Relational algebra

- Union
- Difference
- Cross product
- Intersection
- Projection
- Selection
- Joins
 - Normal join (theta join, equijoin)
 - Natural join
 - Outer join

Cardinality of results: \(R \circ S \)

- \(c(R) = \) cardinality (number of rows) of \(R \)
- Union: rows of both relations, common ones only once
 - \(c(R \cup S) = c(R) + c(S) - c(R \cap S) \geq \max(c(R), c(S)) \)
- Difference: Rows of \(R \) that are not in \(S \)
 - \(c(R - S) = c(R) - c(R \cap S) \leq c(R) \)
- Intersection: Rows common to \(R \) and \(S \)
 - \(0 \leq c(R \cap S) \leq \min(c(R), c(S)) \)

Cardinality of results: \(R \circ S \)

- Product: each row of \(R \) connected to each row of \(S \)
 - \(c(R \times S) = c(R) \times c(S) \)
- Projection: pick up distinct values appearing in a column collection
 - \(c(\pi_a (R)) \leq c(R) \)
 - \(c(\pi_a (R)) \leq c(\pi_{a,b} (R)) \)
 - if \(a \) contains a key: \(c(\pi_a (R)) = c(R) \)
 - \(c(\pi_a (R)) = 0 \) only if \(c(R) = 0 \)

Cardinality of results: \(R \circ S \)

- Selection: pick up rows that conform to the selection criteria
 - \(0 \leq c(\sigma_{a = \text{constant}} (R)) \leq 1 \), when \(k \) is a key of \(R \)
 - \(c(\sigma_{a = \text{constant}} (R)) \leq c(R) \), when \(k \) is a key of \(R \)
 - \(c(\sigma_{a \text{ or } f} (R)) \leq \min(c(\sigma_{a} (R), c(\sigma_{f} (R))) \)
 - \(c(\sigma_{a \text{ or } f} (R)) \leq \max(c(\sigma_{a} (R), c(\sigma_{f} (R))) \)

Cardinality of results: \(R \circ S \)

- Join: row of \(R \) and \(S \) are connected based on connection criteria
 - \(0 \leq c(R \bowtie_k S) \leq c(R \times S) \)
 - Let \(k \) be the key of \(R \) and \(v \) a foreign key in \(S \) that refers to \(R \)
 - \(c(R \bowtie_{k=v} S) \leq c(S) \), if null values are allowed for \(v \)
 - \(c(R \bowtie_{k=v} S) = c(S) \), if null values are not allowed for \(v \)

Natural join:

- \(c(R \bowtie S) = c(R \times S) \), if \(R \) and \(S \) do not have columns with common name
- mostly natural joins carry out a join based on the equality of foreign key and the corresponding primary key
- If both \(R \) and \(S \) have a common schema, natural join equals to intersection

© Harri Laine
Cardinality of results: $R \op S$

- outer join: Rows that drop out in normal join will also be included with 'empty' pair
- $c(R \bowtie_{\text{antil}} S) \geq c(R)$