
Diagonally Subgraphs Pattern Mining

Moti Cohen Ehud Gudes
Department of Computer Science, Ben-Gurion University

Beer-Sheva 84105, Israel

{motic, ehud} @cs.bgu.ac.il

ABSTRACT
In this paper we present an efficient algorithm, called DSPM, for
mining all frequent subgraphs in large set of graphs. The algorithm
explores the search space in a DFS fashion, while generating
candidates in advance to each mining phase just like the Apriori
algorithm does. It combines the candidate generation and anti
monotone pruning into one efficient operation thanks to the unique
mode of exploration. DSPM efficiently enumerates all frequent
patterns by using diagonal search, which is a general scheme for
designing effective algorithms for hard enumeration problems. Our
experiments show that DSPM has better performance, from
several aspects, than the current state of the art - gSpan algorithm.

Keywords
graph mining, frequent subgraphs, pattern discovery.

1. INTRODUCTION
Whereas in the past, data mining was mainly applied to structured
data and flat files, there is growing interest for mining semi-
structured data such as web links [8], chemical compounds [4], or
efficient database indexing [9]. The problem of frequent
substructure pattern mining is to find frequent subgraphs over a
collection of graphs. Frequent subgraph mining serves meaningful
structured information such as widespread web access patterns,
common protein structures, and shared patterns in object
recognition. Another application is to cluster XML documents
based on their common structures. Furthermore, a graph is a
general data structure which covers all previous well-researched
frequent patterns, thus it can fuse the mining process into one
framework.

Problem Statement. Given a dataset of transactions D, each
transaction t ∈ D is a labeled undirected subgraph. Edges and
vertices have their labels. Given a minimum support, minSup,
DSPM finds all connected structured patterns that occur in at least
minSup transactions.

Related Work. There are two general approaches in efficient
frequent structured patterns mining. The Apriori approach [1,2,3]

adopts the breadth-first search which was first developed in the
context of association rules by Agrawal and Srikant [10]. The
Apriori-based algorithm works as follows: given all connected
frequent patterns from size k, construct out of this group a set of
candidates such that each candidate pattern is from size k+1. A
candidate generation of size k+1 can be accepted, for example, by
joining two frequent patterns from size k that share a common
kernel from size k-1. The next step, usually, will be to count
support, i.e., how many transactions in DB each one of the
candidates occurs. For each candidate with a count above minSup
will be considered as a frequent pattern. This way we discover at
each phase larger and larger frequent patterns, one group after
another. The detailed algorithms, in general, distinguish themselves
in using different building blocks: vertices in [1], edges in [2], and
edge-disjoint paths in [3]. The second approach is DFS
exploration, represented by [4,5,6], which adopts a pattern-growth
by growing patterns from a single graph directly, that is depth-first
search. The algorithms map each pattern to a unique canonical
label. By using these labels, a complete order relation is imposed
over all possible patterns. This lexicographic order (over all
patterns) is also used to impose tree-hierarchy search order over all
patterns. One of the characteristics of the (search space) tree is
that all nodes at level k of the tree represent all connected patterns
with k edges and only them. An in-order search over the tree
enables to discover all frequent patterns as opposed to the BFS
approach that discovers all frequent k-patterns (patterns with k
edges) before discovering frequent (k+1)- patterns. The main idea
of our method is to construct a hybrid which combines the two
approaches. The algorithms which most closely related to our
current attempt are FSG [2] and gSpan [5]. Our algorithm, DSPM,
explores the search space in a depth search. It can use several
mining techniques which are especially applicable for DFS
algorithms, such as, using transactions id lists like gSpan [5] or
maintaining an embedding set for each frequent subgraph like
FFSM from [6]. We adopt from gSpan its canonical graph
representation and corresponding tree search space. On the other
hand, we adopt from FSG its notable frequency anti-monotone
pruning (checking for each generated candidate, with k+1 edges, if
all its subgraphs with k edges were found to be frequent in
previous step. If not, then the candidate isn't frequent and therefore
can be dropped). Our algorithm enjoys from this anti-monotone
pruning technique since it keeps all previous mined subgraphs alike
Apriori does. Once DSPM explores a pattern from size k, only
some of the frequent patterns from size k-1 were discovered till
that moment. Still, we will show that frequency anti-monotone
pruning technique can be applied without any special constraint
thanks to the unique reverse depth exploration. The reverse depth
exploration contributes for easy generation of candidates, fast anti-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DMKD’04, June 13, 2004, Paris, France.
Copyright 2004 ACM ISBN 1-58113-908-X/04/06…$5.00.

51

monotone pruning and the ability to explore efficiently more space
in a single step of the algorithm unlike previous DFS algorithms. In
addition we represent several novel ideas that can be integrated by
previous mentioned algorithms.

2. PRELIMINARY CONCEPTS
In section 2.1 we describe the main algorithm idea by developing it
for the well-known task of association rules. We will get
familiarized with the search space of frequent itemsets and the way
DSPM algorithm explores it. As a framework for subgraph mining,
section 2.2 defines the search space for the frequent subgraphs
problem. It uses the graph representation of gSpan algorithm [5]
though it is not bound to this specific representation.

2.1 Algorithm Outline
 Itemsets mining is simpler than subgraphs mining in many aspects.
Thus, for clarity we choose to start describing DSPM with respect
to itemsets. An example of an itemsets tree is illustrated in Figure 1
(forest). Consider the curved-dashed line in Figure 1. The problem
of mining frequent itemsets can be viewed as finding a cut through
the lattice such that all elements above the cut are infrequent
itemsets, and all elements below are frequent itemsets and their
counting support is known.

Definition 1 (Prefix Based Lattice). Let τ ∈ {itemsets,
sequences, trees, graphs} be a frequent pattern problem. Let τ-
order be a complete order over the patterns (i.e., over the
canonical representation of patterns), and let τ-space be the
corresponding search space of the problem which has a tree
shape. Given a pattern pk, k >1, subpatterns(pk) = { pk-1 | pk-1 is a
subpattern of pk }. Then, the τ-space is Prefix Based Lattice if (i)
The parent of each pattern pk, k > 1, is the minimum τ-order
pattern from the set subpatterns(pk). (ii) An in-order search over
τ-space follows ascending τ-order. (iii) The search space is
complete.

The itemset search space as depicted in Figure 1 is a prefix based
lattice. From now on we will assume implicitly that for each given
τ problem, the corresponding τ-space is defined to be prefix based
lattice.

Definition 2 (Reverse Depth Search). Regular depth search over
τ-space which explores the sons of each visited node (pattern) in a
descending τ-order.

As depicted in Figure 1, the lattice is divided into diagonal strips,
counted from right to left. The strips are explored one after
another, from right to left by DSPM algorithm. Each strip is
explored in a reverse depth search by the algorithm. We consider
the τ-space as a forest rather than one tree. Each tree in τ-space
will correspond to one strip such that the root will be a pattern
from size 1.

Property 1 (FAM: Frequency Anti-Monotone). If a pattern pk
is frequent, then any subpattern of pk must be frequent. It is equal
to say, if pk isn't frequent then any pattern that contains pk isn't
frequent also.

FSG algorithm uses property 1, by checking for each candidate
ck+1 if all its subpatterns from set subpatterns(ck+1) found to be
frequent in the previous phase. DSPM applies the same pruning for
candidates, that is, although DSPM explores the search space by
using a reverse depth search, it can still apply FAM pruning.
Consider Figure 1. When candidate {c, d, e} is generated, the only
discovered itemsets at that point are the ones which appear in
strips 1, 2 and 3 only. In this case we can apply FAM checking on
{c, d, e} because all its 2-subsets (In Figure 1, connected to {c, d,
e} with dashed lines, that is {c, d}, {c, e} and {d, e}) their
frequency were determined already. Is there a possibility that
DSPM might visit a candidate that it can't apply on it FAM
pruning? i.e., is it possible DSPM will discover {x1, x2, …, xk}
before determining the frequency of {x1, x2, …,xi-1, xi+1,… xk} for
some 1 ≤ i ≤ k? The answer is no and the following theorem claims
that this technique of exploration can be used not only for itemsets
but also for any problem τ as long as the search space is a prefix
based lattice.

Theorem 1. Given a pattern problem τ and the corresponding τ-
order and τ-space, then by exploring τ-space in reverse depth
search it enables checking FAM for each explored pattern, if all
previous mined patterns are kept. (Proof omitted).

Figure 1. Lattice (Itemset Search Space)

52

Intuitively, DSPM generates candidates in advance, the same
manner Apriori algorithms does. Unlike Apriori, when the reverse
depth search visits pk, only a part of the frequent patterns of size k
are known. And the only joining of pk can be done with k-patterns
which are τ-order bigger than pk. Nevertheless, there is no need to
know the frequent k-patterns which are τ-order smaller than pk in
an attempt to generate sons-candidates to pk. Because each son of
pk , named ck+1, can be accepted by joining only pairs of k-patterns
from the set subpatterns(ck+1) and because pk is the smallest one in
subpatterns(ck+1), then pattern pk is the last one to be explored by a
reverse depth search from all the patterns in the set
subpatterns(ck+1). That guarantees for DSPM the ability to extend
from each visited pattern pk all its sons by using join operation with
some of the k-patterns discovered so far.

2.2 Lexicographic Ordering in Graphs
This section discusses a canonical graph representation and a
corresponding search space, based on [5] work. It includes
mapping each graph to a DFS Code (a unique label), building a
lexicographic ordering among these codes and constructing a
complete search space, with a tree shape, of all the DFS Codes.
Since the defined search space is an instance of prefix based lattice,
we can use it with DSPM algorithm.

When performing a depth search in a subgraph, if the search visits
an edge which leads to a new node that wasn't explored by the
search previously, then the edge is a forward edge. Otherwise, it is
a backward edge with respect to the given depth search [7]. A
corresponding DFS Tree can be constructed from the set of
Forward edges. For example, Figure 2(g), without the dashed
lines, is a DFS Tree which was accepted from the depth search
2(a)-(g). The depth search defined by [5] explores all backward
edges before it finds the next forward edge. The depth search of
the vertices forms a linear order. The magnitude of subscripts is
used to illustrate this order according to their discovery time [7]. i
< j means vi is discovered before vj (Figure 2). We denote G
subscripted with a DFS tree T by GT. T is named also a DFS
subscripting of G. The right most path of GT is the path from v0 to
vn, and the right most vertex is vn.

Consider Figure 2. At each state of the given depth search, another
edge is discovered. Under each state we can see 5-tuple that
represents the discovered edge. The DFS Code that represents the
DFS Tree in Figure 2(g) (which represents the depth search in
Figure 2) is the sequence of 5-tuples that is accepted from the
depth search. Of course, one subgraph may have many DFS Codes
because we can apply different depth search over a single
subgraph. For that reason, [5] constructed a lexicographic order

Figure 2: Depth search and its DFS Code

Figure 3: DFS Code Search Space

53

among all valid DFS Codes so we can choose a canonical
representation for each subgraph, G, by picking the minimum DFS
Code that can be accepted among all DFS Codes.

Since we are aimed to construct a search space for graphs, we
need to consider also how we can extend a graph. Given graph G
and T0 (The canonical subscripting of G). Edge e can extend G
from the right-most vertex connecting to any other vertices on the
right-most path (backward extension), or e can extend G from
vertices on the right-most path and introduce a new vertex
(forward extension). We consider these two kinds of restricted
extension as legal extensions, denoted by G • e. This way of
extensions fits well for extending DFS Code representation since it
follows a continuing depth search.

In a DFS Code search space, each node represents a DFS code,
the relation between parent and child node complies with the
extension described above. The relation among siblings is
consistent with the DFS Lexicographic Order, so the pre-order
exploration of DFS Code search space follows the DFS
lexicographic order. Figure 3 shows a DFS Code search space.
Through depth search of the code tree, all the minimum DFS codes
of frequent subgraphs can be discovered in this way.

Theorem 2 (DFS Code Pruning). (i) Given a DFS Code Tree, by
exploring only nodes with Minimum DFS Codes, and pruning all
other nodes, it is guaranteed to keep the search space
completeness, i.e, Minimum DFS Code can only grow from
Minimum DFS Code. (ii) All descendents DFS Codes of
infrequent DFS Code in Tree are also infrequent. (see [5] for
proof).

Theorem 3. DFS Code Tree is Prefix based lattice.

3. ALGORITHM DETAILS
Section 3.1 illustrates the main procedure of the algorithm using a
recursive procedure, named ExploreLattice. The recursive
procedure is aimed to explore the DFS Code search space and
discover all the nodes which represent frequent subgraphs. Section
3.2 shows how candidates can be generated in each phase. Section
3.3 further develops the generation of candidates and integrates in
it a novel technique for fast Frequency Anti-Monotone Pruning
(FAM Pruning). Finally, section 3.4 explains about the support
counting method.

3.1 Main Procedure
As explained above, DSPM explores the search space in a Reverse
depth search. Since it keeps all previous mined frequent patterns
and since the defined search space is a prefix based lattice, it can
generates from each frequent pattern a group of candidates and
also apply FAM pruning by using previous mined patterns. The
high level structure of the algorithm is shown in Figure 4.

The procedure gets a transaction set of graphs and minimum
support, minSup. It returns all frequent subgraphs stored in the
container F. Line 1 removes infrequent vertices and edges labels

from the graph set D. Line 2 sorts all representative frequent edges
(with two vertices) and store result in E. Now, in a reverse
lexicographic order, for each edge e∈E (Line 4) the algorithm
constructs a one edge subgraph g1 from edge e (Line 6), and
makes a call at line 10 to the recursive procedure ExploreLattice
with g1. The recursive procedure explores in a reverse DFS search
all the induced subtree under subgraph g1 in the defined search

space, i.e., finding all frequent subgraphs whose min DFS Codes
appear as a descendant subgraphs of g1 in the DFS Code search
space.

Suppose we have a set of transactions D. Each transaction is a
labeled graph. For simplicity, there are different labels on edges but
all vertices has the same label v. Suppose also that the frequent
edges are A, B and C. Infrequent edges were removed. Therefore
E will holds after the sorting at line 3 the set {(v, A, v), (v, B, v),
(v, C, v)}.

In the first for loop (with reverse lexicographic order over the
edges in E) a subgraph with single edge is constructed from edge
(v, C, v) which results with DFS Code (0, 1, v, C, v). For
abbreviation we shall write the 1-subgraph as g1

C. The recursive
method ExploreLattice (Line 10) explores the induced subtree of
subgraph g1

C, that is all the frequent subgraphs which contain
edges with label C only. Figure 3 (strip 1) shows the explored tree
and its frequent subgraphs in the subtree space that are discovered.
In the second round, ExploreLattice explores induced subtree of
subgraph g1

B, which is to explore all frequent subgraphs that
contain edges with label B and maybe also label C (Figure 3 - strip
2). In the third and last round, ExploreLattice explores induced
subtree of g1

A, i.e., finds out all frequent subgraphs which contains
edges with label A, and possibly also labels B and C (Figure 3 -
strip 3).

We can improve the algorithm in the following way. In the first
round, instead of exploring the tree in Figure 3(strip 1) by mining
transaction set D, we can project from D to D* only occurrences
of edges with label C, and mine transaction set D* instead. This is
applicable because the graphs in Figure 3(strip 1) have edges with
label C only. In the second round the algorithm needs to explore
the tree in Figure 3(strip 2), which contains graphs that their edges
have labels B and C only. And so on. This enhancement is reflected
in Figure 4 at lines 5, 9 and also line 10 which calls procedure
ExploreLattice with D* instead of D. The outcome is faster
searches over smaller projected graphs than the ones in D. Similar
approach can be found in [5].

Line 7 builds the transaction ID list (TID list) for subgraph g1, that
is, we keep a list of transaction identifiers that support it. We will
do so for any frequent subgraph. Once we need to compute the
frequency of a son-candidate of subgraph gk, the algorithm can

DSPM(D, minSup)
1. Remove infrequent vertices and edges

considering minSup
2. E:= all frequent 1-edge graphs in D, sorted

in ascending DFS lexicographic order
3. D*:= {}, F:= {}
4. For each e ∈ E, in reverse lexicographic

order, do
5. D*:= D* ∪ { all occurrences of e in D}
6. g1:= {e}
7. TID(g1):= {t.id | t ∈ D, g1 is subgraph of

t}
8. F1:=F1 ∪ {g1} /* Fk:={frequent k-

subgraphs}. Fk
⊂F */

9. sons(g1):= {mine all frequent 1-edge
extensions for g1 from D*} /*
sons(g1) are attached to g1. */

10. ExploreLattice(D*,F,g1, minSup)
11. Return F

Figure 4: The Main procedure for mining all frequent

subgraphs from transaction set D.

54

limit the support counting only to the set of transactions in the TID
of gk. As soon as the recursive function ends a visit at gk, it can
delete TID list of gk.

Line 8 inserts each frequent 1-subgraph, g1, into Frequent-
subgraphs data structure F. Line 9 finds all frequent 1-edge
extensions to g1. Line 9 mines also 2-subgraph at this stage of the
algorithm in an attempt to satisfy the precondition of the recursive
function that comes at line 10 (this will become clear in the
following paragraph).

Figure 5 presents the recursive procedure ExploreLattice for
exploration of DFS Code search space in a reverse depth search.
The recursion receives parameter gk which is a DFS Code to visit,
so as to explore all induced subtree of gk. Following are pre and
post condition of ExploreLattice procedure. Precondition: (i)
Graph gk is frequent k-subgraph that has its TID list. (ii) None of
gk's descendants were explored yet, except to its sons. Post
condition: (i) induced subtree of gk in DFS Code Tree was
explored, i.e., all frequent-descendants subgraphs (in DFS Code
search space) of gk were discovered and stored in F.

Consider Figure 3 which depicts the subgraphs lattice. All white
nodes represents discovered frequent subgraphs up till now, gray
nodes represents candidates. The recursion visits node Q1. The
precondition of the recursion in order to visit Q1 is that Q1 has its
TID list and its frequent sons are known (white nodes). Line 5
grows from each son of gk a group of candidates (gray nodes) by
calling GenerateCandiates procedure. The support counting
method at line 8 counts support for all candidates that were
generated from all sons of gk and in the same time also builds TID
lists for all sons of gk. As a result from line 8, each son of gk will be
linked to two sets. One set will be its TID list and the other one is
its frequent sons. Lines 9-10, for each son of gk, in reverse
lexicographic order, a recursive call applied to discover the
induced subtree of each son. As can be seen, DSPM explores the
search space two steps a head instead of one in order to earn a
larger set of candidates that can be enumerated in a single support
counting. Since it generates a group of candidates by using FAM
pruning, it still needs to handle in each recursion frame only a
limited set of candidates.

3.2 Candidates Generation
Algorithm FSG generates candidates of size k+1 by joining two
frequent k-subgraphs. In order for two such frequent k-subgraphs
to be eligible for joining they must contain the same (k-1)-subgraph
as their core. This joining procedure is called fsg-join. For each of

the generated candidates, FSG algorithm checks if it is already in
the set of candidates. If not then it verifies that if all its subgraphs
of size k are frequent, i.e., FAM pruning. On the other hand,
DSPM isn't worried if a candidate was generated before, but only
whether the generated candidate can be a son of the frequent
subgraph from which it grew, more precisely, whether the DFS
Code which was received by extending min DFS Code of a
frequent subgraph (by adding one edge) is also a min DFS Code
(See Theorem 2(i) – DFS Code Pruning). Thus DSPM generates
and validates candidates in three steps as follows: (i) Candidate
Generation & FAM Pruning (ii) Validating min DFS-Code. (iii)
Support counting.

Consider again Figure 3. It is shown how DFS Code tree is
explored by DSPM. The algorithm visits node Q1 whose frequent
sons are known, R1 and R2. The algorithm needs to generate from
nodes R1 and R2 a set of candidates.

Let's concentrate on R2. The algorithm finds from all the 3-
subgraphs which produced till that moment (i.e., from all the 3-
subgraphs that are τ-order not smaller than R2) which ones share a
common (k-1)-subgraph with R2 and can be joined with it. Trying
to join a given k-subgraph with all previous mined frequent k-
subgraphs is simply unacceptable. As an alternative, we can access
directly to all previous mined k-subgraphs which share a common
core with the subgraph we want to generate its sons candidates by
keeping for each frequent (k-1)-subgraph, gk-1, a list of extensions
to all frequent k-subgraphs that can be accepted from gk -1 by
adding one edge.

The extensions list of gk -1 will be constructed from a set of pairs.
The first item in a pair will be a reference to a k-subgraph which
can be accepted from gk-1 by adding the edge that is kept as the
second item in a pair. Consider Figure 3. Regarding subgraph Q4,
we can conclude the following: extensions(Q4) = {<R2,(1, 3, v, A,
v)>, <R3,(2, 3, v, A, v)>, <R5,(1, 3, v, B, v)>, <R6,(1, 3, v, C,
v)>}. The set sons(pk) is subset of extensions(pk). For a given
subgraph, its set of sons is determined only once along the
algorithm execution that is when the recursion visits the subgraph,
but the set of extensions is always updated. Consider Figure 5, line
4. Each time we find another frequent k-subgraph, besides from
adding it into the frequent set F, we now also need to update the
extensions set of all its (k-1)-subgraphs.

What we can do now to facilitate generation of candidates from
R2, is searching only after its subpatterns(R2) . Then for each
Qj∈subpatterns(R2), for each extension <Ri, e> ∈ extensions(Qj),
we can join R2 and Ri with core Qj. This way we can directly
access all previous mined 3-subgraphs that share a common core
with R2 and as well we know in advance their common core.

ExploreLattice(D*, F, gk, minSup)
1. if (sons(gk) is empty set)
2. return;
3. for each gk+1 ∈ sons(gk), in reverse order,

do
4. Fk+1:= Fk+1 ∪{gk+1}
5. GeneratesCandidates(gk+1, F)
6. if no candidates were produced then
7. return;
8. SupportCounting(D*, gk, minSup)
9. For each gk+1 ∈ sons(gk), in reverse order,

do
10. ExploreLattice(D* , F , gk+1 , minSup)

Figure 5: The recursive procedure which explores the
search space.

GeneratesCandidates(gk)
1. T:= {}
2. for each <gk-1,e> ∈ subpatterns(gk)
3. T:= T ∪ dfs-join(gk, < gk-1, e>)
4. {check AMP for each candidate in T }
5. for each gk+1 ∈ T
6. if min(gk+1) ≠ gk+1
7. remove(gk+1) from T
8. sons-candidates(gk):= T

Figure 6: The Generation of candidates.

55

In Figure 3 all subpatterns(R2) are connected with dashed lines to
R2. Those are Q1, Q2 and Q4. Consider subgraph Q4. Subgraph
R2 will be joined with each of 3-subgraphs in extensions(Q4), i.e.,
R2 (self join), R3, R5 and R6, and the common core will be Q4.
Same technique will be applied also with cores Q1 and Q2 in order
to generate candidates from R2. This idea reflected at lines 2-3 in
Figure 6. Procedure dfs-join returns a set of candidates which is
received from joining gk with each of the extensions of core gk-1.

Our join operation can be more efficient relative to fsg-join. Each
constructed candidate is designated to be son of R2 and so several
constraints can be added to the join operation. This is explained in
the following subsection. Line 4 checks FAM for the generated
candidates. If a candidate doesn't obey to FAM it is discarded. In
lines 5-7, the algorithm checks, for each candidate, if it has a min
DFS Code. Those who don't have are removed from the set T (see
Theorem 3.2 – DFS Code Pruning). One novel idea of our
algorithm is to combine the dfs-join procedure with FAM pruning.
This is explained in section 3.3.

The dfs-join procedure. Consider Figure 7. Procedure dfs-join
gets one k-subgraph gk, one (k-1)-subgraph gk-1 and an edge
e∈V(gk), so gk \ e = gk-1. Subgraph gk-1 holds already all the set of
k-subgraphs to join with gk, the ones who kept as frequent
extensions to gk-1, while the common core for the join operation is
gk-1.

Each edge extension e' to gk-1 represents a frequent k-subgraph gk'
which is received by adding edge e' to gk-1. We can join gk and gk'
with common core gk-1 by mapping edge e' to gk through an
isomorphism from gk-1 to gk \ e. Since we are using min DFS Code
to represent subgraphs then it is equivalent to see subgraph gk as a
subscripted graph (see section 2.2 for details). For each edge
extension e' to gk-1, we confine all combinations of mapping e' (line
3) to subscripted graph gk such that e' grows from right most path
of gk as a legal forward edge or backward edge. This restriction
causes dropping of many candidates and helps finding more
bounded group over the desired frequent subgraphs.

dfs-join finds at line 2 all isomorphisms from gk-1 to (gk \ e) and for
each given isomorphism σ, it maps edge e' from gk-1 to gk and
stores the joining result at line 5 only if σ(e') represents a valid
forward edge or a backward edge growing in gk.

As for line 2 in Figure 7, we don't really need to generate all this
isomorphisms. The parent procedure GenerateCandiates(gk , F)
already did this job when it found all (k-1)-subgraphs of gk. In fact,
it is not the only one to do so. Procedure ExploreLattice, before
calling to GenerateCandiates, inserted graph gk in data structure F,
and as mentioned, this means that it needs to find all (k-1)-
subgraphs of gk and updates their extensions list and this is the first
(and last) time to generate all isomorphisms from gk to all its (k-1)-

subgraphs. These isomorphisms are passed as a parameter to
GenerateCandiates and to dfs-join procedures.

3.3 Freq. Anti-Monotone Pruning (FAM)
One way to do FAM is to find for each generated candidate, of
size k+1, all its k-subgraphs and checking if each one of them was
found to be frequent, like FSG does. This technique demands a
massive computation, i.e., applying k isomorphisms in the worst
case for each (k+1)-candidate not to mention the searching cost.
We can do much better than that with some compromising over
FAM pruning. Instead of applying FAM we would apply only
Partial-FAM which on the average is expected (see experiments
section – table 1) to give results almost as good as FAM.

Method GenerateCandidates can be changed a little such that the
FAM pruning becomes a trivial operation (Figure 6, line 4) with no
computation effort. Several of the candidates are generated more
than once. We will prove that the number of tries in which the
same candidate is generated has a strong relation to FAM pruning.

Consider an edge extension e' to subgraph gk so that (k+1)-
subgraph gk • e' is a nominee to be a frequent child of gk. Suppose
it is. Then each k-subgraph of gk • e' must be frequent also. Now
let us look at some gk-1

∈subpatterns(gk) which is received by
dropping some edge e from gk. We can add to gk-1 edge e' at the
same place we added to gk (with only one exception), under
isomorphism consideration, and get a frequent k-subgraph gk-1 • e'.
This is so because gk-1 • e' is subgraph of gk • e'. Thus edge e' must
appear in the extensions set of gk-1 and therefore we would expect
that the procedure call dfs-join(<gk, e >, gk-1) would return
candidate gk • e' among several others. Since we didn't limit the
discussion to specific gk-1

∈ subpatterns(gk) thus each calling to dfs-
join with each subgraph gk-1

∈ subpatterns(gk) would return
candidate gk • e' among several others. We can conclude that a
candidate cannot be frequent if exist gk-1

∈ subpatterns(gk) such
that the result of dfs-join(<gk, e >, gk-1) doesn't include the
candidate. This simple condition is applied in Figure 6, line 4 by
dropping candidates which were generated less than
|subpatterns(gk)| times.

Yet, there is a specific type of edge extension that might be missed.
If the edge extension, e', relative to gk, is a forward edge which
grows from a node v∈V(gk) such that degree(v)=1 then at most
one of the (k-1)-subgraphs of gk doesn't have node v, under
isomorphism consideration, and therefore cannot be extended with
edge e'. Therefore the algorithm need to identify this special
extension and exclude it only if it was generated less than
|subpatterns(gk)|-1 times.

3.4 Support Counting
Once a set of candidates have been generated, DSPM algorithm
computes their frequency. The simplest way to achieve this
frequency is, for each candidate subgraph, to scan each one of the
transaction graphs and determine if there is a subgraph
isomorphism or not. Even so, having to compute this isomorphism
is particularly expensive and this approach is not feasible for large
datasets. DSPM algorithm uses another technique in order to make
this heavy task to be more efficient.

Following are pre and post condition for SupportCouting
procedure. Precondition: (i) Graph gk is frequent k-subgraph that
has its TID list. (ii) None of gk's descendants where explored yet,
except to his sons. (iii) Each son of gk, signed gk+1, has a set of

dfs-join(gk, < gk-1, e>)
1. C:= {}
2. M:= generate all isomorphisms from gk-1 to

(gk \ e)
3. for each extension <gk',e'> ∈ extensions(gk-

1) do
4. for each isomorphism σ ∈ M do
5. C:= C ∪ {generate candidates of size

k+1 from the set gk, e, e', gk-1 and σ. }
6. return C

Figure 7. The joining procedure.

56

candidates that might be its frequent sons. Postcondition: (i) All
frequent sons of gk have their own TID lists. (ii) All frequent
grandchildren of gk are known.

The method applies subgraph isomorphism with graph gk over all
the projected transactions that appear in TID of gk. For each
occurrence of gk in some transaction the algorithm tries to extend
the occurrence to each of gk 's children. For a successful extension
to a child gk+1, the algorithm adds to TID list of gk+1 the current
transaction ID and tries to further extend to each one of the
candidate-sons of gk+1. If the algorithm succeeds to further extend
it to a candidate that grows from gk+1 then it updates the support
counting of this candidate.

After we have finished counting support, the method checks which
candidates have support above minSup and update those frequent
ones to be frequent-sons of their parents. If none of gk+1 extensions
is frequent the sons(gk+1) becomes empty which is the exit
condition of the recursive procedure ExploreLattice.

4. PERFORMANCE STUDY
The experiments were carried out on Intel 2.0GHz machine with
256MB main memory, running Windows XP operating system,
and compiled by Visual C++ 6.0. Besides implementing DSPM we
have also implemented gSpan algorithm.

Both algorithms use underneath two nontrivial components of
subgraph isomorphism and canonical labeling (isomorphism
problem) for graphs. It is crucial to use the same subgraph-
isomorphism, canonical-labeling and graph-representation

components for both algorithms, in order to have an accurate
comparison. As we stated, we choose to use TID list for DSPM
just like gSpan and not list of embeddings like FFSM [6] or some
other kind of list so as to prove that DSPM’s efficiency is not an
outcome of keeping more informative lists than TID lists but a
result of efficient candidate generation and effective exploring and
pruning of search space.

Synthetic Graph-Sets. The first part of the experiments included
testing synthetic data sets. The datasets generator, provided by
Kuramochi [2,12], is controlled by a set of parameters and outputs
a set of synthetic graphs. Figure 8 shows the overall running time
of DSPM and gSpan with minSup=0.01 over different graph-sets
with varied number of labels. All graph-sets are with D = 40000
transactions; The average size of transactions, in terms of the
number of edges is T=20; The average size of potentially frequent
kernels is I=15; and the number of potentially frequent kernels is
L= 1000.

Both algorithms have support method that scans the dataset each
iteration to determine the support of a set of candidates (which
share a common kernel). Let’s assume that an access to dataset to
count support for a set of candidates considered to be one db-
access. Each db-access results with many subgraphs isomorphism
for measuring support value (which might also cost with an access
to physical memory for big dataset). Then the number of times
gSpan access database is equal to the number of discovered
frequent patterns exactly. Each time it finds a frequent pattern,
gSpan tries to extend it and therefore another db-access to count.
DSPM on the other hand explores recursively the search space two

Figure 8. Runtime with respect to Number of
different labels in graph-set.

D40000L1000i15T20

0

100

200

300

400

5 7 10 20 40

Number of Labels

R
u

n
ti

m
e

[s
ec

]

DSPM

gSpan

Figure 9. Number of db-access.

D40000L1000i15T20

0

50000

100000

150000

5 7 10 20 40

Number of labels

d
b

-a
cc

es
s

DSPM

gSpan

(1) running
time <sec>

(2) # of
candidates minSup

DSPM gSpan DSPM FSG

Frequent
Patterns

0.0911 0.85 1.81 1276 1168 1049

0.0588 2.0 4.6 2705 2694 2326

0.0294 23.5 49.7 24119 24064 22758

0.0205 128.4 240.9 139790 139666 136949

Table 1. Using Chemical Compound dataset. (1) Running
time comparsion of DSPM and gSpan. (2) Number of
candidates comparsion of DSPM and FSG.

57

steps a head and that is why the number of db-access it needs is no
more than the number of frequent-patterns-nodes in tree-space
without the leaves. In fact it is even less because it can prune a
branch in the search space without any db-access thanks to FAM
pruning it applies in advance. Figure 9 shows the number of db-
accesses we count for each one of the tests from Figure 8.

Chemical Compound Datasets. Table 1(1) shows the running
time of DSPM and gSpan over chemical compound dataset for
predictive Toxicology Evaluation1 which was also tested by [3,6].
Table 1(2) shows the number of candidates that was generated by
DSPM compared to the number of candidates that was reported by
FSG [6] for the same dataset with the same support-thresholds.
The main inefficiently of FSG results from the special care it gives
to each candidate in the generation phase and from executing
support-counting per candidate. FSG uses in addition intersection
of tid-lists to prune even further the number of candidates, but as
comes out from table 1(2), the pruning technique of DSPM is
almost as strong as the one of FSG whereas DSPM uses trivial
operation for that purpose, with least cost.

5. CONCLUSIONS
We formulated our frequent graph mining framework in terms of
reverse depth search and a prefix based lattice which is also
applicable to other known types of patterns. We suggested the
DSPM algorithm among many others possible algorithms that can
be developed for making full use of prefix based lattice properties.
DSPM algorithm uses several new techniques for graph mining
which can be adapted rather easily by the predecessor algorithms
such as effective candidate generation, fast anti-monotone pruning
and mass support counting for a large set of candidates in a single
pass. As is shown in our experiments DSPM adopted successfully
ideas from two inherently different approaches for pattern mining
(DFS and BFS) with no compromising over the running time, and
with better results over the best known algorithm gSpan.

Acknowledgement. We thank Mr. Michihiro Kuramochi and Dr.
George Karypis from University of Minnesota for providing the
synthetic data generator.

6. REFERENCES
[1] A. Inokuchi, T. Washio, and H. M otoda. An Apriori-based

algorithm for mining frequent substructures from graph data.
In PKDD'00.

[2] Michihiro Kuramochi and George Karypis. An efficient
algorithm for discovering frequent subgraphs. Technical
report, 2002. http://www.cs.umn.edu/˜kuram/papers/fsg-
long.pdf.

[3] N. Vanetik, E. Gudes, and S. E. Shimony. Computing
frequent graph patterns from semistructured data. In
ICDM'02.

[4] C. Borgelt and M. R. Berthold. Mining molecular fragments:
Finging relevant substructures of molecules. In ICDM'02.

[5] X. Yan, J. Han. gSpan: Graph-based substructure pattern
mining. UIUC-CS Tech. Report: R-2002-2296 (a 4-page
short version in ICDM'02).

1 http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/PTE

[6] Jun Huan, Wei Wang, Jan Prins. Efficient Mining of Frequent
Subgraphs in the Presence of Isomorphism. In. ICDM’03.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001, Second
Edition.

[8] M. J. Zaki. Efficiently mining frequent trees in a forest. In
SIGKDD’02.

[9] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases. In
VLDB’97.

[10] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB'94, pages 487-499, Sept. 1994.

[11] N. Vanetik, E. Gudes. Mining Frequent Labeled and Partially
Labeled Graph Patterns. In ICDE’04.

[12] M. Kuramochi and G. Karypis, Finding Frequent Patterns in a
Large Sparse Graph, SIAM International Conference on Data
Mining, 2004.

[13] Jiawei Han and Micheline Kamber, “Data mining Concepts
and Techniques”, Morgan Kaufman Publications, 2001

[14] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal
frequent itemset algorithm for transactional databases. In
ICDE, pages 443--452, 2001.

58

