
Discovering Frequent Graph Patterns
Using Disjoint Paths

Ehud Gudes, Member, IEEE Computer Society,

Solomon Eyal Shimony, Member, IEEE Computer Society, and Natalia Vanetik

Abstract—Whereas data mining in structured data focuses on frequent data values, in semistructured and graph data mining, the

issue is frequent labels and common specific topologies. Here, the structure of the data is just as important as its content. We study the

problem of discovering typical patterns of graph data, a task made difficult because of the complexity of required subtasks, especially

subgraph isomorphism. In this paper, we propose a new Apriori-based algorithm for mining graph data, where the basic building blocks

are relatively large, disjoint paths. The algorithm is proven to be sound and complete. Empirical evidence shows practical advantages

of our approach for certain categories of graphs.

Index Terms—Database applications, data mining, mining methods and algorithms, Web mining, graph mining.

Ç

1 INTRODUCTION

DUE to increasing amounts of structured and unstruc-
tured data collected by various companies and

institutions, the importance of data mining has grown
significantly over the last several years. Whereas, in the
past, data mining was mainly applied to structured data
and flat files, there is growing interest in mining and
discovering frequent patterns in semistructured data such
as Web data ([23], [35], [2]), chemical compounds data [8],
[27], or biological data [29]. The focus of this paper is on
discovering such frequent patterns in the form of (possibly
labeled) graphs and a new algorithm for this difficult task.

Semistructured data appears when the source does not
impose a rigid structure on the data, such as the Web, or
when data is combined from several heterogeneous sources.
Unlike unstructured raw data (like image and sound),
semistructured data does have some structure, but unlike
structured data (such as relational or object-oriented
databases), semistructured data has no absolute schema or
class fixed in advance. For example, in the Internet Movie
Database [28], some movies have more actors than others,
some fields (e.g., Award) are missing for some movies, some
actors have birthdays recorded and some do not, etc. As a
result, the structure of objects is irregular and a query over
the structure is as important as a query over the data. This
structural irregularity, however, does not imply that there is
no structural similarity among semistructured objects. On
the contrary, it is common for semistructured objects
describing the same type of information to have similar
structures. For example, every movie object has Title and
Director labels, every Actor object has a Name label,
50 percent of Actor objects have a Nationality label, etc. This
phenomenon is common in other types of semistructured
data as well [19].

While, in the field of structured data mining, frequent
data values and their common appearances are of interest, in
mining semistructured data, the focus is on frequent labels
and common appearances of subsets of such labels (in terms
of XML, one would look for frequent occurrences of
structures of elements or attributes, disregarding the
attribute values). Therefore, frequently, a common model
is a graph, with labels on nodes, on edges, or on both (the
transformation between these types of model is quite
simple). In this paper, we assume the model of a directed
or undirected graph (or set of graphs) with node labels and
our task is to find frequent patterns in such a graph. For
example, see Fig. 1, depicting some frequent graph patterns
found by our algorithm in an XML movie database [28].

1.1 Graph Mining Applications

Discovering and understanding frequent patterns that
represent a sufficiently large part of a semistructured
database can be useful in several application areas:

Improving Database Storage and Design [10], [31].
Semistructured data sets (a typical example being XML
data), carry their own schema information. Though re-
quired for data exchange and integration, such schema
incorporation entails considerable space overhead, since the
schema information is stored with the data (e.g., element
names in XML). Because of this overhead, commercial
database management systems often store XML data in
relational databases. Semistructured data can always be
stored as a ternary relation, since the data is an edge-labeled
graph, but this is no better than storing the schema with the
data. A “good” mapping (in terms of disk space or
fragmentation) from a semistructured data instance into a
relational schema is desirable. Frequent patterns discovered
in the semistructured data can be used for that purpose
since they can help generate the basic relations, while the
nonfrequent patterns would be stored as “overflow”
relations (see [10]).

Efficient Indexing and Querying. Querying a semi-
structured database is an important and common activity.
Numerous query languages were proposed for this purpose
(see [9], [3]). To speed up query processing, several
indexing techniques were proposed for semistructured

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006 1441

. The authors are with the Department of Computer Science, Ben-Gurion
University of the Negev, 84105 Beer-Sheva, Israel.
E-mail: {ehud, shimony, orlovn}@cs.bgu.ac.il.

Manuscript received 1 Feb. 2005; revised 8 Mar. 2006; accepted 30 May 2006;
published online 19 Sept. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0043-0205.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

and XML data [13], [25]. Recently, it was realized that full
indexing on all possible labels and paths in a semistruc-
tured data is not practical. The APEX indexing scheme [5]
suggests indexing mainly on frequent paths, where the
frequent paths are found by data mining techniques. This
idea of using mining for indexing can naturally be general-
ized to general graphs, as proposed in [31], where paths are
used for finding all occurrences of a query graph in the
database.

User Preference-Based and User Modeling Applica-
tions [11], [38]. An important goal for Web-page design is to
provide viewer-oriented personalization of Web-page con-
tent. Designers often strive to condition Web-page content
and appearance on the current preferences of the viewer and
probably on some underlying structure of the Web-page
content. In order to optimize such content, one often refers to
data mining. When the semistructured database is a
collection of user traversal patterns, one can derive expected
user behavior from knowledge about frequent traversal
patterns of the same user collected over a certain period of
time. This results in useful applications, e.g., placing
advertisements in proper places and better customer/user
classification and behavior analysis. In past work, Web
navigation patterns were usually represented as paths or
trees and, for this type of problem, tree and path mining are
most relevant [4]. However, if one looks at sets of related
Web navigation patterns or at behavior over time, one gets
more complex patterns which can be represented by graphs,
motivating the use of graph mining. Another application
related to user behavior is the area of social networks,
analyzing which is an important field in communication
and in security applications [12]. An example of a social
network database based on e-mails is used in our study.

1.2 Categories of Graph Mining Problems

In the past, most work done in this field dealt with either
single path patterns [2] or treelike patterns [23], [35], [4].
However, much of the data on the web is graphlike, either
cyclic or acyclic, motivating the mining of general graph
data. The field of graph mining received much attention in
recent years and several well-known algorithms were
developed, such as AGM [17], FSG [20], gSpan [39],
CloseGraph [40], and AdiMine [34]. In this paper, we
present a new algorithm for mining frequent patterns in
semistructured data, where the data is modeled as a labeled
graph. Our algorithm handles general unrestricted graphs,
directed or undirected.

There are two distinct problem formulations for frequent
pattern mining in graph data sets. In the first, known as the
graph-transaction setting, the input to the pattern mining
algorithm is a set of (usually) relatively small graphs and a
pattern is considered frequent if it appears in a large
number or fraction of the graphs. Note that a pattern
occurrence is counted only once per transaction, indepen-
dent of possible multiple occurrences in the same transac-
tion. A typical application for this formulation is finding
frequent subgraphs in molecular transactions [20].

In the second setting, the frequency of a pattern is based
on the number of its occurrences (i.e., embeddings) of a
pattern in all the data, counting multiple occurrences per
transaction. For this setting, one can assume without loss of
generality that the input is a single graph because one can
always treat multiple graphs as a single graph with
disconnected components. For historical reasons, we refer
to this formulation as the single-graph setting [21], although
neither the problem formulation nor the algorithms are
limited in this manner. Due to the inherent differences in
characteristics of the problem formulation, algorithms
developed for the graph-transaction setting cannot handle
the single-graph setting, whereas the latter algorithms can
be used to solve the former problem. In recent years, a
number of efficient and scalable algorithms have been
developed to find patterns in the graph-transaction setting
[19], [20], [39], [18], [15], [16], [6]. These algorithms are
complete in the sense that they are guaranteed to discover
all frequent subgraphs and were shown to scale to very
large graph data sets. However, developing algorithms that
are capable of finding patterns in cases where each
transaction is a large graph, and especially the single-graph
setting, has received much less attention, despite the fact
that this problem setting is more generic and applicable to a
wider range of data sets and application domains than the
former problem. Other than our own papers [32], [33], the
most recent paper dealing with the single-graph setting is
[22], discussed in Section 5.

1.3 Overview of the Proposed Algorithm

The algorithm presented in this paper uses breadth-first
enumeration and is based on the Apriori algorithm [1]. These
algorithms use an admissibility property (defined below) of
the support measure in order to prune candidate patterns
without checking their support directly, while ensuring
completeness. Since a pattern is considered to be frequent in a
data set graph if its support measure is greater than a user-
provided threshold, then once a pattern has support smaller
than the threshold, all of its superpatterns can be pruned or
potentially not even be generated in the first place.

Let the support measure S be a function from graph
patterns and data set graphs to real numbers (usually in
[0, 1]). As usually the data set graph is understood, this
argument to S is omitted. S obeys the admissibility
constraint (also called antimonotonicity, or downward
closure) if every subgraph of a frequent pattern is also
frequent [1], [14]. Formally:

Definition (admissible support measure). A support measure
S is admissible if, for every pattern P , SðP Þ � 0 and for all
patterns P1; P2 such that P1 � P2, we have SðP1Þ � SðP2Þ.

Apriori-based algorithms compose candidate patterns
from building blocks that vary between algorithms. In our
algorithm, the building block is a complete path (see the
next section for precise definitions)—as seen in the
following (extremely simplified) outline of our algorithm:

1. Find all patterns composed of a single path by
directly counting the number of occurrences of these
patterns in the data set. Eliminate the nonfrequent
patterns.

2. Find all candidate patterns composed of two
frequent paths and eliminate the nonfrequent
patterns.

1442 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

Fig. 1. Pattern examples.

3. At each successive step n:

a. Construct candidate patterns from smaller fre-
quent ones that have a common “core.” Speci-
fically, generate patterns with nþ 1 paths by
merging two patterns with n paths that have a
common core with n� 1 paths. A simple
example for n ¼ 2 is shown in Fig. 8: Two
graphs, each consisting of two paths, with an
identical core consisting of one path, are merged
to create a graph with three paths. In general,
this construction, the heart of the algorithm, is
quite complex.

b. Prune candidates that are not frequent.
c. Stop when no more frequent patterns can be

generated.

The above outline is precisely the same as for most Apriori-
based algorithms, the crucial difference being that while for
itemset mining, the building blocks are items, and for most
graph mining algorithms (such as FSG or gSpan), the
building blocks are edges or nodes, in our algorithm, the
building blocks are the (typically much larger) edge-disjoint
paths. Making the building block larger allows for a smaller
number of iterations, as well as for a smaller number of
candidate patterns that need to be tested for support—the
main goal of our scheme. Since testing support of a pattern
is expensive, especially for graph data, it is important to
improve pruning, even if it entails considerable overhead
over the naive methods of generating and testing patterns.
Another complication is that achieving completeness
becomes nontrivial, and considerable space is devoted in
this paper to how completeness can be provably
maintained.

1.4 Contributions and Outline of the Paper

The idea of using paths as building blocks in a graph
mining algorithm was presented briefly in an earlier,
conference version of this paper [32]. The operators used
to define graph composition, which allow for efficient
implementation of the graph merge in practice, are a new
contribution of this version. A major issue in this respect is
proving that our edge-disjoint path-based algorithm is
complete. This proof of correctness (Section 3) is a
previously unpublished, nontrivial main contribution of
this paper.

In attempting to find frequently occurring subgraph
patterns within a graph, computing the frequency of
occurrence of the pattern in the larger graph (the database)
and the support measure is an intensive computational
step. This involves multiple computations of the subgraph
isomorphism problem, which is a hard problem. In order to
decrease the number of extremely expensive support
computations, we must discard, as early as possible, as
many candidate patterns as possible. This is a general
property of our algorithm. Minimizing the number of
expensive support computations is the second major
contribution of this paper. This advantage is more promi-
nent when the transaction graphs are large, and even more
so in the “single-graph” setting, where the support
computation tends to be extremely hard.

To prove the feasibility of our scheme, we implemented
the proposed algorithms, tested them on some XML
databases and synthetic graphs, and compared them to
other approaches for counting graphs patterns, mainly the
naive and the FSG algorithms. Note that the algorithm
presented here is orthogonal to the support measure and

therefore can be used for both cases and is compared
experimentally to FSG in both cases. The results show that,
while in the transaction setting the two algorithms are
comparable, in the “single-graph” setting our algorithm
shows a significant reduction in the number of candidates
generated and therefore in the number of support computa-
tions. In our experiments, we dealt with medium-size graph
databases (up to 20,000 nodes) since for larger sizes the
single-graph case support computation was too heavy
computationally for both the FSG algorithm and ours. The
experimental evaluation of our algorithm (Section 4) is the
third contribution of this paper.

The rest of this paper is organized as follows: We begin
with revisiting some graph theoretic notation and results
(Section 2), followed by a formal definition of our graph-
mining problem and new definitions used in specifying the
algorithm. The graph mining algorithm and its correctness
proof are then presented (Section 3). Empirical evaluation of
our algorithm on both synthetic and real data is examined
in Section 4. Section 5 discusses related work, as well as the
applicability of our algorithm to other settings.

2 PRELIMINARIES

We begin with revisiting standard terms from the literature.
A formal statement of our graph-mining problem is made,
followed by a definition of composition operators essential for
generating candidate graphs in the algorithm. Important
basic properties of the operators are stated and proved.

2.1 Paths and Path Covers

We begin by revisiting some graph-theoretic terms and
properties. Notation needed later on is also introduced.

A path is an alternating sequence of nodes and (their
incident) edges that begins and ends with a node and that
does not contain any edge more than once. For directed
graphs, we require a path to respect the direction of the
edges, resulting in a directed path. A set P of edge-disjoint
paths covering all edges of a graph G exactly once is
called a path cover of G. A path cover P is called minimal
if it has the smallest cardinality of all path covers of G.
Clearly, in general, the minimal cover is not unique. The
path number pðGÞ is the cardinality of any minimal path
cover of G.

In this paper, we use paths as the building blocks in
order to create larger graphs, but we are not concerned
about how to traverse the paths once they have been
created. Henceforth, we ignore the ordering inherent to the
path definition and represent a path simply as the set of
nodes and edges in the path, i.e., as a graph. Two different
paths that have the same set of nodes and edges are thus
indistinguishable in our method. Note that we still require
that such a graph be traversable as a single path, even
though the traversal does not have to be unique.

Removing path P from graph G, denoted by G n P ,
consists of removing all edges of P from G, followed by
removing all stand-alone nodes. To compute the path
number, we rely on well-known facts:

1. A connected undirected graph G ¼ ðV ;EÞ is Eulerian
(can be covered by a single cyclic path) iff for every
v 2 V , dðvÞ is even. A connected digraph G ¼ ðV ;EÞ
is Eulerian (can be covered by a single directed cyclic
path) iff for every v 2 V , dþðvÞ ¼ d�ðvÞ. (Throughout,
we denote the in-degree of v by dþðvÞ, and the out-
degree by d�ðvÞ.)

GUDES ET AL.: DISCOVERING FREQUENT GRAPH PATTERNS USING DISJOINT PATHS 1443

2. For every connected undirected graph G ¼ ðV ;EÞ,
pðGÞ ¼ 1 if G is Eulerian, and pðGÞ ¼ jfv j v 2
V ; dðvÞ is oddgj=2 otherwise. For every connected
directed graph G ¼ ðV ;EÞ, pðGÞ ¼ 1 if G is Eulerian
and pðGÞ ¼ ð

P
v2V jdþðvÞ � d�ðvÞjÞ=2 otherwise.

Observe that the path number of a graph is never greater
than the number of edges, being in fact much smaller in
most cases—especially for undirected graphs. Thus, paths
as building blocks should decrease the number of iterations
in the algorithm, as well as improve the pruning.

2.2 Problem Statement

A labeled graph is a graph that has a label associated with
each node v, denoted by labelðvÞ. We assume without loss of
generality that the data set (as well as the pattern) graph is
labeled (otherwise, assign to all nodes in the graph the same
arbitrary label). Given two graphs G0 ¼ ðV 0; E0Þ and
G00 ¼ ðV 00; E00Þ, a label-preserving isomorphism between G0

and G00 is a graph isomorphism � : V 0 ! V 00 such that, for
every v 2 V 0, labelðvÞ ¼ labelð�ðvÞÞ. When such an iso-
morphism exists, denote by G0 � G00 the fact that the graphs
are isomorphic. P is a graph pattern in graph G if it is
isomorphic to a connected subgraph of G.

Our problem is formally defined as follows. Given a data
set labeled graph G, a support measure S over pattern
graphs, and a support threshold �, find all pattern graphs P
with support SðP Þ � � in G. Recall that the input can be a
set of graphs as well as a single graph without loss of
generality throughout.

2.3 Lexicographic Ordering

To facilitate efficient indexing of path covers in a graph, we
use a canonical representation of paths and path sequences.
The lexicographical ordering over paths uses node labels
and degrees of nodes in paths, as follows:

A path P uniquely defines the graph ðV ðP Þ; EðP ÞÞ: the
nodes traversed by the path, and the edges traversed by the
path, respectively. For node v 2 V ðP Þ, the path degrees dþP ðvÞ
and d�P ðvÞ are the in-degree and out degree, respectively, of
v in ðV ðP Þ; EðP ÞÞ. For undirected paths, the path degree
dP ðvÞ of v is simply the degree of v in ðV ðP Þ; EðP ÞÞ.

Let P be a directed path and let v 2 V ðP Þ. A node in a
path is represented by a representing tuple (see Fig. 2),
defined as follows:

RTP ðvÞ :¼ ðlabelðvÞ; dþP ðvÞ; d�P ðvÞÞ:

For undirected paths, the representing tuple is likewise
defined as

RTP ðvÞ :¼ ðlabelðvÞ; dP ðvÞÞ:

Assuming a natural complete ordering between labels, as
well as the natural complete ordering between integers, a
lexicographical ordering between the node representation
tuples of u and v, denoted v �L u, is understood. Likewise,
equality operator v ¼L u denotes equality of the respective
representing tuples.

Paths are indexed by a path descriptor, defined as follows:
Given a path P , sort V ðP Þ using the order �L . The resulting
sorted sequence, denoted by deðP Þ, is the path descriptor of
P . The order �p between paths is a lexicographic ordering
between path descriptors, using �L for elementwise
comparison. When the path descriptors of P and Q are
lexicographically equal (which occurs just when the
sequences are equal), we write P ¼p Q. If deðP Þ and deðQÞ
are sequences of unequal length, such that the shorter
sequence (let it be deðP Þ without loss of generality) is a
prefix of the longer sequence, we will use the convention
that, in this case, P �p Q. Note that P ¼ Q entails P ¼p Q,
but not vice versa.

Fig. 2 shows a path cover of size 2 of a graph, where the
paths are P ¼ v1; v2; v5; v4; v3 and Q ¼ v1; v3; v2. The path
descriptors are

deðP Þ ¼ ða; 0; 1Þ; ða; 1; 1Þ; ðb; 1; 0Þ; ðc; 1; 1Þ; ðd; 1; 1Þ;

and

deðQÞ ¼ ða; 0; 1Þ; ða; 1; 0Þ; ðb; 1; 1Þ:
Since deðQÞ �lex deðP Þ (because ða; 0; 1Þ ¼lex ða; 0; 1Þ and
ða; 1; 0Þ �lex ða; 1; 1Þ), we have Q �p P .

Observation 1. �p is transitive and complete (that is, every pair
of paths is comparable).

Finally, multisets of paths (which are used to represent a
decomposition of a graph into paths) are indexed by
composition descriptors, defined as follows: Let P be a
multiset of paths. The decomposition descriptor of P,
denoted dcðPÞ, is the sorted sequence of the elements of
the multiset fdeðP ÞjP 2 Pg, sorted according to the order-
ing �p . The ordering �lex over multisets of paths is defined
as a lexicographic ordering of their composition descriptors.

A minimal path cover P of a graph G is called P �
minimal if there is no minimal path cover Q for which
Q �lex P. Observe that there may be more than one P �
minimal path cover for a given graph G, but the
composition descriptors of all the minimal path covers of
G are equal.

2.4 Properties of Path Covers

In our data mining algorithm, we intend to keep in the
nth frequent candidate set only graphs with path number n.
The path number of a graph can be computed in linear time,
as it can be determined uniquely from the multiset of node
degrees. In order to correctly produce candidates with path
number ðnþ 1Þ by combining graph pairs with path
number n, several basic properties of the path covers must
be shown to guarantee completeness of our algorithm:

1. Removing a path (in a minimal path cover) from a
graph reduces the path number by 1.

2. For every connected graph G and minimal path
cover of size n > 2, there are at least two paths in the
cover, each of which can be subtracted from G,
leaving the resulting graph connected.

3. If path number is greater than 1, all paths in a
minimal cover are noncyclic.

1444 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

Fig. 2. Representing tuples.

These properties are stated and proved below.

Theorem 1. Let G be a graph (directed or undirected) with path
number n > 1, and let P be a minimal path cover of G. Then,
for every path P 2 P, the graph G0 ¼ G n P has path
number n� 1.

Proof. Clearly, P n P is a path cover of G n P and, thus,
pðG n P Þ � n� 1. Now, let P0 be a path cover of G n P of
size n0 < n� 1. Then, P0 [fPg is a path cover of G of size
n0 þ 1 < n, a contradiction. tu

Theorem 2. Let G ¼ ðV ;EÞ be a connected graph with pðGÞ ¼
n � 2 and let ðP1; . . . ; PnÞ be a minimal path decomposition
(assuming any arbitrary ordering on the paths). Then, there
exist 1 � i < j � n such that graphs G n Pi and G n Pj are
connected.

Proof. Define the undirected “decomposition graph” G0 ¼
ðV 0; E0Þ of the decomposition, as follows:

V 0 ¼ fvij1 � i � ng;

and fvi; vjg 2 E0 just when Pi; Pj have at least one node
in common. Clearly G is connected if and only if G0 is
connected. This property also holds for any G n Pi and its
corresponding decomposition graph, where the latter
decomposition graph is equal to G0 with node vi and its
incident edges removed. Since G is connected, so is the
decomposition graph G0. It is well known that every
connected graph with more than two nodes has at least
two nodes, each of which can be removed (together with
their incident edges), leaving the graph connected. Let
vi; vj be two such nodes in G0 (with i 6¼ j). By construc-
tion, this implies that G n Pi and G n Pj are both
connected graphs. tu
Finally, a minimal path cover of a connected graph with

a path number greater than 1 consists only of noncyclic
paths, i.e., paths whose start and end vertices are different.
That is because any cycle P can be at any point v where it
intersects another path Q and merges into path Q—thereby
reducing the size of the cover (contradicting the minimality
of the path cover). Thus, we can construct all graphs with
path number n < 1 just from noncyclic frequent paths. For
undirected graphs, we also can show this:

Lemma 1. Let G ¼ ðV ;EÞ be an undirected graph with minimal
path cover P, with pðGÞ � 2. Then, every path P 2 P starts at
a node v of odd degree and ends at a node u of odd degree, and
v 6¼ u.

Proof. From the above result, all paths in the path covers are
noncyclic. Let P 2 P and let node v be the start of P
(alternately, P ends at v, but not both), implying that P
has an odd number of edges incident on v. Then, for all
Q 2 P, path Q 6¼ P contains an even number of edges
incident to v (because, otherwise, Q either starts or ends
at v and can be merged with P into a single path, again
contradicting minimality of P). The degree of v is the
sum of the number of edges incident on v over all paths
in the cover, which (being the sum of even numbers plus
exactly one odd number) is odd. tu

2.5 Compositions and Graph Merging—Notation
and Definitions

In this section, we define the basic operations used to
combine graphs with a common core, preceded by some
required notation.

2.5.1 Notation

For sequences and tuples, we use the following standard
notation. Let t be a sequence of length n (or n-tuple). Then,
for 1 � i � j � n we denote the ith element of t by t½i�, and
t½i : j� denotes the subsequence (subtuple) of t starting at i
and ending at j, inclusive. The above subscripting and
subsequence operators are also applied to sets of tuples.
Thus, if T is a set of tuples, then T ½i : j� ¼ ft½i : j�jt 2 Tg. A
set subtraction operator inside the square brackets indicates
removal of the subtracted elements from the tuple
(respectively, set of tuples). Thus, t½1 : n n j� indicates an
(n-1)-tuple consisting of all the elements of t except t½j�, in
the same order as in t.

We use the dot operator as a sequence (respectively, tuple)
concatenation operator. Applied to a simple element, we
mean concatenation with the respective 1-tuple. For exam-
ple, when e is a simple element, t:e denotes an (n+1)-tuple,
with ðt:eÞ½1 : n� ¼ t, and ðt:eÞ½nþ 1� ¼ e. When referring to
graph elements, we use? to denote a null element. By t ¼ ?,
we mean that in tuple t all elements are equal to?. We define
a composition operator (denoted as þ) between graph
elements as follows: Let a be a non-null graph element.
The operator is defined as follows:

aþ a ¼ aþ? ¼ ?þ a ¼ a
?þ? ¼ ?:

The composition of two different, non-null elements is
undefined (as used in this paper, such a composition is
called inconsistent). The composition operator is also
applied as a vector operator, to pairs of n-tuples, denoting
elementwise composition, thus:

ða;?; b;?Þ þ ða; b;?;?Þ ¼ ða; b; b;?Þ:
A vector composition where any of the elementwise
compositions is undefined is also undefined (inconsistent).

2.5.2 Graph Compositions

As one of the steps of our algorithm, two graphs (each
composed of a set of paths) are merged to create a larger
graph. In order to facilitate operations on such composite
graphs, we define the notion of composition tuple-set (a
composition for short). See Table 1 for an example.

Definition 1. Let G be a set of graphs. A composition tuple-set �
of width n over G is a pair ðGð�Þ; tuplesð�ÞÞ, where Gð�Þ is an
n-tuple with each element designating a graph in G, and T ¼
tuplesð�Þ is a set of n-tuples, where, for every tuple t 2 T and
every 1 � i � n, the element t½i� designates either a node in the
graph GðT Þ½i� or ?. A tuple t is label-consistent if, for all

GUDES ET AL.: DISCOVERING FREQUENT GRAPH PATTERNS USING DISJOINT PATHS 1445

TABLE 1
Composition Tuple-Set � on P1, P2, P3

1 � i; j � n for which t½i� and t½j� are non-null, the nodes
designated by t½i� and t½j� have the same label.

The number of elements in each tuple in tuplesð�Þ will be
denoted by widthð�Þ. Observe that Gð�Þ may have more
than one element referring to the same graph. In our
algorithm, the set G will always contain single paths, i.e.,
graphs that have a path number of 1, but the notation can
also be used for composition of other types of graph. We
will henceforth assume that G is the set of paths in our data
set graph and thus omit reference to G. (In practice, we
actually take this set to be the set of just the frequent paths,
for reasons of efficiency.) The semantics of a composition is
a (composite) graph, called the induced graph, which has one
node for every tuple in T . In order to define the induced
graph, we first wish to make sure that the composition
tuple-set defines an edge-disjoint composition of subgraphs
that does not distort the subgraphs of which it consists.

Definition 2. A composition � ðover GÞ is consistent if all the
following conditions hold:

1. For every 1 � i � widthðT Þ and every node

v 2 V ðGðT Þ½i�Þ:
there exists a unique t 2 T such that t½i� ¼ v. (The
node consistency condition: There is a unique
representing tuple for every node.)

2. Every t 2 T is non-null and label-consistent.
3. For every pair of tuples t1; t2 2 T , we have

jfi j ðt1½i�; t2½i�Þ 2 EðGðT Þ½i�Þgj � 1:

(The edge disjointness condition: Each pair of
(induced) vertices has an edge in at most one of the
graphs participating in T .)

Two composition tuple sets are equivalent if they are
equal or one is equal to the other under a permutation of the
indices. (By “under a permutation,” we mean any arbitrary
permutation, but with the same permutation applied to all the
tuples in tuplesð�Þ and to Gð�Þ.) The graph induced by a
composition tuple-set � ¼ ðGð�Þ; T Þ is denoted by �ð�Þ and
defined as follows:

Definition 3. �ð�Þ ¼ ðV ;EÞ, with V ¼ f�ðtÞjt 2 Tg (where �
is an arbitrary function that assigns a unique node to every
tuple t), and

E ¼ fð�ðt1Þ; �ðt2ÞÞjt1; t2 2 T ^ 9iðt1½i�; t2½i�Þ 2 EðGð�Þ½i�Þg:

That is, the induced graph has a node for every tuple in
T and an edge between a pair of nodes just when one of the
subgraphs composing � has an edge between these nodes.
Observe that the edge disjointness condition ensures that
this subgraph is unique. When used to compose new
graphs, the function � evaluates to a new unique node, i.e.,
one that does not appear elsewhere in the system.

Fig. 3 shows a graph consisting of three paths, P1, P2, P3,
and Table 1 presents a corresponding composition tuple-set,
i.e., the graph is an induced graph of the tuple-set.

Observation 2. Let graph G be covered by n mutually edge-
disjoint subgraphs G1; G2; . . . ; Gn. Then, G is identical to the
graph induced by the composition tuple-set � ¼ ðGðT Þ; T Þ
constructed as follows: GðT Þ ¼ ðG1; G2; . . . ; GnÞ, and
tuplesðT Þ consists of jV ðGÞj tuples, one unique tuple t for
each node in v 2 G. Denote the bijection from tuples to nodes
by � and let t½j� ¼ �ðtÞ if �ðtÞ 2 V ðGðT Þ½j�Þ and, otherwise,
t½j� ¼ ?. A composition tuple-set defined as above is called a
natural composition tuple-set with regard to G and its cover.

Proposition 1. The composition tuple-set � is consistent and
�ðT Þ is isomorphic to G under the “natural” isomorphism,
where �ðtÞ � �ðtÞ for all t 2 T .

Proof. Observe that T obeys the node-consistency condi-
tion by construction. Since the graph cover of G is
edge-disjoint, an edge in G implies an edge in exactly
one of the subgraphs and, thus, T observes the edge-
disjointness condition. Clearly �ðtÞ � �ðtÞ as defined
above is an isomorphism between �ðT Þ and G, by
construction. tu
Until this point, we did not constrain the type of

subgraphs Gð�Þ in a composition. Henceforth, we will
assume that all these subgraphs have a path cover of size 1,
i.e., each such subgraph is a single path. Finally, we
introduce the notion of P-minimal compositions; as an
extension of this notion in path covers, a composition tuple-
set � is P-minimal if there is no � 0 such that �ð� 0Þ ¼ �ð�Þ and
Gð� 0Þ �lex Gð�Þ.

2.5.3 Operators on Compositions

We proceed to define operators on composition tuple-sets,
and the respective operations on the induced graph. The
first desired operation is a projection operator—keeping
only certain parts of all tuples (corresponding to keeping
only some parts of the induced graph). This operation uses
our previously defined index range notation. Thus, by

� 0 ¼ � ½i : j�ð¼ ðGð�Þ½i : j�; tuplesð�Þ½i : j� n ?ÞÞ;

we indicate that � 0 is a projection of the composition � onto
columns i to j inclusive. Observe that removing some
elements of a non-null tuple may result in a null tuple and
that such tuples are dropped by the projection operation.
Likewise, to indicate removal of subgraph i from a
composition T of width n:

T 0 ¼ T ½1 : n n i�
ð¼ ðGðT Þ½ð1 :n n i�; tuplesðT Þ½1 : n n i�Þ n ?Þ:

The resulting � 0 is a composition of width n� 1.

1446 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

Fig. 3. Graph G composed from three edge-disjoint paths: P1, P2, P3.

In general, projection operations can cause projected
tuples to become equal, thus reducing the number of tuples
in the resulting composition. However, for consistent
compositions, this can occur only for tuples which then
become null and are dropped in the projection. This is due
to the following property, which follows immediately from
the node consistency condition:

Proposition 2. Let R 2 ½1; n� be an arbitrary sequence of
indices, � a consistent composition, and t1; t2 2 tuplesð�Þ
with t1 6¼ t2. Then, t1½R� ¼ t2½R� implies t1½R� ¼ t2½R� ¼ ?.

Having defined the required notation, the main opera-
tors used in our algorithm are defined below. Creating a
larger graph from two smaller graphs is done using the
bijective sum operator, defined as follows:

Definition 4 (Bijective Sum). Let �1 ¼ �2 be compositions,
each of width n� 1, such that

�1½1 : ðn� 2Þ� ¼ �2½1 : ðn� 2Þ�:
Let T1 ¼ tuplesð�1Þ and T2 ¼ tuplesð�2Þ. The bijective sum of
�1 and �2, denoted BSð�1; �2Þ, is a composition � of width n
with Gð�Þ ¼ Gð�1Þ:Gð�2Þ½n� 1� and with tuplesð�Þ being
(the union of) the following sets of tuples:

1.

ft1:t2½n� 1� j t1 2 T1; t2 2 T2;

t1½1 : ðn� 2Þ� ¼ t2½1 : ðn� 2Þ� 6¼ ?g:

2.

f?n�2:t½n� 1�:? j t 2 T1; t½1 : ðn� 2Þ� ¼ ?g

(where ?i means an all-? i-tuple).
3.

f?n�2:?:t½n� 1� j t 2 T2; t½1 : ðn� 2Þ� ¼ ?g:

The intuition for this definition is as follows, by
considering the induced graphs of the composition tuple-
sets (see Fig. 4). Now, map (and consider as the same node)
the nodes in the induced graphs standing for the tuples that

include T1½1 : ðn� 2Þ� to those induced by T2½1 : ðn� 2Þ�,
basing the mapping on tuple equality. Tuples in (1)
correspond to nodes appearing in the induced graphs of
both �1 and �2. Tuples in (2) correspond to nodes that
appear in the graph induced by �1, but do not appear in �2.
Likewise, tuples in (3) correspond to nodes that appear in
the graph induced by �2, but do not appear in �1.
Henceforth, the construction (1) above will be called type 1
construction and the respective generated tuples are called
type 1 tuples. Likewise for items (2) and (3) above. Observe
that in some cases the result of a bijective sum may be
inconsistent due to a violation of the edge disjointness
condition. Our algorithm will discard the results of such
inconsistent bijective sums.

The definition of bijective sum can easily be general-
ized to allow for the equivalent part of �1 and �2 to be
any subset of indices of size n� 2, not necessarily ½1 :
ðn� 2Þ� and not necessarily in sorted order. However, this
would make the notation exceedingly cumbersome.
Equivalently, one can view this generalized definition as
permuting the element positions of �1 and �2 in order to
get �1½1 : ðn� 2Þ� ¼ �2½1 : ðn� 2Þ�, performing the bijective
sum, and arbitrarily permuting the positions of � . In the
description of the algorithm, we use this permutation
scheme in order to simplify the notation.

Table 2 demonstrates a bijective sum T3 ¼ BSðT1; T2Þ of
two composition tables T1 and T2, and in Fig. 4 the
respective induced graphs G1 ¼ �ðT1Þ; G2 ¼ �ðT2Þ and
G3 ¼ �ðT3Þ. Null values are shown as blanks.

Observe that lifting the restriction that the width of the
composition sets be equal results in a meaningful (as far as
the induced graph is concerned) and potentially useful
operator. But since our algorithm does not use such a
generalization, we shall not discuss this issue further.

Our algorithm also requires an operator that allows
nodes induced by tuples of types (2) to be merged with
nodes induced by tuples of type (3) after a bijective sum.
The merged nodes are determined by a composition of
width 2. For this purpose, we define the splice operation, as
follows (refer to Fig. 5 as an example).

GUDES ET AL.: DISCOVERING FREQUENT GRAPH PATTERNS USING DISJOINT PATHS 1447

Fig. 4. Induced graph of a bijective sum.

TABLE 2
Bijective Sum

Definition 5 (Splice). Let � be a composition of width n � 3, and

S be a composition of width 2, with GðSÞ ¼ Gð�Þ½ðn� 1Þ : n�.
The result of splicing � by S, denoted Spliceð�; SÞ, is a

composition � 0 with Gð� 0Þ ¼ Gð�Þ, and T 0 ¼ tuplesð� 0Þ
defined as follows: Denote T ¼ tuplesð�Þ; s ¼ tuplesðSÞ, and

let M be a set of “merged” tuples:

M ¼ f j t1 þ t2 j t1; t2 2 T; 9s 2 s

ð t1½n� 1� ¼ s½1� 6¼ ? ^ t2½n� ¼ s½2� 6¼ ?
^ t1½n� þ s½2� ¼ s½2� ^ t2½n� 1� þ s½1� ¼ s½1�Þg:

ð1Þ

Let M 0 be the set of all tuples t1; t2 from T being merged

above (i.e., that participate in the sum t1 þ t2 in the above

definition of M). The tuples in the resulting composition are

T 0 ¼M [T nM 0.

Observe that t1 ¼ t2 is allowed in (1). Also, note that it is

possible to have S and T such that some of the t1 þ t2 are
undefined. In this case, the splice operation is undefined

(inconsistent). For example, Table 3 describes composition
tuple-sets T1, T2 and their splice T3 ¼ SpliceðT1; T2Þ. Fig. 5

shows the corresponding induced graphs G1 ¼ �ðT1Þ, G2 ¼
�ðT2Þ and G3 ¼ �ðT3Þ. In this figure, the paths P2 and P3 in
G1 are spliced using information on nodes common to these

paths in G2.

3 THE GRAPH MINING ALGORITHM

This section presents our algorithm pseudocode for mining

frequent graph patterns, which works for both directed and

undirected graphs. A proof of correctness and a partial
complexity analysis are then developed.

3.1 Description of the Algorithm

The algorithm consists of three phases. In phase 1, we find
all frequent paths (including paths with cycles), starting
with frequent nodes and frequent edges. In phase 2, we find
all graphs composed of two paths, in other words, we find
all possible intersections between pairs of paths from
phase 1. In phase 3, we merge pairs of frequent graphs,
each consisting of n� 1 paths, such that the graphs have a
common core of n� 2 paths in an attempt to produce
graphs with n paths. Throughout, we assume that some
admissible support measure is used. In phases 1 and 3, we
construct frequent graph patterns recursively, using the
Apriori approach [1].

Phase 1 (see Algorithm 1) constructs the frequent paths
considering all frequent paths found in the previous
iteration, and potentially adding a frequent edge. Adding
the edges is done using the ExpandPath function. First,
consider the case for directed graphs in ExpandPath, which
considers adding an outgoing edge from some nodes in the
path. If the path is cyclic (not necessarily a simple cycle) we
can add the outgoing edge anywhere, provided the node
labels match (see Fig. 6b for examples). Otherwise, we can
only add an outgoing edge at a node that has an in-degree
greater than the out-degree—there can be only one such
node if P is a path (Fig. 6a). We use the node set X to denote
the nodes where an edge can be added. There are now two
cases: adding an additional node to the path (step 1, and see
Fig. 6 (a and b2) for an example), and adding an edge to a
node already on the path (step 2, see Fig. 6b1 for an
example) In the graph, one could add an edge at any node
that has unequal in-degree and out-degree (an unbalanced
node), but it is sufficient to add just the outgoing edge, as
shown in the proof of correctness later on.

Algorithm 1 Frequent paths—Phase 1.

Notation: Fi is a set containing frequent graph patterns that

are paths with i edges;
 ð:Þ is a function that creates a new node with the same

label as its argument.

Ci is a candidate set for 1-path patterns with i edges.

Output: L1, a sorted set containing the frequent paths.

1448 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

Fig. 5. Induced graph of a splice.

TABLE 3
Splice

Fig. 6. Phase 1 example. (a) Adding edge to a noncyclic path. (b) Adding

edge to a cyclic path.

1. Find all frequent nodes and add them to F0.
2. Find and add to F1 all frequent edges by

scanning the data set and set k :¼ 2.

3. Set Ck :¼ ;, Fk :¼ ;.
4. For every path P ¼ ðV ;EÞ 2 Fk�1

and for every e 2 F1 do:

Ck :¼ Ck [ExpandPathðP; eÞ.
5. For everyG 2 Ck, add G to Fk if G is frequent,

and Fk contains no graph isomorphic to G.
6. If Fk 6¼ ; set k :¼ kþ 1 and goto step 3.

7. Output L1 ¼
Sk�1
i¼1 Fi sorted according to �p .

Function ExpandPathðP; eÞ for directed graphs

Let Result ¼ ;. Denote e by ðv; uÞ.
If there is a node x 2 V s.t.

d�ðxÞ < dþðxÞ, let X ¼ fxg.
Otherwise (i.e., P is cyclic), let X ¼ V .

1. For every x 2 X s.t.

labelðxÞ ¼ labelðvÞ add
G ¼ ðV [f ðuÞg; E [fðx; ðuÞÞgÞ to Result.

2. For every x 2 X s.t. labelðxÞ ¼ labelðvÞ,
and every y 2 V n x s.t.
labelðyÞ ¼ labelðuÞ and ðx; yÞ=2E,

add graph G ¼ ðV ;E [ðx; yÞf gÞ to Result.

Function ExpandPath ðP; eÞ for undirected graphs

Let Result ¼ ;. Denote e by fv; ug.
Let X be the set of nodes of odd degree in P . If X

is empty, (i.e., P is cyclic), let X ¼ V .

1. For every x 2 X s.t. labelðxÞ ¼ labelðvÞ, add
G ¼ ðV [f ðuÞg; E [ffx; ðuÞggÞ to Result.

2. For every x 2 X; s.t.
labelðxÞ ¼ labelðuÞ add
G ¼ ðV [f ðvÞg; E [ffx; ðvÞggÞ to Result.

3. For every x; y 2 V , x 6¼ y s.t. fx; yg=2E,

labelðxÞ ¼ labelðvÞ; labelðyÞ ¼ labelðuÞ
s.t. at least one of x; y is in X,

add G ¼ ðV ;E [ffx; yggÞ to Result.

The treatment of undirected graphs is practically the
same, differing only in that ExpandPath for undirected
graphs considers adding an undirected edge. Here, an edge
can be added anywhere if the path is cyclic or at one of the
two odd-degree nodes if the path is noncyclic. When adding
an additional node (steps 1 and 2 in Algorithm 1,
ExpandPath for undirected graphs) the new node can be
at either end of the edge. Observe that only in phase I does
there exist a significant difference between directed and
undirected graphs, except for code hidden in computing the
number of paths (which is a simple counting of node
degrees) and in the support measure (which is external and
largely independent of our algorithm).

Phase 2 (see Algorithm 2) constructs the frequent graphs
with path number 2, by combining one-path graphs. The
nontrivial steps are steps 2, 3, and 4, where, in step 2, all
possible compositions of the two paths are considered and,
in step 4, both the path number and the support measure
are calculated; in step 3, all non-P-minimal isomorphic
graphs are removed. Fig. 7 shows (in terms of the

lexicographic order we defined earlier) how several
different 2-path graphs are constructed from two paths.

Algorithm 2 Frequent path pairs—Phase 2

Notation: L2 is a set that contains composition tuple-sets of

frequent graph patterns with\path number 2.
C2 is a candidate set for the above composition tuple-sets.

1. Let C2 ¼ ;, L2 ¼ ;.
2. For every pair of paths P1, P2 2 L1

and every consistent composition

tuple-set � with Gð�Þ ¼ ðP1; P2Þ,
s.t. �ð�Þ is connected and pð�ð�ÞÞ ¼ 2,

add tuple-set � to C2.
3. Remove from C2 all tuple-sets that

are not P-minimal.

4. For every tuple-set � 2 C2,

if �ð�Þ is frequent, add � to L2.

5. Output graphs f�ð�Þ j � 2 L2g.
Phase 3 (see Algorithm 3) constructs the frequent graphs

with path number n from graphs with path number n� 1.
The nontrivial step is step 2. In case 2a, the graph is
constructed by finding the common n� 1 subgraph
structure and adding the remaining two paths P1, P2 (one
from each graph), using the bijective-sum operation. Note
that the specification of an “arbitrary permutation” is just a
notational convenience, and is not actually implemented
this way (it would require an exponential number of tests).
Instead, the composition tuple-sets �i are represented in
sorted order of the paths in Gð�iÞ, where each path is
represented by its index in the sorted L1. To check whether
two compositions can undergo bijective sum, simply
compare the strings of sorted indices of paths in Gð�1Þ,
Gð�2Þ, allowing for up to one substitution, which can be
done very efficiently. The number of cases meeting this
requirement is typically many orders of magnitude smaller
than the number of possible permutations, which are not
explicitly generated.1 Only after the above test passes do we
need to compare the tuples in the projected tuple-sets.

Algorithm 3 Frequent graphs—Phase 3

Notation: Ln: set of composition tuple-sets of width n.

Cn is a candidate set for these compositions.

1. Set n ¼ 3, Cn ¼ ;, Ln ¼ ;.

GUDES ET AL.: DISCOVERING FREQUENT GRAPH PATTERNS USING DISJOINT PATHS 1449

1. The fact that nonisomorphic paths can have the same descriptor is a
complication, but not a serious problem, especially in labeled and directed
graphs, where such cases are less likely to occur.

Fig. 7. Phase 2 example.

2. For every pair �1, �2 of (arbitrarily

permuted) composition tuple-sets from Ln�1

s.t. �1½1 : n� 2� ¼ �2½1 : n� 2�, do:
(a) Construct � ¼ BSð�1; �2Þ.

If �ð�Þ is connected and has

path number n, add � to Cn.

(b) For every composition tuple-set S 2 L2,

if �ðSpliceð�; SÞÞ is connected and has

path number n, add Spliceð�; SÞ to Cn.

3. Remove from Cn all composition tuple-sets

that are not P-minimal.

4. For every � 2 Cn, add � to Ln
if �ð�Þ is frequent.

5. If Ln ¼ ;, halt.
6. Output f�ð�Þj� 2 Lng, then set n :¼ nþ 1 and

go to step 3.

In case 2b, any combination S of the two paths P1, P2

that is frequent and isomorphic to the remaining paths is
found from L2. Although not stated in the pseudocode, this
step is fast because L2 can be indexed for fast retrieval of
compositions containing specific paths. The paths P1; P2 in
the graph are combined (using Splice) with the generated
candidate. This latter step is needed because merging two
patterns directly (using bijective sum) may overlook cases
where some nodes in the remaining paths are shared.
Step 3 removes redundant isomorphic graphs, while step 4
checks the support of the candidates, as in phases 1 and 2.

An optional final step in the algorithm (not shown here)
is removing all frequent subgraphs which are not maximal,
i.e., contained in larger frequent graphs. Fig. 8 demonstrates
merging two 2-path graphs that have one path in common
into one 3-path graph.

3.2 Proof of Correctness

It is obvious by construction that our algorithm is sound
since (in all phases) only frequent patterns are kept at the
end of the computation. Therefore, showing completeness
of the algorithm, i.e., that all frequent patterns are indeed
found by the algorithm, is sufficient to prove correctness.
Since all phases of the algorithm are separate (and run
sequentially), completeness of each will be formally stated
and proved separately.

Theorem 3. When phase 1 (Algorithm 1) completes, L1 contains
all frequent single-path graph patterns.

Proof outline. Note that from every path with k edges, an
edge can be removed so that the remaining graph is a
path with k� 1 edges. Using the admissibility of the
support measure, and the assumption that all frequent

paths with k� 1 edges were found in the previous
iteration, the theorem follows by induction. tu

Theorem 4. Phase 2 (Algorithm 2) outputs all connected
frequent graphs patterns with path number 2. Additionally,
at the end of phase 2, the set L2 contains all P-minimal
composition tuple-sets, for every connected frequent graph
pattern with path number 2.

Proof. Let G be a frequent graph pattern with pðGÞ ¼ 2.
Then, G can be decomposed into two edge-disjoint paths
and has a P-minimal decomposition P1; P2. Since we are
using an admissible support measure, P1 and P2 are
frequent and, by Theorem 3, an isomorphic copy of each
of them is in L1 at the end of phase 1. Denote the
isomorphisms of P1, P2 by P 01, P 02, respectively. During
phase 2, all possible consistent composition tuple-sets �
with Gð�Þ ¼ ðP 01; P 02Þ are constructed, including the
composition � for which �ð�Þ is isomorphic to G under
the natural isomorphism. Since the path descriptors are
invariant under isomorphism and the decomposition of
G into P1; P2 is P-minimal, then � is also P-minimal and
thus not pruned from C2 at step 3. Since G is frequent, �
is stored in L2 in step 4, and G is output at step 5. tu

Theorem 5. Phase 3 outputs all frequent connected graph
patterns G with path number pðGÞ � 3.

Proof outline. We show the invariant that, at the end of
each iteration n, if G is a frequent graph with path
number n, then there is a P-minimal composition � 2 Ln
such that �ð�Þ is isomorphic to G. Proof of the invariant
is based on the invariant holding for graphs with path
number n� 1 at the beginning of the iteration, which
holds for n ¼ 2 due to Theorem 4. Using the admissi-
bility of the support measure, we show that if G is
frequent, then there exist P-minimal compositions in
Ln�1 with a common core of width n� 2. These
compositions induce frequent subgraphs G1, G2 with
path number n� 1 that are composed in the iteration by
using bijective sum and splice to form G. tu

3.3 Complexity Discussion

The complexity of our algorithm is composed of two
components. The first component has to do with the
problem definition and not with the specific algorithm. This
complexity is exponential in the size of the pattern, and
inherent to Apriori-like algorithms. The complexity of
Apriori is due to the fact that the number of frequent patterns
can be exponential and the complexity of any graph mining
algorithm is constrained by the need to find all subgraphs of
a database isomorphic to a given pattern in order to evaluate
its support. The main goal of a mining algorithm should
thus be to decrease the number of candidate patterns and, by
doing so, decrease the number of support computations.
Our approach is feasible because the number of patterns
remaining from one phase to the next is reduced consider-
ably, according to our experiments. The generation of
candidate set Cn�1 in the worst case, takes time:

O
Lnj j2

2
	 n2 	 L2j j

 !
:

In real-life cases, frequent patterns from the set Ln
usually have different path structure and labeling and the
number of candidate patterns created is much smaller. Even
though the complexity is bounded by an exponential in n, in

1450 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

Fig. 8. Phase 3 example.

reality, for large databases, the scan of the database whose
complexity is n 	N may be worse and, in these cases, the
approach of Apriori-TID may be beneficial.

3.3.1 Support Computation

The second component of complexity is due to the need to
find all subgraphs isomorphic to the given pattern, which is
exponential in the size of the pattern as well. While the large
number of support computations is inherent to the basic
Apriori algorithm ([1]), complexity of a single support
computation is significantly higher for semistructured
databases. Such computation requires 1) finding all sub-
graphs of a database isomorphic to a given graph pattern
and 2) evaluating support using an admissible support
measure. Finding all subgraphs of a database graph
isomorphic to a given pattern depends strongly on the
topology of a database graph. For a dense graph, the
number of such subgraphs can be exponential to the size of
a pattern. For a complete graph and an appropriate support
value, every subgraph of a complete graph can be frequent!
However, for a sparse graph (or the case for the real-life
semistructured databases), the number of instances of a
pattern is much smaller. In addition, a database graph with
a large number of different labels is likely to produce a
smaller number of pattern instances than a similar graph
with a small number of different labels.

A formal complexity analysis of the entire algorithm is
very difficult and thus not pursued here. Although the
complexity is exponential in the worst case, the experiments
in the next section suggest that, for nondense graphs, the
algorithm is still reasonable for large graphs.

4 EMPIRICAL EVALUATION

In the empirical evaluation, two sets of experiments were
performed. The first set of experiments compares our
algorithm to an edge-based algorithm. Two types of
databases were used: synthetic, where we can control both
the topology and labeling of graphs, and a real-life XML
“movies” database [28]. Only the single graph setting was
tested in this set of experiments. The second set of experi-
ments compared our algorithm to FSG for both transactions
and single graph settings. This set of experiments used also
two databases, one synthetic, and one a real-life social
network composed of electronic mails. The database records
e-mails over a period of a week among users of the Ben-
Gurion University e-mail system. The source, destination,
and size of the message were recorded. The message size is
used as an approximate “label” on the edge.

4.1 Experimental Setting

The experimental environment is a Sun Ultra-30 work-
station running at 247 MHz and with 128 MB of main
memory. The real XML file we used is a portion of the
“movies” database. XML elements are treated as nodes and
inheritance relationships and references as edges.

4.1.1 The Support Measure

The standard measure of support for transaction databases
in the literature is as follows: The support S for an item set
I ¼ hi1; . . . ; iki in a data set of transactions D is

SðIÞ ¼ jftjt 2 D;< i1; . . . ; ik >2 tgj
jDj : ð2Þ

However, if the application makes it necessary to count
the total number of occurrences of a pattern, the above
scheme is inappropriate. An alternate definition of support,
taking the multiple occurrences into account, must be
defined, a nontrivial issue due to possible overlaps between
instances.

For example, one trivial support measure is the number
of instances of a frequent pattern. This measure, however, is
not admissible. Fig. 9 shows a database that contains three
instances of pattern A and only one instance of pattern B,
while B � A. Another approach is to take into account all
automorphisms of a pattern in question. Again, the
database in Fig. 9 is a counterexample, since jAutðBÞj ¼ 6
and jAutðAÞ ¼ 4j, making the total count of A’s instances 12,
which is still greater than six.

The only nontrivial provably admissible measure we
could find for the single graph setting is defined as follows
[32]: Let D be a database graph and G be a graph pattern for
which we wish to compute support. Let A1; A2; . . .An be all
instances of G in D. We create a new graph called the
instance graph, in which each of the Ai is a node and there is
an edge between Ai and Aj if the two subgraphs Ai and Aj

have at least one common edge. The maximum indepen-
dent set (MIS) measure is defined as the size of the
maximum independent set over the instance graph and
was shown in [32] to be admissible.

Using the MIS measure, we must compute the maximum
independent set of the instance graph IG. Theoretically, this
can take time exponential to the size of IG, since the
independent set problem is NP-hard. However, for real-life
cases of sparse database graphs with a reasonable number
of labels, this task is usually much easier. In our experi-
ments, time for computing the maximum independent set
was actually negligible compared to the time to find the
instances. Therefore, the performance of the algorithms is
not strongly dependant on the specific (MIS) support
measure. In addition, approximation techniques can be
used in this case (see [14] for details) as a user usually does
not care about a precise support value.

4.2 The Implemented Algorithms

We implemented the mining algorithm for fully labeled
graphs described in Section 3, as well as the two types of
edge-based algorithms discussed below. The latter were
used in order to compare the number of generated
candidate patterns with our algorithm.2 The same admis-
sible MIS support measure was used for all algorithms.

GUDES ET AL.: DISCOVERING FREQUENT GRAPH PATTERNS USING DISJOINT PATHS 1451

2. The reason our comparison is done opposite simple edge-based
algorithms, rather than to FSG or GSPAN, is that the latter algorithms use
the transaction-graph setting, making a direct comparison inapplicable.
Additionally, little research exists on algorithms that use the maximum
independent set (MIS) support measure, the only non-trivial admissible
support measure we know for the single-graph setting (see Section 5).

Fig. 9. Graph pattern support.

Tests were conducted multiple times and time averages
were taken to eliminate factors of system load.

The first algorithm is based on finding all frequent
graphs G with k edges and then extending each graph G
into graphs with kþ 1 edges by either adding a new node
and an edge to G frequent graph or by adding an edge
between two existing nodes of G. The process is repeated
until no graphs extended in this manner are frequent. For
the comparison with FSG, we have implemented a version
of FSG for the single graph setting, based on [20].

4.3 Experimental Results

4.3.1 First Set

We investigated the behavior of the algorithms using the
following performance parameters: 1) number of candidate
patterns produced by an algorithm during data mining,
2) number of isomorphism computations during data mining
and overall number of support computations, and 3) total
time spent on data mining (not CPU time) and on support
computations. Table 5 presents results for testing on
synthetic trees and synthetic sparse graphs. The notation
used in all three tables is explained in Table 4. For our
algorithm, the number of candidate patterns can sometimes

be less than the number of frequent patterns since frequent
nodes and edges are computed directly without generating
candidate patterns. Our implementation needs to generate
all appropriate subgraphs of a database graph, find among
them all subgraphs that are isomorphic to the pattern in
question, and build an instance graph and find its
maximum independent set size. Thus, testing our algorithm
on dense graphs seems to be extremely time consuming. An
additional consideration was the fact that most real-life
databases represent sparse graphs rather than dense ones.
Therefore, we decided to limit our tests to trees and sparse
graphs and to choose a support threshold that, on the one
hand, will not limit the output to trivial graphs (nodes and
edges) and on the other hand, will not make every
connected subgraph of the database frequent.

From Table 5, we conclude that our algorithm runs faster
even though it conducts more isomorphism checks than the
edge addition algorithm. The latter occurs because our
algorithm produces fewer candidate patterns and, thus, less
time is wasted on support computation.

Table 6 contains the number of frequent patterns found in
six different subsets of the movie database with different
support values. The structure of the database (a tree as in set
number 6 or a sparse graph) can be seen to have more impact
on the number of frequent patterns than the support value.

As seen from Table 6, for the same values of support, the
number of frequent patterns is smaller and thus the
execution time is much smaller in the movie database than
in the synthetic data set. This indicates the feasibility of our
algorithm in real-life cases. As the graph becomes larger,
the number of frequent patterns for the same support value
decreases since a larger number of edge-disjoint instances is
required for each pattern in order to pass the support
threshold. Note that these patterns do not contain titles of
movies or names of directors, since these are present only as
attributes and not as tags in the XML database. Related
research [25] attempts to treat attributes and values of an
XML database as well.

1452 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

TABLE 4
Notation Used in Results Tables

TABLE 5
Experimental Results for Trees and Sparse Graphs

We deduce the following facts from our experiments:

1. Our algorithm produces fewer candidate patterns
and therefore performs fewer support computations
than the edge addition algorithm.

2. Support computation is easier if the database is a
tree due to fewer candidate patterns.

3. Synthetic graphs are not very regular. As the
number of distinct labels in synthetic database
increases, the chance of finding nontrivial frequent
patterns in that database decreases drastically.

4. Large real-life graph databases are highly regular
and contain complex patterns.

4.3.2 Second Set—Comparison with FSG

In this set of experiments, we compared FSG with our

algorithm for both transaction setting and single graph

setting. For the transaction setting, the results were

comparable and are not shown here. For the single graph
setting, we measured both the time and the number of

support computations. Since the running time was domi-

nated by the number of support computations, we decided
not to report it at all and, instead, report the number of

support computations, which is equal to the number of

candidates generated. Therefore, in all the tables and graphs

below, the measure of efficiency is the number of
candidates generated.

Table 7 shows numbers of candidates and frequent

patterns generated by both algorithms for various support

values on two subsets (5,000 and 2,000 nodes) of a Ben-

Gurion University e-mail traffic database. The entire
database is large (over 50,000 nodes) and quite dense,

which makes it difficult to mine. In all tables, PM stands for

Path Mining and denotes results achieved by our algorithm.

Table 8 shows numbers of candidates and frequent
patterns generated by both algorithms for various support
values on random graphs with 3,000 nodes, 4,000 edges
and different numbers of labels: 30, 40, and 50. These
results show that our algorithm produces fewer candidate
patterns than FSG and therefore performs fewer support
computations.

Fig. 10 shows numbers of candidates generated by both
algorithms for various support values on random graphs
with 1,000 nodes, 2,000 edges and different numbers of
labels: 10 and 20, respectively. We learned from our
experiments that support computation is the factor having
the most impact on the computation time because of the
need for multiple subgraph isomorphism computations in
both single and multiple graph settings. Reducing support
computation is significantly more important than comput-
ing a DFS code of a pattern or eliminating isomorphic
candidates, since frequent patterns are not very large
compared to the database size.

5 DISCUSSION AND RELATED WORK

This section briefly presents related work and discusses our
contribution in the context of prior research in the field. As
mentioned in the introduction, most of the work done on
graph mining is comparatively recent. The basic work
related to this subject is frequent itemset mining in
structured databases and the Apriori algorithm and its
variations [1]. For conciseness, reference to the significant
body of existing work on transaction database mining is
omitted. Papers that deal with mining topologically simple
patterns, such as paths and trees, are directly related to our
work and thus reviewed below.

Paper [2] presents two algorithms for mining frequent
directed simple path patterns in a Web environment. Both
algorithms are based on an algorithm called MF that finds
all maximal forward references in a set of traversal
sequences contained in the database. The goal of the two
mining algorithms is to find frequent sequences in these
paths. The main differences between the algorithm of [2]
and ours is that the former handles only linear paths,
making its support measure computationally simple.

The simple paths mining problem is generalized in [36],
which describes an algorithm for finding maximal frequent
treelike patterns in semistructured documents, represented
in the standard OEM model. Although this algorithm
searches only for treelike patterns, it can also handle
patterns containing cycles by transforming them into trees.

GUDES ET AL.: DISCOVERING FREQUENT GRAPH PATTERNS USING DISJOINT PATHS 1453

TABLE 6
Movie Database: Support versus Frequent Patterns

TABLE 7
BGU E-Mail Database Results

One important restriction in this paper is that only rooted
trees are considered, i.e., trees whose root is the same as the
root of the entire Web database. Chi et al. handle the
problem of tree mining in a wider sense in [27].

Work on mining general graph patterns began in the
1990s. A recent survey of graph mining, by Washio and
Motoda [37], presents some of the earlier works on the
subject like SUBDUE [7] and GBI [41]. It then classifies the
mining algorithms into two major categories: Greedy search
algorithms, which search exhaustively for all the frequent
graph patterns, and Inductive (ILP) approaches, which
pregenerate many graph patterns according to some logic
constraints and background knowledge and then use a
query language to retrieve the interesting patterns [26].
Since our paper uses the greedy approach, we do not
further discuss ILP here.

Regarding the greedy approach, two categories of
algorithms were mentioned in the introduction: transaction
graphs and single graph settings. To date, most work has
been on the transaction graph setting, with algorithms
divided roughly into two classes: breadth-first search (or
Apriori-based) and depth-first search.

Most BFS algorithms use the basic idea employed in the
Apriori algorithm. The main difference between the various
algorithms of this category is in the type of the building block
used to generate the item of level K. Inokuchi et al. [17] use

vertices. An algorithm by Kuramochi and Karpis [19] uses
edges as the main building block and was extended and
improved in [20] by adding several clever heuristics that
make mining and support computation more efficient. This
latter version, called FSG, is currently one of the best known
and often compared to a version of the BFS graph mining
algorithms for the graph-transaction setting case. FSG
introduces the definition of a canonical labeling of graphs
based on the adjacency matrix, used to eliminate iso-
morphic candidates. To increase the efficiency of deriving
the canonical labels, the approach uses some graph vertex
invariants, such as the degree of each vertex in the graph.
FSG also increases the efficiency of the candidate frequent
subgraph generation by introducing the transaction ID
(TID) method. Furthermore, FSG limits the class of the
frequent subgraphs to connected graphs. Under this
limitation, FSG introduces an efficient search algorithm
using a “core,” which is a shared part of size k� 1 in the
two frequent subgraphs of the size k. FSG increases the
joining efficiency by limiting the common part of the two
frequent graphs to the core. Once the candidates are
obtained, their frequency counting is conducted by check-
ing the cardinality of the intersection of both TID lists. FSG
is fast due to the introduction of numerous techniques, but
its memory consumption is heavy (storage for TID lists of
massive graph data). Some ideas similar to those in FSG,
e.g., those related to joining of two subgraphs, are present in

1454 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

TABLE 8
Random Graph with 3,000 Nodes and 4,000 Edges

Fig. 10. Random graph with 1,000 nodes and 2,000 edges.

this paper as well. However, the method in this paper was
derived independently and our use of edge-disjoint paths as
a building block is new. Other works which use the BFS
approach are [18], [15], [16], [6].

The second approach, called gSpan [39], grows patterns
from a single graph directly, by using a depth-first search
strategy. The algorithm maps each pattern to a unique
canonical label and assigns each graph a unique minimum
DFS code. By using these labels, a complete order relation is
imposed over all possible patterns. This lexicographic order
is also used to impose a tree-hierarchy order over all
patterns, resulting in a hierarchical search tree. This search-
tree is traversed in a DFS manner, pruning on the way all
subgraphs with nonminimal DFS code. This algorithm also
uses the TID approach. Since the algorithm explores the
search space in DFS manner, it enables the use of several
mining techniques which are especially applicable to DFS
algorithms, such as maintaining an embedding set for each
frequent subgraph, like [53]. Yan and Han [39] also present
an experimental evaluation, where they compare gSpan
with FSG and show the better performance of gSpan on
several molecular databases. Several of the ideas of [39]
were used later, in an approach which is intermediate
between BFS and DFS, in [17].

In summary, the ideas presented in the above papers
have influenced our work considerably. However, using
paths as building blocks and an efficient method for
merging graphs represented as compositions of paths are
original contributions of this paper. From our experiments,
we did not see an inherent problem of scaling up the
algorithm to very large graphs, other than memory
requirements encountered with large graphs. These may
be handled similarly to [34].

6 CONCLUSION

An Apriori-like algorithm for retrieving frequent graph
patterns from a given set of graphs is the central issue in
this paper. In contrast with most existing work, the pattern
can be either a directed or an undirected graph and may
contain cycles. The added functionality can support data
mining on the increasing fraction of online documents that
consist of blocks connected by references. Knowledge about
typical structure of documents is helpful in analyzing
complex repositories of semistructured data (e.g., XML
databases, the Web) and is potentially useful for querying
data, indexing it, and storing it efficiently. In searching for
frequent patterns, candidates are constructed using fre-
quent paths. The scheme is evaluated empirically and is
promising as it shows a decided advantage over other
algorithms. The scheme proposed here can be extended in
several ways, such as using partially labeled patterns, using
more complex building blocks (trees), adapting the algo-
rithm to the dynamic database model, and using the
Apriori-TID technique.

ACKNOWLEDGMENTS

This research was partially supported by the KITE
consortium under contract to the Israeli Ministry of Trade
and Industry and by the Paul Ivanier Center for Robotics
and Production Management. The authors wish to thank
Marina Litvak for implementing a significant fraction of the
code for the experiments, and the anonymous reviewers for
useful comments that contributed to the final version of the
manuscript.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Associa-
tion Rules,” Proc. 20th Int’l Conf. Very Large Data Bases, Sept. 1994.

[2] M.S. Chen, J.S. Park, and P.S. Yu, “Efficient Data Mining for Path
Traversal Patterns,” IEEE Trans. Knowledge and Data Eng., vol. 10,
no. 2, pp. 209-221, Mar./Apr. 1998.

[3] D. Chamberlin, “XQuery: A Query Language for XML,” Proc.
SIGMOD Conf., 2003.

[4] Y. Chi, S. Nijssen, R.R. Muntz, and J.N. Kok, “Frequent Subtree
Mining: An Overview,” Fundamenta Informaticae, special issue
graph and tree mining, 2005.

[5] C. Chung, J. Ki Min, and K. Shim, “APEX: An Adaptive Path
Index for XML Data,” Proc. SIGMOD Conf. 2002, pp. 121-132, 2002.

[6] M. Cohen and E. Gudes, “Diagonally Subgraphs Pattern Mining,”
Proc. Ninth ACM SIGMOD Workshop Research Issues in Data Mining
and Knowledge Discovery, 2004.

[7] J. Cook and L. Holder, “Substructure Discovery Using Minimum
Description Length and Background Knowledge,” J. Artificial
Intelligence Research, pp. 231-255, 1994.

[8] L. Dehaspe, H. Toivonen, and R.D. King, “Finding Frequent
Substructures in Chemical Compounds,” Proc. Fourth Int’l Conf.
Knowledge Discovery and Data Mining (KDD ’98), pp. 30-36, 1998.

[9] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Maier,
and D. Suciu, “Querying XML Data,” IEEE Data Eng. Bull.,
vol. 22, no. 3, pp. 27-34, 1999.

[10] A. Deutsch, M.F. Fernandez, and D. Suciu, “Storing Semistruc-
tured Data with STORED,” Proc. SIGMOD Conf., pp. 431-442, 1999.

[11] C. Domshlak, R. Brafman, and S.E. Shimony, “Preference-Based
Configuration of Web Page Content,” Proc. Int’l Joint Conf.
Artificial Intelligence, Aug. 2001.

[12] L. Garton, C. Haythornthwaite, and B. Wellman, “Studying Online
Social Networks,” J. Computer-Mediated Comm., vol. 3, no. 1, 2004.

[13] R. Goldman and J. Widom, “DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases,”
Proc. 23rd Very Large Data Bases Conf. (VLDB ’97), 1997.

[14] E. Gudes, S.E. Shimony, and N. Vanetik, “Support Measures for
Semistructured Data,” Data Mining and Knowledge Discovery J., to
appear in vol. 13, 2006.

[15] M. Hong, H. Zhou, W. Wang, and B. Shi, “An Efficient Algorithm
of Frequent Connected Subgraph Extraction,” Proc. Pacific-Asia
Conf. Knowledge Discovery and Data Mining (PAKDD), 2003.

[16] J. Huan, W. Wang, and J. Prins, “Efficient Mining of Frequent
Subgraphs in the Presence of Isomorphism,” Proc. IEEE Int’l Conf.
Data Mining (ICDM ’03), pp. 549-552, 2003.

[17] A. Inokuchi, T. Washio, and H. Motoda, “An Apriori Based
Algorithm for Mining Frequent Substructures from Graph Data,”
Proc. European Conf. Principles of Data Mining and Knowledge
Discovery (PKDD ’00), 2000.

[18] A. Inokuchi, T. Washio, and H. Motoda, “Complete Mining of
Frequent Patterns from Graphs, Mining Graph Data,” Machine
Learning, vol. 50, no. 3, pp. 321-354, 2003.

[19] M. Kuramochi and G. Karypis, “Frequent Subgraph Discovery,”
Proc. IEEE Int’l Conf. Data Mining (ICDM), 2001.

[20] M. Kuramochi and G. Karypis, “An Efficient Algorithm for
Discovering Frequent Subgraphs,” IEEE Trans. Knowledge and Data
Eng., vol. 16, no. 9, Sept. 2004.

[21] M. Kuramochi and G. Karypis, “Finding Frequent Patterns in a
Large Sparse Graph,” Proc. 2004 Soc. Industrial and Applied Math.
(SIAM) Data Mining Conf., 2004.

[22] V. Lipets and E. Gudes, “An Efficient Algorithm for Subgraph
Isomorphism,” Proc. Fourth Haifa Workshop Graph Theory and
Algorithms, 2004.

[23] X. Lin, C. Liu, Y. Zhang, and X. Zhou, “Efficiently Computing
Frequent Tree-Like Topology Patterns in a Web Environment,”
Proc. 31st Int’l Conf. Technology of Object-Oriented Language and
Systems, 1998.

[24] A. Meisels, M. Orlov, and T. Maor, “Discovering Associations in
XML Data,” technical report, Ben-Gurion Univ., 2001.

[25] T. Milo and D. Suciu, “Index Structures for Path Expressions,”
Proc. Int’l Conf. Database Theory (ICDT ’99), pp. 277-295, 1999.

[26] S. Muggleton and L. DeRaedt, “Inductive Logic Programming:
Theory and Methods,” J. Logic Programming, vol. 19, no. 2, pp. 629-
679, 1994.

[27] S. Nijssen and J.N. Kok, “Frequent Graph Mining and Its
Application to Molecular Databases,” Proc. IEEE Int’l Conf.
Systems, Man, and Cybernetics, pp. 4571-4577, 2004.

[28] Internet Movie Database, http://us.imdb.com, 2002.

GUDES ET AL.: DISCOVERING FREQUENT GRAPH PATTERNS USING DISJOINT PATHS 1455

[29] X. Pennec and N. Ayache, “A Geometric Algorithm to Find Small
but Highly Similar 3D Substructures in Proteins,” Bioinformatics,
vol. 14, no. 6, pp. 516-522, 1998.

[30] D. Shasha, J.T.L. Wang, and R. Guigno, “Algorithmics and
Applications of Tree and Graph Searching,” Proc. 21st ACM
SIGMOD-SIGACT-SIGART Symp. Principles of Database Systems,
pp. 39-52, 2002.

[31] F. Tian, D. DeWitt, J. Chen, and C. Zhang, “The Design and
Performance Evaluation of Alternative XML Storage Strategies,”
technical report, Computer Sciences Dept., Univ. of Wisconsin,
2000.

[32] N. Vanetik, E. Gudes, and S.E. Shimony, “Computing Frequent
Graph Patterns from Semistructured Data,” Proc. Int’l Conf. Data
Mining (ICDM), pp. 458-465, 2002.

[33] N. Vanetik and E. Gudes, “Mining Frequent Labeled and Partially
Labeled Graph Patterns,” Proc. Int’l Conf. Data Eng. (ICDE ’04),
pp. 91-102, 2004.

[34] C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi, “Scalable Mining of
Large Disk Based Graph Database,” Proc. Int’l Conf. Knowledge
Discovery and Data Mining (KDD ’04), 2004.

[35] K. Wang and H. Liu, “Discovering Typical Structures of
Documents: A Road Map Approach,” Proc. SIGIR Conf., pp. 146-
154, 1998.

[36] X. Wang, J.T. Li Wang, D. Shasha, B. Shapiro, I. Rigoutsos, and
K. Zhang, “Finding Patterns in Three-Dimensional Graphs:
Algorithms and Applications to Scientific Data Mining,” IEEE
Trans. Knowledge and Data Eng., vol. 14, no. 4, pp. 731-749,
July/Aug. 2002.

[37] T. Washio and H. Motoda, “State of the Art of Graph-Based Data
Mining,” SIGKDD Explorations, July 2003.

[38] S. Wasserman, K. Faust, and D. Iacobucci, Social Network Analysis:
Methods and Applications (Structural Analysis in the Social Sciences).
Cambridge Univ. Press, 1994.

[39] X. Yan and J. Han, “gSpan: Graph-Based Substructure Pattern
Mining,” Proc. Int’l Conf. Data Mining, pp. 721-724, 2002.

[40] X. Yan and J. Han, “CloseGraph: Mining Closed Frequent Graph
Patterns,” Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and
Data Mining (KDD ’03), 2003.

[41] K. Yoshida, H. Motoda, and N. Indurkhya, “Graph-Based
Induction as a Unified Learning Framework,” J. Applied Intelli-
gence, pp. 297-328, 1994.

Ehud Gudes recieved the BSc and MSc
degrees from the Technion and the PhD degree
in computer and information science from the
Ohio State University in 1976. Following his
PhD, he worked both in academia (Pennsylvania
State University, Ben-Gurion University (BGU),),
where he did research in the areas of database
systems and data security, and in industry
(Wang Laboratories, National Semiconductors,
Elron, and IBM Research), where he developed

query languages, CAD software, and expert systems for planning and
scheduling. He is currently an associate professor in computer science
at BGU, and his research interests are knowledge and databases, data
security and data mining, especially graph mining. He is a member of the
IEEE Computer Society.

Solomon Eyal Shimony received the BSc
degree in electrical engineering from the Tech-
nion in 1982 and the PhD degree in computer
science from Brown University in 1991, after
which he joined the Department of Computer
Science at Ben-Gurion University (BGU). At
present, he is a deputy head of the Computer
Sciences Department at BGU, chair of the Paul
Ivanier Center for Robotics and Production
Management, and an associate editor of the

IEEE Transactions on Systems, Man, and Cybernetics, Part B. His
research interests are artificial intelligence, probabilistic reasoning,
knowledge discovery in databases, robotics, flexible computation, and
spatial data models. He is a member of the IEEE Computer Society.

Natalia Vanetik received the BSc degree in
mathematics and computer science from Ben-
Gurion University in 1996 and the MSc degree in
mathematics and computer science from Ben-
Gurion University in 2003. She is currently a
PhD student with the Department of Computer
Science at Ben-Gurion University. Her research
interests include combinatorial optimization,
graph theory, and graph mining.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1456 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

