalue

See example for htp.formSelectOpen.

Oracle WebServer 2.0 User’s Guide

htp.formSelectClose

htp.formTextarea

Example

See htp.formSelectOpen.

Syntax

htp.formSelectClose;

Purpose

Prints an HTML tag that ends a Select list of alternatives.
Parameters

none

Generates
</SELECT>
Example

See htp.formSelectOpen.

Syntax
htp.formTextarea (cname, nrows, ncolumns, calign, cattributes);
Purpose

Prints an HTML tag that creates a text field that has no predefined text in the text
area. Used to enable the user to enter several lines of text.

Parameters

cname in varchar2

nrows in integer

ncolumns in integer

calign in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<TEXTAREA NAME=¢tname” ROWS="nrows” COLS=" ncolumns” ALIGN=" calign "
cattributes ></TEXTAREA>

The PL/SQL Web Toolkit Reference 6-49

htp.formTextarea2

Syntax
htp.formTextarea (cname, nrows, ncolumns, calign, cwrap, cattributes);
Purpose

Prints an HTML tag that creates a text field that has no predefined text in the text
area. Used to enable the user to enter several lines of text. The difference between
this and formTextarea is the cwrap parameter, which specifies a wrap style.

Parameters

cname in varchar2

nrows in integer

ncolumns in integer

calign in varchar2 DEFAULT NULL
cwrap in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<TEXTAREA NAME=¢tname” ROWS="nrows” COLS=" ncolumns” ALIGN=" calign "
WRAP="cwrap” cattributes ></TEXTAREA>

htp.formTextareaOpen

6-50

Syntax
htp.formTextareaOpen (cname, nrows, ncolumns, calign, cattributes);
Purpose

Prints an HTML tag that opens a text area where you can insert predefined text
that will always appear in the text field.

Parameters

cname in varchar2

nrows in integer

ncolumns in integer

calign in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<TEXTAREA NAME=¢tname” ROWS="nrows " COLS=" ncolumns” ALIGN=" calign "
cattributes >

Oracle WebServer 2.0 User’s Guide

htp.formTextareaOpen2
Syntax

htp.formTextareaOpen (cname, nrows, ncolumns, calign, cwrap, cattributes);
Purpose

Prints an HTML tag that opens a text area where you can insert predefined text
that will always appear in the text field. The difference between this and
formTextareaOpen is the cwrap parameter, which specifies a wrap style.

Parameters

cname in varchar2

nrows in integer

ncolumns in integer

calign in varchar2 DEFAULT NULL

cwrap in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL

Generates

<TEXTAREA NAME=¢tname" ROWS="nrows " COLS=" ncolumns” ALIGN=" calign "WRAP =
" cwrap” cattributes >

htp.formTextareaClose
Syntax

htp.formTextareaClose;

Purpose

Prints an HTML tag that ends TextArea field
Parameters

none

Generates
</ITEXTAREA>

Table Tags

The Table tags allow the user to insert tables and manipulate the size and
columns of the table in a document.

The PL/SQL Web Toolkit Reference 6-51

htp.tableOpen

htp.tableClose

htp.tableCaption

6-52

Note: All the hypertext procedures (HTP) shown in this section are also available

as hypertext functions (HTF).

Syntax

htp.tableOpen (cborder, calign, cnowrap, cclear, cattributes);

Purpose

Prints an HTML tag that begins an HTML table.

Parameters

cborder in varchar2
calign in varchar2
cnowrap in varchar2
cclear in varchar2
cattributes in varchar2
Generates

<TABLE " cborder " NOWRAP ALIGN=" calign

Syntax
htp.tableClose;

Purpose

DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL;

Prints an HTML tag that ends an HTML table.

Parameters
none

Generates
</TABLE>

Syntax

htp.tableCaption (ccaption, calign, cattributes);

" CLEAR=" cclear " cattributes >

Oracle WebServer 2.0 User’s Guide

Purpose

Prints an HTML tag that places a caption in the inserted table.

Parameters

ccaption in varchar2

calign in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<CAPTION ALIGN=" calign " cattributes >ccaption </CAPTION>

htp.tableRowOpen
Syntax

htp.tableRowOpen (calign, cvalign,cdp, cnowrap, cattributes);
Purpose

Prints an HTML tag that inserts a row tag into a table.

Parameters

calign in varchar2 DEFAULT NULL
cvalign in varchar2 DEFAULT NULL
cdp in varchar2 DEFAULT NULL
cnowrap in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<TR ALIGN=" calign " VALIGN=" cvalign " DP=" cdp” NOWRAP catttributes >

htp.tableRowClose
Syntax

htp.tableRowClose;

Purpose

Prints an HTML tag that ends a row in a table.
Parameters

none

The PL/SQL Web Toolkit Reference 6-53

htp.tableHeader

htp.tableData

6-54

Generates

</TR>

Syntax

htp.tableHeader (cvalue, calign, cdp, cnowrap, crowspan, ccolspan, cattributes);

Purpose

Prints an HTML tag that inserts a table header.

Parameters

cvalue
calign

cdp
cnowrap
crowspan
ccolspan
cattributes

Generates

<TH ALIGN=" calign " DP=" cdp”
>cvalue </TH>

cattributes

Syntax

htp.tableData (cvalue, calign, cdp, crowspan, ccolspan, cnowrap, cattributes);

Purpose

Prints an HTML tag that inserts data into the rows and columns of a selected

table.
Parameters

cvalue
calign
cdp
crowspan
ccolspan

in varchar2
in varchar2
in varchar2
in varchar2
in varchar2
in varchar2
in varchar2

in varchar2
in varchar2
in varchar2
in varchar2
in varchar2

DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL

ROWSPAN="crowspan " COLSPAN=" ccolspan " NOWRAP

DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL

Oracle WebServer 2.0 User’s Guide

cnowrap in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
Generates

<TD ALIGN=" calign " DP=" cdp” ROWSPAN="crowspan " COLSPAN=" ccolspan " NOWRAP
cattributes >cvalue </TD>

OWA _UTIL Package

The OWA _UTIL Package is a set of useful utility procedures built on top of
hypertext functions and hypertext procedures.

owa_util.signature
Syntax

owa_util.signature;

Purpose

Prints an HTML line followed by a signature line on the HTML document.
Parameters

none

Generates

Prints a signature line in the HTML document that might look like the following:
”This page was produced by the Oracle PL/SQL Agent on August 9, 1995 09:30”

owa_util.signature (cname)

Syntax
owa_util.signature (cname);
Purpose

Allows the programmer to create a signature line on the bottom of the HTML
document that has a hypertext link to view the PL/SQL source for that
procedure.

Parameters

cname in varchar2

The PL/SQL Web Toolkit Reference 6-55

Generates

Prints a signature line on the bottom of the HTML document that has a link to
the actual PL/SQL source for that procedure. The link calls the procedure
showsource . The line would look like the following:

”This page was produced by the Oracle PL/SQL Agent on 6/14/95 09:30”
View PL/SQL Source

owa_util.showsource (cname)

owa_util.showpage

6-56

Syntax
owa_util.showsource (cname);
Purpose

Prints the source of the specified PL/SQL procedure, function, or package. If a
procedure or function which belongs to a package is specified, then the entire
package is displayed.

Parameters
cname in varchar?2
Generates

Generates the source code of the specified PL/SQL procedure.

Syntax
owa_util.showpage;
Purpose

This procedure allows a user to view the HTML output of a PL/SQL procedure
call from SQL*Plus, SQL*DBA, or Oracle Server Manager. The PL/SQL
procedure must use HTP and/or HTF to generate the HTML page, and
owa_util.showpage must be issued after the PL/SQL procedure has been called
and before any other HTP or HTF subprograms are directly or indirectly called.
This method is useful for generating pages filled with static data.Purpose

Note that this procedure uses dbms_output and thus is limited to 255 characters
per line and an overall buffer size of 1,000,000 bytes.

Oracle WebServer 2.0 User’s Guide

Parameters
none
Generates

One can use this procedure to generate static pages in SQL*Plus that can then be
accessed as a standard HTML page. For example:

SQL>set serveroutput on

SQL>spool gretzky.html
SQL>execute hockey.pass('Gretzky”)
SQL>execute owa_util.showpage
SQL>exit

This would generate an HTML page which could be accessed from Web clients.

owa_util.get_cgi_env(function)
Syntax
owa_util.get_cgi_env(param_name in varchar2);
Purpose

Allows programmer to retrieve the value of the specified CGI environment
variable in the PL/SQL procedure.

Note that param_name is case-insensitive.
Parameters

param_name in varchar2

Generates

Returns value of specified CGI environment variable for PL/SQL procedure. If
the value is not set, returns null

owa_util.print_cgi_env
Syntax
owa_util.print_cgi_env;
Purpose

Enables programmer to print all of the CGI environment variables made
available by the PL/SQL Agent to the PL/SQL procedures. This utility is good
for testing purposes.

The PL/SQL Web Toolkit Reference 6-57

Parameters
none
Generates

Prints CGI environment variables made available by the PL/SQL Agent to the
PL/SQL procedures.

owa_util.mime_header

owa_util.redirect_url

6-58

Syntax
owa_util.mime_header(ccontent_type, bclose_header);

Purpose

Enables programmer to change the default MIME header that the PL/SQL
Agent returns. This must come before any htp.print or htp.prn calls in order to
signal the PL/SQL Agent not to use the default. If bcloseheader is TRUE, two
newlines are sent, which closes the HTTP header. Otherwise, one newline is sent,
and the HTTP header is still open.

Parameters

ccontent_type in varchar2
bclose_header in boolean DEFAULT TRUE

Generates

Content-type: <ccontent_type>\n\n

Syntax
owa_util.redirect_url(curl, bclose_header);

Purpose

Enables programmer to specify that the WebServer visit a specified URL. The
URL may specify either a Web page that is returned or a program that is
executed. This must come before any htp.print or htp.prn calls in order to signal
the PL/SQL Agent to do the redirect. If bcloseheader is TRUE, two newlines are
sent, which closes the HTTP header. Otherwise, one newline is sent, and the
HTTP header is still open.

Oracle WebServer 2.0 User’s Guide

Parameters

curl in varchar2
bclose_header inboolean DEFAULT TRUE

Generates

Location: <curl>\n\n

owa_util.status_line

Syntax
owa_util.status_line(nstatus, creason, bclose_header);

Purpose

Enables programmer to send a standard HTTP status code to the client. This
must come before any htp.print or htp.prn calls, so that the status code is
returned as part of the header, rather than as “content data.” If bcloseheader is
TRUE, two newlines are sent, which closes the HTTP header. Otherwise, one
newline is sent, and the HTTP header is still open.

Parameters
nstatus in integer,
creason in varchar2 DEFAULT NULL

bclose_header inboolean DEFAULT TRUE

Generates

Status: <nstatus> <creason>\n\n

owa_util.http_header_close
Syntax

owa_util.http_header_close;
Purpose

Outputs a newline to close the HTTP header. Use this procedure if you have not
explicitly closed the header before by specifying or defaulting bclose_header in
a previous header component. The header must be closed before any htp.print or
htp.prn calls.

Parameters

none

The PL/SQL Web Toolkit Reference 6-59

Generates

A newline, which terminates the header.

owa_util.get_owa_service_path (Function)

owa_util.tableprint

6-60

Syntax
owa_util.get_owa_service_path;
Purpose

Returns the name of the currently active path with its full virtual path, plus the
currently active DCD. For example, a call to get_owa_service_path could return
/ows-bin/myservice/owa/

Parameters
none
Returns

The DCD path. The datatype is varchar2.

Syntax
owa_util.tablePrint;
Purpose

Enables programmers to print Oracle tables as either preformatted or HTML
tables, depending upon Web browser capabilities. Note that RAW COLUMNS
are supported, however LONG RAW are not. References to LONG RAW
columns will print the result 'Not Printable’. In this case, cattributes is the
second, rather than the last, parameter.

Parameters

ctable in varchar2

cattributes in varchar?2 DEFAULT NULL
ntable_type in integer DEFAULT HTML_TABLE

ccolumns invarchar2 DEFAULT “**
cclauses invarchar2 DEFAULT NULL
ccol_aliasesin varchar2 DEFAULT NULL
nrow_min innumber DEFAULT 0
nrow_max in number DEFAULT NULL

Oracle WebServer 2.0 User’s Guide

Parameters

Note that ntable_type can be either owa_util.html_table or owa_util.pre_table.
Generates

Prints out either a preformatted or HTML table.

Returns

True or False as to whether there are more rows available beyond the nrow_max
requested.

Example
For browsers that don’t support HTML tables, create the following procedure:

create or replace procedure showemps is
ignore_more boolean;

begin

ignore_more := owa_util.tablePrint’emp’, 'BORDER’, OWA_UTIL.PRE_TABLE);
end;
and requesting a URL like this example: http://myhost:8080/ows-bin/hr/owa/
showemps

returns to the client:
<PRE>

|EMPNO | ENAME| JOB | MGR| HIREDATE | SAL | COMM | DEPTNO |

7369 | SMITH | CLERK | 7902 | 17-DEC-80|800 | [20 |
7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 | 1600 | 300 |30 |
7521 | WARD | SALESMAN | 7698 | 22-FEB-81 | 1250 | 500 |30 |
7566 | JONES | MANAGER |7839 | 02-APR-81[2975| |20 |
7654 | MARTIN | SALESMAN | 7698 | 28-SEP- 81|1250|1400|30 |
7698 | BLAKE | MANAGER | 7839 | 01-MAY-81]2850| |30 |
7782 | CLARK | MANAGER |7839|09-JUN-81[2450| |10 |
7788 | SCOTT | ANALYST | 7566 | 09-DEC-82[3000| |20 |
7839 |KING |PRESIDENT| |17-NOV-81]5000| |10

7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 | 1500 [0 |30 |
7876 | ADAMS |CLERK | 7788|12-JAN-83|1100| |20 |
7900 | JAMES | CLERK | 7698 | 03-DEC-81]950 | |30

7902 | FORD |ANALYST | 7566 | 03-DEC-81[3000| [20 |
7934 |MILLER | CLERK | 7782]23-JAN-82]|1300| [10 |

</PRE>

To view just the employees in department 10, and only their employee ids,
names, and salaries, create the following procedure:

create or replace procedure showemps_10 is
ignore_more boolean;
begin
ignore_more := owa_util.tablePrint
(EMP’ 'BORDER’, OWA_UTIL.PRE_TABLE,
‘empno, ename, sal’,
‘where deptno=10 order by empno’,
g 'Employee Number, Name, Salary’);
end;

A request for a URL like http://myhost:8080/ows-bin/hr/owa/showemps_10
would return the following to the client:

<PRE>

The PL/SQL Web Toolkit Reference 6-61

| Employee Number | Name | Salary |

| 7782 | CLARK | 2450 |
| 7839 | KING |5000 |
| 7934 | MILLER | 1300 |
</PRE>

For browsers that do support HTML tables, to view the department table in an
HTML table, create the following procedure:

create or replace procedure showdept is
ignore_more boolean;

begin
ignore_more := owa_util.tablePrint('dept’, 'BORDER’);
end;
A request for a URL like http://myhost:8080/ows-bin/hr/owa/showdep t would

return the following to the client:

<TABLE BORDER>

<TR>

<TH>DEPTNO</TH>
<TH>DNAME</TH>

<TH>LOC</TH>

</TR>

<TR>

<TD ALIGN="LEFT">10</TD>

<TD ALIGN="LEFT">ACCOUNTING</TD>
<TD ALIGN="LEFT">NEW YORK</TD>
</TR>

<TR>

<TD ALIGN="LEFT">20</TD>

<TD ALIGN="LEFT">RESEARCH</TD>
<TD ALIGN="LEFT">DALLAS</TD>
</TR>

<TR>

<TD ALIGN="LEFT">30</TD>

<TD ALIGN="LEFT">SALES</TD>

<TD ALIGN="LEFT">CHICAGO</TD>
</TR>

<TR>

<TD ALIGN="LEFT">40</TD>

<TD ALIGN="LEFT">OPERATIONS</TD>
<TD ALIGN="LEFT">BOSTON</TD>
</TR>

</TABLE>

which a Web browser can format to look like this:

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

30 SALES CHICAGO

6-62 Oracle WebServer 2.0 User’s Guide

Customized Extensions to HTP Packages

The design of the hypertext procedure and function packages allows you to use
customized extensions. Therefore, as the HTML standard changes, you can add
new functionality similar to the hypertext procedure and function packages to
reflect those changes.

Here is an example of customized packages using non-standard <BLINK> and
imaginary <SHOUT>tags:

create package nsf as

function blink(cbuf in varchar2) return varchar2;
fundction shout(cbuf in varchar2) return varchar2;
end;

create package body nsf as

function blink(cbuf in varchar2) return varchar2 is
begin return (<BLINK>' || cbuf || '</BLINK>");
end,;

function shout(cbuf in varchar2) return varchar2 is
begin return (<SHOUT>' || cbuf || '</SHOUT>");
end;

end;

create package nsp as

procedure blink(cbuf in varchar2);
procedure shout(cbuf in varchar2);
end;

create package body nsp as
procedure blink(cbuf in varchar2) is
begin htp.print(nsf.blink(cbuf)); end;
procedure shout(cbuf in varchar2) is
begin htp.print(nsf.shout(cbuf)); end;
end;

Now you can begin to use these procedures and functions in your own
procedure.

create procedure nonstandard as

begin

nsp.blink('Gee this hurts my eyes!’);
ht%print(’And I might ’ || nsf.shout('get mad!’));
end;

For more examples of using the PI/SQL Web Toolkit, see Passing Parameters to

PL/SQL.

OWA _PATTERN Package

The OWA_PATTERN package enables you to do sophisticated string
manipulation using regular expressions. OWA_PATTERN provides the
following three operations:

= MATCH. This determines whether a regular expression exists in a string.
This is a function that returns TRUE or FALSE.

The PL/SQL Web Toolkit Reference 6-63

Regular Expressions

Tokens

6-64

= AMATCH. Thisis a more sophisticated variation on MATCH that lets you
specify where in the string the match has to occur. This is a function that
returns as an integer the end of the location in the string where the regular
expression was found. If the regular expression is not found, it returns 0.

< CHANGE. This lets you replace the portion of the string that matched the
regular expression with a new string. CHANGE can be either a procedure
or a function. If a function, it returns the number of times the regular
expression was found and replaced.

There are also operations that these operations use, but that you can also use
directly. These are explained shortly.

The OWA_PATTERN operations all use the following three parameters:

= line. This is the target to be examined for a match. Despite the name, it can
be more than one line of text or can be a PL/SQL table(see PL/SQL Tables)
of type multi_line

= pat. This is the regular expression the functions attempts to locate in line.
This regular expression uses the special tokens explained shortly. Note: in
CHANGE, this is called from_str.

= flags. These are arguments that control how the search is to be performed.

Some of the operations take additional parameters as well.

You specify a regular expression by creating the string you want to match
interspersed with various wildcard tokens and quantifiers. The wildcard tokens
all match something other than themselves, and the quantifiers modify the
meaning of tokens or of literals by specifying such things as how often each is to
be applied.

The wildcard tokens that are supported are as follows:
~ Matches newline or the beginning of the target.

$ Matches newline or the end of the target.

\n Matches newline.

. Matches any character except newline.

\t Matches tab.

\d Matches digits [0-9]

Oracle WebServer 2.0 User’s Guide

\D Matches non-digits [not 0-9]

\w Matches word characters (alphanumeric) [0-9, a-z, A-Z or _]
\W Matches non-word characters [not 0-9, a-z, A-Z or _]

\s Matches whitespace characters [blank, tab, or newline]

\S Matches non-whitespace characters [not blank, tab, or newline]
\b Matches "word” boundaries (between \w and \W)

\x<HEX> Matches the value in the current character set of the two hexidecimal
digits.

\<OCT> Matches the value in the current character set of the two or three octal
digits.

\ Followed by any character not covered by another case matches that character.

& Applies only to CHANGE. This causes the string that matched the regular
expression to be included in the string that replaces it. This differs from the other
tokens in that it specifies how a target is changed rather than how it is matched.
This is explained further under CHANGE.

Quantifiers

Any of the above tokens except & can have its meaning extended by any of the
following quantifiers. You can also apply these quantifiers to literals.

? 0 or 1 occurrence(s)

* 0 or more occurrences

+ 1 or more occurrence(s)
{n} Exactly n occurrences

(n,} At least n occurrences

{n,m} At least n, but not more than m, occurrences

Flags

In addition to targets and regular expressions, the OWA_PATTERN functions
and procedures can use flags to affect how they are interpreted. The recognized
flags are as follows:

i This indicates a case-insensitive search.

The PL/SQL Web Toolkit Reference 6-65

Datatypes

g This applies only to CHANGE. It indicates a global replace. That is to say, all
portions of the target that match the regular expression are replaced.

The following special datatype is used by OWA_PATTERN.

pattern

A PL/SQL table (see PL/SQL Tables) of 4 byte VARCHAR?2 strings, indexed by
BINARY INTEGER. This is an alternative way to store your regular expression
than in simple VARCHARZ2 strings. The advantages of this is that you can use a
pattern as both an input and output parameter. Thus, you can pass the same
regular expression to several subsequent OWA_PATTERN function calls, and it
only has to be parsed once.

Note: The following datatypes are used by OWA_PATTERN, but are part of the
OWA_TEXT package. For information on these, see the section on OWA_TEXT:
owa_text.vc_array, owa_text.multi_line, owa_text.int_array, owa_text.row_list.

Using MATCH, AMATCH, and CHANGE

Here is an example of MATCH.

MATCH (BATMAN’, 'Bat.*, i);

This is how the function is interpreted: BATMAN is the target where we are
searching for the regular expression. Bat.* is the regular expression we are
attempting to find. The period (.) indicates any character other than newline, and
the asterisk (*) indicates any 0 or more of such. Therefore, this regular expression
specifies that a matching target consists of 'Bat’, followed by any set of characters
neither ending in nor including a newline (which does not match the period).
The i at the end is a flag indicating that case is to be ignored in the search.

This would return TRUE, indicating that a match had been found.

Note that, if multiple overlapping strings can match the regular expression,
OWA_PATTERN takes the longest match.

Summaries of OWA_PATTERN Functions

6-66

MATCH, AMATCH, and CHANGE are overloaded. That is to say, there are
several versions of each, distinguished by the parameters they take. Specifically,
there are six versions of MATCH, and four each of AMATCH and CHANGE.
This section provides a summary of all versions; the following section provides
a reference on each version.

Oracle WebServer 2.0 User’s Guide

MATCH is a function that returns TRUE or FALSE depending on whether a
match was found. Here is a summary of the versions of MATCH:

= The target can be either a simple VARCHAR?2 string of less than 32K or a
multi_line. A multi-line is described under "OWA_TEXT Datatypes”. You
can create a multi_line from a long string using the stream2multi function
described under OWA_TEXT. If a multi_line is used, there is a parameter
called rlist, after the regular expression, but before the flags. This is a list
of the chunks where matches were found. Use of a VARCHAR2 implies
use of one of the first four versions of this function. Use of a multi_line
implies use of version 5 or 6.

= The regular expression can be either a VARCHAR?2 string or a pattern. You
can create a pattern from a string using the getpat function described later
in this section. If you use a pattern, you are using one of the even-number
versions of the function.

= Ifthe line is a string and not a multi_line, then you can add an optional
output parameter called backrefs. This goes after the regular expression,
but before the flags. You cannot use backrefs if you pass a multi_line to
MATCH, because this is the same place in the parameter list that the rlist
parameter would go. The backrefs parameter is a row_list that holds each
string in the target that was matched by a sequence of tokens in the regular
expression. If you use backrefs, you are using the third or fourth version of
the function.

= Given the above, you can determine which version you are using as
follows: if you are using a multi_line, it is version 5 or 6. If you are using
backrefs, it is version 3 or 4. Otherwise, it is version 1 or 2. Once you have
determined the pair, you determine the actual version by whether the
regular expression is a VARCHAR?2 string (odd-numbered) or a pattern
(even-numbered).

AMATCH is a function giving a number that indicates the number of characters
from the beginning of the target to the end of the first match found (AMATCH
stops searching after the first match). If no match is found, it returns 0. Here is a
summary of the versions of AMATCH:

= Following the target, but preceding the regular expression, is the input
parameter from_loc. This indicates how many characters from the
beginning of the target the search should commence.

= The regular expression can be either a VARCHAR?2 string or a pattern.
You can create a pattern from a string using the getpat function described
later in this section.. If you use a pattern, you are using one of the even-
number versions of the function.

The PL/SQL Web Toolkit Reference 6-67

= After the regular expression, but before the flags, you can add an optional
output parameter called ”backrefs”. This is a PL/SQL table (see PL/SQL
Tables) that will hold each string in the target that was matched by a
sequence of tokens in the regular expression. If you use backrefs, you are
using the third or fourth version of the function.

= Given the above, you can determine which version you are using as
follows: If you are using backrefs, it is version 3 or 4. Otherwise, it is
version 1 or 2. Once you have determined the pair, you determine the
actual version by whether the regular expression is a VARCHAR2 string
(odd-numbered) or a pattern (even-numbered).

CHANGE can be either a procedure or a function, depending on how it is
invoked. If a function, it returns the number of changes made. If the flag ’g’ is not
used, this number can be only 0 or 1. Here is a summary of the versions of
CHANGE

= The target can be either a simple VARCHAR?2 string of less than 32K or a
multi_line.

e Unlike MATCH and AMATCH, the regular expression can only be a
VARCHAR?2 string, not a pattern.

= Following the regular expression is the string that is to replace it. This
string can use the token ampersand (&), which indicates that the portion
of the target that matched the regular expression is to be included in the
expression that replaces it. For example:

CHANGE('Cats in pajamas’,’C.+in’, '& red ")
The regular expression matches the substring 'Cats in’. It then replaces this
string with & red’. & indicates "Cats in’, since that’s what matched the
regular expression. Thus, this procedure replaces the string 'Cats in
pajamas’ with 'Cats in red pajamas’. Of course, we used a literal here for
clarity. In actuality, 'Cats in pajamas’ would be the value of a variable, and
that value would be changed. Were this a function rather than a
procedure, the value it would return would not be Cats in red pajamas’
but 1, indicating that a single substitution had been made.

< The flag 'g’ indicates that all matching portions of the target are to be
replaced by the regular expression. Otherwise, only the first match is
replaced.

= The way to distinguish the versions is by whether the target is a string
(version 1 or 2) or a multi_line (version 3 or 4). Within these pairs, odd
numbers are functions, and even procedures.

Here are the formal descriptions of the OWA_PATTERN procedures and
functions.

6-68 Oracle WebServer 2.0 User’s Guide

Procedures and Functions

owa_pattern.match (version 1)
Syntax

owa_pattern.match(line, pat, flags)
Purpose

Enables programmers to search a string for a pattern using regular expressions.

Parameters
line in varchar2
pat in varchar2

flags in varchar2 DEFAULT NULL
Generates

Boolean indicating whether match was found.

owa_pattern.match (version 2)

Syntax
owa_pattern.match(line, pat, flags)
Purpose

Enables programmers to search a string for a pattern using regular expression

Parameters
line in varchar2
pat inout pattern

flags in varchar2 DEFAULT NULL
Generates

Boolean indicating whether match was found.

owa_pattern.match (version 3)
Syntax

owa_pattern.match(line, pat, backrefs, flags)

The PL/SQL Web Toolkit Reference 6-69

Purpose

Enables programmers to search a string for a pattern using regular expression

Parameters

line in varchar2

pat in varchar2

backrefsout owa_text.vc_arr

flags in varchar2 DEFAULT NULL
Generates

Boolean indicating whether match was found.

owa_pattern.match (version 4)
Syntax

owa_pattern.match(line, pat, backrefs, flags)
Purpose

Enables programmers to search a string for a pattern using regular expression

Parameters

line in varchar?

pat inout pattern

backrefsout owa_text.vc_arr

flags in varchar2 DEFAULT NULL
Generates

Boolean indicating whether match was found.

owa_pattern.match (version 5)
Syntax

owa_pattern.match(mline, pat, rlist, flags)

Purpose

Enables programmers to search a string for a pattern using regular expression
Parameters

mline inowa_text.multi_line
pat in varchar2

6-70 Oracle WebServer 2.0 User’s Guide

rlist out owa_text.row_list
flags in varchar2 DEFAULT NULL

Generates

Boolean indicating whether match was found.

owa_pattern.match (version 6)
Syntax

owa_pattern.match(mline, pat, rlist, flags)
Purpose

Enables programmers to search a string for a pattern using regular expression

Parameters
mline in owa_text.multi_line
pat inout pattern

rlist out owa_text.row_list
flags in varchar2 DEFAULT NULL

Generates

Boolean indicating whether match was found.

owa_pattern.amatch (version 1)
Syntax

owa_pattern.match(line, from_loc, pat, flags)
Purpose

Enables programmers to search a string for a pattern using regular expressions.

Parameters

line in varchar2

from_loc ini nteger

pat in varchar2

flags in varchar2 DEFAULT NULL
Generates

Location (in number of characters from the beginning) of the end of the match. 0
if none such.

The PL/SQL Web Toolkit Reference 6-71

owa_pattern.amatch (version 2)
Syntax

owa_pattern.match(line, from_loc, pat, flags)
Purpose

Enables programmers to search a string for a pattern using regular expression

Parameters

line in varchar2

from_loc in integer

pat inout pattern

flags in varchar2 DEFAULT NULL
Generates

Location (in number of characters from the beginning) of the end of the match. 0
if none such.

owa_pattern.amatch (version 3)
Syntax

owa_pattern.match(line, from_loc, pat, backrefs, flags)
Purpose

Enables programmers to search a string for a pattern using regular expression

Parameters

line in varchar?

from_loc in integer

pat in varchar2

backrefs out owa_text.vc_arr

flags in varchar2 DEFAULT NULL
Generates

Location (in number of characters from the beginning) of the end of the match. 0
if none such.

owa_pattern.amatch (version 4)
Syntax

owa_pattern.match(line, from_loc, pat, backrefs, flags)

6-72 Oracle WebServer 2.0 User’s Guide

Purpose

Enables programmers to search a string for a pattern using regular expression

Parameters

line in varchar2

from_loc in integer

pat inout pattern

backrefs out owa_text.vc_arr

flags in varchar2 DEFAULT NULL
Generates

Location (in number of characters from the beginning) of the end of the match. 0
if none such.

owa_pattern.change (version 1)
Syntax

owa_pattern.match(line, from_str, to_str, flags)
Purpose

This version is a function. It enables programmers to search a string for a pattern
and replace it.

Parameters

line inout varchar2

from_str in varchar2

to_str in varchar2

flags in varchar2 DEFAULT NULL
Generates

Revises line parameter. Function outputs number of substitutions made.

owa_pattern.change (version 2)
Syntax

owa_pattern.match(line, from_str, to_str, flags)
Purpose

This version is a procedure. It enables programmers to search a string for a
pattern and replace it.

The PL/SQL Web Toolkit Reference 6-73

Parameters

line inout varchar2

from_str in varchar2

to_srt in varchar2

flags in varchar2 DEFAULT NULL
Generates

Revises line parameter.

owa_pattern.change (version 3)
Syntax

owa_pattern.match(mline, from_str, to_str, backrefs, flags)
Purpose

This version is a function. It enables programmers to search a multi_line for a
pattern and replace it.

Parameters

mline in out multi_line

from_str in varchar2

to_srt in varchar2

flags in varchar2 DEFAULT NULL
Generates

Revises mline parameter. Function outputs number of substitutions made.

owa_pattern.change (version 4)
Syntax

owa_pattern.match(mline, from_str, to_str, flags)
Purpose

This version is a procedure. It enables programmers to search a multi_line for a
pattern and replace it.

Parameters
mline inout multi_line
from_str in varchar2

6-74 Oracle WebServer 2.0 User’s Guide

to_srt in varchar2
flags in varchar2 DEFAULT NULL

Generates

Revises mline parameter.

owa_pattern.getpat
Syntax

owa_pattern.getpat(arg, pat)
Purpose

This converts a VARCHAR?2 string into the special datatype pattern. This
datatypes is explained under OWA_PATTERN Datatypes.

Parameters

arg in varchar2
pat in out pattern
Generates

pattern.

OWA_TEXT

The OWA_TEXT package is chiefly used by OWA_PATTERN, but the functions
are externalized so that you can use them directly if desired.

Datatypes

vc_array

A PL/SQL table of 32K VARCHAR? strings, indexed by BINARY INTEGER.
This is a component of owa_text.multi_line.

multi_line
A record with the following three fields:
int_array

A PL/SQL table of INTEGER indexed by BINARY INTEGER. This is a
component of owa_text.row_list.

The PL/SQL Web Toolkit Reference 6-75

row_list

A record with the following fields:

Procedures and Functions

owa_text.stream2multi

owa_text.add2multi

6-76

Syntax
owa_text.stream2multistream, mline)
Purpose

Converts a long string to a multi_line.
Parameters

srtream in varchar?2
mline out multi_line

Generates

multi_line

Syntax
owa_text.add2multi(stream, mline, continue)
Purpose

Adds more content to a multi_line. The continue parameter specifies whether to
begin appending within the previous final chunk (assuming it is less than 32K)
or to start a new chunk.

Parameters

stream in varchar?2
mline out multi_line
continue in boolean DEFAULT TRUE

Generates

multi_line

Oracle WebServer 2.0 User’s Guide

owa_text.new_row_list
Syntax

owa_text.new_row_list(rlist)
Purpose

Can be a procedure or a function. If a function it takes no parameters and outputs
a new, initially empty, row_list. If a procedure, it places into the rlist parameter
a new, initially empty, row _list.

Parameters
rlist in row_list
Generates

Actual output generated by htp.print.

owa_text.print_multi

Syntax

owa_text.print_multi(mline)

Purpose

Uses htp.print to print the multi_line.
Parameters

mline in multi_line
Generates

Actual output generated by htp.print.

owa_text.print_row_list

Syntax
owa_text.print_row_list(rlist)
Purpose

Uses htp.print to print the row_list.
Parameters

rlist in row_list

The PL/SQL Web Toolkit Reference 6-77

Generates

Actual output generated by htp.print.

OWA_IMAGE

Datatypes

Package Variables

OWA_IMAGE is a package providing simple functions that are for handling
image maps.

point

This provides the x and y coordinates of a user’s click on an image map..

null_point

This is a variable used to default point parameters. X and Y both are NULL..

Procedures and Functions

owa_image.get_x

owa_image.get_y

6-78

Syntax

owa_image.get_x(p)

Purpose

This is a function that produces the X coordinate of the image map.
Parameters

p in point

Generates

X coordinate as integer.

Syntax

owa_image.get_Y(p)

Oracle WebServer 2.0 User’s Guide

Purpose

This is a function that produces the Y coordinate of the image map.
Parameters

p in point

Generates

Y coordinate as integer.

OWA_COOKIE

Datatypes

OWA_COOKIE is a package that provides wrappers so that you can send
cookies to and get them from the client’s browser. Cookies are strings that are
opaque to the client, but that maintain state throughout the client’s session, or
longer if an expiration date is included. Your system date will be calculated with
reference to the information specified in the OWA_INIT package.

cookie

Since the HTTP standard is that cookie names can be overloaded, that is,
multiple values can be associated with the same cookie name, this is a PL/SQL
RECORD holding all values associated with a given cookie name. The fields are
as follows:

name varchar2(4K)

vals vc_arr
numvals integer

Note: vc_arr is defined in the OWA_TEXT package.

Procedures and Functions

owa_cookie.send

Syntax

owa_cookie.send(name, value, expires, path, domain, secure)

The PL/SQL Web Toolkit Reference 6-79

Purpose

This is a procedure that transmits a cookie to the client. This procedure must
occur in the context of an OWA procedure’s HTTP header output.

Parameters

name in varchar?2

value in varchar?2

expires in date DEFAULT NULL
path in varchar2 DEFAULT NULL
domainin varchar2 DEFAULT NULL
secure in varchar2 DEFAULT NULL
Generates

Set-Cookie: <name>=<value> expires=<expires> path=<path> domain=<domain>
secure

owa_cookie.get
Syntax

owa_cookie.get(name)

Purpose

This is a function that converts the string to a cookie
Parameters

name in varchar?

Generates

A cookie

owa_cookie.get_all
Syntax

owa_cookie.get_all(names, vals, num_vals)
Purpose

This is a procedure that returns all cookie name/value pairs from the client’s
browser that are associated with your domain.

6-80 Oracle WebServer 2.0 User’s Guide

owa_cookie.remove

Parameters

names out vc_arr
vals out vc_arr
num_valsout integer

Generates

Arrays of the names and of the values in the order received, and the count of the
combinations.

Syntax
owa_cookie.remove(name, value, path)
Purpose

This is a procedure that forces a cookie to expire immediately. This output of this
procedure must be embedded in an HTML header.

Parameters
name in varchar2
value in varchar2

path in varchar2 DEFAULT NULL

Generates

Set-Cookie: <name>=<value> expires=01-JAN-1990 path=<path>

OWA_INIT

This package provides constants that you override to set the time zone used by
cookies. Cookies use expiration dates defined in Greenwich Mean Time (GMT)).
If you are not on GMT, you can specify your time zone using one of these two
constants. If your time zone is recognized by Oracle, which you can determine
by consulting Chapter 3 of the Oracle7 Server SQL Reference under “SQL
Functions”, you can directly specify it using dbms_server_timezone; otherwise,
you can use doms_server_gmtdiff to give the offset of your time zone from GMT.

Change the values shown below and reload the package.

The PL/SQL Web Toolkit Reference 6-81

Constants

dbms_server_timezone constant varchar2(3) := ‘PST’
Text string abbreviation for your timezone.
dbms_server_gmtdiff constant number = NULL

Number of hours your timezone diverges from Greenwich Mean Time. A
positive number if your timezone is ahead of GMT; otherwise negative.

6-82 Oracle WebServer 2.0 User’s Guide

cuarrer [

Oracle WebServer
Messages

This appendix contains messages you may receive if you encounter errors while
using Oracle WebServer. If you get an error message, look in this appendix to
find the probable cause and suggestions of what to do.

00001 - 00600 Generic Oracle WebServer Configuration Messages

OWS—00000, “utility : normal, successful completion”

Cause: Normal exit

Action: None

OWS—00001, “utility : unable to open file filename”

Cause: The file may not exist or may not be readable to the signalling program.

Action: Verify the file’s existence in the file-system. Check file and directory
permissions and ownership, as well as the

ownership of the signalling process.

OWS—00002, “utility : error reading file filename”

Cause: Usually an operating system error. If the problem had been file
permissions or non-existence, error 1 would have been signalled.

Action: Check your operating system log for errors.

OWS—00003, “utility : error writing file filename”

Cause: Usually an operating system error. If the problem had been file
permissions or non-existence, error 1 would have been signalled.

Action: Check your operating system log for errors.

OWS—00010, “utility : file format error when reading filename”

Cause: The signalling program expected a specific file format, which it did not
find.

Action: Analyze the file for incorrect formatting.

OWS—00011, “Installation not completed. Root.sh must be run”

Cause: The signalling program checked if root.sh completed successfully.

Action: Run root.sh as indicated by your installation guide.

OWS—00020, “utility : out of memory when requesting number bytes”

Cause: The operating system was not able to supply the requested amount of
memory.

Action: Reduce the number of running programs on the machine and retry the
operation.

OWS—00600, “utility : internal error, arguments [argl][arg2][arg3][arg4][arg5]”

Cause: This is the generic internal error number for NDW program exceptions.
This indicates that a process has encountered an exceptional condition.

Action: Report as a bug - the first argument is the internal error number

7-2 Oracle WebServer 2.0 User’s Guide

5000 - 5499 : Oracle Web Agent errors.

OWS—05100, “Agent : unable to connect due to Oracle error number”

Cause: The Oracle Web Agent was unable to connect to the specified Database
due to an Oracle error.

Action: See the corresponding Oracle error. Common errors are: invalid
username/password - check the Web Agent configuration file; Oracle not
available - start up the database.

OWS—05101, “Agent : execution failed due to Oracle error number”

Action: See the Oracle error on the error stack.

OWS—05102, “Agent : initialization failed due to error number”

Action: See the Oracle error on the error stack.

OWS—05103, “Agent : error number during initialization”

Action: See the Oracle error on the error stack.

OWS—05104, “Agent : unable to attach to host database: [ORACLE_HOME], [ORACLE_SID],
[SQL*Net V2 Service]”

Action: See the Oracle error on the error stack.

OWS—05110, “Agent : no stored procedure specified to call”

Cause: OWA requires the PATH_INFO environment variable to be set.
PATH_INFO is set based on information passed through the URL after the OWA
executable name and before the “?” or end of the URL

Action: specify a stored procedure name after the OWA executable name in the
URL.

OWS—05111, “Agent : no stored procedure matches this call with the arguments passed”

Cause: The procedure and parameters passed to OWA don’t match any existing
stored procedures.

Oracle WebServer Messages 7-3

Action: verify that there is a stored procedure (not function) with no RECORD
parameters which matches the parameters passed. If no value was passed for a
parameter, be sure that the stored procedure was declared to have a default
value for that parameter. Check for typographical errors.

OWS—05112, “Agent : too many procedures matches this call”

Cause: The procedure and parameters passed to OWA match too many existing
stored procedures.

Action: This should only happen if there are overloaded stored procedures, and
that in two different versions of the procedure, a given parameter is declared in
one as a scalar and the other as a PL/SQL table.

OWS—05150, “Agent : http server Error - environment variable variable is NULL or non-

existent”

Cause: The http server or other invoking application did not set the listed
environment variable.

Action: Contact your http server or other invoking application vendor.

OWS—05151, “Agent : Port number not in list of valid ports : number-list”

Cause: The network port that the invoking http server is listening on is not a
valid port for this OWA Service.

Action: Add this port to the list of valid ports for this Service, or access this
service through a http server listening on a valid port.

OWS—05200, “Agent : service service-name not found in configuration file”

Cause: The piece of the URL just before the Web Agent executable name did not
correspond to a Web Agent Service in the OWA configuration file.

Action: Correct the URL, or create the desired service.

OWS—05201, “Agent : service parameter parameter not found for service service-name”

7-4

Cause: A parameter required by the Oracle Web Agent was not found in the
configuration file along with the specified service.

Action: Modify the Web Agent service configuration using the Web Agent
administration form.

Oracle WebServer 2.0 User’s Guide

5500 - 5599 : Oracle Web Agent Administration errors and messages

OWS—05504, “Service service-name successfully written. Verify the PL/SQL output in
filename”

Cause: The Web Agent Administration program successfully wrote the specified
service and performed all actions requested. The program, however, cannot
detect errors which may have occurred while installing the PL/SQL.

Action: Check the output in the file specified and verify that there are not
unexpected error messages.

OWS—05521, “Service service-name submission failed because the passwords submitted do
not match”

Cause: The password and the “confirm password” field do not match.

Action: Retype both passwords and re-submit the form.

OWS—05522, “Service service-name submission failed because password identification was
selected and the submitted password was NULL”

Cause: The form submitted indicated that the Web Agent service should use a
password to connect to the database, however no password was provided.

Action: Select operating system authentication for this service, or provide a
password for the give OWA Database User.

OWS—05523, “Service service-name submission failed because value for mandatory
parameter parameter is NULL”

Action: Fill in the specified field and re-submit the form.

OWS—05524, “Service service-name submission failed because both parameterl and
parameter2 are NULL”

Cause: One of the two parameters listed must not be null.

Action: Fill in one of the listed fields and re-submit the form.

Oracle WebServer Messages 7-5

OWS—05525, “Service service-name submission failed because a service with the same name
already exists”

Action: Choose another name for the service you are attempting to create, or
delete the existing service.

OWS—05526, “Service service-name submission failed due to error number”

Action: See the associated error and take the appropriate action.

OWS—05527, “Service service-name submission failed because the PL/SQLAgent-or-DBA
Username and Password are invalid”

Cause: Either the OWA Database User name and password, or the DBA
username and password, is not a valid username/password combination for the
specified database.

Action: Correct the username and password and re-submit the form.

OWS—05528, “Service service-name submission failed because the DBA User submitted
does not have privilege privileges”

Action: Choose a different Oracle username and password for the DBA user
submitted, or have the specified privilege granted to this user by another DBA.

OWS—05529, “Service service-name to modify does not exist”

Cause: The user chose to modify an existing Web Agent service, however that
service does not exist. This error should not occur unless the service to modify
was deleted from a different form after this service modification form was
generated.

Action: Create a new service.

OWS—05530, “Service service-name submission failed because the NLS Language could not
be determined”

Cause: The Web Agent Administration package was unable to lookup the NLS
Language for the specified database.

Action: Specify the value explicitly or submit a valid dba username and
password.

7-6 Oracle WebServer 2.0 User’s Guide

OWS—05531, “Service service-name submission failed because neither Server Manager, nor
SQL*DBA could be run”

Cause: The Web Agent Administration package was unable to install the Oracle
WebServer PS/SQL Web Toolkit which must be done from Server Manager (line
mode) or SQL*DBA.

Action: Install either Server Manager or SQL*DBA in the ORACLE_HOME
where the Web Agent administration is installed.

5600 - 5699 : Oracle Web Database Administration errors

OWS—05610, “Startup of database database failed due to error number”

Action: See the associated error and take the appropriate action.

OWS—05611, “Shutdown of database database failed due to error number”

Action: See the associated error and take the appropriate action.

OWS—05620, “DB Admin : no database selected”

Cause: A button was pressed to startup or shutdown the database, but no
database had been selected.

Action: Return to the administration screen and select a database.

OWS—05621, “DB Admin : database is already running.”

Cause: A request was made to start up a database, but that database is already
running.

Action: If you would like to restart the database, shut it down first or choose
“Startup Force”.

OWS—05622, “DB Admin : database is already shut down.”

Cause: A request was made to shut down a database, but that database is already
shut down.

Oracle WebServer Messages 7-7

OWS—05623, “DB Admin : parameter file filename is larger than maximum size number
bytes”

Cause: The initialization file listed was larger than the maximum allowable size.

Action: Reduce the size of the initialization file.

5700 - 5799 : Oracle Web Listener Configuration errors and messages

OWS—05710, “Value submitted for parameter must not be NULL”

Action: Type a value for the specified parameter and re-submit the form.

OWS—05711, “Port number is already in use by the Oracle Web Administration Server”

Cause: The port specified for service creation or modification is already in use by
the Oracle WebServer Administration Server.

Action: Choose another port to run one of the Web Listeners on.

OWS—05712, “The Oracle Web Listener listener-name is already configured to run on port
number”

Cause: The port specified for service creation or modification is already in use by
another Oracle Web Listener.

Action: Choose another port to run one of the Web Listeners on.

OWS—05713, “Value for parameter must be between minimum and maximum”

Action: Specify a value between the two limits and resubmit the form.

OWS—05714, “For ports less than number, the effective userid must be root”

Cause: Ports below that specified require superuser privileges to run a Web
Listener on it.

Action: Configure the Web Listener to run on a unrestricted port, or set the
effective userid for this Web Listener the superuser.

OWS—05715, “An Oracle Web Listener named listener-name already exists”

Cause: Listener names must be unique

7-8 Oracle WebServer 2.0 User’s Guide

Action: Name the submitted listener something else.

OWS—05716, “Port Number number is duplicated in the Addresses and Ports list”

Cause: Port numbers must be unique

Action: Remove duplication and resubmit the form.

OWS—05717, “Fill out form has unknown input field format”

Cause: Oracle admbin/*.html files have probably been tampered with.

Action: Restore original files.

OWS—05721, “The Web Listener listener-name failed to start:”

Action: See the associated error message.

OWS—05722, “The Web Listener listener-name failed to reload:”

Action: See the associated error message.

OWS—05723, “The Web Listener listener-name was not stopped:”

Action: See the associated error message.

OWS-05725, “WRB Configuration file not copied from pathnamel to pathname2”

Cause: Copying of file failed due to system error

Action: Make sure wladmin utility has permission to read/write.

OWS-05726, “Listener Name listener-name must be an alpha-numeric string”

Action: Only alphanumneric strings are accepted for listener name

OWS-05727, “Listener Name listener-name too long.”

Cause: The specified Listener name is greater than six characters.

Action: Use a shorter name.

Oracle WebServer Messages

7-9

5800 - 5899 : Oracle Web Request Broker Administration messages

OWS-05801, “The input from the form in the HTML file filename has incorrect format”

Cause: Form has unexpected input field/value.

Action: Make sure only the OWS HTML templates are used to make submissions
to the Web Server Manager utilities

OWS-05802, “The input parameter parameter must not be empty”

Cause: Required field not filled in submitted form.

Action: Fill in all required fields.

OWS-05804, “The WebServer Manager found no record of the listener listener-name”

Cause: Non-existent listener attempted to be accessed. owl.cfg might have been
corrupted

Action: Make sure a non-existent listener is not referred to.

OWS-05805, “Could not copy WRB configuration from listener listener-namel to listener
listener-name2”

Cause: WRB configuration file of “from” listener may not exist. System file
copying error.

Action: Make sure wrbadmin utility has permissions to read and write, and the
source file exists.

OWS-05810, “Configuration of cartridge cartridge-name for listener listener-name not found”

Cause: Attempt to modify or delete a cartridge configuration that doesn’t exist

Action: Reload the WRB Configuration form to get current list of cartridges for
this listener.

7-10 Oracle WebServer 2.0 User’s Guide

5900 - 5999 : Oracle WebServer Registration errors and messages

OWS—05901, “Please enter a value for field field.”

Cause: The specified field is a required field for registration.

Action: Type a value into the specified field and re-submit the form.

7500 - 7599 : Oracle Web Server Proxy errors and messages

OWS—07500, “Proxy switch could not be accessed.”

Cause: Error while reading or writing proxy switch value

Action: Check configuration file location/format.

OWS—07501, “Proxy Administration Form has invalid input values”

Cause: Form is being submitted with invalid field values

Action: Check and correct field values

Oracle Java Web Toolkit Messages

Message: [Method]: Invalid [Argument] Value(s)

Exception: oracle.lang.HtmIRuntimeException

Cause: The client programmer has supplied incorrect argument value(s) for the
named [Method].

Action: Change the argument values.

Message: [Method]: Circular Reference

Exception: oracle.lang.HtmIRuntimeException

Cause: The client programmer has attempted to add a Container/
CompoundlItem to itself.

Oracle WebServer Messages 7-11

Action: Remove that statement from the client application program.

Message: [Method]: File ([filename]) Not Found
Exception: oracle.lang.HtmIRuntimeException
Cause: This package/method cannot find the named file in the system’s path.

Action: Provide the correct file/path name and/or change the system path.

Message: [Method]: 10 Exception caught

Exception: oracle.lang.HtmIRuntimeException
Cause: An 10 Exception has occurred.

Action: Check if the disk storage device is full or if there is a sharing violation.

7-12 Oracle WebServer 2.0 User’s Guide

APPENDIX

Glossary

Administration DCD

The Database Connection Descriptor (DCD) used by the administration
server to manage PL/SQL Agent database access.

Administration Server

A collection of special instances of WebServer components that a
WebServer administrator uses to configure and maintain the WebServer.

Applet

A Java term for small programs that can be dynamically imported into
Web pages or applications as needed. Generally, applets are imported
from the Internet or another computer network.

Application Developer

A person who writes programs that the WebServer and/or the Oracle7
Server executes.

Authentication

a. A security scheme that requires a client to enter a user name and
password to access certain files provided by the WebServer.

b. The practice of “signing” an electronic document in a legally binding
way using digital signatures.

Base Directory

The directory name to which URL-encoded pathnames addressed to this

port are to be appended. For example, if the base directory is/
public_html , the URL http://www.blob.com/file is converted to
http://www.blob.com/public_html/file

Basic Authentication

An authentication scheme that does not encrypt passwords when sending
them over the Internet. Basic authentication is much less secure than
digest authentication. See also Digest Authentication and Authentication.

Bytecode

Javacode is interpreted in two steps. First, it is converted from source code
(the Java code as written) to bytecode, which is a form executable by any
platform on which Java runs. When the bytecode is executed, it is
converted from bytecode to the native code for the platform in question.

CA
See Certifying Authority (CA).

Certificate

A file provided by a certifying authority (CA) and installed on a
WebServer machine that the WebServer uses to authenticate itself to
clients requesting secure connections.

Certifying Authority (CA)

A trusted third-party company that provides certificates to legitimate
organizations that request them.

CGl

See Common Gateway Interface (CGI).

Character Set

A set of characters used to write a human language or group of languages,
as defined by RFC 1521.

Client

A process, such as a Web browser, that interfaces to one or more users,
sends requests to a server, and presents the results of those requests to the
users. See also Server.

Common Gateway Interface (CGI)

The industry-standard technique for running applications on a web
server. Oracle WebServer supports this standard, but also offers the Web
Request Broker as a superior alternative.

Oracle WebServer 2.0 User’s Guide

Glossary

Common Logfile Format

An industry standard format for transaction log files. The Web Listener
uses this format to log transactions.

Configuration Directory
A directory in which a Web Listener process stores its configuration file.
Cookie

Information inserted by the server into the client’s browser to track what
the client has been doing. This can either expire when the user exits the
browser or expire at the date the creator of the cookie specifies.

Database

A structured collection of information and the program that manages
such. The Oracle7 Server is a relational database, which is the prevalent

type.

Database Connection Descriptor (DCD)
A file that specifies information such as how the PL/SQL Agent is to
connect to the Oracle7 Server to fulfil an HTTP request. A URL that
requires the use of the PL/SQL Agent includes the name of the DCD it is
to use. The information in the DCD includes the username (which also

specifies the schema and the privileges), password, connect-string, error
log file, standard error message, and the language to be used.

Data Integrity

A mechanism that uses digital signatures to ensure that transmitted data
is not tampered with.

DCD
See Database Connection Descriptor (DCD).

Default Character Set

The character set the Web Listener uses in interpreting a file that uses an
unrecognized character set.

Default DCD

The Database Connection Descriptor(DCD) that the PL/SQL Agent uses
to access a database in response to a request that does not specify an
available DCD.

Default MIME Type

The Multipurpose Internet Mail Extensions (MIME) type that the Web
Listener uses in interpreting requested files of an unsupported MIME

type. See also MIME Type.

A-3

A4

Digest Authentication

An authentication scheme that encrypts passwords before sending them
over the Internet, unlike basic authentication. See also Authentication.

Digital Signature

A “signature” attached to an electronic document that reliably identifies
the author or sender, and guarantees that the document has not been
tampered with.

Directory Indexing

The practice of returning a directory listing when a request URL resolves
to adirectory that does not contain the default initial file. Directory listings
can sometimes help clients learn the correct spelling of filenames they
want to request.

Directory Mapping

The practice of defining a virtual file system.
Dispatcher

See WRB Dispatcher.
DNS Resolution

The practice of determining a computer’s DNS (Domain Name Service)
host name from its IP address.

Document Root

The file-system directory that serves as the root of the Web Listener’s
virtual file system.

Domain

See Domain Name Service (DNS).

Domain-based Restriction

A restriction scheme that allows only machines within specified DNS
domains to access certain files. See also Restriction.

Domain Name Service (DNS)

The mechanism that divides the Internet into separate, hierarchical groups
called domains, identified by unique alphanumeric names, such as
us.oracle.com . DNS identifies each computer within a domain by a
unique host name. For example, a computer hamed hal in the
us.oracle.com domain would be uniquely identified on the Internet as
hal.us.oracle.com

Oracle WebServer 2.0 User’s Guide

Glossary

Encoding

An algorithm used to alter a file’s format, such as compression. You can
use the WebServer manager to define the encodings that each Web
Listener process recognizes.

Encryption

The practice of scrambling (encrypting) data in such a way that only an
intended recipient can unscramble (decrypt) and read the data. See also
Public-Key Encryption and Secret-Key Encryption.

Error File

A file to which a Web Listener process logs errors. There is one error file
for each Web Listener process.

Exception

A runtime occurrence in PL/SQL or Java that requires special handling
and may indicate an error.

File Caching

The practice of leaving files open (resident in memory) so the WebServer
can provide them to clients quickly. You can use the WebServer Manager
to specify files to be cached.

Filename Extension

A short alphanumeric suffix attached to a filename, following a dot *.
that represents the file’s format. The WebServer uses filename extensions
to identify several kinds of file formats, including MIME types and
encodings. A file may have several extensions.

File Protection

The practice of assigning an authentication or restriction scheme to control
access to a specific file or group of files.

Firewall Machine

A computer that regulates access to computers on a local area network
from outside, and regulates access to outside computers from within the
local area network.

Foreign Key
See Key.
genreq

A utility you can use to generate a request for a certificate. You can then
submit the generated request to a certifying authority (CA).

A-5

A-6

Host Name

An alphanumeric character string that uniquely identifies a computer
within a DNS domain.

HTTP
See HyperText Transfer Protocol (HTTP).
HTTPS

Secure HTTP—a version of HTTP with provisions for secure data
transmission. See HyperText Transfer Protocol (HTTP).

HyperText Markup Language (HTML)

A format for encoding hypertext documents that may contain text,
graphics, and references to programs, and references to other hypertext
documents.

HyperText Transfer Protocol (HTTP)

The protocol that clients use to issue requests for documents to the
WebServer.

Image Map

Graphic in a Web page that specifies several URL’s, each associated with
a specified region of the single image.

Info File

A file to which a Web Listener process logs its transactions on a particular
port. There is one info file for each port on which the Web Listener process
accepts connections. The info file is in Common Lodfile Format.

Initial File

The name of the HTML file that the WebServer returns by default when a
request URL specifies only a directory name.

IP Address

A four-part number with no more than three digits in each part that
uniquely identifies a computer on the Internet; the number format is
defined by the Internet Protocol (IP).

IP-based Restriction

A restriction scheme that allows only machines within specified groups of
IP addresses to access certain files. See also Restriction.

Java

Language developed by Sun Microsystems and used by Oracle
WebServer. This language is fully object-oriented, extremely portable, and

Oracle WebServer 2.0 User’s Guide

Glossary

optimized for creating distributed applications on the Internet or other
computer networks. Oracle WebServer can execute Java directly and can
send Java programs called applets to the client’s browser for execution
there.

Java Interpreter

In general, a program that interprets and executes Java bytecode
independently of a Web browser. In Oracle WebServer, this refers
specifically to the Java Interpreter that WebServer provides for the
purpose of executing Java on the server.

Java Web Developer’s Toolkit

A group of Java classes provided with the Oracle WebServer SDK to make
it easier for you to interface to the Oracle7 Server and generate dynamic
HTML using Java.

Key
a. Alarge number used in encrypting data. See also Private Key and
Public Key.
b. A unique identifier used in a relational database, called a “primary
key.”
c. Avreference to a primary key, called a “foreign key.”
Key Pair

A pair of mathematically related keys (a public key and a private key)
associated with a user, used in public-key encryption.

Language Identifier

A two-character alphanumeric string that identifies a human language, as
defined by RFC 1766.

Listener

Portion of the WebServer that receives HTTP requests. You can use the
Oracle WebServer Manager to create multiple Web Listener processes and
assign each to accept connections on a different set of ports.

Listener Configuration

A collective name for the parameters that control the behavior of a Web
Listener process. You use the WebServer Manager to maintain listener
configurations.

Listener Name

An alphanumeric string no more than six characters long that uniquely
identifies a Web Listener process.

A-7

A-8

Listener PID File

A one-line text file that contains an ASCII representation of the process ID
(PID) of a Web Listener process.

LiveHTML

Oracle’s extension of the industry-standard Server Side Includes (SSI)
functionality. LiveHTML files supplement HTML with instructions that
WebServer executes before transmitting the page. These instruction
specify material that is to be included in the generated page. Said material
can include other Web pages, environment variables, and the output of
programs executed on the Server. The programs may, but need not,
conform to the CGI standard.

Local Database

For the WebServer, a database that runs on the same machine as the
WebServer.

Log File Directory

A directory in which the PL/SQL Agent stores log files for a particular
Database Connection Descriptor (DCD).

Memory Mapping

For the WebServer, the practice of mapping an open file directly into the
address space of a Web Listener process. This speeds file access, and
allows multiple clients to access the same file simultaneously without
making a separate copy for each client.

MIME Type

A file format defined by the Multipurpose Internet Mail Extensions
standard. Several RFCs define MIME.

NULL

a. A marker is the database for the absence of data.

b. The logical result of the comparison of a database NULL with any
value.

c. A statementis PL/SQL that does nothing, but functions as a
placeholder.

Oracle7 Server

The leading database product in the world. A program for sophisticated
high-level management of information. See also Database and Server.

ORACLE_HOME

Environment Variable that indicates the root of the Oracle7 Server code

Oracle WebServer 2.0 User’s Guide

Glossary

tree.
Oracle Web Agent (OWA)

A term from an earlier release of this product. OWA is now the PL/SQL
Agent. For the sake of compatibility, the string “owa” is still used in URLs
to specify that execution is to go to the PL/SQL Agent.

Overloading

Overloaded procedures and functions (in PL/SQL) or methods (in Java)
have the same name but take different parameters (PL/SQL) or are
contained in different classes (Java) and do similar but not identical things.

Package
A group of PL/SQL functions and procedures.
Parsable File

A file located on the WebServer that contains codes that the server
interprets prior to transmission of the file as a Web page. This is part of the
LiveHTML functionality. See also LiveHTML.

PL/SQL

Oracle’s proprietary extension to the SQL language. PL/SQL adds
procedural and other constructs to SQL that make it suitable for writing
applications.

PL/SQL Agent

A server extension that interfaces to the Oracle7 Server using PL/SQL and
dynamically derives and outputs HTML. The PL/SQL Agent can be
invoked either as a WRB Service or as a CGI program.

PL/SQL Developer’s Toolkit

A bundle of PL/SQL packages, provided with the Oracle WebServer SDK,
that make it easier to generate HTML using PL/SQL. Applications written
for either the PL/SQL Agent or the Java Interpreter can use these
packages.

Port

A number that TCP uses to route transmitted data to and from a particular
program.

Preferred Language

The language the Web Listener uses when handling a request for a file
available in more than one language, if the request doesn’t specify a
language. Language identifiers are defined by RFC 1766.

A-9

A-10

Primary Key
See Key.
Private Key

A key known only to one user, used to decrypt data encrypted with the
user’s public key. See also Public-Key Encryption.

Proxy Server

An HTTP engine, such as the Web Listener, that clients inside a firewall
can use to access web sites outside the firewall.

Public Key

A key known to all users, used to encrypt data in such a way that only a
specific user can decrypt it. See also Private Key and Public-Key Encryption.

Public-Key Encryption

A form of encryption that uses a key pair (a public key and a private key)
to encrypt and decrypt data.

Query String

Optional portion of a URL that specifies parameters to be passed to some
server extension.

Realm

A group of users and groups assigned by an authentication scheme to
regulate access to specific files or directories.

Remote Database

For the WebServer, a database running on a different machine from the
WebServer, which the WebServer accesses over the network.

Restriction

A security scheme that restricts access to files provided by the WebServer
to client machines within certain groups of IP addresses or DNS domains.

Routing

The process of directing data from one machine on the Internet to another
by way of intermediate machines.

Secret-Key Encryption

A form of encryption that uses a single key both to encrypt and to decrypt
a document. Secret-key encryption is much faster that public-key
encryption, but is more vulnerable to attack.

Oracle WebServer 2.0 User’s Guide

Glossary

Secure Sockets Layer (SSL)

An emerging standard for secure transmission of hypertext documents
over the Internet using secure HTTP (HTTPS).

Server

A process that executes requests on behalf of another process (the client)
whose main purpose is to interface to the user. There are two types of
servers relevant to this product. The first is the Oracle7 Server, which is a
database server dedicating to performing data management duties on
behalf of clients using any number of possible interfaces. The other is the
Oracle WebServer itself, which is a web server, dedicating to answering
requests that come in through the HyperText Transfer Protocol (http). This
product is a web server that utilizes a database server.

Server Extension

Generic term for external programs executed by the Oracle WebServer
whether through the WRB or CGI. Server Extensions are either WRB
Services or CGI programs.

Server-Parsable

See Parsable File.
Server Side Includes (SSI)

Industry-standard term for LiveHTML. See LiveHTML.
Session Key

A secret key used by SSL to encrypt data transmitted over a secure
connection. The client generates the session key after the WebServer
authenticates itself and communicates it to the WebServer using public-
key encryption.

Socket
The combination of an IP address and a port number.
SQL (Structured Query Language)

The industry-standard language for interfacing to relational databases
such as the Oracle7 Server. See also PL/SQL.

SSI
See Server Side Includes (SSI) and LiveHTML.

SSL
See Secure Sockets Layer (SSL).

A-12

Table
a. In HTML, a table is a way of presenting information to the user.

b. In SQL, a table is the basic way that data is structured, regardless of
how it is presented to the user.

c. InPL/SQL, special kinds of SQL tables are used to function,
effectively, as dynamic arrays.

Transmission Control Protocol (TCP)

The underlying communication protocol that the WebServer and its
clients use to communicate HTTP requests.

Uniform Resource Locator (URL)
The text-string format clients use to encode requests to the WebServer.
User Directory

The subdirectory of a user’s home directory in which the Web Listener
searches by default for files when the user’s home directory appears in the
request URL.

Varchar2
A standard datatype of the Oracle7 Server. A variable-length string.
Virtual Machine (VM)

The mechanism the Java language uses to achieve its high portability. Java
bytecode is executable by any Java Virtual Machine running on any actual
machine. The VM converts the bytecode to the native code for the machine
at hand.

Virtual File System

A mapping that associates the pathnames used in request URLS to the file
system maintained by the host machine’s operating system.

Virtual Pathname

A synonym that the virtual file system maps to a file stored in the file
system maintained by the host machine’s operating system.

Web Listener
See Listener.
Web Request Broker (WRB)

The core of the Oracle WebServer architecture. The Web Request Broker
passes http requests that require the running of Server programs to
various processes (WRB Executable Engines or WRBX’s) that
continuously run and await such requests. The WRB also includes an open

Oracle WebServer 2.0 User’s Guide

Glossary

API, so you can run your own Server programs under it. The WRB is a
more efficient alternative to the industry-standard CGI, but it can process
requests that use CGI environment variables.

WebServer Administrator
Person in charge of configuring and running the Oracle WebServer.
WebServer Manager

A collection of utilities and HTML forms you can use to configure and
maintain the WebServer installed on your computer.

Wrapper

A Java class that encapsulates another kind of object, possibly external to
Java itself, such as a PL/SQL package.

WRB
See Web Request Broker (WRB).
WRB API
An open API used by the Web Request Broker (WRB).
WRB Cartridge
A program that is executed on the WebServer through the WRB API.
WRB Dispatcher

Portion of the WRB that distributes requests to running processes.
WRB Executable Engine (WRBX)

One of a pool of processes that the WRB maintains continuously, so that
HTTP requests requiring the execution of programs are not slowed down
by the performance cost of spawning a new process. WRBX’s are
associated with WRB Cartridges and are created and destroyed according
to workload.

WRB Service

A particular server extension to be run through the WRB. A WRB Service
is the combination of a WRB Cartridge with its interface, the WRB API.
The Oracle WebServer comes with three WRB Services: the PL/SQL
Agent, the Java Interpreter, and the LIveHTML Interpreter. Using the
WRB API, you can supplement these with your own.

A-14 Oracle WebServer 2.0 User’s Guide

Overview of the Oracle7
Server, SQL, and PL/SQL

This section provides an overview of the Oracle database, and a guide to its
documentation set. This subject cannot be thoroughly covered here. What is
provided is a conceptual overview, and enough information on PL/SQL to
enable you to write simple programs. You are referred to the Oracle7 Server
documentation for further information. The topics covered in this section are as
follows:

= The Oracle7 Server. A conceptual overview of what a relational database is.

= SQL. An introduction to the standard language used to interface to
relational databases.

e PL/SQL. Anintroduction to Oracle’s extension of SQL that makes it a
versatile high-level programming language.

Oracle7 Server

The Oracle7 Server is a Relational Database Management System (RDBMS). That
is to say, the job of the Oracle7 Server is to manage data. Users or other processes
store, alter, and obtain the data by issuing statements in SQL that the RDBMS
executes, but they never directly access the data. Having all the information
under the control of a single entity ensures, for example, that the information

maintains a coherent structure and that simultaneous changes by different users
do not interfere with one another.

Database Tables

Saying that Oracle7 is a Relational Database Management System implies that all
of the data it contains is structured as tables (tables are called “relations” in
mathematical jargon).

B-2 Oracle WebServer 2.0 User’s Guide

Foreign Keys

Here is a simple table, such as you might find in an Oracle database:

CNUM FNAME LNAME ADDRESS

4005 Julia Peel 197 Myrtle
Court, Brisbane,
CA

4007 Terry Subchak 2121 Oriole
Way, Boston,
MA

4008 Emilio Lopez 31D San Bruno
Ave. SF, CA

4011 Kerry Lim 455 32nd St. #45,
Brinton, KY

The Customers Table

Each row of this table describes one person, and each column has one type of
information about that person. Note the column cnum. This is simply a number
we generate to distinguish the customers from one another, as names are not
necessarily unique. You refer to data in a relational database by its content, not
by such things as where it is stored. Therefore, every table must have an
identifying group of one or more columns whose values, taken as a set, are
always different for every row of the table. This group, in this case the single
column cnum, is called the primary key of the table. Locally generated numbers,
as in this example, are a common and easy way to create primary keys.

Suppose you wanted to add our customers’ phone numbers to your database.
Since one person can have multiple phone numbers, these do not fit into your
structure well. If you want to include the phone numbers in the Customers table,
there are three possibilities, none of them good:

1. You could fit all the phone numbers for a given person into a single
column in a single row, in which case it would be difficult to access the
phone numbers independently.

2. You could create a column for each type of phone number, in which case
you would have to redesign your table each time a new type arose. This
also could create an unwieldy number of mostly empty columns.

3. You could enter a new row for each phone number, in which case each
such row would consist of redundant information except for the new
phone number. This approach would be error-prone and waste space.

Overview of the Oracle7 Server, SQL, and PL/SQL B-3

The good solution is simply to create a second table, like this:

CNUM PHONE TYPE
4005 375-296-8226 home
4005 375-855-3778 beeper
4008 488-255-9011 home
4011 577-936-8554 home
4008 488-633-8591 work

Table 0 - 1 Customers_Phone

Notice that in this table cnum is not the primary key; it identifies the customer
and therefore is the same for each phone number associated with a given
customer. What, then, is the primary key? The combination of cnum and phone.
If you list the same number for the same person twice, you really have made a
duplicate entry and should eliminate one anyway.

The cnum column does have a special function, however, because it defines the
relationship between Customers_Phone and Customers by associating each
phone number with a customer. We say that it references the cnum column in
Customers. A group of one or more columns, such as this, that references
another group is known as a foreign key. The group of columns a foreign key
references is called its parent key or its referenced key. Each foreign key value
references a specific row in the table containing the parent key. Clearly, then, all
sets of values in the foreign key have to be present once and only once in the
parent key (although they may be present any number of times in the foreign key
itself, as above) for the reference to be both meaningful and unambiguous. For
that reason, the parent key must be either a primary key (the usual case) or
another group of columns that is unique, which is known as a unique key.

Oracle can make sure that all primary and unique keys stay unique and that all
foreign key references are valid; this is called maintaining referential integrity. For
more information on foreign and parent keys, see Chapter 7 of the Oracle7 Server
Concepts Manual and “CONSTRAINT clause” in Chapter 4 of the Oracle7 SQL
Reference.

Users, Connections, Privileges, and Roles

B-4

The Oracle7 Server controls which users can do what to its data. To do this, it

uses a log-on procedure that is separate from that of the operating system. Once
logged on the operating system, you establish a connection to the Oracle7 Server
with a username and password known to Oracle that may have no relationship

Oracle WebServer 2.0 User’s Guide

to the ones used for you by the operating system. For more information, see
“CREATE USER” and “CONNECT” in the Oracle7 Server SQL Reference.

The name under which you connect to Oracle7—your Oracle username— is
associated with a number of privileges, which are the rights to perform various
actions. For more information on privileges, see “GRANT” and “REVOKE” in
Chapter 4 of the Oracle7 Server SQL Reference.

The PL/SQL Agent as an Oracle User

When you access the Oracle7 Server through the WebServer, you use a PL/SQL
Agent that already has an established connection to the Server. When a URL
causes the Web Listener to invoke the PL/SQL Agent, it associates the PL/SQL
Agent with a service based on the URL and/or the domain name of the issuer of
the URL. This service determines the Oracle user that the PL/SQL Agent
behaves as when executing this request, and thereby controls what that request
can do.

SQL

SQL (Structured Query Language) is the language you use to issue instructions
to the Oracle7 Server. It is, in fact, the standard language used by all major
relational database vendors, and Oracle complies at Entry Level with SQL92, the
most recent ISO (International Standards Organization) standard. There are
several aspects of SQL that may differ from computer languages that you are
familiar with, such as the following:

= SQL isnhon-procedural. In SQL, you tell the Server what to do but not how
it is to be done. This frees you from dealing with a lot of detail.

= SQL statements are independent of one another. Although PL/SQL
addresses this, SQL itself has no conditional or other control-flow
statements.

= SQL employs set-at-a-time operation. It operates on arbitrarily large sets
of data in a single step.

= SQL uses Nulls and Three-Valued Logic. In most languages, Boolean
expressions are either TRUE or FALSE. In SQL, they are TRUE, FALSE, or
NULL. This will be explained shortly.

Overview of the Oracle7 Server, SQL, and PL/SQL B-5

Retrieving Data

Suppose you wanted to pull from the Customers table the information on
customers named “Peel”. This is called making a query. To do it, you could issue
the following statement:

SELECT *

FROM Customers
WHERE LNAME = 'Peel’;

This produces the following:

CNUM FNAME LNAME ADDRESS

4005 Julia Peel 197 Myrtle Court, Brisbane, CA

Oracle interprets the statement as follows: Any number of spaces and/or line
breaks are equivalent to one space or line break. These are delimiters, and the
extra spaces and line breaks are for readability: all are equivalent “white space”.
Likewise, case is not significant, except in literals like the string you are
searching for ('Peel’).

SELECT is a keyword telling the database that this is a query. All SQL statements
begin with keywords. The asterisk means to retrieve all columns; alternatively,
you could have listed the desired columns by name, separated by commas. The
FROM Customers clause identifies the table from which you want to draw the

data.

WHERE LNAME = ‘Peel’ is a predicate. When a SQL statement contains a
predicate, Oracle tests the predicate against each row of the table and performs
the action (in this case, SELECT) on all rows that make the predicate TRUE. This
is an example of set-at-a-time operation. The predicate is optional, but in its
absence the operation is performed on the entire table, so that, in this case, the
entire table would have been retrieved. The semi-colon is the statement
terminator.

Nulls and Three-Valued Logic

B-6

With predicates, you should be aware of three-valued logic. In SQL, the basic
Boolean values of TRUE and FALSE are supplemented with another: NULL, also
called UNKNOWN. This is because SQL acknowledges that data can be
incomplete or inapplicable and that the truth value of a predicate may therefore
not be knowable. Specifically, a column can contain a null, which means that
there is no known applicable value. A comparison between two values using
relational operators—for example, a = 5—normally is either TRUE or FALSE.
Whenever nulls are compared to other values, however, including other nulls,
the Boolean value is neither TRUE nor FALSE but itself NULL.

Oracle WebServer 2.0 User’s Guide

Creating Tables

In most respects, NULL has the same effect as FALSE. The major exception is
that, while NOT FALSE = TRUE, NOT NULL = NULL. In other words, if you
know that an expression is FALSE, and you negate (take the opposite of) it, then
you know that it is TRUE. If you do not know whether it is TRUE or FALSE, and
you negate it, you still do not know. In certain cases, three-valued logic can
create problems with your programming logic if you have not accounted for it.
You can treat nulls specially in SQL with the IS NULL predicate, as explained in
Chapter 3 of the Oracle7 Server SQL Reference.

This is how you create tables in SQL. You can use the following SQL statement
to create the Customers table:

CREATE TABLE Customers

(cnum integer NOT NULL PRIMARY KEY,
FNAME char(15) NOT NULL,

LNAME char(15) NOT NULL,

ADDRESS varchar2);

After the keywords CREATE TABLE come the table’s name and a parenthesized
list of its columns with a definition of each. Integer, char, and varchar2 are
datatypes: all of the data in a given column is always of the same type (char
means a fixed and varchar2 a varying length string). For more information on
SQL datatypes, see Chapter 2 of the Oracle7 Server SQL Reference.

NOT NULL and PRIMARY KEY are constraints on the columns they follow.
They restrict the values you can enter in those columns. Specifically, NOT NULL
forbids you from entering nulls in the column. PRIMARY KEY prevents you
from entering duplicate values into the column and makes the column eligible
to be the parent for some foreign key. For more information, see “CREATE
TABLE” and “CONSTRAINT clause” in Chapter 4 of the Oracle7 Server SQL
Reference.

Ownership and Naming Conventions

Note that when you create a table in SQL, you own it. This means you generally
have control over who has access to it, and that it is part of a schema that bears
your Oracle username. A schema is a named collection of database objects under
the control of a single Oracle user. Schemas inherit the names of their owners.
When other users refer to an object you have created, they have to precede its
name by the schema name followed by a dot (no spaces). SQL utilizes a
hierarchical naming convention with the levels of the hierarchy separated by
dots. In fact, you sometimes have to precede column names by table names to
avoid ambiguity, in which case you also use a dot. The following is an example
in the form schemaname.tablename.columnname:

Overview of the Oracle7 Server, SQL, and PL/SQL B-7

scott.Customers.LNAME

You can simplify references like this by using synonyms, which are aliases for
tables or other database objects. Synonyms can be private, meaning that they are
part of your schema and you control their usage, or public, meaning that all users
can access them. For example, you can create a synonym “Cust” for
scott.Customers as follows:

CREATE SYNONYM Cust FOR scott.Customers;

This would be a private synonym, which is the default. Now you could rewrite
the example above like this:

Cust.LNAME

You still have to refer to the column directly. Synonyms can only be for tables,
not table components like columns.

For more information on synonyms, see “CREATE SYNONYM” in Chapter 4 of
the Oracle7 Server SQL Reference. For more information on SQL naming
conventions, see Chapter 2 of the Oracle7 Server SQL Reference. For more on
schemas, see “CREATE SCHEMA” in Chapter 4 of the Oracle7 Server SQL
Reference.

Inserting and Manipulating the Data

Which SQL statements determine the actual data content? Chiefly, three —the
INSERT statement, the UPDATE statement, and the DELETE statement. INSERT
places rows in a table, UPDATE changes the values they contain, and DELETE
removes them.

The INSERT Statement

B-8

For INSERT, you simply identify the table and its columns and list the values, as
follows:

INSERT INTO Customers (cnum, FNAME, LNAME)
VALUES (2004, 'Harry’, 'Brighton’);

This statement inserts a row with a value for every column but ADDRESS. Since
you did not, in your CREATE TABLE statement, place a NOT NULL constraint
on the ADDRESS column, and since you did not give that column a value here,
Oracle sets this column to null. If you are inserting a value into every column of
the table, and you have the values ordered as the columns are in the table, you
can omit the column list. You optionally can put a SELECT statement in place of
the VALUES clause of the INSERT statement to retrieve data from elsewhere in
the database and duplicate it here. For more information on the INSERT and the

Oracle WebServer 2.0 User’s Guide

SELECT statements, see “INSERT” and “SELECT,” respectively, in Chapter 4 of
the Oracle7 Server SQL Reference.

The UPDATE Statement

UPDATE is similar to SELECT in that it takes a predicate and operates on all
rows that make the predicate TRUE. For example:
UPDATE Customers

SET ADDRESS = null

WHERE LNAME = 'Subchak’;
This sets to null all addresses for customers named ‘Subchak’. The SET clause of
an UPDATE command can refer to current column values. “Current” in this case
means the values in the column before any changes were made by this
statement. For more information on the UPDATE statement, see “UPDATE” in
Chapter 4 of the Oracle7 Server SQL Reference.

The DELETE Statement

DELETE is quite similar to UPDATE. The following statement deletes all rows
for customers named ‘Subchak’:

DELETE FROM Customers

WHERE LNAME = "Subchak’;
You can only delete entire rows, not individual values. To do the latter, use
UPDATE to set the values to null. Be careful with DELETE that you do not omit
the predicate; this empties the table. For more information on DELETE, see
“DELETE” in Chapter 4 of the Oracle7 Server SQL Reference.

Querying Multiple Tables Through Joins

Even though it only retrieves data, SELECT is the most complex statement in
SQL. One reason for this is that you can use it to query any number of tables in
one statement, correlating the data in various ways. One way to do this is with a
join, which is a SELECT statement that correlates data from more than one table.
Ajoin finds every possible combination of rows, such that one row is taken from
each table joined. This means that three tables of ten rows each can produce a
thousand rows of output (10 * 10 * 10) when joined. Typically, you use the
predicate to filter the output in terms of some relationship. The most common
type of join, called a natural join, filters the output in terms of the foreign key/
parent key relationship explained earlier in this appendix. For example, to see
the people in the Customers table coupled with their various phone numbers
from the Customers_Phone table, you could enter the following:

SELECT a.CNUM, LNAME, FNAME, PHONE, TYPE

FROM Customers a, Customer_Phone b
WHERE a.CNUM = b.CNUM;

Overview of the Oracle7 Server, SQL, and PL/SQL B-9

Outer Joins

B-10

In the above, a and b are range variables, also called correlation variables. They are
simply alternate names for the tables whose names they follow in the FROM
clause, so that a = Customers and b = Customers_Phone. You can see that here
you need the range variables to distinguish Customers.CNUM from
Customers_Phone.CNUM in the SELECT and WHERE clauses. Even when not
needed, range variables are often convenient.

Here is the output of the natural join:

CNUM LNAME FNAME PHONE TYPE
4005 Peel Julia 375-296-8226 home

4005 Peel Julia 375-855-3778 beeper

4008 Lopez Emilio 488-255-9011 home

4008 Lopez Emilio 488-633-8591 work

4011 Lim Kerry 577-936-8554 home

This output represents every combination of rows from the two tables where
both rows have the same CNUM value.

Notice in the preceding example that people from the Customers table who did
not have phones (hamely, CNUM 4007) were not selected. If a row has no match
in the other table, the predicate is never true for that row. Sometimes, you do not
want this effect, and you can override it by using an outer join. An outer join is a
join that includes all of the rows from one of the tables joined, regardless of
whether there were matches in the other table. Such a join inserts nulls in the
output in whichever columns were taken from the table that failed to provide
matches for the outer-joined table. Here is the same query done as an outer join:
SELECT a.CNUM, LNAME, FNAME, PHONE, TYPE

FROM Customers a, Customer_Phone b
WHERE a.CNUM = b.CNUM (#);

This is the output of the above:

CNUM LNAME FNAME PHONE TYPE
4005 Peel Julia 375-296-8226 home

4005 Peel Julia 375-855-3778 beeper

4007 Subchak Terry NULL NULL

4008 Lopez Emilio 488-255-9011 home

4008 Lopez Emilio 488-633-8591 work

4011 Lim Kerry 577-936-8554 home

Notice that the only difference in the query is the addition of (+) to the WHERE
clause. This follows the table for which nulls are to be inserted. The output from
the query, then, includes at least one row for each row of the table that did not
have (+) appended in the predicate.

Oracle WebServer 2.0 User’s Guide

You can also use SELECT statements to produce values for processing within
gueries (these are called subqueries), and you can perform standard set
operations (UNION, INTERSECTION) on SELECT statement output. For more
information on the SELECT statement, subqueries, and joins, see “SELECT” in
Chapter 4 of the Oracle7 Server SQL Reference.

Where to Look for More Information

Oracle7 SQL is a very complex subject, and we have been able only to scratch the
surface of it here. To make it easier for you to find the specific information you
need to perform the task at hand, we provide the following table, which
identifies where in the Oracle7 Server documentation set you can find

Overview of the Oracle7 Server, SQL, and PL/SQL B-11

information on specific SQL topics. Unless otherwise noted, find the headings in

Chapter 4 of the Oracle7 Server SQL Reference.

PL/SQL

B-12

To Find Out About

Look Under

aggregate data (totals, counts,
averages, and so on)

SQL Functions in Chapter 3 of the
Oracle7 Server SQL Reference.

changing user passwords

ALTER USER

connecting to the database

CONNECT

constraints

CONSTRAINT clause; CREATE
TABLE; ENABLE clause

controlling user access to objects
and user actions

GRANT; REVOKE; CREATE
ROLE; SET ROLE; see also
Chapters 17 and 18 in the Oracle7
Server Concepts Manual

creating databases

CREATE DATABASE

creating users

CREATE USER

functions that change simple
values

SQL Functions in Chapter 3 of the
Oracle7 Server SQL Reference.

linking databases at different
locations

CREATE DATABASE LINK; see
also “Distributed Databases” in
the Oracle7 Server Concepts Manual.

making changes to the
data permanent

COMMIT; SET TRANSACTION;
SAVEPOINT

making SQL statements execute
more quickly

CREATE INDEX; see also
“Indexes” in the Oracle7 Server
Concepts Manual.

monitoring database usage

AUDIT

reversing (undoing) changes to the
data

ROLLBACK; SET
TRANSACTION; SAVEPOINT

PL/SQL is an application-development language that is a superset of SQL,
supplementing it with standard programming-language features that include
the following:

block (modular) structure

Oracle WebServer 2.0 User’s Guide

=« flow-control statements and loops
= variables, constants, and types
e structured data

= customized error handling

Another feature of PL/SQL is that it allows you to store compiled code directly
in the database. This enables any number of applications or users to share the
same functions and procedures. In fact, once a given block of code is loaded into
memory, any number of users can use the same copy of it simultaneously
(although behavior is as though each user had her own copy), which is useful for
the Oracle WebServer. PL/SQL also enables you to define triggers, which are
subprograms that the database executes automatically in response to specified
events.

Unlike SQL, PL/SQL is not an industry standard, but is an exclusive product of
Oracle Corporation.

The remainder of this section covers the following PL/SQL topics:

= Basic Structure and Syntax

= The DECLARE Section

= The EXECUTABLE Section

= The EXCEPTION Section

= Storing Procedures and Functions in the Database

« Database Triggers

Note: For the sake of efficiency, PL/SQL code is compiled prior to runtime. It
cannot refer at compile time to objects that do not yet exist, and, for that reason,
the one part of SQL that PL/SQL does not include is DDL (Data Definition
Language)—the statements, such as CREATE TABLE, that create the database
and the objects it contains. However, you can work around this by using the
package DBMS_SQL, included with the server, to generate the DDL code itself
dynamically at runtime. For more information, see “Using DDL and Dynamic
SQL” in the PL/SQL User’s Guide and Reference.

Overview of the Oracle7 Server, SQL, and PL/SQL B-13

Basic Structure and Syntax

PL/SQL, like many programming languages, groups statements into units
called blocks. These can either be named, in which case they are called
subprograms, or unnamed, in which case they are anonymous blocks. Subprograms
can be either functions or procedures. The difference between these, as in most
languages, is that a function is used in an expression and returns a value to that
expression, while a procedure is invoked as a standalone statement and passes
values to the calling program only through parameters. Subprograms can be
nested within one another and can be grouped in larger units called packages.

A block has three parts:

= The DECLARE Section. This is where you define local variables, constants,
types, exceptions, and nested subprograms. PL/SQL has a forward
declaration, but you can use it only for subprograms. Therefore, you must
define all variables, constants, and types before referencing them. For
more information on forward declarations, see “Declaring Subprograms”
in the PL/SQL User’s Guide and Reference.

e The EXECUTABLE Section. This is the actual code that the block executes.
This is the only part of the block that must always be present.

e The EXCEPTION Section. This is a section for handling runtime errors and
warnings.

These divisions are explained further in the sections that follow.

The DECLARE Section

Datatypes

B-14

The DECLARE section begins with the keyword DECLARE and ends when the
keyword BEGIN signals the arrival of the EXECUTABLE section. You can
declare types, constants, variables, exceptions, and cursors in any order, as long
as they are declared before they are referenced in another definition. You declare
subprograms last. A semi-colon terminates each definition.

PL/SQL provides a number of predefined datatypes for variables and constants.
It also enables you to define your own types, which are subtypes of the
predefined types. The types fall into the following three categories:

= Scalar. These include all string, number, and binary types. All of the SQL
datatypes, which are the datatypes that you can store in the database, fall

Oracle WebServer 2.0 User’s Guide

Declaring Variables

into this category. To find out about these datatypes, see “Datatypes” in
the Oracle7 Server SQL Reference.

= Composite. These are structured datatypes, which is to say data structures
that have components you can address independently. The PL/SQL
composite types are TABLE (which is distinct from both database and
HTML tables) and RECORD. These types are explained later in this
appendix.

= Reference. There is one kind of reference datatype—REF CURSOR—
which is a pointer to a cursor. Cursors are explained later in this appendix.
For more information on the REF CURSOR datatype, see “Using Cursor
Variables” in the PL/SQL User’s Guide and Reference.

For a list and explanation of all PL/SQL datatypes, see “Datatypes” in the PL/
SQL User’s Guide and Reference.

In many cases, you can convert from one datatype to another, either explicitly or
automatically. The possible conversions and the procedure involved are
explained in the PL/SQL User’s Guide and Reference under “Datatype
Conversion”.

You can also define a variable so that it inherits its datatype from a database
column or from another variable or constant, as explained in the next section.

For variables, provide the name, datatype, and any desired attributes, as follows:

cnum INTEGER(5) NOT NULL;

This declares a five-digit integer called cnum that will not accept nulls. The use
of case above serves to distinguish keywords from identifiers; PL/SQL is not
case-sensitive. NOT NULL is the only SQL constraint that you can use as a PL/
SQL attribute.

Note: PL/SQL initializes all variables to null. Therefore,a NOT NULL variable,
such as the above, produces an error if referenced before it is assigned a value.

Optionally, you can assign an initial value to the variable when you declare it by
following the datatype specification with an assignment, as follows:

cnum INTEGER(5) := 254;

This sets cnum to the initial value of 254. Alternatively, you can use the keyword
DEFAULT in place of the assignment operator ;= to achieve the same effect. For
more information on setting defaults, see “Declarations” in the PL/SQL User’s
Guide and Reference.

Overview of the Oracle7 Server, SQL, and PL/SQL B-15

Declaring Constants

Defining Types

Scope and Visibility

B-16

Inheriting Datatypes

To have the variable inherit the datatype of a database column or of another
variable, use the %TYPE attribute in place of a declared datatype, as follows:

snum cnum%TYPE;

This means that snum inherits the datatype of cnum. You can inherit datatypes
from database columns in the same way, by using the notation
tablename.columname in place of the variable name. Normally, you do this if the
variable in question is to place values in or retrieve them from the column. The
advantages are that you need not know the exact datatype the column uses and
that you need not change your code if the datatype of that column changes. If
you do not own the table containing the column, precede the tablename with the
schemaname, as described under Ownership and Naming Conventions. For more
information on %TYPE assignments, see “Declarations” in the PL/SQL User’s
Guide and Reference.

You declare constants the same way as variables, except for the addition of the
keyword CONSTANT and the mandatory assignment of a value. Constants do
not take attributes other than the value. An example follows:

interest CONSTANT REAL(5,2) := 759.32;

User-defined types in PL/SQL are subtypes of existing datatypes. They provide
you with the ability to rename types and to constrain them by specifying for your
subtype lengths, maximum lengths, scales, or precisions, as appropriate to the
standard datatype on which the subtype is based. For more information on the
datatype parameters, see “Datatypes” in Chapter 2 of the Oracle7 Server SQL
Reference. For more information on PL/SQL datatypes, see “Datatypes” in the
PL/SQL User’s Guide and Reference. You can also use the %TYPE attribute in
defining a subtype. Here is an example:

SUBTYPE shorthum IS INTEGER(3);

This defines SHORTNUM as a 3-digit version of INTEGER. For more
information see “User-Defined Subtypes” in the PL/SQL User’s Guide and
Reference.

Nested subprograms, defined in the DECLARE section, can be called from either
of the other sections, but only from within the same block where they are defined
or within blocks contained in that block. Variables, constants, types, and

Oracle WebServer 2.0 User’s Guide

Data Structures

subprograms defined within a block are local to that block, and their definitions
are not meaningful outside of it. Objects that are local to a block may be used by
subprograms contained at any level of nesting in that same block. Such objects
are global to the block that calls them.

The area of a program within which an object can be used is called the object’s
scope. An object’s scope is distinct from its visibility. The former is the area of the
program that can reference the object; the latter is the, generally smaller, portion
that can reference it without qualification.

Qualification is used to override the default resolution of ambiguous references.
An ambiguous reference can arise because objects or subprograms contained in
different blocks can have the same names, even if they have overlapping scopes.
When this happens, the reference by default means the object most local in
scope—in other words, the first one PL/SQL finds by starting in the current
block and working out to the enclosing ones. Qualification is the method used to
override this. Itis similar to the system of qualification used for database objects,
as explained under Ownership and Naming Conventions. To qualify an object’s
name, precede it with the name of the subprogram where it is declared, followed
by a dot, as follows:

relocate.transmit(245, destination);

This invokes a procedure called transmit declared in some subprogram called
relocate. The subprogram relocate must be global to the block from which it is
called.

PL/SQL provides two structured datatypes: TABLE and RECORD. It also
provides a data structure called a cursor that holds the results of queries. Cursors
are different from the other two in that you declare variables and constants to be
of type TABLE or RECORD just as you would any other datatype. Cursors, on
the other hand, have their own syntax and their own operations. Explanations of
these types follow:

PL/SQL Tables

These are somewhat similar to database tables, except that they always consist
of two columns: a column of values and a primary key. This also makes them
similar to one-dimensional arrays, with the primary key functioning as the array
index. Like SQL tables, PL/SQL tables have no fixed allocation of rows, but
grow dynamically. One of their main uses is to enable you to pass entire columns
of values as parameters to subprograms. With a set of such parameters, you can
pass an entire table. The primary key is always of type BINARY_INTEGER, and
the values can be of any scalar type.

Overview of the Oracle7 Server, SQL, and PL/SQL B-17

B-18

You declare objects of type TABLE in two stages:

1. You declare a subtype using the following syntax:

TYPE type_name IS TABLE OF
datatype_spec
[NOT NULL]
INDEX BY BINARY INTEGER;

Where datatype_spec means the following:
datatype | variablename%TYPE | tablename.columname%TYPE

In other words, you can either specify the type of values directly or use the
%TYPE attribute (explained under Declaring Variables) to inherit the
datatype from an existing variable or database column.

2. You assign objects to this subtype in the usual way. You cannot assign
initial values to tables, so the first reference to the table in the
EXECUTABLE section must provide it at least one value.

When you reference PL/SQL tables, you use an array-like syntax of the form:

column_value(primary_key_value)

In other words, the third row (value) of a table called “Employees” would be
referenced as follows:

Employees(3)

You can use these as ordinary expressions. For example, to assign a value to a
table row, use the following syntax:

Employees(3) := 'Marsha’;

For more information, see “PL/SQL Tables” in the PL/SQL User’s Guide and
Reference.

Records

As in many languages, these are data structures that contain one or more fields.
Each record of a given type contains the same group of fields with different
values. Each field has a datatype, which can be RECORD. In other words, you
can nest records, creating data structures of arbitrary complexity. As with tables,
you declare records by first declaring a subtype, using the following syntax:
TYPE record_type IS RECORD

(fieldname datatypel, fieldname datatype]...);
The second line of the above indicates a parenthesized, comma-separated, list of
fieldnames followed by datatype specifications. The datatype specifications can
be direct or be inherited using the % TYPE attribute, as shown for TABLE and as
explained under Declaring Variables.

Oracle WebServer 2.0 User’s Guide

Exceptions

You can also define a record type that automatically mirrors the structure of a
database table or of a cursor, so that each record of the type corresponds to a row,
and each field in the record corresponds to a column. To do this, use the
%ROWTYPE attribute with a table or cursor name in the same way you would
the %TYPE attribute with a variable,or column. The fields of the record inherit
the column names and datatypes from the cursor or table. For more information,
see “Records” and “%ROWTYPE Attribute” in the PL/SQL User’s Guide and
Reference.

Cursors

A cursor is a data structure that holds the results of a query (a SELECT
statement) for processing by other statements. Since the output of any query has
the structure of a table, you can think of a cursor as a temporary table whose
content is the output of the query.

When you declare a cursor, you associate it with the desired query. When you

want to use that cursor, you open it, executing the associated query and filling

the cursor with its results. You then fetch each row of the query’s output in turn
for processing by other statements in the program. You can also use a cursor to
update a table’s contents. To do this, use a FOR UPDATE clause to lock the rows
in the table. See “Using FOR UPDATE” in the PL/SQL User’s Guide and Reference
for more information. Sometimes, you may need to use cursor variables, which
are not associated with a query until runtime. This is a form of dynamic SQL.

For more information on cursor variables, see “Using Dynamic SQL” in the
Oracle7 Server Application Developers Guide and “Cursor Variables” in the PL/SQL
User’s Guide and Reference.

For more information on cursors in general, see “Cursors” in the PL/SQL User’s
Guide and Reference. See also “DECLARE CURSOR,” “OPEN”, and “FETCH” in
the Oracle7 Server SQL Reference.

You can simplify some cursor operations by using cursor FOR loops. For more
information on these, see “Using Cursor FOR Loops” in the PL/SQL User’s Guide
and Reference.

You also use the DECLARE section to define your own error conditions, called
“exceptions”. Explanation of this is deferred until the “EXCEPTION Section”
portion of this appendix.

Overview of the Oracle7 Server, SQL, and PL/SQL B-19

Declaring Subprograms

B-20

You must place all subprogram declarations at the end of the declare section,
following all variable, constant, type, and exception declarations for the block.
The syntax is as follows:

PROCEDURE procedure_name (param_name datatype, param_name datatype...)
IS

{local declarations}
BEGIN {executable code}
EXCEPTION
END;
Note: For subprograms, the keyword DECLARE is omitted before the local

declarations. Place local declarations before the keyword BEGIN, as shown.

The names you give the parameters in the declaration are the names that the
procedure itself uses to refer to them. These are called the formal parameters.
When the procedure is invoked, different variables or constants may be used to
pass values to or from the formal parameters; these are called the actual
parameters.

When calling the procedure, you can use each parameter for input of a value to
the procedure, output of a value from it, or both. These correspond to the three
parameter modes: IN, OUT, and IN/OUT. For more information, see “Parameter
Modes” in the PL/SQL User’s Guide and Reference.

When you call the procedure, you can match the actual to the formal parameters
either implicitly, by passing them in the same order they are given in the
declaration, or explicitly, by naming the formal followed by the actual parameter
as shown:

transmit(destination => address);

This invokes a procedure called transmit, assigning the value of address as the
actual parameter for the formal parameter destination. This implies that the
parameter destination is used within the transmit procedure and that the
parameter address is used outside of it. Usually, it is good programming practice
to use different names for matching formal and actual parameters. For more
information on this, see “Positional and Named Notation” in the PL/SQL User’s
Guide and Reference.

Functions are the same, except for the addition of a return value, specified as
follows:

FUNCTION function_name (param_name, param_name datatype...)
RETURN datatype IS
{local declarations}
BEGIN {executable code}
EXCEPTION {local exception handlers}
END;

Oracle WebServer 2.0 User’s Guide

Again, line breaks are only for readability. A RETURN statement in the
executable section actually determines what the return value is. This consists of
the keyword RETURN followed by an expression. When the function executes
the RETURN statement, it terminates and passes the value of that expression to
whichever statement called it in the containing block.

You can also use the RETURN statement without an expression in a procedure
to force the procedure to exit.

For more information on procedures and functions, see “Declaring
Subprograms” in the PL/SQL User’s Guide and Reference.

The EXECUTABLE Section

Assignments

Flow Control

The executable section is the main body of code. It consists primarily of SQL
statements, flow control statements, and assignments. SQL statements are
explained earlier in this appendix; assignments and flow-control statements are
explained in the sections that follow.

The assignment operator is :=. For example, the following statement assigns the
value 45 to the variable a:

a :=45;

Character strings should be set off with single quotes (*) as in all expressions. An
example follows:

FNAME :=Clair’;

There are other examples of assignments in other parts of this appendix.

PL/SQL supports the following kinds of flow-control statements:

= |F statements. These execute a group of one or more statements based on
whether a condition is TRUE.

= Basic loops. These repeatedly execute a group of one or more statements
until an EXIT statement is reached.

= FOR loops. These repeatedly execute a group of one or more statements a
given number of times or until an EXIT statement is reached.

Overview of the Oracle7 Server, SQL, and PL/SQL B-21

IF Statements

B-22

= WHILE loops. These repeatedly execute a group of one or more
statements until a particular condition is met or an EXIT statement is
reached.

= GOTO statements. These pass execution directly to another point in the
code, exiting loops and enclosing blocks as necessary. Use these sparsely,
as they make code difficult to read and debug.

If you know other programming languages, you probably are familiar with most
or all of these types of statements. The following sections describe the PL/SQL
versions of them in greater detail. For more information on any of these, see
“Control Structures” in the PL/SQL User’s Guide and Reference.

You can nest flow control statements within one another to any level of
complexity.

These are similar to the IF statement in many other languages, except that they
use predicates, which are three-valued Boolean expressions like the SQL
predicates discussed earlier in this appendix. In most respects, a Boolean NULL
behaves like a Boolean FALSE, except that negation does not make it positive,
but leaves it NULL.

The IF statement has the following forms:

IF <condition> THEN <statement-list>;

END IF;
If the condition following IF is TRUE, PL/SQL executes the statements in the list
following THEN. A semicolon terminates this list. END IF (not ENDIF) is
mandatory and terminates the entire IF statement. Here is an example:

IF balance > 500 THEN send_bill(customer);
END IF;

We are assuming that send_bill is a procedure taking a single parameter.

IF <condition> THEN <statement-list>;
ELSE <statement-list>;
END IF;

This is the same as the preceding statement, except that, if that condition is

FALSE or NULL, PL/SQL executes the statement list following ELSE instead of
that following THEN.

IF <condition> THEN <statement-list>;
ELSIF <condition> THEN <statement-list>;
ELSIF <condition> THEN <statement-list>;.....
ELSE <statement-list>;

END IF;

Oracle WebServer 2.0 User’s Guide

You can include any number of ELSIF (not ELSEIF) conditions. Each is tested
only if the IF condition and all preceding ELSIF conditions are FALSE or NULL.
As soon as PL/SQL finds an IF or ELSIF condition that is TRUE, it executes the
associated THEN statement list and skips ahead to END IF. The ELSE clause is
optional, but, if included, must come last. It is executed if all preceding IF and
ELSIF conditions are FALSE or NULL.

NULL Statements

If you do not want an action to be taken for a given condition, you can use the
NULL statement, which is not to be confused with database nulls, Boolean
NULLSs, or the SQL predicate IS NULL. The syntax of this statement is simply:

NULL,;

The statement performs no action, but fulfills the syntax requirement that a
statement list must follow every THEN keyword. In some cases, you can also use
it to increase the readability of your code. For more information on the NULL
statement, see “NULL Statement” in the PL/SQL User’s Guide and Reference.

Basic Loops

A basic loop is a loop that keeps repeating until an EXIT statement is reached.
The EXIT statement must be within the loop itself. If no EXIT (or GOTO)
statement ever executes, the loop is infinite. An example follows:
credit := 0;
LOOP

IF ¢ =5 THEN EXIT;

END IF;

credit := credit + 1;
END LOOP;
This loop keeps incrementing credit until it reaches 5 and then exits. An
alternative to placing an exit statement inside an IF statement is to use the EXIT-
WHEN syntax, as follows:

EXIT WHEN credit = 5;

This is equivalent to the earlier IF statement.

Note: The EXIT statement cannot be the last statement in a PL/SQL block. If you
want to exit a PL/SQL block before its normal end is reached, use the RETURN
statement. For more information, see “RETURN Statement” in the PL/SQL User’s
Guide and Reference.

Overview of the Oracle7 Server, SQL, and PL/SQL B-23

FOR Loops

WHILE Loops

GOTO Statements

B-24

A FOR loop, as in most languages, repeats a group of statements a given number
of times. The following FOR loop is equivalent to the example used for basic
loops, except that it also changes a variable called interest.
FOR credit IN 1..5 LOOP

interest := interest * 1.2;
END LOOP;
The numbers used to specify the range (in this case, 1 and 5) can be variables, so
you can let the number of iterations of the loop be determined at runtime if you
wish.

A WHILE loop repeats a group of statements until a condition is met. Here is a
WHILE loop that is the equivalent of the preceding example:
credit := 1;
WHILE credit <=5 LOOP

interest := interest * 1.2;

credit := credit + 1;
END LOOP;
Unlike some languages, PL/SQL has no structure, such as REPEAT-UNTIL, that
forces a LOOP to execute at least once. You can create this effect, however, using
either basic or WHILE loops and setting a variable to a value that will trigger the
loop, as in the above example. For more information on loops, see “Iterative
Control” in the PL/SQL User’s Guide and Reference.

A GOTO statement immediately transfers execution to another point in the
program. The point in the program where the statement is to arrive must be
preceded by a label. A label is an identifier for a location in the code. It must be
unique within its scope and must be enclosed in double angle brackets, as
follows:

<<this_is_a_label>>

You only use the brackets at the target itself, not in the GOTO statement that
references it, so a GOTO statement transferring execution to the above label
would be:

GOTO this_is_a_label;

Note: An EXIT statement can also take a label, if that label indicates the
beginning of aloop enclosing the EXIT statement. You can use this to exit several
nested loops at once. See “Loop Labels” in the PL/SQL User’s Guide and Reference
for more information.

Oracle WebServer 2.0 User’s Guide

A GOTO statement is subject to the following restrictions:

= It must branch to an executable statement, not, for example, an END.

= [t cannot branch to a point within the body of IF or a LOOP statement,
unless it is contained in the body of that statement itself.

= [t cannot branch to a subprogram or enclosing block of the present block
(with one exception, explained shortly).

< It cannot branch from one IF statement clause to another. That is to say, it
cannot jump between THEN, ELSIF, and ELSE clauses that are part of the
same IF statement.

e |t cannot branch from the EXCEPTION section to the EXECUTABLE
section of the same block.

e |t can, however, branch from the EXCEPTION section of a block to the
EXECUTABLE section of an enclosing block, which is the exception to the
third rule above.

The EXCEPTION Section

The EXCEPTION section follows the END that matches the BEGIN of the
EXECUTABLE section and begins with the keyword EXCEPTION. It contains
code that responds to runtime errors. An exception is a specific kind of runtime
error. When that kind of error occurs, you say that the exception is raised. An
exception handler is a body of code designed to handle a particular exception or
group of exceptions. Exception handlers, like the rest of the code, are operative
only once the code is compiled and therefore can do nothing about compilation
errors.

There are two basic kinds of exceptions: predefined and user-defined. The
predefined exceptions are provided by PL/SQL in a package called
STANDARD. They correspond to various runtime problems that are known to
arise often—for example, dividing by zero or running out of memory. These are
listed in the PL/SQL User’s Guide and Reference under “Predefined Exceptions”.

The Oracle Server can distinguish between and track many more kinds of errors
than the limited set that STANDARD predefines. Each of Oracle’s hundreds of
messages are identified with a number, and STANDARD has simply provided
labels for a few of the common ones. You can deal with the other messages in
either or both of two ways:

Overview of the Oracle7 Server, SQL, and PL/SQL B-25

= You can define your own exception labels for specified Oracle messages
using a pragma (a compiler directive). This procedure will be explained
shortly.

= You can define a handler for the default exception OTHERS. Within that
handler, you can identify the specific error by accessing the built-in
functions SQLCODE and SQLERRM, which contain, respectively, the
numeric code and a prose description of the message.

You can also define your own exceptions as will be shown. It is usually better,

however, to use Oracle exceptions where possible, because then the conditions
are tested automatically when each statement is executed, and an exception is

raised if the error occurs.

Declaring Exceptions

PL/SQL predefined exceptions, of course, need not be declared. You declare
user-defined exceptions or user-defined labels for Oracle messages in the
DECLARE section, similarly to variables. An example follows:

customer_deceased EXCEPTION;

In other words, an identifier you choose followed by the keyword EXCEPTION.
Notice that all this declaration has done is provide a name. The program still has
no idea when this exception should be raised. In fact, there is at this point no way
of telling if this is to be a user-defined exception or simply a label for an Oracle
message.

Labeling Oracle Messages

If a previously-declared exception is to be a label for an Oracle error, you must
define it as such with a second statement in the DECLARE section, as follows:

PRAGMA EXCEPTION_INIT (exception_name, Oracle_error_number);

A PRAGMA is a instruction for the compiler, and EXCEPTION_INIT is the type
of PRAGMA. This tells the compiler to associate the given exception name with
the given Oracle error number. This is the same number to which SQLCODE is
set when the error occurs. The advantage of this over defining your own error
condition is that you pass the responsibility for determining when the error has
occurred and raising the exception to Oracle. You can find the numeric codes
and explanations for Oracle messages in Oracle7 Server Messages.

User-Defined Exceptions

If the declared condition is not to be a label for an Oracle error, but a user-defined
error, you do not need to put another statement referring to it in the DECLARE
section. In the EXECUTABLE section, however, you must test the situation you

B-26 Oracle WebServer 2.0 User’s Guide

intend the exception to handle whenever appropriate and raise the condition
manually, if needed. Here is an example:

IF cnum < 0 THEN RAISE customer_deceased;

You can also use the RAISE statement to force the raising of predefined
exceptions. For more information, see “Error Handling” in the PL/SQL User’s
Guide and Reference.

Handling Exceptions

Once an exception is raised, whether explicitly with a RAISE statement or
automatically by Oracle, execution passes to the EXCEPTION section of the
block, where the various exception handlers reside. If a handler for the raised
exception is not found in the current block, enclosing blocks are searched until
one is found. If PL/ZSQL finds an OTHERS handler in any block, execution
passes to that handler. An OTHERS handler must be the last handler in its block.
If no handler for an exception is found, Oracle raises an unhandled exception
error. Note: this does not automatically roll back (undo) changes made by the
subprogram, which might leave the database in an undesirable intermediate
state.

This is the syntax of an exception handler:

WHEN exception_condition THEN statement_list;

The exception is the identifier for the raised condition. If desired, you can specify
multiple exceptions for the same handler, separated by the keyword OR. The
exception can be either one the package STANDARD provided or one you
declared. The statement list does what is appropriate to handle the error—
writing information about it to a file, for example—and arranges to exit the block
gracefully if possible. Although exceptions do not necessarily force program
termination, they do force the program to exit the current block. You cannot
override this with a GOTO statement. You can use a GOTO within an exception
handler, but only if its destination is some enclosing block.

Note: If you have an error prone statement and want execution to continue
following this statement, even when an exception occurs, put the statement,
including the appropriate exception handlers, in its own block, so that the
current block becomes the enclosing block.

Note: If an exception occurs in the DECLARE section or the EXCEPTION section
itself, local exception handlers cannot address it; execution passes automatically
to the EXCEPTION section of the enclosing block.

Overview of the Oracle7 Server, SQL, and PL/SQL B-27

Storing Procedures and Functions in the Database

Privileges Required

B-28

To have a procedure or function stored as a database object, you issue a CREATE
PROCEDURE or a CREATE FUNCTION statement directly to the server using
SQL*PLUS or Server Manager. The easy way to do this is to use your ordinary
text editor to produce the CREATE statement and then to load it as a script. This
process is explained under “Creating Stored Procedures and Functions” in the
Oracle7 Server Application Developers Guide. This approach is recommended
because you often create entire groups of procedures and functions together.
These groups are called “packages” and are explained later in this appendix.

The syntax for these statements is slightly different than that used to declare
subprograms in PL/SQL, as the following example shows:
CREATE PROCEDURE fire_employee (empno INTEGER) IS

BEGIN

DELETE FROM Employees WHERE enum = empno;

END;
As you can see, the main difference is the addition of the keyword CREATE. You
also have the option of replacing the keyword IS with AS, which does not affect
the meaning. To replace an existing procedure of the same name with this
procedure (as you frequently may need to do during development and testing),
you can use CREATE OR REPLACE instead of simply CREATE. This destroys
the old version, if any, without warning.

A stored procedure or function (for the rest of this discussion, “procedure” shall
mean “procedure or function” unless otherwise indicated or clear from context)
is a database object like a table. It resides in a schema, and its use is controlled by
privileges. To create a procedure and have it compile successfully, you must
meet the following conditions:

= |fthe procedure is to be in your own schema, you must have the CREATE
PROCEDURE or the CREATE ANY PROCEDURE system privilege. These
privileges apply as well to functions.

= |fthe procedure is to be in a schema you do not own, you must have the
CREATE ANY PROCEDURE system privilege.

= You must have the object privileges necessary to perform all operations
contained in the procedure. You must have these privileges as a user, not
through roles. If your privileges change after you have created the
procedure, the procedure may no longer be executable.

Oracle WebServer 2.0 User’s Guide

Packages

To enable others to use the procedure, grant them the EXECUTE privilege on it
using the SQL statement GRANT (see “GRANT” in Chapter 4 of the Oracle7
Server SQL Reference). When these users execute the procedure, they do so under
your privileges, not their own. Therefore, you do not have to grant them the
privileges to perform these actions outside the control of the procedure, which
is a useful security feature. To enable all users to use the procedure, grant
EXECUTE to PUBLIC. The following example permits all users to execute a
procedure called show_product.

GRANT EXECUTE ON show_product TO PUBLIC;

Of course, the public normally does not execute such a procedure directly. This
statement enables you to use the procedure in your PL/SQL code that is to be
publicly executable. If multiple users access the same procedure simultaneously,
each gets his own instance. This means that the setting of variables and other
activities by different users do not affect one another.

For more information on privileges and roles, see “GRANT” in Chapter 4 of the
Oracle7 Server SQL Reference. There are three versions of GRANT listed—one
each for object privileges, system privileges, and roles.

For more information on storing procedures and functions in the database, see
“Storing Procedures and Functions” in the Oracle7 Server Application Developers
Guide and see “CREATE FUNCTION” and “CREATE PROCEDURE” in the
Oracle7 Server SQL Reference.

A package is a group of related PL/SQL objects (variables, constants, types, and
cursors) and subprograms that is stored in the database as a unit. Being a
database object, a package resides in a schema, and its use is controlled by
privileges. Among its differences from regular PL/SQL programs are that a
package as such does not do anything. It is a collection of subprograms and
objects, at least some of which are accessible to applications outside of it. It is the
subprograms in the package that contain the executable code. A package has the
following two parts:

= The package specification is the public interface to the package. It declares
all objects and subprograms that are to be accessible from outside the
package. Packages do not take parameters, so these constitute the entire
public interface.

= The package body is the internal portion of the package. It contains all
objects and subprograms that are to be local to the package. It also contains

Overview of the Oracle7 Server, SQL, and PL/SQL B-29

definitions of the public cursors and subprograms. The package
specification declares but does not define these.

One of the advantages of using packages is that the package specification is
independent of the body. You can change the body and, so long as it still matches
the specification, no changes to other code are needed, nor will any other
references become invalid.

Packages cannot be nested, but they can call one another’s public subprograms
and reference one another’s public objects.

Instantiation of Packages

Creating Packages

B-30

It is important to realize that a package is instantiated once for a given user
session. That is to say, the values of all variables and constants, as well as the
contents and state of all cursors, in a package, once set, persist for the duration
of the session, even if you exit the package. When you reenter the package, these
objects retain the values and state they had before, unless they are explicitly
reinitialized. Of course, another user has another session and therefore another
set of values. Nonetheless, a global reinitialization of a package’s objects for you
does not take place until you disconnect from the database.

There is an exception, however. When one package calls another, execution of
the second has a dependency on the first. If the first is invalidated, for example
because its creator loses a privilege that the package requires, the second, while
not necessarily invalidated, becomes deinstantiated. That is to say, all its objects
are reinitialized.

Note: In PL/SQL, stored procedures and packages are automatically recompiled
if changes to the database mandate it. For example, a change to the datatype of
a column can automatically cascade to a variable referencing that column if the
former is declared with the %TYPE attribute, but that change requires that the
PL/SQL procedure declaring that variable be recompiled. So long as the PL/
SQL code as written is still valid, the recompilation occurs automatically and
invisibly to the user.

To create a package, you use the SQL statement CREATE PACKAGE for the
specification and CREATE PACKAGE BODY for the body. You must create the
specification first. Sometimes, a package may consist of only public variables,
types, and constants, in which case no body is necessary. Generally, however,
you use both parts.

Note: Before you can create a package, the special user SYS must run the SQL
script DBMSSTDX.SQL. The exact name and location of this script may vary

Oracle WebServer 2.0 User’s Guide

according to your operating system. Contact your database administrator if you
are not sure this script has been run.

Creating the Package Specification
The syntax of the CREATE PACKAGE statement is as follows:

CREATE [OR REPLACE] PACKAGE package_name IS

{PL/SQL declarations}

END;

The optional OR REPLACE clause operates just as it does for stored procedure.
The PL/SQL declarations are as outlined under The DECLARE Section, except
that the keyword DECLARE is not used and that the subprogram and cursor
declarations are incomplete. For subprograms, you provide only the name,
parameters, and, in the case of functions, the datatype of the return value. For
cursors, provide the name and a new item called the return type. This approach
hides the implementation of these objects from the public while making the
objects themselves accessible.

The syntax for declaring a cursor with a return type is as follows:

CURSOR c1 IS RETURN return_type;

The return type is always some sort of record type that provides a description of
the cursor’s output. The structure of this record is to mirror the structure of the
cursor’s rows. You can specify it using any of the following:

= Arecord subtype previously defined and in scope. For more information,
see Records.

= Atype inherited from such a record subtype using the %TYPE attribute.
For more information, see Declaring Variables.

= Atype inherited from a table, most likely the table the cursor queries,
using the %ROWTYPE attribute. For more information, see Records.

= Atype inherited from a cursor using the %ROWTYPE attribute. For more
information, see Records.

For more information, see CREATE PACKAGE in Chapter 4 of the Oracle7 Server
SQL Reference, “Packages” in the PL/SQL User’s Guide and Reference, and “Using
Procedures and Packages” in the Oracle7 Server Application Developers Guide.

Creating the Package Body

To create the package body, use the CREATE PACKAGE BODY statement. The
syntax is as follows:

CREATE [OR REPLACE] PACKAGE BODY package_name IS
{PL/SQL declarations}

Overview of the Oracle7 Server, SQL, and PL/SQL B-31

END;

Since a package as such does not do anything, the PL/SQL code still consists
only of a DECLARE section with the keyword DECLARE omitted. It is the
subprograms within the package that contain the executable code. Variables,
constants, types, and cursors declared directly (in other words, not within a
subprogram) in the declare section have a global scope within the package body.
Variables, constants, and types already declared in the package specification are
public and should not be declared again here.

Public cursors and subprograms, however, must be declared again here, as their
declarations in the specification is incomplete. This time the declarations must
include the PL/SQL code (in the case of subprograms) or the query (in the case
of cursors) that is to be executed. For subprograms, the parameter list must
match that given in the package specification word for word (except for
differences in white space). This means, for example, that you cannot specify a
datatype directly in the specification and use the % TYPE attribute to specify itin
the body.

You can create an initialization section at the end of the package body. This is a
body of executable code—chiefly assignments—enclosed with the keywords
BEGIN and END. Use this to initialize constants and variables that are global to
the package, since otherwise they could be initialized only within subprograms,
and you have no control of the order in which subprograms are called by outside
applications. This initialization is performed only once per session.

For more information, see CREATE PACKAGE BODY in the Oracle7 Server SQL
Reference, “Packages” in the PL/SQL User’s Guide and Reference, and “Using
Procedures and Packages” in the Oracle7 Server Application Developers Guide.

Overloading Subprograms

B-32

Within a package, subprogram names need not be unique, even at the same level
of scope. There can be multiple like-named subprograms in the same declare
section, provided that the parameters that they take differ in number, order, or
datatype and that, when the procedures are called, the values passed by the
calling procedure (the actual parameters) match or can be automatically
converted to the datatypes specified in the declaration (the formal parameters).
To find out which datatypes PL/SQL can convert automatically, look under
“Datatype Conversion” in the PL/SQL User’s Guide and Reference.

The reason this is permitted is so you can overload subprograms. Overloading
permits you to have several versions of a procedure that are conceptually similar
but behave differently with different parameters. This is one of the properties of

Oracle WebServer 2.0 User’s Guide

object-oriented programming. For more information on overloading, see
“Overloading” in the PL/SQL User’s Guide and Reference.

Database Triggers

Creating Triggers

Triggers are blocks of PL/SQL code that execute automatically in response to
events. Database triggers reside in the database and respond to changes in the
data. They are not to be confused with application triggers, which reside in
applications and are beyond the scope of this discussion. Database triggers are a
technology that for the most part has superseded application triggers.

You create triggers as you do stored procedures and packages, by using your
text editor to write scripts that create them and then using SQL*Plus or Server
Manager to run these scripts. A trigger is like a package in that:

It takes no parameters as such. It refers to, responds to, and possibly
affects the data in the database.

It cannot be directly called like a procedure. To fire (execute) a trigger, you
must make the database change to which it responds. If you only want to
test the trigger, you can rollback (undo) the database change that you
made after the trigger fires.

Triggers can be classified in three ways:

INSERT triggers, UPDATE triggers, and DELETE triggers. Thisis a
classification based on the statement to which the trigger responds. The
categories are not mutually exclusive, meaning one trigger can respond to
any or all of these statements.

Row triggers and statement triggers. Any of the above statements can
affect any number of rows in a table at once. A row trigger is fired once for
each row affected. A statement trigger is fired once for each statement,
however many rows it affects.

BEFORE triggers and AFTER triggers. This specifies whether the trigger is
fired before or after the data modification occurs.

Asyou can see, all three of these classifications apply to all triggers, so that there
are, for example, BEFORE DELETE OR INSERT statement triggers and AFTER
UPDATE row triggers.

The syntax of the CREATE TRIGGER statement is as follows:

Overview of the Oracle7 Server, SQL, and PL/SQL B-33

B-34

CREATE [OR REPLACE] TRIGGER trigger_name

BEFORE | AFTER

DELETE | INSERT | UPDATE [OF column_list]
ON table_name

[FOR EACH ROW [WHEN predicate]]
{PL/SQL block};

In the above, square brackets ([]) enclose optional elements. Vertical bars (|)
indicate that what precedes may be replaced by what follows.

In other words, you must specify the following:

A trigger name. This is used to alter or drop the trigger. The trigger name
must be unique within the schema.

BEFORE or AFTER. This specifies whether this is a BEFORE or AFTER
trigger.

INSERT, UPDATE, or DELETE. This specifies the type of statement that
fires the trigger. If it is UPDATE, you optionally can specify a list of one or
more columns, and only updates to those columns fire the trigger. In such
a list, separate the column names with commas and spaces. You may
specify this clause more than once for triggers that are to respond to
multiple statements; if you do, separate the occurrences with the keyword
OR surrounded by white space.

ON table_name. This identifies the table with which the trigger is
associated.

PL/SQL Block. This is an anonymous PL/SQL block containing the code
the trigger executes.

You optionally can specify the following:

OR REPLACE. This has the usual effect.

FOR EACH ROW [WHEN predicate]. This identifies the trigger as a row
trigger. If omitted, the trigger is a statement trigger. Even if this clause is
included, the WHEN clause remains optional. The WHEN clause contains
a SQL (not a PL/SQL) predicate that is tested against each row the
triggering statement alters. If the values in that row make the predicate
TRUE, the trigger is fired; else it is not. If the WHEN clause is omitted, the
trigger is fired for each altered row.

Here is an example:

CREATE TRIGGER give_bonus

AFTER UPDATE OF sales

ON salespeople

FOR EACH ROW WHEN sales > 8000.00

BEGIN

UPDATE salescommissions SET bonus = bonus + 150.00;
END;

Oracle WebServer 2.0 User’s Guide

This creates a row trigger called give_bonus. Every time the sales column of the
salespeople table is updated, the trigger checks to see if it is over 8000.00. If so, it
executes the PL/SQL block, consisting in this case of a single SQL statement that
increments the bonus column in the salescommissions table by 150.00.

Privileges Required

To create a trigger in your own schema, you must have the CREATE TRIGGER
system privilege and one of the following must be true:

= You own the table associated with the trigger.
= You have the ALTER privilege on the table associated with the trigger.
= You have the ALTER ANY TABLE system privilege.

To create a trigger in another user’s schema, you must have the CREATE ANY
TRIGGER system privilege. To create such a trigger, you precede the trigger
name in the CREATE TRIGGER statement with the name of the schema wherein
it will reside, using the conventional dot notation.

Referring to Altered and Unaltered States

You can use the correlation variables OLD and NEW in the PL/SQL block to
refer to values in the table before and after the triggering statement had its effect.
Simply precede the column names with these variables using the dot notation.

If these names are not suitable, you can define others using the REFERENCING
clause of the CREATE TRIGGER statement, which is omitted from the syntax
diagram above for the sake of simplicity. For more information on this clause,
see CREATE TRIGGER in the Oracle7 Server SQL Reference.

Note: if a trigger raises an unhandled exception, its execution fails and the
statement that triggered it is rolled back if necessary. This enables you to use
triggers to define complex constraints. If the effects of the trigger have caused a
change in the value of package body variables, however, this change is not
reversed. You should try to design your packages to spot this eventuality. For
more information, see “Using Database Triggers” in the Oracle7 Server
Application Developers Guide.

Enabling and Disabling Triggers

Just because a trigger exists does not mean it is in effect. If the trigger is disabled,
it does not fire. By default, all triggers are enabled when created, but you can
disable a trigger using the ALTER TRIGGER statement. To do this, the trigger
must be in your schema, or you must have the ALTER ANY TRIGGER system
privilege. Here is the syntax:

Overview of the Oracle7 Server, SQL, and PL/SQL B-35

B-36

ALTER TRIGGER trigger_name DISABLE;

Later you can enable the trigger again by issuing the same statement with
ENABLE in place of DISABLE. The ALTER TRIGGER statement does not alter
the trigger in any other way. To do that you must replace the trigger with a new
version using CREATE OR REPLACE TRIGGER. For more information on
enabling triggers, see ALTER TRIGGER in the Oracle7 Server SQL Reference.

For more information on triggers generally, see “Using Database Triggers” in
the Oracle7 Server Application Developer’s Guide and CREATE TRIGGER and
DROP TRIGGER in the Oracle7 Server SQL Reference.

Oracle WebServer 2.0 User’s Guide

Introduction To HTML

This appendix discusses the basic concepts of HyperText Markup Language, or
HTML. This appendix is an introduction to HTML and provides important
information on how to set up, format, and define HTML documents.

This appendix covers the following topics:
e WhatisHTML?

e Getting Started
e Document Structure

< Body Tags
e List Tags

e Hypertext Linking

e Reviewing Changes to Your HTML Document
e Adding Style to Your HTML Document
e Special HTML Tags

e Tables
e Forms

e Creating Your Own HTML Document

e More Information about HTML

Note: This appendix contains examples of formatted elements, such as
underlined text. Some of these examples may not appear correctly on all on-line
viewing systems.

What is HTML?

C-2

Hypertext Markup Language (HTML) is the standard language used for
creating hypermedia documents on the Web. HTML documents can be viewed
by many different Web browsers, of varying abilities, in a simple, portable way.
When a document is coded in HTML, a browser can interpret the HTML to
identify the elements of the document and to render it. The use of HTML allows
documents to be formatted for presentation using fonts and line justification
appropriate for the system on which it is displayed.

Most documents have common elements, such as a title, paragraphs, or lists.
Using HTML tags you can label these elements as you are writing. HTML tags
provide the browser with a minimum of presentation information, while
keeping the integrity of information in the document. All the reader needs is a
formatting tool, a Web browser, which interprets the HTML tags and produces
an on-screen display that approximates the intent of the document creator.

With most methods of documentation, the writer of a document has strict
control over the look and feel of a document. With HTML, the reader (subject to
the capabilities of the Web browser) has control over the look and feel of a
document. HTML allows you to mark titles or paragraphs with HTML
instructions or tags, and then leaves the interpretation of these tags up to the
browser. For example, one browser may indent the beginning of each
paragraph, and another may leave only a blank line. The user of a particular
browser may also have some control over the specific fonts used.

HTML tags can be divided into two main categories:

= tags that define how the body of the document is to be displayed by the
browser

= tags that define information about the document such as the title

Remember, the power of HTML is that your document can be viewed on a
variety of browsers, on most platforms, and formatted to suit any reader.

Oracle WebServer 2.0 User’s Guide

How Are HTML Documents Created?

HTML documents can be created using any text editor (emacs, textedit, or vi on
UNIX machines; DOS and Macintosh machines have a variety of simple text
editors or HTML-specific programs). Choose the editor you are most
comfortable with to write your HTML document.

For example, HTML editors such as SoftQuad’s “HoTMetaL” allow the creation
of HTML documents graphically in “what you see is what you get” (WYSIWYG)
mode. In addition, many traditional word processing packages have add-ons or
integrated HTML output capabilities.

To create dynamic pages that retrieve information from an Oracle7 Server, you
can generate HTML using the PL/SQL utility packages provided by the
Developer’s Toolkit. See “Appendix B: The PL/SQL Developer’s Toolkit,” for
more information.

Getting Started

Introduction To HTML

All HTML tags begin with a < (left angle bracket), and end with a > (right angle
bracket). There is usually a beginning tag and an ending tag.

An example is the title tag which surrounds the text that is designated as the
document’s title:

<TITLE>AIl the Hockey Greats</TITLE>
Tags are usually paired as follows:
<TITLE> and </TITLE>

The ending tag looks like the beginning tag except that a forward slash precedes
the text within the bracket. In this example, the tag <TITLE> tells the Web
browser to use a title format, and the </TITLE> tells the browser that the title
heading is complete.

A few tags, such as <P>, which is a paragraph delimiter, do not need an end tag,
but most do.

HTML is not case sensitive; therefore, the previous tags could look like this:

<title>All the Hockey Greats</title>

The convention used in this document is to capitalize all HTML format tags.

Note: Extra spaces, tabs, or returns that you have added by hand are highly
discouraged, and will be lost. HTML only interprets tabs, extra spaces, and

C-3

returns enclosed by the <PRE> </PRE> tags. See “Preformatted Tag” for more
information on this HTML option.

Document Structure

Head Tag

Title Tag

C-4

When a browser receives a document, it determines how it should be
interpreted. The very first tag you need in your HTML document is the <HTML>
structure tag. This declares that the content of your document is written with
HTML. A minimal HTML document would look like this:

<HTML>... the content of the document.
</HTML>

The head tag can be used right after the HTML declaration, or not at all in your
document. This tag represents the prologue to the rest of the file. Avoid putting
any text into the document <HEAD> tag. This tag is placed immediately before
and after the <TITLE> tag, as shown in the following example:

<HTML>

<HEAD>

<TITLE>AIl the Hockey Greats</TITLE>

</HEAD>

Note: Technically, the start and end tags for <HTML>, <HEAD>, and <BODY>
are not needed. However, they are recommended because the head and body
structure tags allow a browser to determine certain properties of a document,
such as the <TITLE>, without having to parse, or go through the whole
document.

Most browsers display the contents of the <TITLE> tag in the title bar of the
window containing the document, and in the bookmark file of the browser if it
supports one. The title, surrounded by <TITLE> and </TITLE> tags, is placed
between the head tags, as shown above. The title of a document does not appear
in the contents of the document window, however. You must separately indicate
it as a heading inside the body of the document if you want it to appear there.

Oracle WebServer 2.0 User’s Guide

Body Tags

Body Tag

Heading Levels

Paragraph Tag

Preformatted Tag

Introduction To HTML

The body tags specifically identify the body components in an HTML document.
The body of an HTML document can contain links, text, and formatting
information inside of the <BODY> and </BODY> tags.

The body of the document should be marked off with the <BODY> and </
BODY> tags. This is the part of the document that is displayed as the page of text
and graphics on your Web browser.

When writing an HTML document, organize the text by heading levels to reflect
its structure and organization. The first heading would be level 1, the next sub
heading level 2, and so on. Most browsers recognize up to six heading levels,
with six distinct styles. Heading levels above 6 are indistinguishable from one
another.

The largest heading is a level 1 heading. The syntax of the head 1 is as follows:
<H1>Hockey Greats on Offense</H1>

Other headings can be created as follows:

<Hx>Text here</H x>

where x is a number between 1 and 6 specifying the heading level. For example,
if your next heading level is a level 3, the syntax would look like the following:

<H3>Hockey Defense </H3>

Unlike most word processors, HTML usually ignores carriage returns. Word
wrapping can occur at any point in your source file. Therefore, paragraphs must
be separated with the <P> tag. If you do not separate your paragraphs with the
<P> tag, your document will look like one long paragraph.

The preformatted tag, <PRE>, allows you to present text formatted specifically
to a screen. The preformatted text ends at the closing </PRE> tag. Within the
preformatted text:

e Line breaks move to the next line

= The <P>tag is moved to the next line

C-5

Forced Line Breaks

C-6

= Horizontal tabs move in multiples of eight

= Afixed width font is used for all characters after the <PRE> tag.

Avoid using tags that define paragraph formatting, such as headings or address,
within the <PRE> tags. They will have no effect.

Let’s incorporate some of the previous examples to show what the document
looks like with a title, a couple of heading level tags, and a few paragraphs:

<HTML>

<HEAD>

<TITLE>AIl the Hockey Greats</TITLE>

</HEAD>

<BODY>

<H1>All the Hockey Greats Before 1970</H1>

<H2>The Original Six Teams</H2>

This section deals with all of the hockey legends before the expansion.<P>
The game was very different for these players.<P>

There is no way New Jersey would have won the Stanley Cup. New Jersey just
would not have had the talent to do it.<P>

Chicago would still be on top.<P>

All would be well.<P>

</BODY>

</HTML>

The result would display something like this:

All The Hockey Greats Before 1970

The Original Six Teams

This section deals with all of the hockey legends before the expansion.
The game was very different for these players.

There is no way New Jersey would have won the Stanley Cup. New Jersey just
would not have had the talent to do it.

Chicago would still be on top.
All would be well.

Note: The title, “All the Hockey Greats,” would not show within the document
itself. On most browsers it would be displayed in the title bar.

The
 tag forces a line to break. The best example of the use of this tag is for
formatting addresses, or some other sequence of lines where you don’t want the
browser to add extra spacing. For example:

Sandy’s Super Sundaes

123 Main Street

Anytown, USA

Oracle WebServer 2.0 User’s Guide

BlockQuote

The <BLOCKQUOTE> tag is used to contain text quoted from another source.
The quote will be indented approximately 8 spaces. For example:

My favorite hockey saying is<P>

<BLOCKQUOTE>

Today is a great day for hockey.

</BLOCKQUOTE>

But I'm not sure if Bob Johnson really said it like that.</P>

This would appear something like the following:

My favorite hockey saying is

Today is a great day for hockey.

But I’'m not sure if Bob Johnson really said it like that.

Summary of Basic HTML Tags

The following table lists the basic HTML tags and their corresponding values:

nt

Opening Closing Definition

<HTML> </HTML> An entire HTML docu-
ment

<HEAD> </HEAD> The prologue of the dog
ument

<TITLE> </TITLE> Title of the document

<BODY> </BODY> Content of the documer

<H1> </H2> First level heading

<H2> </H2> Second level heading

<H3> </H3> Third level heading

<H4> </H4> Fourth level heading

<H5> </H5> Fifth level heading

<H6> </H6> Sixth level heading

<P> Paragraph

<PRE> </PRE> Preformatted text

 Forced line break

<BLOCKQUOQOTE> </BLOCKQUOTE> Textquoted from anothe
source

=

Introduction To HTML

C-7

The previous section provides all you need to know to get started with HTML.
At this point you can write a simple document in HTML. However, the
following sections show you how to enhance your HTML pages to present
information in many different fashions.

List Tags

Ordered Lists

C-8

There are three basic lists in HTML:

ordered

These lists have numbered items.

unordered

These lists have bullets to mark each item.
definition

These lists alternate a term with its definition

You can create nested lists with indents using the ordered or unordered tags.
Simply place a second list (complete with its own start and end tags) within the
first lists enclosing tags. Whether the nested list uses the same markers (numbers
or bullets,) depends on the browser; some track the number of nests you use and
change the markers of each successive nesting to blocks or other symbols. See the
following example in the section “Nested Lists”.

In an ordered list, the browser automatically inserts numbers. Therefore, if you
insert or delete an item in your ordered list, the numbers will reflect the change
automatically.

An ordered list begins with and ends with . The individual list
items are started with the tag. The following is an example of an ordered
list:

Gordie Howe

Rocket Richard

Howie Morenz

Oracle WebServer 2.0 User’s Guide

Unordered Lists

Nested Lists

Introduction To HTML

In an unordered list the browser typically uses bullets or dashes to indicate the
items in your list. (Each browser has its own way of indicating an unordered list)

An unordered list begins with and ends with . The following is an
example of an unordered list:

Gordie Howe
Rocket Richard
Howie Morenz

Here is an example of how to nest a list within another:

<HTML>

<HEAD>

<TITLE>AIl the Hockey Greats</TITLE>
</HEAD>

<BODY>

<H1>Hockey Greats before Expansion</H1>
<H2>The Original Six Teams</H2>

This section deals with all of the hockey legends before the expansion.<P>

Gordie Howe

Rocket Richard

Howie Morenz

great player

good stickhandler

Bobby Orr

</BODY>

</HTML>

Here’s what the example would look like:
Hockey Greats before Expansion
The Original Six Teams
This section deals with all of the hockey legends before the expansion.*
= Gordie Howe
= Rocket Richard
= Howie Morenz
- great player
- good stickhandler
< Bobby Orr

C-9

Definition Lists

Note: When you create nested lists using HTML, you do not need to indent the
nested HTML components. You may wish to do so for clarity, however.

The definition list tags <DL>...<D/DL> enclose both the defined term (identified
with the <DT> tag), and the definition of that term (identified with the <DD>
tag). Most browsers format the definition on a separate line from the term. The
following is an example of a definition list:

<DL>

<DT>Slapshot:

<DD>A shot used to drill the goalie at speeds up to 100 mph.

<DT>Wristshot:

<DD>A shot used to scare the goalie after the slapshot.
</DL>

The output looks like this:

Slapshot:
A shot used to drill the goalie at speeds up to 100 mph.

Wristshot:
A shot used to scare the goalie after the slapshot.

Hypertext Linking

C-10

Hypertext linking is the key characteristic that makes the Web appealing to
users. By adding hypertext links, called anchors in your HTML document, you
can create a highly intuitive information flow and guide the user directly to the
information he or she needs.

Anchors have a standard format that allows any Web browser to interpret a link
and perform the proper function (called a method) for that type of link. Links can
refer to other documents, specific locations within the same document, or can
perform operations, such as retrieving a file using FTP for display by the
browser. URLSs can refer to a specific location by an absolute pathname, or can
be relative to the current document, which is more convenient when managing
a large site.

Note: You can use hypertext links to navigate through a document or to move
from document to document. However, HTML does not support returning you
to the anchor point of a link within a document. If you use a hypertext link
within a document, and then use the Back button, you do not return to the
anchor, but to the previous point that you reached through a link.

Oracle WebServer 2.0 User’s Guide

What is a URL?

Introduction To HTML

HTML uses what are called Uniform Resource Locators (URLS) to represent
hypermedia links and links to network services within documents. The first part
of the URL before the colon specifies the access method. The part of the URL
after the colon is interpreted specifically according to the access method. In
general two forward slashes after the colon indicate a machine name.

The general format of a URL is:

method://machine-name/ path | foo.html

The following example would fetch the document index.html ~ from the server
www.acme.com using the HTTP protocol.

http://lwww.acme.com/index.html

A Uniform Resource Locator (URL) has the following format:

method Il servername:port | pathname #anchor

The components of the URL are as follows:

method

is the name of the operation that is performed to interpret this URL. The
most common methods are:

file

Read a file from the local disk. The filename is interpreted on the user’s
machine, so this can be used to display any file that resides on the user’s
disk.

For example: file:/home/jjonesfjjones.html displays the file jiones.html
from the directory /homeljones on the local machine.

http

Access a page over the network by way of the HTTP protocol. (This is the
most common method, usually used to get an HTML document.)

For example: http:/imww.acme.com/
accesses Acme’s home page.

mailto
Activate a mail session to the specified username and host.

For example: mailto:jjones@us.acme.com mails a message to jjones if
the browser supports mail creation. Note that the mailto method does not
require double forward slashes after the colon.

C-12

ftp

Retrieve a file using anonymous FTP from a server.

For example, ftp:// hostname | directory | filename

servername

port

is optional and indicates the full hostname of a machine connected to the
network. For example, www.oracle.com s the fully qualified hostname of
Oracle’s web server. If a servername is not specified, the URL is a relative
link, and it is assumed that the file is on the same server that was used to
display the current page. An IP address may be used instead of a
hostname, although it is not recommended to build content with
embedded IP addresses.

is the TCP port number that the web server is running on. The default is
80 if port is not specified. This parameter is not used in most URLSs.

pathname

is the relative or absolute pathname of the document being accessed by
this URL. Web servers can be configured to interpret certain pathnames
differently. For instance, CGI applications work by configuring the HTTP
server to recognize that files within certain directories should be executed
instead of being returned to the browser.

For example: http://www.acme.com/index.html

In this example, an HTTP connection is made to index.html, which is the
name of the file to be accessed on the server www.acme.com using port 80
(the default). The file could have a full UNIX-style pathname to indicate a
document contained in a lower level directory. If there is no directory
component in the pathname, the document must be located in the server’s
document root directory which is configured by the server administrator.
If the pathname part of the URL is missing, many servers provide a
directory listing of the document root directory or access a specific ‘top
level’ file (usually index.html).

#anchor

The named anchor points to a specific location within an HTML page. In
addition to specifying a document name, specifying #anchor will cause
most browsers to move the top of the display to the point referred to by
the anchor. These anchor names are inserted into documents with the
NAME tag as explained under “Linking to Sections on Pages” later in this
appendix.

Oracle WebServer 2.0 User’s Guide

Structure of an Anchor Link within a Document

So far, we’ve discussed what a URL looks like. To cause a link to be displayed
for the user to access, an anchor link must be embedded in the document text.
The HTML syntax which allows this is:

 text_to_be_displayed_highlighted

The tag opens the anchor link and the tag closes it. All
the text between those tags is displayed highlighted in some way by a web
browser. A common technique is to display it underlined and in blue or some
other user-selected contrasting color.

The URL part of the tag refers to the text of the URL reference as defined in the
previous section. The URL text does not appear on the user’s screen; it is only
used when the user activates the link, usually by clicking on it with the mouse.

An example HTML segment:

For interesting products see
Acme’s home page.

This line would produce on the user’s screen:

For interesting products see Acme’s home page.

Graphics within HTML Documents

Introduction To HTML

One of the most compelling features of the Web is the ability to embed references
to graphics and other data types within a document using the <IMG...ISMAP>
tags. This adds a very lively character to your pages and makes them visually
interesting.

There are two ways to use graphics from within an HTML document. The first
is by embedding them within the document itself, so the user’s screen will
display the graphics within the context of the other elements of your document
(such as explanatory text). This is the most common technique used by HTML
designers and is called an “inline image”. The syntax for specifying this is:

<IMG SRC=" URL’ ALT=" text "
ALIGN=[" top"" middle "|" bottom "|" texttop "]ISMAP>

The elements in this syntax statement are as follows:
URL

is the same syntax as any other URL, as explained above. This is the way the
browser accesses the actual image data file, which should be in a format

supported by the browser. Currently GIF and JPEG formats are supported by
most browsers. Specifying the URL is required.

ALT="text”

will cause the string text to be displayed if the browser is incapable of displaying
images, or ifimage display is turned off. This is a way of ‘labelling’ the image the
user would be seeing if image display was turned on. ALT is an optional
keyword; if it is missing, no text will be displayed if images are turned off on the
browser. Most browsers put some sort of icon on the screen to indicate an image
would normally be there. Using the ALT tag is recommended so that your page
is compatible with text-only browsers such as Lynx.

ALIGN

is used with one of the keywords to tell the browser where to place the next block
of text. This allows a certain amount of creativity in the layout of your page. If
this is not specified, most browsers put the image on the left side of the screen
and fill in following text to the right of it.

ISMAP

tells the server that this image is a bitmap and allows the user to click on a
location on the image to cause a URL to be accessed directly. Image maps are an
advanced HTML feature and require server side configuration to function.

For example, the following line will cause the file logo.gif ~ to be fetched from
server www.oracle.com and the text OracleLogo to be displayed if the user has
graphic display turned off.

Linking to Sections on Pages

C-14

You can link to a different area or section of your document by using a hidden
reference marker to that specific section. This provides a quick way to move
through sections of the document without having to scroll up or down. Once you
click on that link, the hidden reference places you in the section, and the browser
presents the hidden marker line as the first line on the screen.

To create a link, follow these steps:

1. Create a named anchor marker in each section title that you might want to
jump to. The HTML syntax is as follows:
 Text to_link_to

2. Inthe following example, a hidden reference marker is placed in a head?2

Oracle WebServer 2.0 User’s Guide

level:

<H2>Introduction to Hockey</H2>

3. Create the link by entering:
 Text

4. For example, the link might appear as:
Gordie Howe
The “#” symbol instructs your web browser to look through the HTML
document for a named anchor called “intro”.

When the user clicks on “Gordie Howe,” the browser displays the heading
“Introduction to Hockey” at the top of the screen.

Note: As specified earlier in the URL syntax, a link to a section can appear in the
same document or in another document. The example here describes a link to a
specific section of the same document.

Reviewing Changes to Your HTML Document

At some point, you will want to view the changes you have made to your HTML
document. The following steps show you how to view your changes:

1. After you have edited your HTML file in your favorite text editor, save the
file.

2. If you are currently displaying the document in a browser, you will need
to reload it to see the changes. Select File -->Reload on the browser
window. (In some browsers, reload will be under another menu item.)

The browser will read in the new file information and display the file with the
changes you have made.

Adding Style to Your HTML Document

HTML tags offer several text styles so that you can emphasize any text in your
document. The following is a short list of the most often used tag styles:

e bold
= jtalics

e underline

Introduction To HTML C-15

= mono spaced (typewriter style)

You can also use combinations of styles (for example, bold and italics)

Style Element or Tag Result

Bold | want this text | want this text bold
bold

Italics <I>| want this text ital- | | want this text italics
ics</I>

Underlined <U>| want this under- | | want this underlined
lined</U>

Mono spaced(typewrit-| <TT>| want this text | want this text

er) typed</TT> typed

You can add style to text that appears anywhere in the HTML document.
Combinations of styles can also be used, provided you assign all the closing tags
needed.

<I>Hockey</I> is Life.<P>

becomes a paragraph that looks like this:
Hockey is Life.

The style tags surround the words they affect, in conjunction with other tags
such as headings.

Be careful how many style tags you use on one page. If you use too many, the
text may become difficult to read.

Special HTML Tags

Address Tag

C-16

The following tags or characters are options provided to make your HTML
document more robust.

The <ADDRESS> tag is used to specify the author of a particular HTML
document, and a way to contact the author (such as an email address). The
syntax is as follows:

<ADDRESS>

address_of _author
</ADDRESS>

Oracle WebServer 2.0 User’s Guide

Escape Sequences

The following ASCII characters have special meaning within HTML and cannot
be used in regular text:

= left angle bracket <
= right angle bracket >
e ampersand &

= double quote ”

To use these characters you must use these escape sequences:

For Use

< <

> >

& &

" "
Table C-1:

There are several more escape sequences to support accented characters, such as
the umlaut or the tilde. A full list of supported characters can be found in any
number of reference manuals on HTML syntax. See also the list of on-line HTML
references at the end of this appendix.

Tables

Tables in HTML organize data by row and column. Tables can contain a wide
range of content, such as headers, lists, paragraphs, or figures. They can include
any element or tag in HTML.

Cells can be merged across rows or columns.

Basic Table Tags

This section describes the basic table tags and their meanings.

Introduction To HTML C-17

C-18

Table: <TABLE>.. </TABLE>

This is the main wrapper for all the other table tags. Other table tags can be
ignored if they aren’t wrapped inside of the <TABLE></TABLE> tags. By
default, tables have no borders. Borders are added if the BORDER attribute is
specified. See the next section “Basic Table Attributes”.

Table Row: <TR></TR>

The number of rows in a table is specified by how many <TR> tags are contained
within it. <TR> can have both the ALIGN and VALIGN attributes, which if
specified become the default alignments for all cells in this row. See the next
section, “Basic Table Attributes”.

Table Data: <TD></TD>

This specifies a standard table data cell. Table data cells must only appear within
table rows. Each row need not have the same number of cells specified, because
short rows will be padded with blank cells on the right. A cell can contain any of
the HTML tags normally present in the body of an HTML document. The default
alignment of table data is ALIGN=left and VALIGN=middle. These alignments
can be overridden by any alignments specified in the containing <TR> tag.

Note: Row alignments are overridden by any attributes assigned to a cell.

By default, lines inside of table cells can be broken up to fit within the overall cell
width. Use the NOWRAP attribute described in the section, “Basic Table
Attributes,” to prevent line breaking for that cell.

Table Header; <TH></TH>

The table header cells are identical to data cells in all respects, except that header
cells are in a bold font and have a default ALIGN=center.

Caption: <CAPTION>... </CAPTION>

This optional tag represents the caption for a table. The <CAPTION> tags should
appear inside the <TABLE></TABLE> tags but not inside table rows or cells.
The default alignment for the <CAPTION> tag is ALIGN=top but can be
explicitly set to ALIGN=Dbottom. Like table cells, any document body HTML tags
can appear in a caption. Captions are always horizontally centered with respect
to the table, and they may have their lines broken to fit within the width of the
table.

Oracle WebServer 2.0 User’s Guide

Basic Table Attributes

Example Table

Introduction To HTML

This section lists the basic table attributes and their meanings.

BORDER: This attribute appears in the Table tag. If present, borders are drawn
around all table cells. If absent, there are no borders. By default space is left for
borders, so a table has the same width with or without the border attribute.

ALIGN: If the ALIGN attribute appears inside a <CAPTION> </CAPTION>
tag, it controls whether the caption appears above or below the table. It can have
the values top or bottom. The default attribute is ALIGN=top.

When appearing inside a <TR>, <TH>, or <TD> tag, ALIGN controls whether
text inside the table cell(s) is aligned to the left side of the cell, the right side of
the cell, or centered within the cell. Values are left, center, and right.

VALIGN: The VALIGN attribute appears inside a <TR>, <TH>, or <TD> tag.
This attribute controls whether text inside the table cell(s) is aligned to the top of
the cell, the bottom of the cell, or vertically centered within the cell. It can also
specify that all the cells in the row should be vertically aligned to the same
baseline. Values are top, middle, bottom, and baseline.

NOWRAP: If the NOWRARP attribute appears in any table cell, the lines within
this cell cannot be broken to fit the width of the cell. Be cautious in use of this
attribute as it can result in excessively wide cells.

COLSPAN: The COLSPAN attribute can appear in any table cell and specifies
how many columns of the table a specified cell should span. The default
COLSPAN for any cell is 1.

ROWSPAN: The ROWSPAN attribute can appear in any table cell and specifies
how many rows of the table this cell should span. The default ROWSPAN for
any cell is 1. A span that extends into rows that were not specified with a <TR>
tag will be truncated.

COLSPEC: The COLSPEC attribute can be used when needed to exert control
over column widths, either by setting explicit widths or by specifying relative
widths. Specify the table width explicitly or as a fraction of the current margins.

The following is a table using some of the table tags and attributes we have
previously discussed:
<TABLE BORDER>

<CAPTION ALIGN=bottom> Table #1 </CAPTION>
<TR><TD ROWSPAN=2> </TD> <TH COLSPAN=2>Average</TH></TR>

<TR><TH>Height</TH><TH>Weight</TH></TR>
<TR><TD>Males</TD><TD ALIGN=center> 69 </TD>
<TD ALIGN=center>150 </TD></TR>
<TR><TD>Females</TD><TD ALIGN=center> 64 </TD>
<TD ALIGN=center>130 </TD></TR>

</TABLE>

The table will look like this:

Average

Height Weight
Males 69 150
Females 04 130

Average
Height Weight
Males 69 150
Females 64 130
Table #1

<TABLE BORDER>

<CAPTION ALIGN=bottom> Table #1 </CAPTION>

<TR><TD ROWSPAN=2> </TD> <TH COLSPAN=2>Average</TH></TR>
<TR><TH>Height</TH><TH>Weight</TH></TR>
<TR><TD>Males</TD><TD ALIGN=center> 69 </TD>

<TD ALIGN=center>150 </TD></TR>

<TR><TD>Females</TD><TD ALIGN=center> 64 </TD>

<TD ALIGN=center>130 </TD></TR>

</TABLE>

Forms

HTML pages can be formatted in any fashion, but remain read-only. The HTML
form feature brings the added advantage of being interactive. An HTML form
lets the Web user enter comments and specify database search criteria.

When a form is interpreted by a Web browser, a special graphical user interface
(GUI) screen is created with text entry fields, buttons, checkboxes, pull-down
menus, and scrolling lists. When the Web user fills out the form and presses a
button indicating the form should be submitted, the information on the form is
sent to an HTTP server for processing by a CGl (Common Gateway Interface)
program.

C-20 Oracle WebServer 2.0 User’s Guide

Forms Syntax

Introduction To HTML

When you write a form, each of your input items has an <INPUT> tag. When the
user places data in these items in the form, that information is encoded into the
form data and is known as the “value”.

All form elements have Name and Value attributes. Data are sent as
NAME=VALUE pairs, separated by ampersands (&), where name is given in the
NAME attribute, and value is given in the VALUE attribute, or replaced by the
user.

This section illustrates the basic use of HTML forms. Forms can be used for
simple table searches or complex queries to relational databases.

All forms begin with <FORM> and end with </FORM>.
The syntax is as follows:

<FORM METHOD="get|post” ACTION=" URL> Form_elements_and_other_HTML
</FORM>

METHOD

The request method supplies the data to the program. There are two request
methods that can be used to access your forms. Depending on which request
method you use, you will receive the encoded results of the form in a different
way.

= GET: Information from a form is appended onto the end of the URL being
requested. Your CGI program receives the encoded form input in the
environment variable QUERY_STRING. Use of the GET method is
discouraged.

= POST: This request method transmits all form input information
immediately after the requested URL. Your CGI program will receive the
encoded form input on standard input. The server will not send you an
EOF on the end of the data; instead use the environment variable
CONTENT_LENGTH to determine how much data you should read from
standard input. This is the preferred method.

ACTION

ACTION specifies the URL being requested from the form. This URL will almost
always point to a CGlI script to decode the form results. If you are referring to a
script on the same server as the form, you can use a relative URL.

Cc-21

Form Tags

C-22

TEXTAREA

The <TEXTAREA> tag is used to allow a user to enter more than one line of text
in a form. The following is an example of the TEXTAREA tag:

<TEXTAREA NAME="address” ROWS=14 COLS=60>
Chicago Blackhawks

1800 Madison Ave

Chicago, Il 60612

</TEXTAREA>

The attributes included within the <TEXTAREA> tag are used to initialize the
field’s value. The </TEXTAREA> tag is always required even if the field is
initially blank.

The following are attributes of <TEXTAREA> and determine the visible
dimensions of the field in characters:

* NAME-user-defined name
< ROWS-height in characters of TEXTAREA
e COLS-width in characters of TEXTAREA

If you want text to appear within the text area, enter it between the start and end
<TEXTAREA>tags.

INPUT

The <INPUT> tag allows you to input a single word or line of text, with a default
width of 20 characters. It is usually preceded with some descriptive text.

The following are attributes of <INPUT>:

= CHECKED-When present indicates that a checkbox or radio button is
selected.

e MAXLENGTH-The maximum number of characters that will be accepted
as input. This limits the number of characters a user can type into the field.
The form will give an error beep if the user tries to enter too many
characters. This can be greater that specified by SIZE, in which case the
field will scroll appropriately. The default is unlimited.

= NAME-Symbolic field name used when transferring the form’s contents.
This attribute is always needed and should uniquely identify this field.

= SIZE-Specifies how large an area to allocate, in characters, on the screen.

= SRC-A URL specifying an image for use only with TYPE=IMAGE.

Oracle WebServer 2.0 User’s Guide

Introduction To HTML

TYPE-Defines the type of data the field accepts. Defaults to free text.
Several types of fields can be defined with the TYPE attribute:

CHECKBOX

Used for simple Boolean attributes, or for attributes that can take multiple
values at the same time. The latter is represented by a number of checkbox
fields each of which has the same NAME. Each occurrence of a checkbox
is either ON or OFF. For a multi-valued attribute, there is a checkbox for
each attribute, indicating whether the attribute applies. The various
attributes are associated with one another by the fact that each attribute
checkbox uses the same name. Each selected checkbox generates a
separate NAME=VALUE pair in the submitted data, even if this results in
duplicate names. The default value for CHECKBOX is ON.

HIDDEN

No field is presented to the user, but the content of the field is sent with
the submitted form. This value may be used to transmit state information
about client-server interaction, or for password information.

IMAGE

An image field upon which you can click with a pointing device, causing
the form to be immediately submitted. The coordinates of the selected
point are measured in pixel units from the upper left corner of the image,
and are returned (along with the other contents of the form) in two
NAME=VALUE pairs. The x-coordinate is submitted under the name of
the field with .x appended, and the y-coordinate is submitted under the
name of the field with .y appended. Any value attribute is ignored. The
image itself is specified by the SRC attribute, exactly as for the tag.

PASSWORD

Same as TEXT attribute, except that password text is not displayed as it is
entered.

RADIO

For attributes which can take a single value from a set of alternatives. Each
radio button field in the group should be given the same NAME. Only the
selected radio button in the group generates a NAME=VALUE pair in the
submitted data. Radio buttons require an explicit VALUE attribute.

RESET

This is a button that when pressed resets the form’s fields to their specified
initial values.

C-23

SUBMIT

This button, when pressed, submits the form. You can use the VALUE
attribute to provide a non-editable label to be displayed on the button. The
default label is application-specific. The NAME attribute, if used, passes a
name=value pair along with the submitted form.

TEXT

Single line text entry fields. Use in conjunction with the SIZE and
MAXLENGTH attributes. Use the TEXTAREA tag for text fields that can
accept multiple lines.

< VALUE-Assigns an initial default value for the field, or the value when
checked for checkboxes and radio buttons. This attribute is required for
radio buttons.

Form Selection Menus

SELECT

C-24

There are three types of selection menu tag for forms:

= Select: user selects from a fixed set of values represented by the option tag.
This tag is usually displayed with a pull down menu.

= Selectsingle: same as Select, but display is presented with a window with
three items displayed at once. If there are more than three options, the
window will have a scroll bar.

= Select multiple: allows multiple items to be selected from the menu.

The SELECT tag allows the user to select a value from a fixed list. This is usually
presented as a pull down menu.

The SELECT tag has one or more options between the start<SELECT> and
end</SELECT?> tag. By default the first option is displayed in the menu. The
following is an example of a <SELECT> tag:

<FORM>

<SELECT NAME=group>
<OPTION>Gretzky
<OPTION>Messier
<OPTION>Coffey
</SELECT>

</FORM>

Oracle WebServer 2.0 User’s Guide

SELECT SINGLE

SELECT MULTIPLE

The SELECT SINGLE tag is the same as the SELECT tag, but options are
displayed in a window with three items shown at once. If there are more than
three options, the window will have a scroll bar. The SIZE tag within the
SELECT tag specifies how many options will be shown in the window. The
following is an example of a <SELECT SINGLE> tag:

<FORM>

<SELECT SINGLE NAME=group SIZE=3>
<OPTION>Gretzky

<OPTION>Messier

<OPTION>Coffey

<OPTION>Kurri

</SELECT>

</FORM>

In this example, the first three names would appear in the window, and a scroll
bar would scroll to the last name.

The SELECT MULTIPLE tag is the same as the SELECT SINGLE tag, but the user
can select more than one option in the window. The SIZE tag specifies how many
lines appear in the window, and the MULTIPLE tag specifies how many options
can be selected.

The following is an example of SELECT MULTIPLE:

<FORM>

<SELECT MULTIPLE NAME=group SiZE=3MULTIPLE=2>
<OPTION>Gretzky

<OPTION>Messier

<OPTION>Coffey

<OPTION>Kurri

</SELECT>

</FORM>

Note: On some browsers, it may be necessary to hold down the CONTROL or
SHIFT key to select multiple items.

If multiple items are selected, they each get passed to the server with the same
name. The decoding script has to be able to recognize multiple values associated
with the same name.

Creating Your Own HTML Document

Introduction To HTML

Now that most of HTML has been demystified, you can create your own HTML
documents. Use any browser to view the HTML document you have created.

C-25

The following is an example of an HTML document that you can type word for
word, or modify as you wish;

<HTML>

<HEAD>

<TITLE>Chicago Blackhawks: A Love Story</TITLE>

</HEAD>

<BODY>Chicago Blackhawks: A Love Story

<P>This is a story about my beloved Blackhawks. Year after painful year
they amass teams that could potentially win a Stanley Cup. But year after
insidiously painful year, they manage to lose in the first or second round
of the playoffs. If you have any suggestions as to how to reconcile this
evil, many fans would be grateful. Still we live on to love the Blackhawks.
<H2>Some Players We Have Loved</H2>

Bobby Hull

Stan Makita

Tony Esposito

Jeremy Roenick

<H2>Some Players We Love to Hate</H2>

Wendall Clark

Doug Gilmour

Tie Domi

UIf Samuellson

<H2>List of Love Letters to Our Team</H2>

Love Letters
Letters from NHL

<HR>Writeto me.

Click below to send me Comments.

<I>crazed4hawks, oldstadium@madison.com</I>

</BODY>

</HTML>

More Information about HTML

For online information on HTML, the following URL sites provide a wealth of
information:

http://www.ncsa.uiuc.edu/demoweb/html-primer.html
http://union.ncsa.uiuc.edu/HyperNews/get/www/html.html
http://fire.clarkson.edu/doc/htmi/htut.html
http://lugweb.cs.ualberta.ca/~gerald/guild/html.html

C-26 Oracle WebServer 2.0 User’s Guide

Introduction To HTML C-27

Index

%ROWTYPE attribute, B-19
%TYPE attribute, B-16, B-18

A

aliases

for database objects, B-8

for database tables, B-10
ALTER TRIGGER statement (SQL), B-35
anchors

structure of, C-13

used in hypertext linking, C-10
applets

defined, 1-15

embedded in Web pages, 1-15

wrapping in server-side Java, 4-15
application developers, 1-1
applications

components of, 4-1

specifying, 4-4

structure of in Java, 4-18
arrays

implemented as tables in PL/SQL, B-17

assignments
initial, B-15
values to parameters (PL/SQL), B-20
values to variables (PL/SQL), B-21
authentication, 1-5
automatic recompilation (PL/SQL), B-30

B

basic authentication, 1-5
blocks (PL/SQL), B-14
Boolean logic
IF statements and (PL/SQL), B-22
Three-Valued in SQL, B-6
browsers
Java-enabled, 1-15
bytecode, 1-15

C

caching
files, 1-5
cattributes, 6-5
cattributes parameter
use in passing exact text, 6-5

certifying authorities, 1-9
cal, 1-10
environment variables, 4-4, 4-6, 4-31,

executing from LiveHTML, 4-32

LiveHTML can call, 1-17

variables used by WRB, 1-12
changes

viewing in HTML document, C-15
Common Gateway Interface (CGI), 1-10
compiler directives (PL/SQL), B-26
compression, 1-6
Connect-String, 4-5
constants

declaring (PL/SQL), B-16
constraints (SQL), B-7
cookies, 6-79
correlation variables

in SQL statements, B-10

in triggers, B-35
CREATE FUNCTION statement (SQL), B-

CREATE PACKAGE BODY statement (SQL),
B-31

CREATE PACKAGE statement (SQL), B-31

CREATE PROCEDURE privilege (SQL), B-

CREATE PROCEDURE statement (SQL), B-

CREATE TABLE statement (SQL), B-7
crippled LiveHTML, 4-30
cursor variables (PL/SQL), B-19
cursors (PL/SQL), B-19

in package specifications, B-31

D

data structures
in PL/SQL, B-17

databases
access control, 4-5
changing data content of, B-8
connecting to, 4-5, 4-16
connecting to in Java, 4-18
constraining, B-7
creating objects in using PL/SQL, B-13
creating tables in, B-7
database triggers, B-33
interfacing to, B-5
missing data in, B-6
nulls used in, B-6
referencing objects in, B-7
removing data from, B-9
retrieving data from, B-6
storing code in, B-13, B-28, B-33
datatypes
composite, B-15
converting, B-15
in OWA_PATTERN, 6-66
inheritance of (PL/SQL), B-16
OWA_TEXT uses, 6-75
PL/SQL, B-14
PL/SQL Agent limitations, 4-12
PL/SQL vs. Java, 4-18
PL/SQL Web Toolkit, 6-5
pointer, B-15
RECORD (PL/SQL), B-18
scalar, B-14
sSQL, B-7
structured, B-15
TABLE (PL/SQL), B-17
user-defined, B-16
user-defined in PL/SQL, B-18
DATE_GMT, 4-31
DATE_LOCAL, 4-31
DBMS_SQL package, B-13
DBMSSTDX.SQL script, B-30
DCDs, 4-16
format of, 4-5
how specified, 1-12, 4-4
optimizing for multiple, 6-3

Index-2

declarations
constants (PL/SQL), B-16
subprograms (PL/SQL), B-20
types (PL/SQL), B-16
variable (PL/SQL), B-15
DECLARE section (PL/SQL), B-14
DELETE statement (SQL), B-9
digest authentication, 1-5
digital signatures, 1-9
DNS, 1-4
DOCUMENT_NAME, 4-31
DOCUMENT _URL, 4-31
domain names, 1-4
domains
restricting access to specified, 1-6
dot notation
for database objects, B-7

for PL/SQL objects and subprograms,
B-16-B-17

E

encryption
communications, 1-7
password, 1-5
public key, 1-8
session keys, 1-8
environment variables, 4-31
retrieving, 6-57
error handling
Java, 4-18
LiveHTML, 4-30
Oracle7, B-25
PL/SQL, B-25
PL/SQL Agent, 4-13
triggers and, B-35
exceptions (PL/SQL), B-25
declared in DECLARE section, B-19
declaring, B-26
predefined, B-25
user-defined, B-26
EXECUTABLE section (PL/SQL), B-21

Index-3

EXECUTE privilege (SQL), B-28
EXIT statement (PL/SQL), B-24
extensions

filename, 1-6
extra path information, 4-3

F

fields
in PL/SQL records, B-18
file sharing, 1-5
files
access control, 1-5
caching, 1-5
compression of, 1-6
filename extesions, 1-6
language of, 1-6
MIME types, 1-6
firewalls, 1-4
flow control (PL/SQL), B-21
FOR loops (PL/SQL), B-24
FOR UPDATE clause (PL/SQL), B-19
forced line breaks, C-6
foreign keys
joins using, B-9
Form tags, C-22
Input, C-22
TextArea, C-22
form tags, 6-42
Forms, C-20
selection menus, C-24
syntax, C-21
forms
multivalued parameters, 4-9
parameter passing through, 4-8
frame tags
HTML frame tags, 6-29
FTP, C-12
functions, B-20
grouped into packages, B-29
return values of (PL/SQL), B-20
storing in database, B-28

Oracle WebServer 2.0 User’s Guide

G

GET, 4-6—4-7
GOTO statement (PL/SQL), B-24
error handling and, B-27
graphics, 6-78
image maps, 1-16
within HTML documents, C-13

H

host names, 1-4

HTML
basic concepts, C-2
case sensitivity, C-3
comments in, 4-30
dynamically generating, 4-4
extending, 6-63
form tags, 6-42
introduction, C-1
Java generates dynamic, 4-25
list tags, 6-31
print tags, 6-6
structure tags, 6-7
table tags, 6-51

HTML Tags

ADDRESS, C-16
BLOCKQUOTE, C-7
BODY, C-5

BOLD, C-15
CAPTION, C-18
definition list, C-10
escape sequence, C-17
getting started, C-3
HEAD, C-4
heading level, C-5
I, C-15

lists, C-8

mono spaced, C-15
nested list, C-9
ordered list, C-8

P, C-5

PRE, C-5

TABLE, C-18

TD, C-18

TH, C-18

TITLE, C-4

TR, C-18

u, C-15

unordered list, C-9

HTTP, C-11
HyperText Markup Language, C-1
HyperText Procedures

body tags, 6-13

character format tags, 6-37
definition of, 6-1

form tags, 6-42
head-related tags, 6-10

list tags, 6-31

physical format tags, 6-41
printing procedures, 6-6
structural tags (HTML), 6-7
table tags, 6-51

IF statement (PL/SQL), B-22

Index-4

image maps
defined, 1-16
dynamic, 1-16, 6-78

initialization section (PL/SQL packages), B-
32

input parameters, B-20
INSERT statement (SQL), B-8
int_array, 6-75

IP addresses, 1-3

restricting access to specified, 1-6

ISMAP attribute, C-14

J

Java
application structure, 4-18
client side, 1-16
database connections, 4-18
error handling, 4-18
generating HTML from, 4-25
NULL handling in, 4-19
overview of, 1-15
PL/SQL combined with, 1-16
PL/SQL datatypes in, 4-18

proscribes direct memory management,

1-15
server side, 1-16, 4-15
wrappers for PL/SQL, 4-16
joins, B-9
natural, B-9
outer, B-10

L

labels
PL/SQL, B-24
languages
file formats and, 1-6
specified for WRBXs, 1-12
LAST MODIFIED, 4-31

Index-5

links
to other documents, C-10
to other sections, C-14
list tags, 6-31
definition, C-10
nested, C-9
ordered, C-8
types of, C-8
unordered, C-9
Listener, 1-3
LiveHTML
environment variables, 4-31
executing programs from, 4-32
overview of, 1-16

PL/SQL Agent can be called from, 1-17

tags, 4-30

loops (PL/SQL), B-23
exiting nested, B-24
FOR, B-24
WHILE, B-24

M

mailto, C-11
memory
management of, 1-5
proscribed in Java, 1-15
multi_line, 6-75

N

naming conventions
PL/SQL, B-17
tables, B-18
sQL, B-7
natural joins, B-10
NLS
file formats and, 1-6
NOT NULL constraint (SQL), B-7
PL/SQL use of, B-15
NULL statement (PL/SQL), B-23

Oracle WebServer 2.0 User’s Guide

nulls
as Boolean values, B-6
database contains, B-6
differentiated from NULL statement, B-

outer joins generate, B-10

prohibiting, B-7, B-15

SQL handling of, B-6

UPDATS statement (SQL) generates, B-

variables initialized to (PL/SQL), B-15

@)

objects
ownership of database, B-7
oracle.html(Java package), 4-15
oracle.plsgl(Java package), 4-15
oracle.rdbms(Java package), 4-15
ORACLE_HOME, 4-5
outer joins, B-10
output parameters, B-20
overloading
PL/SQL procedures, 4-12
overloading subprograms
PL/SQL, B-32
owa, 6-3
OWA_COOKIE, 6-79
OWA_IMAGE, 6-78
OWA _PATTERN, 6-63
OWA _TEXT, 6-75
OWA_UTIL Package, 6-55
OWAINS.SQL, 6-3

P

packages, B-29
creating, B-30
specification, B-31

parameters
actual (PL/SQL), B-20
formal (PL/SQL), B-20
in PL/SQL, B-20
in PL/SQL packages, B-32
modes of (PL/SQL), B-20
multivalued, 4-9
passing through forms, 4-8
parent keys, B-4
PATH_INFO, 4-4, 4-6
PL/SQL
blocks, B-14
datatypes
Java encapsulation of, 4-18
declarations, B-14
DECLARE section, B-14
embedding dynamic output in static
Web pages, 1-17
EXCEPTION section, B-25
EXECUTABLE section, B-21
flow control in, B-21
generating dynamically, B-13
GOTO restrictions, B-25
Java combined with, 1-16
overloading subprograms, B-32
parameter passing, 4-4, 4-7
procedures
overloading, 4-12
scope of objects and subprograms, B-16
sections of, B-14
subprograms, B-14
user-defined datatypes in, B-16
PL/SQL Agent, 4-4
connect to database, 4-16
datatype limitations, 4-12
environment variables, 4-6
error handling, 4-13
Java circumvents, 4-15
LiveHTML can call, 1-17
multiple DCDs, 6-3
PL/SQL Agents, 1-13

Index-6

PL/SQL packages
bodies, B-31
Java wrappers for, 4-16
PL/SQL tables
datatype limitations, 4-12
PL/SQL Web Toolkit, 6-1
datatypes used, 6-5
installation, 6-3
installing, 6-3
ownership of, 6-3
procedures and functions, 6-1
security considerations, 6-4
pl2java, 4-16
ports, 1-3
specifying in URLs, 4-3
POST, 4-6—4-7
pragmas (PL/SQL), B-26
predicates, B-6
in IF statements (PL/SQL), B-22
primary keys
enforcing, B-7
print tags, 6-6
private synonyms, B-8
privileges
object, B-5
required to create triggers, B-35
stored procedures require, B-28
stored procedures use, B-28
system, B-5
PRIVUTIL.SQL, 6-4
procedures
declaring, B-20
getting started, 6-5
grouped into packages, B-29
storing in database, B-28
proxy servers, 1-4
public key encryption, 1-8
public synonyms, B-8
PUBUTIL.SQL, 6-4

Index-7

Q

queries (SQL), B-6
multiple tables used in, B-9
stored in cursors (PL/SQL), B-19

within other queries (subqueries), B-11

query strings, 4-3

QUERY_FORM, 4-9
QUERY_STRING, 4-6
QUERY_STRING_UNESCAPED, 4-31

R

RAISE statement (PL/SQL), B-27
range variables, B-10
records
PL/SQL datatype, B-18
ref cursors (PL/SQL), B-15
regular expessions, 6-63
reload, C-15
REQUEST _METHOD, 4-6—4-7
restriction, 1-6
RETURN statement (PL/SQL), B-20
return values
cursor (PL/SQL packages), B-31
functions (PL/SQL), B-20
row_list, 6-76

S

schemas, B-7
scope

of PL/SQL objects and subprograms, B-

16
PL/SQL packages and, B-32
SCRIPT_NAME, 4-4, 4-6

Oracle WebServer 2.0 User’s Guide

security
certifying authorities, 1-9
DCD, 4-5
digital signatures, 1-9
encryption, 1-7
file access, 1-5
PL/SQL Web Toolkit, 6-4
proxy Internet connections, 1-4
public key encryption, 1-8
session keys, 1-8
SsL, 1-7
SELECT statement (SQL), B-6
server extensions, 4-2
Server Side Includes
same as LiveHTML, 1-16
session keys, 1-8
SGML comments, 4-30
SHTML, 4-30
sockets
defined, 1-4
sQL, B-5
dynamic, B-13
predicates, B-6
standards, B-5
Three-Valued Logic (TRUE, FALSE,
NULL) in, B-6
SQLCODE, B-25
SQLERRM, B-25
SSL
Overview of, 1-7
STANDARD package (PL/SQL), B-25
stored procedures, B-28
string matching, 6-63
structure tags, 6-7
subprograms (PL/SQL), B-14
declaring, B-20
error handling and, B-27
GOTO restrictions, B-25
overloading, B-32
parameters of, B-17
resolving ambiguous references, B-17
scope and visibility of, B-16

subqueries (SQL), B-11
subtypes (PL/SQL), B-16
using to create PL/SQL records, B-18
using to create PL/SQL tables, B-18
synonyms
for database objects, B-8

T

Table attributes

Align, C-19

Border, C-19

Colspan, C-19

Colspec, C-19

Nowrap, C-19

Rowspan, C-19

Valign, C-19
table tags, 6-51
Tables

in HTML, C-17
tables

database, B-7

aliases for, B-8, B-10

HTML, 4-9

ownership of, B-7

passing as parameters in PL/SQL, B-17

PL/SQL, B-18

PL/SQL datatype, B-17

stored in cursors (PL/SQL), B-19
TCP/IP, 1-3
text/x-server-parsed-html, 4-30
text-only browsers, C-14
Three-VeLl%Iugd Logic (TRUE, FALSE, NULL),

addressing in Java, 4-19
triggers, B-33

altering, B-33

creating, B-33

enabling and disabling, B-35

Index-8

U W

Uniform Resource Locator (URL), C-11, C- Web Listener, 1-3
13 Web Listeners
unique keys, B-4 control WRBX load, 1-12
UPDATE statement (SQL), B-9 file type negotiation, 1-6
URL, C-13 interpret URLs, 1-2
URLs, C-10 memory management, 1-5
GET vs. POST, 4-7 Overview of, 1-3
interpretation of, 4-3 Web pages
parameter ordering, 4-9 applications and, 4-2
specifying PL/SQL Agent with, 1-13 dynamic, 1-16, 4-2, 4-4
specifying ports in, 4-3 from Java, 4-25
specifying secure connections with, 1-4 including in LiveHTML, 4-30
use of "owa" in, 1-13 dynamic data embedded in static, 1-17
use virtual file names, 1-4 embedded, 4-30
used in applications, 4-2 Web Request Broker (WRB), 1-11
usernames WebServer
specified in DCDs, 4-5 executing Java on, 1-16
users Overview of, 1-2
schemas and, B-7 WebServer Administrators, 1-1

WebServer Manager
overview of, 1-9

Vv WHILE loops (PL/SQL), B-24
variables WRB, 1-11

assigning values to (PL/SQL), B-21 CGI environment variables and, 4-6

cursor, B-15, B-19 overview of, 1-2

declaring (PL/SQL), B-15 WRB cartridges

in triggers, B-35 defl-ned, 1-2

initializing WRB Dispatchers

in PL/SQL packages, B-32 how invoked, 4-4
instantiation in PL/SQL packages, B-30 WRB Services
defined, 1-2

vc_array, 6-75

virtual file systems WRBXs .
defined. 1-4 allocation of requests to, 1-12
Virtual Machines (VMs), 1-15 connect to database, 4-16

virtual paths, 4-3 connecting to database, 1-13
visibility data passed to, 1-12

of PL/SQL objects and subprograms, B- defined, 1-2
16 single-threaded, 1-12

PL/SQL packages and, B-32

Index-9 Oracle WebServer 2.0 User’s Guide

	1 Oracle WebServer Concepts
	Overview
	The Web Listener
	Network Communication
	Ports
	IP Addresses
	DNS Host and Domain Names
	Secure Connections
	Proxies

	File Handling
	File Memory Mapping
	File Caching
	File Protection
	Authentication Schemes
	Restriction Schemes

	File Format Negotiation
	Language Formats
	MIME Formats
	Encodings
	Filename Extensions

	Dynamic Document Generation
	The Web Request Broker

	The Secure Sockets Layer
	Encryption
	Public-Key Encryption

	Authentication
	Certificates and Certifying Authorities

	The Web Server Manager
	The Listener Pages
	The WRB Pages
	The PL/SQL Agent Pages
	The Oracle7 Server Pages

	The CGI Interface
	The Web Request Broker (WRB)
	WRB Services
	WRB Executable Engines

	PL/SQL Agent
	Specifying the Database Connection
	The PL/SQL WebToolkit

	Java
	Client vs. Server Side Java
	Using PL/SQL Within Java

	LiveHTML

	2 Using the Oracle WebServer Manager
	Starting and Stopping Oracle7 Databases
	Configuring Oracle Web Listener Processes
	Configuring the PL/SQL Agent
	Configuring the Web Request Broker
	Oracle WebServer Manager Tasks
	Oracle7 Database Administration
	Oracle Web Listener Administration
	PL/SQL Agent Administration
	Web Request Broker Administration

	3 Setting Up a Secure Oracle WebServer
	Generating a Certificate Request
	Requesting a Certificate
	Preparing Your WebServer Host Machine
	Installing Your Certificate

	4 Developing Applications for the Oracle WebServer...
	Application Development - an Overview
	Server Extensions
	How URLs Specify Applications
	Example of a URL Invoking an Application

	The PL/SQL Agent
	Database Connection Descriptors (DCDs)
	How the PL/SQL Agent Uses Environment Variables
	Passing Parameters to PL/SQL
	Getting Parameters from the Web Browser to the PL/...
	Passing Parameters Using an HTML Form
	Providing Default Parameter Values
	Multivalued Parameters
	Example of a Multivalued Field
	Overloading Procedures

	Oracle PL/SQL Agent Error Handling
	Application Errors
	System Errors

	The Java™ Interpreter
	Database Access from Java
	Creating Package Wrappers
	flags

	Application Structure

	Example of Java Database Access
	The main program
	Generating the Java Wrapper Class for the Employee...
	Overriding Default Value Sizes
	Making a connection to the database
	Invoking the Employee package

	Dynamic HTML from Java
	Java Dynamic HTML Examples

	The LiveHTML Interpreter

	5 Sample Applications
	PL/SQL Agent Sample Applications
	LiveHTML Sample Tags
	Java Sample Applications

	6 The PL/SQL Web Toolkit Reference
	Hypertext Procedures (HTP)
	Hypertext Functions (HTF)
	OWA Utilities (OWA_UTIL)
	OWA
	Pattern Matching Utilities (OWA_PATTERN)
	Text Manipulation Utilities (OWA_TEXT)
	Image Map Utilities (OWA_IMAGE)
	Cookie Utilities (OWA_COOKIE)
	Installing the Oracle WebServer PL/SQL Web Toolkit...
	Optimizing Multiple-DCD Installations
	Security Note

	Procedure and Function Reference
	Parameters Passed into Procedures and Functions
	Print Procedures
	htp.print
	htp.prn
	htp.prints
	htp.ps
	Structure Tags
	htp.htmlOpen
	htp.htmlClose
	htp.headOpen
	htp.headClose
	htp.bodyOpen
	htp.bodyClose

	Head Related Tags
	htp.title
	htp.base
	htp.isindex
	htp.linkRel
	htp.linkRev
	htp.meta

	Body Tags
	htp.line
	htp.hr
	htp.nl
	htp.br
	htp.header
	htp.anchor
	htp.anchor2
	htp.mailto
	htp.img
	htp.img2
	htp.para
	htp.paragraph
	htp.address
	htp.Comment
	htp.preOpen
	htp.preClose
	htp.blockquoteOpen
	htp.blockquoteClose
	htp.base
	htp.area
	htp.mapOpen
	htp.mapClose
	htp.bgsound
	htp.div
	htp.listingOpen
	htp.listingClose
	htp.nobr
	htp.wbr
	htp.center
	htp.centerOpen
	htp.centerClose
	htp.dfn
	htp.big
	htp.small
	htp.sub
	htp.sup
	htp.basefont
	htp.fontOpen
	htp.fontClose
	htp.plaintext
	htp.s
	htp.strike

	Frame Tags
	htp.framesetOpen
	htp.framesetClose
	htp.frame
	htp.noframesOpen
	htp.noframesClose

	List Tags
	htp.listHeader
	htp.listItem
	htp.ulistOpen
	htp.ulistClose
	htp.olistOpen
	htp.olistClose
	htp.dlistOpen
	htp.dlistClose
	htp.dlistDef
	htp.dlistTerm
	htp.menulistOpen
	htp.menulistClose
	htp.dirlistOpen
	htp.dirlistClose

	Character Format Tags
	htp.cite
	htp.code
	htp.emphasis
	htp.em
	htp.keyboard
	htp.kbd
	htp.sample
	htp.strong
	htp.variable

	Physical Format Tags
	htp.bold
	htp.italic
	htp.teletype

	Form Tags
	htp.formOpen
	htp.formClose
	htp.formCheckbox
	htp.formHidden
	htp.formImage
	htp.formPassword
	htp.formRadio
	htp.formReset
	htp.formSubmit
	htp.formText
	htp.formSelectOpen
	htp.formSelectOption
	htp.formSelectClose
	htp.formTextarea
	htp.formTextarea2
	htp.formTextareaOpen
	htp.formTextareaOpen2
	htp.formTextareaClose

	Table Tags
	htp.tableOpen
	htp.tableClose
	htp.tableCaption
	htp.tableRowOpen
	htp.tableRowClose
	htp.tableHeader
	htp.tableData

	OWA_UTIL Package
	owa_util.signature
	owa_util.signature (cname)
	owa_util.showsource (cname)
	owa_util.showpage
	owa_util.get_cgi_env(function)
	owa_util.print_cgi_env
	owa_util.mime_header
	owa_util.redirect_url
	owa_util.status_line
	owa_util.http_header_close
	owa_util.get_owa_service_path (Function)
	owa_util.tableprint
	Customized Extensions to HTP Packages

	OWA_PATTERN Package
	Regular Expressions
	Tokens
	Quantifiers

	Flags
	Datatypes
	Using MATCH, AMATCH, and CHANGE
	Summaries of OWA_PATTERN Functions

	Procedures and Functions
	owa_pattern.match (version 1)
	owa_pattern.match (version 2)
	owa_pattern.match (version 3)
	owa_pattern.match (version 4)
	owa_pattern.match (version 5)
	owa_pattern.match (version 6)
	owa_pattern.amatch (version 1)
	owa_pattern.amatch (version 2)
	owa_pattern.amatch (version 3)
	owa_pattern.amatch (version 4)
	owa_pattern.change (version 1)
	owa_pattern.change (version 2)
	owa_pattern.change (version 3)
	owa_pattern.change (version 4)
	owa_pattern.getpat

	OWA_TEXT
	Datatypes
	Procedures and Functions
	owa_text.stream2multi
	owa_text.add2multi
	owa_text.new_row_list
	owa_text.print_multi
	owa_text.print_row_list

	OWA_IMAGE
	Datatypes
	Package Variables
	Procedures and Functions
	owa_image.get_x
	owa_image.get_y

	OWA_COOKIE
	Datatypes
	Procedures and Functions
	owa_cookie.send
	owa_cookie.get
	owa_cookie.get_all
	owa_cookie.remove

	OWA_INIT
	Constants

	7 Oracle WebServer Messages
	00001 - 00600 Generic Oracle WebServer Configurati...
	OWS—00000, “utility : normal, successful completio...
	OWS—00001, “utility : unable to open file filename...
	OWS—00002, “utility : error reading file filename”...
	OWS—00003, “utility : error writing file filename”...
	OWS—00010, “utility : file format error when readi...
	OWS—00011, “Installation not completed. Root.sh mu...
	OWS—00020, “utility : out of memory when requestin...
	OWS—00600, “utility : internal error, arguments [a...

	5000 - 5499 : Oracle Web Agent errors.
	OWS—05100, “Agent : unable to connect due to Oracl...
	OWS—05101, “Agent : execution failed due to Oracle...
	OWS—05102, “Agent : initialization failed due to e...
	OWS—05103, “Agent : error number during initializa...
	OWS—05104, “Agent : unable to attach to host datab...
	OWS—05110, “Agent : no stored procedure specified ...
	OWS—05111, “Agent : no stored procedure matches th...
	OWS—05112, “Agent : too many procedures matches th...
	OWS—05150, “Agent : http server Error - environmen...
	OWS—05151, “Agent : Port number not in list of val...
	OWS—05200, “Agent : service service-name not found...
	OWS—05201, “Agent : service parameter parameter no...

	5500 - 5599 : Oracle Web Agent Administration erro...
	OWS—05504, “Service service-name successfully writ...
	OWS—05521, “Service service-name submission failed...
	OWS—05522, “Service service-name submission failed...
	OWS—05523, “Service service-name submission failed...
	OWS—05524, “Service service-name submission failed...
	OWS—05525, “Service service-name submission failed...
	OWS—05526, “Service service-name submission failed...
	OWS—05527, “Service service-name submission failed...
	OWS—05528, “Service service-name submission failed...
	OWS—05529, “Service service-name to modify does no...
	OWS—05530, “Service service-name submission failed...
	OWS—05531, “Service service-name submission failed...

	5600 - 5699 : Oracle Web Database Administration e...
	OWS—05610, “Startup of database database failed du...
	OWS—05611, “Shutdown of database database failed d...
	OWS—05620, “DB Admin : no database selected”
	OWS—05621, “DB Admin : database is already running...
	OWS—05622, “DB Admin : database is already shut do...
	OWS—05623, “DB Admin : parameter file filename is ...

	5700 - 5799 : Oracle Web Listener Configuration er...
	OWS—05710, “Value submitted for parameter must not...
	OWS—05711, “Port number is already in use by the O...
	OWS—05712, “The Oracle Web Listener listener-name ...
	OWS—05713, “Value for parameter must be between mi...
	OWS—05714, “For ports less than number, the effect...
	OWS—05715, “An Oracle Web Listener named listener-...
	OWS—05716, “Port Number number is duplicated in th...
	OWS—05717, “Fill out form has unknown input field ...
	OWS—05721, “The Web Listener listener-name failed ...
	OWS—05722, “The Web Listener listener-name failed ...
	OWS—05723, “The Web Listener listener-name was not...
	OWS-05725, “WRB Configuration file not copied from...
	OWS-05726, “Listener Name listener-name must be an...
	OWS-05727, “Listener Name listener-name too long.”...

	5800 - 5899 : Oracle Web Request Broker Administra...
	OWS-05801, “The input from the form in the HTML fi...
	OWS-05802, “The input parameter parameter must not...
	OWS-05804, “The WebServer Manager found no record ...
	OWS-05805, “Could not copy WRB configuration from ...
	OWS-05810, “Configuration of cartridge cartridge-n...

	5900 - 5999 : Oracle WebServer Registration errors...
	OWS—05901, “Please enter a value for field field.”...

	7500 - 7599 : Oracle Web Server Proxy errors and m...
	OWS—07500, “Proxy switch could not be accessed.”
	OWS—07501, “Proxy Administration Form has invalid ...

	Oracle Java Web Toolkit Messages
	Message: [Method]: Invalid [Argument] Value(s)
	Message: [Method]: Circular Reference
	Message: [Method]: File ([filename]) Not Found
	Message: [Method]: IO Exception caught

	A Glossary
	B Overview of the Oracle7 Server, SQL, and PL/SQL
	Oracle7 Server
	Database Tables
	Foreign Keys

	Users, Connections, Privileges, and Roles
	The PL/SQL Agent as an Oracle User

	SQL
	Retrieving Data
	Nulls and Three-Valued Logic

	Creating Tables
	Ownership and Naming Conventions

	Inserting and Manipulating the Data
	The INSERT Statement
	The UPDATE Statement
	The DELETE Statement

	Querying Multiple Tables Through Joins
	Outer Joins

	Where to Look for More Information

	PL/SQL
	Basic Structure and Syntax
	The DECLARE Section
	Datatypes
	Declaring Variables
	Inheriting Datatypes

	Declaring Constants
	Defining Types
	Scope and Visibility
	Data Structures
	PL/SQL Tables
	Records
	Cursors

	Exceptions
	Declaring Subprograms

	The EXECUTABLE Section
	Assignments
	Flow Control
	IF Statements
	NULL Statements

	Basic Loops
	FOR Loops
	WHILE Loops
	GOTO Statements

	The EXCEPTION Section
	Declaring Exceptions
	Labeling Oracle Messages
	User-Defined Exceptions

	Handling Exceptions

	Storing Procedures and Functions in the Database
	Privileges Required
	Packages
	Instantiation of Packages
	Creating Packages
	Creating the Package Specification
	Creating the Package Body

	Overloading Subprograms

	Database Triggers
	Creating Triggers
	Privileges Required
	Referring to Altered and Unaltered States
	Enabling and Disabling Triggers

	C Introduction To HTML
	What is HTML?
	How Are HTML Documents Created?

	Getting Started
	Document Structure
	Head Tag
	Title Tag

	Body Tags
	Body Tag
	Heading Levels
	Paragraph Tag
	Preformatted Tag
	Forced Line Breaks
	BlockQuote
	Summary of Basic HTML Tags

	List Tags
	Ordered Lists
	Unordered Lists
	Nested Lists
	Definition Lists

	Hypertext Linking
	What is a URL?
	Structure of an Anchor Link within a Document

	Graphics within HTML Documents
	Linking to Sections on Pages

	Reviewing Changes to Your HTML Document
	Adding Style to Your HTML Document
	Special HTML Tags
	Address Tag
	Escape Sequences

	Tables
	Basic Table Tags
	Basic Table Attributes
	Example Table

	Forms
	Forms Syntax
	Form Tags
	Form Selection Menus
	SELECT
	SELECT SINGLE
	SELECT MULTIPLE

	Creating Your Own HTML Document
	More Information about HTML

