
Data Min Knowl Disc (2006) 13:243–260
DOI 10.1007/s10618-006-0044-8

Support measures for graph data∗

N. Vanetik · S. E. Shimony · E. Gudes

Received: 18 July 2005 / Accepted: 07 March 2006 / Published online: 26 May 2006
C© Springer Science + Business Media, LLC 2006

Abstract The concept of support is central to data mining. While the definition of support
in transaction databases is intuitive and simple, that is not the case in graph datasets and
databases. Most mining algorithms require the support of a pattern to be no greater than that
of its subpatterns, a property called anti-monotonicity, or admissibility. This paper examines
the requirements for admissibility of a support measure. Support measures for mining graphs
are usually based on the notion of an instance graph—a graph representing all the instances of
the pattern in a database and their intersection properties. Necessary and sufficient conditions
for support measure admissibility, based on operations on instance graphs, are developed and
proved. The sufficient conditions are used to prove admissibility of one support measure—
the size of the independent set in the instance graph. Conversely, the necessary conditions are
used to quickly show that some other support measures, such as weighted count of instances,
are not admissible.

Keywords Data mining . Graph mining . Support measures

1. Introduction

The primary goal of datamining is to discover interesting patterns in data. Since patterns
that appear frequently may be interesting or important, a primitive sub-task in achieving
this goal is answering the question: how frequently does pattern P appear in a dataset D?

∗Partially supported by the KITE consortium under contract to the Israeli Ministry of Trade and Industry, and
by the Paul Ivanier Center for Robotics and Production Management.

N. Vanetik (�) · S. E. Shimony · E. Gudes
Department of Computer Science, Ben-Gurion University of the Negev,
84105 Beer-Sheva, Israel
e-mail: orlovn@cs.bgu.ac.il

S. E. Shimony
e-mail: shimony@cs.bgu.ac.il

E. Gudes
e-mail: ehud@cs.bgu.ac.il

Springer

244 Data Min Knowl Disc (2006) 13:243–260

(We use the term dataset throughout the paper, to cover all sorts of data, including data in
relational databases, semi-structured databases, web data, etc.) A similar question is: does
the pattern P appear frequently in dataset D? The answer to these questions is then used to
decide whether a pattern is interesting, either individually or in relation to other patterns.
Usually the frequency of a pattern P is called the support of P (in D). An early appearance
of this was in the classical paper by Agrawal et al. on mining association rules Agrawal and
Srikant (1994).

Thus, a count of the number of pattern appearances in the dataset is a method commonly
used to define the support measure. In the simplest case, a pattern is a set of items, and
the dataset D is a set of transactions. The standard measure of support for itemsets in the
literature is as follows. Let D be a set of transactions, and I =< i1, . . . , ik > be an item set.
The support S of the itemset in the dataset is defined as S(I) = |{t |t∈D,<i1,...,ik>∈t}|

|D| .
Usually in datamining tasks, a number 0 ≤ σ ≤ 1, called the minimum support threshold

is provided to the system. An itemset I that has S(I) ≥ σ is called frequent.
Defined in this manner, the support of an item set I is always not greater than the

support of any of the subsets of I. This fundamental property of the support measure is
important, because it is intuitively appealing, but also because of the following obvious
corollary: an itemset I can be frequent, only if all of the subsets of I are frequent. The latter
property (alternately called the Apriori principle, anti-monotonicity, or downward closure, in
varied related work (Ng et al., 1998) has been of major importance in numerous datamining
algorithms, used to prune candidate patterns and greatly improve performance. This property
is the de-facto standard assumption for algorithms, which rely heavily on anti-monotonicity.
These algorithms range from the a-priori algorithm for structured data (Agrawal and Srikant,
1994) to algorithms for mining paths (Chen et al., 1998), trees (Wang and Liu, 1998) and
graphs (Kuramochi and Karypis, 2001).

Since data sets in many applications are not limited to transaction databases, and patterns
are not limited to itemsets, a more general notion of support is required. A simple general-
ization of the scheme used in transaction databases is the following: The support of a pattern
P in a dataset D is a measure of frequency of the instances of P in D. A support measure is
a function S : D × P → R+ ∪ {0} that for each pattern P in dataset D provides its support, a
non-negative real number. A pattern P is called frequent if its support measure S(P) is greater
than or equal to a support threshold TS (for conciseness, we drop reference to the dataset
D when unambiguously understood). Definitions of support in many types of datasets also
usually observe the above fundamental property of support measures. The importance of the
fundamental property of support measures (a.k.a. anti-monotonicity or downward closure)
for itemsets indicates its general applicability, leading to the following definition:

Definition 1. (admissible support measure). A support measure S is admissible if for every
dataset D and pattern P we haveS(P) ≥ 0, and for every pattern P′ such that P′ ⊆ P (meaning
that P′ is a subpattern of P) we have S(P′) ≥ S(P).

Whereas in the past, data mining was mainly applied to structured data and flat files, there
is growing interest in mining and discovering frequent patterns in semi-structured data such
as web data (Huffman and Baudin, 1997; Wang and Liu, 1998; Chamberlin, 2003), chemical
compounds data (Wang et al., 2002) or biological data (Pennec and Ayache 1998). Although
for itemsets and transaction databases, the obvious definition of support is admissible, it is
not obvious that this is the case for other types of patterns.

Specifically, realizing that in data on the world-wide-web and in object databases, topology
is meaningful, a datamining task that has been of increasing interest in the community is to

Springer

Data Min Knowl Disc (2006) 13:243–260 245

find frequent patterns (subgraphs) in a dataset (a large graph). In this case, there are several
different intuitive ways to define support, but not all of them are admissible, as is shown in
Section 2. In this paper, our goal is analysis of formal properties of the support measure,
rather than graph mining algorithms. After formally defining the notion of an instance of
a pattern in the dataset, we find necessary andsufficient conditions for admissibility (in the
sense of the above definition) of a support measure. Our results are applicable to both directed
and undirected graphs, and to both labeled and unlabeled graphs.

Finding an admissible support measure for graphs is not so easy. The naive support
measure which counts the number of instances of a pattern in a graph is shown in Section
2 to be non-admissible. An intuitive support measure—size of maximum independent set
of the instance graph (MIS)—is proposed and shown to be admissible. (see Section 2 for
definition of instance graphs and MIS). The use of MIS as a support measure was first
suggested in Vanetik et al. (2002), and was shown to be useful as a major component of
an apriori-based algorithm for graph mining. It was later used also by Vanetik and Gudes
(2004) and Kuramochi and Karypis (2001). Other support measures defined in the literature
are examined in light of our results, as well as the generalization of our result beyond the
graph mining domain. The major contribution of the present paper over (Vanetik et al.,
2002) is the formal definition and the proofs for sufficient and necessary conditions for any
admissible support measure.

The rest of the paper is organized as follows. Section 2 defines the notions of a graph pattern
instances and instance graphs, examines the intuitive definitions of support for graphs, and
defines the useful admissible MIS support measure. Section 3 defines operations on instance
graphs, and uses them to show our main result, the necessary and sufficient conditions for
admissibility. Section 4 shows that that the MIS measure is admissible, examines other
support schemes, and discusses generalizations of our results. Finally, the related work is
examined and compared to ours.

2. Instance graphs and basic support measures

We begin with assumptions about patterns and datasets, used in most of this paper. Hence-
forth, a pattern is assumed to be a labeled graph, either directed or undirected. A dataset is
another (usually much larger) graph of the same type as the pattern. Although we assume
in our derivation that labels, if they exist, are attached to nodes, all of our results apply for
edge-labeled graphs as well. Labels are from some finite alphabet �. We also allow (and use
in our proofs) unlabeled graphs, as these are equivalent to a special case where |� | =1.

2.1. Instances and instance graphs

Let D be a (not necessarily connected) labeled dataset graph, and P be the pattern for which
we are searching—a connected labeled graph.

Definition 2. Subgraph G of D is an instance of P in D just when there exists a label-
preserving isomorphism between P and G.

Note that according to definition 2, instances of P in D are allowed to overlap, but two
instances that have exactly the same set of edges and same set of vertices are considered to
be the same instance. Let M be the set of all instances of P in D (i.e. subgraphs of D that
are label isomorphic to G). Two instances G1, G2 ∈ M are said to be intersecting, denoted

Springer

246 Data Min Knowl Disc (2006) 13:243–260

B Database graph - appears once

A - appears 3 times, but not independently Instance graph of A

Fig. 1 Graph pattern support

by G1 ∧ G2, if they have at least one edge in common. If the instances do not have an edge
intersection in D, this is denoted by G1‖DG2.

Definition 3. (Instance Graph). For a pattern P its instance graph in D, denoted IP(D), is
an undirected graph (VP, EP), with exactly one node standing for each instance of P in D.
Denote by µ the mapping from nodes in VP to instances (subgraphs of D). The edges in
the instance graph are EP = {{u, v} | µ(u) ∧ µ(v)}. That is, an edge in the instance graph
exists just when the respective instances intersect. When the dataset D is unambiguously
understood, we sometimes omit D for brevity and useIP to denote IP(D). See Fig. 1 for an
example, where the three instances of graph A mutually intersect in the database—hence the
instance graph for A consists of a clique of size 3. Obviously, the instance graph for pattern
B consists of a single node.

Definition 4. (Subpattern). Let D be a labeled graph, P a graph pattern, and p a subgraph of
P, denoted by p ⊂ P. We call p a subpattern of P. Likewise, we refer to P as a superpattern
of p.

In the rest of the paper, P and p denote respectively a pattern and its subpattern in D.
By definition, there exists a mapping µ from nodes of IP to subgraphs of D, and from
nodes of Ip to subgraphs of D. Let u ∈ IP and v ∈ Ip . Whenever D and µ are implicitly
understood, we denote the subgraph relation µ(v) ⊂ µ(u) between instances in D, by v ⊂ u.
For convenience, Table 1 summarizes our notation, as defined above and elsewhere in the
paper.

2.2. Intuitive support measures for graphs

When considering graph patterns, we interpret set inclusion (as used in Definition 1) as the
subgraph relationship. Therefore a support measure for graph patterns is admissible if the
support for a graph patten P is never strictly greater than the support of any of its subgraphs.

Springer

Data Min Knowl Disc (2006) 13:243–260 247

Table 1 Notation used in this paper

D Dataset
P, p Pattern and subpattern, respectively
G1 ∧ G2 Graphs G1, G2 have a common edge
G1||G2 Graphs G1, G2 have no common edge
IP, Ip Instance graphs of P and p, respectively
µ Mapping from nodes of an instance to subgraphs of D
f (IP) Induced support function
SubInstances(u) Subgraphs of µ(u) isomorphic to p
SuperInstances(u) Supergraphs of µ(u) isomorphic to P
IpP IP modifed by series of clique contractions, additions, and edge removals
λ Partial mapping from nodes of IpP to the nodes of Ip .
π Induced mapping from nodes of IpP into the instances of p in D
δ Maximum degree of IP nodes
MIS Maximum independent set measure

The most intuitive support measure is the number of instances of the pattern in a dataset.
This measure, however, is not admissible. Figure 1 shows a dataset that contains 3 instances
of pattern A and only one instance of pattern B, while B ⊆ A.

Another intuitive support measure that turns out not to be admissible is to count the number
of possible isomorphisms between the pattern P and the subgraphs of D. This is equivalent
to counting the instances, and multiplying the result by the number of automorphisms of
P. Again, the database in Fig. 1 is a counterexample, since |Aut(B)| = 6 and |Aut(A) = 4|
(where Aut(P) is the set of automorphisms of graph P). Thus, the support of A is 12, which
is greater than 6, the support of B.

Clearly, simple admissible support measures exist—for example, any positive constant
function is admissible. However, such a trivial support measure is less than useful for graph
mining.

A more useful support measure is the MIS measure, defined as the size of the largest
independent set of nodes in the instance graph.

(Recall that a set of nodes V is called independent if no pair of nodes inV is connected
by an edge). For example, in Fig. 1 the size of the independent set for both patterns is 1,
maintaining admissiblity for this example. However, proving that a measure is admissible
in general is much more difficult. Using the conditions for admissibility defined and proved
next, we will show in Section 4 how one can easily prove whether a support measure
(including MIS) is admissible or not.

3. Conditions for admissibility

Our conditions for admissibility are based on the instance graphs. Essentially, our main
result (formally stated later on) is paraphrased as follows: an (instance-graph based) support
measure is admissible if and only if it is non-decreasing under certain operations on the
instance graph (clique contraction, node addition, and edge removal, defined below).

The motivation for these operations is that it is often easier to show that a support measure
fulfills the conditions of the theorem, than to show admissibility of a measure by definition
of admissibility. We begin by defining the operations used in our conditions for admissibility.

Springer

248 Data Min Knowl Disc (2006) 13:243–260

(b) node addition(a) clique contraction

(c) edge removal

Fig. 2 Examples of operations on instance graphs

3.1. Operations on instance graphs

We define the following three operations on graphs: clique contraction (clique is defined as
fully connected subgraph), node addition, and edge removal. Refer to Fig. 2 for examples
of these operations. All the operations are assumed to be on an undirected, unlabeled, graph
G = (V, E), as we only use them on instance graphs.

Definition 5. (Clique Contraction). Clique contraction operates on a subgraph of G forming
a clique K = (VK , EK) in G, resulting in a graph G ′ = (V ′, E ′) as follows. Let k be an
arbitrary node in VK representing the contracted clique. The graph G′ resulting from clique
contraction has the nodes V ′ = V\VK ∪ {k} , and the edges:

E ′ = (E ∩ {{u, v} | u, v ∈ V ′}) ∪ {{v, k} | v ∈ V ′ − {k} ∧ ∀u ∈ VK {v, u} ∈ E} (1)

Intuitively, clique K is contracted into a single node k, which remains adjacent only to
those vertices of V that were adjacent to every node of K in G. This definition applies to any
clique, not necessarily a maximum clique. For the sake of uniformity, a subgraph consisting
of a single node is considered to be a clique, and in this case clique contraction does not
change the graph.

Definition 6. (Node Addition). Node addition operates on G and a new node u that is not in G,
resulting in a new graph G ′ = (V ′, E ′) whose node and edge sets are V ′ = V ∪ {u} , u /∈ V
and E ′ = E ∪ {{u, v} | v ∈ V }.

Intuitively, node addition adds a new node to the graph, that has an edge with all other
nodes in the graph.

Definition 7. (Edge Removal). Edge removal removes an edge e from G. The resulting graph
is G ′ = (V, E\{e}).

Springer

Data Min Knowl Disc (2006) 13:243–260 249

3.2. Sufficient conditions for admissibility

We formulate a sufficient condition for support measure admissibility in terms of operations
on the instance graph. We restrict the discussion to support functions defined on the instance
graph topology and combinatorics, as in the following remark (that is, the function can
take into account anything that is based on node counts, edges between nodes, etc. but is
not allowed to treat two nodes differently based on any node labels or identity, such as the
identity of the instances the nodes represent in the dataset).

Remark. For every dataset D and pattern P, a support function f (P, D) evaluates to a
number in R+. Whenever, for every pair (P, D), the instance graph IP of P in D is defined
unambiguously (as we have done for graph patterns and datasets), we define the induced
support function f (IP) = f (P, D). We henceforth refer to the induced function, which we
denote by f (IP), instead of referring to f (P, D).

Theorem 1. A positive valued function f (IP) is an admissible support measure over graph
patterns if it is non-decreasing under all of the following operations on IP:

(A1) Clique contraction: k = Contract(K), where K is a clique, and k is the node representing
the clique after the contraction operator.

(A2) Node addition: v = Add(), where v is the new node added by the operator.
(A3) Edge removal: Remove(e), where e is an edge to be removed.

Proof (outline): We prove that Ip can be obtained from IP by applying only the operations
A1, A2, A3. Thus, any function on instance graphs that does not decrease under these
operations is admissible, since its value on Ip is greater than or equal to its value on IP.
The proof is constructive: given any arbitrary instance graphs of a pattern and subpattern (as
well as an arbitrary instance mapping function µ) we construct the sequence of operations
leading from IP to Ip, such that the mappingµ is not violated. ��

Proof (details): Let IP = (VP, EP) and Ip = (Vp, E p), and let µ be the mapping from nodes
of the instance graphs to the actual instances (subgraphs of the dataset D). We define the
mapping SubInstances : VP → 2Vp as follows:

SubInstances(u) = {v ∈ Vp | µ(v) ⊂ µ(u)}
�

In other words, SubInstances(u) is a set of all the subinstances of the instance u (actually,
the above refers to the nodes in the respective instance graphs representing these instances).
Similarly, let us define SuperInstance : Vp → 2VP as follows:

SuperInstances(v) = {u ∈ VP | µ(v) ⊂ µ(u)}

Intuitively, SuperInstances(v) is the set of all superinstances that contain a subinstance v.
In general, the sequence of operations will be to:

1. start from IP,
2. perform clique contractions and node additions in order to get the nodes Vp of graph Ip,

and

Springer

250 Data Min Knowl Disc (2006) 13:243–260

3. perform edge deletions as necessary.

In the construction process, we will use the graph IpP = (VpP, VpP), initially equal to IP,
and modify it, as well as construct a partial mapping λ from IpP to Ip , such that at the end of
the process λ will be an isomorphism. We also construct a new instance mapping function π

and show that it is consistent with µ under the constructed isomorphism. (For conciseness,
we do not index these mappings by the step number, because the mapping of a node never
changes after it is first defined. For every instance graph node v we useπ(v) = ⊥, and
λ(v) = ⊥ to indicate that the respective mapping is currently undefined for v). Intuitively, π

is a mapping from nodes of IpP to the instances of the subpattern p in the database. Its “job”
is to show that at the end of the process IpP is indeed isomorphic to Ip .

As stated above, the sequence of operations begins with a sequence of clique contractions.
During clique contraction steps we will also use a list of “marked” nodes (from IP) at each
step, denoted marked, and a list of “covered” nodes from Ip , denoted covered. Construction
proceeds as follows:

1. Let IpP = IP, marked = φ and covered = φ, and for every node v ∈ VP set π(v) =
λ(v) = ⊥.

2. Let u be a node in Ip \covered, such that V = SuperInstances(u)\marked is non-empty.
If there is no such node u, go to step 4.

3. (Note that the nodes V form a clique K in IpP, since each stands for a super-instance of
the same u.)
Let k = Contract(K) in IpP (changing IpP as a side-effect), marked = marked ∪ V ,
covered = covered ∪ {u}, λ(k) = u, and π (k) = µ(u), and go to step 2.

4. For all u in Ip\covered, do:

(a). Add a unique new node v to IpP using the operator v = Add().
(b). Let λ(v) = u, and π (v) = µ(u).

5. For every edge e = {v, v′} ∈ IpP such that π (v)‖Dπ (v′), do Remove(e) from IpP.

Note that the algorithm has considerable non-determinism in step 2, but any arbitrary
selection of u at this step is sufficient. Clearly, IpP is constructed from IP using only the
required operations.

Figure 3 illustrates the construction algorithm. In Fig. 3, (a) shows a (labeled, undirected
graph) dataset, with a pattern P shown in (b) and a subpattern p shown in (c). The pattern
P has 4 instances, three of which share at least one edge in common (hence the instance
graph IP shown in (d) contains a 3-clique), and one edge-disjoint instance. The subpattern
p also has 4 instances, with an instance graph shown in (e). One instance mapping function
consistent with the graphs is as follows (see 3(a) and (d)): µ(v1) is the pattern including the
node B at the bottom. µ(v3) and µ(v4) are the patterns consisting of the topmost triangle (T4)
and of the B nodes at the top, respectively. µ(v2) is T3, the second triangle from the top, plus
the top-left B node. A consistent mapping for the subpattern would be (see 3(a) and (e)):
µ(u1) the bottom triangle (T1), and µ(u2) is T2, the second triangle from bottom, µ(u3) is
T3, the third triangle from the bottom, and µ(u4) the top triangle, T4. Note how each instance
has an edge in common with other instances just as required by Ip.

Figure 3(f), (g) and (h) shows the instance graph transformations, as follows.
In step 2 of the algorithm, suppose that u = u4 is chosen. Its superinstances are those

represented by V = {v3, v4}. This clique is contracted in step 3, (with the node representing
the clique beingk = v3) resulting in the graph shown in Fig. 3(f). At this step, u4 is covered
and {v3, v4} are marked. At the next iteration, we might choose u3 (which is then added

Springer

Data Min Knowl Disc (2006) 13:243–260 251

v3

v3

v1v2

v2 v1

(b)

B AA

A
P

AA

A

(c)

v3 v3

v1 v1v2v2

(g) (h)

I
p

I
P

I
P

= I
p

’’’

(e)

u u

u

13

u4 2

vv

BB

A A

(a)

B

A

AA

A

(f)

(d)
v4

I
P

I
P
1

G

T1

T2

T3

T4

p

Fig. 3 Illustration of construction algorithm

to covered), with a superinstance v2, which is marked. Contracting a singleton clique does
not change the graph. At the final iteration, u1 is selected (and added to covered), and its
superinstance v1 is marked and contracted (again, no change in the graph). There is no further
iteration because u2, the only uncovered node, has no superinstance, so we go to step 4.

In step 4, the only uncovered node is u2, and the v = Add() operation is done, resulting in
the graph depicted in Fig. 3(g). Finally, in step 5, the edge at the bottom is removed, resulting
in the instance graph of Fig. 3(h). Following the mappings generated in the construction
will show consistency of the mappings, as well as the topology, to the instance graph Ip of
Fig. 3(e).

We need to show that the construction algorithm is correct in the general case.
The following loop invariant can be shown (see Vanetik et al., 2005 for details):
Loop invariant (steps 2, 3): an edge {v,w}, consisting of nodes from IP, is in IpP at the

end of step 3 unless one of the following conditions occurs:

1. Either v or w or both are are not in IpP.
2. µ(w) and µ(v) have no edge intersections in D.
3. π(v) �= ⊥ or π(w) �= ⊥, but not both (w.l.o.g. let π (w) �= ⊥) and π(w)‖Dµ(v). (i.e. node

v outside the clique was not mapped yet, and the superinstance represented by v does not
intersect the subinstance represented by w.)

Springer

252 Data Min Knowl Disc (2006) 13:243–260

4. Both π(v) �= ⊥ and π (w) �= ⊥, and π (w)‖Dπ (v). (I.e. the two nodes were mapped to
subinstances, but the subinstances do not intersect.)

The purpose of this invariant is basically to show that no required edges are lost during
any of the iterations. There may be redundant edges, but these are immaterial, since edges
can always be deleted later on by Remove() operations.

We now show that IpP has the desired properties, i.e. that IpP is an instance graph of
pattern p in D, under the mapping π , and that it is isomorphic to Ip with the mapping λ being
the required isomorphism. Let us first consider the nodes in v ∈ VpP:

Claim 1. For every instance g of p in D, there is a unique node v in IpP such that π(v) = g,
and a unique node u in Ip such that µ(u) = g and λ(v) = u. Additionally, IpP contains no
redundant nodes, i.e. for every v ∈ VpP there exists an instance g of p in D suchthat π(v) = g.

Proof: By construction of IpP (see Vanetik et al., 2005 for details). The following property
of edges of IpP follows immediately due to step 5: �

Claim 2. An edge {v, v′} is in IpP only if the instances π (v), π(v′) intersect.

Finally, we prove (see Vanetik et al., 2005) the following property of edge mapping:

Claim 3. For every distinct pair of instances g, g′ of p, if g ∧ g′ then {π−1(g), π−1(g′)} is
an edge in IpP.

Claims 1, 2, 3 show that IpP is isomorphic to Ip, as required. Let f be function that satisfies
the condition of the theorem. Since for every p ⊂ P the instance graph Ip can be obtained
from IP by using the three operations A1, A2, A3, and thus f (Ip) ≥ f (IP), f is an admissible
support measure. �

3.3. Necessary conditions for admissibility

In this section, we show that the above sufficient conditions for admissibility are also
necessary, in the following sense.

Theorem 2. Let f be positive real-valued function defined on pattern instance graphs.
Then f (IP) is an admissible support measure only if it is non-decreasing under all of the
operations: clique contraction, node addition, and edge removal on IP.

Proof (outline): It is sufficient to show that there exists an instance graph, a required
operation, a pattern and subpattern, and a dataset conforming to the instance graph and
operation, to show that a support measure violating the conditions is inadmissible. However,
we prove the theorem in a stronger sense. Given an arbitrary instance graph IP = (VP, EP),
and an arbitrary required operation (clique contraction, node addition, or edge removal) on
IP (which results in a valid “sub-instance” graph Ip), we construct a pattern P, a subpattern
p, and a dataset D, such that IP is the instance graph for P in D, and Ip is the instance graph
for the subpattern p in D. Thus, if a support measure f ever decreases over any such operation
(and for any instance graph), there will always be a dataset, pattern, and subpattern, for
which the support of the subpattern is smaller than that of the superpatten, thus violating the
admissibility of f. ��

Springer

Data Min Knowl Disc (2006) 13:243–260 253

.. .
..

(a) (b)

pP

d

dd

d

b

a a

a aaa

aa

c

b

Fig. 4 Pattern and subpattern

Proof (details): In our construction, the form of the pattern and subpattern will actually
be almost fixed, and parametrized only based on the size and degree of the instance graph.
We begin by describing the patterns used in the construction. In order to simplify the proof,
we will used labeled undirected graphs. ��

3.3.1. Auxiliary graphs and their intersections

We construct the required dataset from labeled graph patterns that have the following struc-
ture.

Let δ = max {d(v) | v ∈ VP}. We define P to be the labeled graph pattern as in Fig. 4(a)
with |VP| edges labeled {a, a} (the labels are actually on the vertices, but we refer to edges
labeled by pairs of labels as a shorthand for referring to edges with incident nodes labeled
by the indicated pair of labels) and δ edges labeled {d, d}. Let p be a subpattern of P, the
subgraph induced by its {a, a}-edges and {a, b}-edges (see Fig. 4(b)). For convenience, we
call each {a, a} edge a leg, and each {d, d} edge an arm. The subgraph consisting of all the
edges {a, a} and edges {a, b} of a pattern is called a bottom (part of the pattern). We use the
notation Bottom(P) to denote the bottom subgraph of P. Likewise, the subgraph consisting
of all the edges {d, d} and edges {c, d} of a pattern is called a top (part of the pattern). The
corresponding function T op(P) is used to denote the top subgraph of P. The edge {b, c} in P
is denoted by T orso(P). Thus, P has a top (which in turn has δ arms), a torso, and a bottom
(which in turn has |V (IP)| legs). The subpattern p has just the bottom part. The same terms
will also be used to refer to such subgraphs of instances in the dataset D.

We define several ways in which instances will be allowed to overlap in the dataset D
(these modes will also be called intersection modes). It is sufficient to explain these overlap
types for two instances of P and/or p, denoted by G1, G2, and g1 (see Fig. 5).

(I1) (Full) Bottom overlap: Bottom(G1) = Bottom (G2). This type of intersection is used
to indicate that G1 and G2 are adjacent in IP, but (since p is all bottom) the respective
instances of p are all the same instance, thus correspond to a single node in Ip.

(I2) (Partial) Leg overlap: Bottom(G1) and Bottom(G2) overlap at exactly one leg (i.e. have
a single common edge). This type of intersection indicates that G1 and G2 are adjacent
in IP, and that the respective subpattern instances are distinct and adjacent in Ip .

Springer

254 Data Min Knowl Disc (2006) 13:243–260

.. .
.. .

.. .
.. .

G2
G1

dd

c

b

a a

d

c

b

a

aa a

a

a

ddd

I3

.. .

.. .
.. .

G2 G1
I1

d

c

d

d d d

b

d dd

c

aa

aa

G1G2

.. .
.. .

.. .
.. .

a

a

b b

c

d

dd

ddd

d

c

aa

aa

d

I2

. ..

. ..
. ..

G1

1g

d d

dd

c

b b

a a a

aaa

I4

Fig. 5 Intersections

(I3) (Partial) Arm Overlap: Top(G1) and Top(G2) overlap at exactly one arm (i.e. have a
single common edge). This type of intersection indicates that G1 and G2 are adjacent in
IP, and that the respective subpattern instances are distinct and not adjacent in Ip. Such
overlaps will be used to represent instance graph edges deleted by an operation.

(I1) Truncated (Partial) Leg Overlap: g1 and Bottom(G1) overlap at exactly one leg (i.e.
have a single common edge). This type of intersection indicates that g1 is not a part of
any superinstance, but its representation in Ip is adjacent to a node in Ip representing a
subinstance that is part of some superinstance G1.

Springer

Data Min Knowl Disc (2006) 13:243–260 255

During the construction of the dataset, all intersections of types I2, I3, I4 are subject to
the intersection condition: for instances G1, G2, G3 of P or p, if G1 intersects G2 at edge
e, and G2 intersects G3 at edge f, then e �= f . Note that the number of arms and legs of the
patterns is specified as sufficiently large such that this condition can always be met in the
construction. Additionally, the patterns and dataset are constructed such that no “unintended”
instances appear. For a formal proof of these properties, see (Vanetik et al., 2005).

3.3.2. Construction of the dataset

In this section, we construct the dataset for any given instance graph IP and any given required
operation of type A1, A2, or A3. In all cases, the dataset D consists of |VP| instances of P,
and the requisite number of instances of p. The construction differs mostly in the way the
pattern instances are made to intersect. When constructing overlaps, the actual construction
is arbitrary as long as the intersection condition is obeyed. For each of the three operation
types, we construct the dataset D such that IP is the instance graph of P in D, and that the
Ip obtained by the operation is the instance graph of the sub-pattern p in D. Intuitively it is
clear why the construction below should work. For a formal proof see (Vanetik et al., 2005).
Construction for A1—clique contraction. Let IP be an arbitrary undirected graph. Let K
be the contracted clique, V be the set of the nodes in contracted clique, and k be the node
representing the clique (and remaining after contraction).

Let Ip be the undirected graph resulting from the operation k = contract(K) in IP. The
dataset DA1 consists of |VP| instances of P, such that |V | of them (the ones corresponding to
the contracted clique) intersect by (full) bottom overlap (this creates kind of a “star” fig.) The
intersections among the other instances are determined by IP as follows. Let v,w ∈ VP\V .
The instances represented by v and w have a leg overlap just when {v,w} ∈ EP. Now,
partition the set of nodes VP\V into VA, the set of nodes adjacent to k after the contraction
(in IP, these nodes are adjacent to all nodes in V), and VO , the set of nodes not adjacent to k
after the contraction. For every v ∈ VA, let the instance represented by v have a leg overlap
with the instance represented by k. For every v ∈ VO and w ∈ V such that {v,w} ∈ EP,
let the respective instances have an arm overlap. (Intuition: consider an edge {v,w} ∈ EP.
Clearly, if v ∈ VO , then {v,w} does not appear in E p since arm overlap does not affect p,
while if v ∈ VA the edge remains in E p because a leg overlap indicates intersection in Ip as
well.)
Construction for A2—node addition. Let IP be an arbitrary undirected graph, u = Add(),
and Ip be the graph resulting from this node-addition operation. The dataset DA2 consists of
|VP| instances of P (each also containing one instance of p), and one additional instance p
that corresponds to u, with the intersections among instances determined by IP as follows.
For all v,w ∈ VP, the respective instances have a leg overlap just when {v,w} ∈ EP. The
instance of p corresponding to u has a truncated (partial) leg overlap with all other instances.
(Clearly the leg overlaps will result in the required edges in E p, but the edges do not appear
in EP because there is no instance of P containing this instance of p.)
Construction for A3—edge removal. Let IP be an arbitrary undirected graph, and Ip the
graph resulting from Remove (e), with e = {v, v′} the removed edge. The dataset DA3 consists
just of |VP| instances of P (each also containing one instance of p), with the intersections
among instances determined by IP as follows. For all u, w ∈ VP, the respective instances µ(u)
have a leg overlap just when {u, w} ∈ EP − {e}, and an arm overlap just for the instances
represented by v and v′. (Clearly an edge resulting from an arm overlap does not exist in
E p.)

Springer

256 Data Min Knowl Disc (2006) 13:243–260

The construction for the three cases completes the proof of Theorem 2, which also
immediately implies the following potentially useful corollary:

Corollary 1. Every graph is an instance graph, i.e for every graph G one can construct a
dataset graph D and a pattern P such that G is the instance graph of P in D.

4. Discussion

In this section, we examine non-trivial admissible support measures, compare related work,
and discuss additional types of datasets (other than graphs) where our results apply. First,
consider the support measure. As shown in Section 2.2, simply counting instances is not ad-
missible. This is due to the fact that instances can share edges: since superpatterns have more
edges than the subpattern, this potentially creates additional partially overlapped instances
for the superpattern.

4.1. Independent set

The above observation on edge sharing between instances leads to the following intuition:
count instances, but do not allow instances which overlap into the count. There are numerous
ways to do this, but one obvious method is to find the a set of non-overlapping instances, and
count its size. Since the instance graph contains all information about the instances and their
overlaps, it is sufficient to define this type of support function over the instance graph. A set
of non-overlapping instances maps uniquely to an independent set in the instance graph—i.e.
a set of vertices in the instance graph, none of which are connected by an edge in the instance
graph.

One particular such measure is the size of the largest independent set in the instance
graph, i.e. the MIS measure. Our results justify using the maximum independent set size as
a support measure.

Corollary 2. Maximum independent set size of IP is an admissible support measure.

Proof: Clearly, edge removal does not decrease the size of the maximum independent set
of a graph, and neither does node addition, since no edges between existing nodes in the
graph are added. Thus, it suffices to show that clique contraction cannot decrease this size.
Let s be an independent set of maximum size in IP, and let K be a clique in IP. Observe
that clique contraction adds no edges to nodes outside of K (other than to k, the “contracted
clique” new node). Thus, if K contains no nodes from s, then s is still an independent set
after the operation. Alternately, K contains exactly one node v from s (there cannot be more
than one node of K from s). None of the neighbors of v are in s, and thus, by construction
of the clique contraction operator, none of the neighbors of k after the operation are in s.
Since no edges except some incident on k are added by the operator, then (s\{v}) ∪ {k} is an
independent set after the operation, and its is size is not less than |s|, as required. ��

It is unfortunate that the problem of determining the maximum independent set size
in a graph is NP-hard, and hence independent set size is not very efficient as a support
measure in the worst case. However, in practice, that is not likely to be a problem, for several
reasons:

Springer

Data Min Knowl Disc (2006) 13:243–260 257

1. The computational cost of finding the instances in a large dataset may be greater than
that of finding the independent set, and therefore other tasks that are presumed hard in
the worst case (in particular, finding an a subgraph isomorphism) may overshadow the
support computation.

2. The topology of the instance graph for realistic datasets and candidate patterns is unlikely
to result in a hard problem instance (see below). This was also shown in the experimental
evaluation on both synthetic and real-life graphs as reported in Vanetik et al. (2004) and
Vanetik and Gudes (2004).

3. In many cases, support is only computed in a graph mining algorithm in order to decide
whether or not the candidate pattern is frequent (and if not, the pattern is discarded
anyway). An approximation or a bound of the independent set size may well be sufficient
to make a decision (for example, finding one independent set of size higher than the
threshold means that the pattern is frequent, regardless of the size of the maximum
independent set). Such an approximation is also used by Kuramochi and Karypis (2004).

Observe that this support measure clearly reduces to the standard support measure of
transaction databases, since transactions are considered independent from each other, and
the maximum independent set size simply equals the number of transactions containing the
pattern.

4.2. Other support measures

Another intuitive support measure is weighted instance count. The idea is to count each
instance only partially, depending on how many overlaps it has with other instances. Formally,
in terms of the instance graph, this measure is: weighted sum over the nodes in the instance
graph, where the weight of each node is a reciprocal of its degree d(v), i.e.:

S1(I) =
∑

v∈IP

1

d(v) + 1

In our early graph-mining research we initially attempted to use the measure S1, but later
on suspected that it was not admissible. Nevertheless, we had to work rather hard to come up
with a counter-example in the form of a pattern, a sub-pattern, and a dataset. Using our main
result, it is sufficient to show a case where S1 decreases under node addition. This is easily
done—the simplest such case is where IP consists of two nodes connected by an edge, thus
S1(IP) = 2, but after adding a new node and its edges we have S1 = 1

2 + 1
2 + 1

2 < 2 (see
Fig. 6). Hence, S1 decreases under node addition and is thus not admissible. Obviously,
our results also imply that no monotonic function of S1 can be an admissible support easure.
Note that the MIS measure is 1 in both cases, thereby maintaining admissibility.

IpIP

Sum = 1/1 + 1/1 =2 Sum=1/2+1/2+1/2=3/2

Fig. 6 Weighted count measure

Springer

258 Data Min Knowl Disc (2006) 13:243–260

4.3. Other applications of our results

Several graph-mining problems restrict the topology of either patterns, or datasets, or both.
Observe that all of our results hold for the case where the patterns are restricted to be
tree-shaped, as long as the datasets can be general graphs, because our proofs only used
tree-shaped patterns. If we restrict datasets to be tree-shaped as well, our sufficient conditions
would still hold, but the necessary conditions may no longer apply.

Other possible graphs of interest are unlabeled graphs, directed graphs, and alternate
definitions of the instance graph. First, consider the sufficient conditions for admissibility.
Here, the only property of the pattern and dataset graphs that we used was: if instances of
subpattern intersect, then instances of the superpattern also intersect. Clearly this property
holds w.r.t. edge intersection for both directed and unlabeled graphs (and also for directed
unlabeled graphs). Thus, our sufficient conditions hold for these types of graphs as well.

Allowing a different definition of instance graph makes the issue a bit trickier. For example,
redefine intersection between instances to be: instances intersect if they have at least one
node in common. Note that the resulting instance graph will then be denser than an instance
graph defined by edge intersection, because edge intersection implies node intersection, but
not vice-versa.
Open question: Do the sufficient conditions for admissibility hold for instance graphs based
on node intersection?

As to the necessary conditions for admissibility, again our result can be extended. For
directed labeled graphs, simply direct the edges in the pattern and dataset in any arbitrary
but consistent manner, for example from top to bottom. The construction and proof are
unchanged. For unlabeled graphs the situation is trickier, since the pattern must be con-
siderably enlarged (e.g. by encoding labels as part of the graph topology) to ensure that no
spurious instances appear, but it should be possible. The directed unlabeled case is somewhat
easier, because edge directions allow more structure that prevents spurious instances in the
construction. For instance graphs based on node intersection, we believe that the necessary
conditions hold, but have no proof:
Conjecture: The necessary conditions for admissibility hold for instance graphs based on
node intersection.

Another possible application for our results is for data mining tasks other than graph
mining, but such that instance relationships and support can be stated in terms of instance
graphs. Observe that this is trivially the case for itemsets in transaction databases, where the
instance graph has no edges. However, a non-trivial mapping would occur in data mining in
the face of abstractions or generalizations (Srikant and Agrawal, 1995), when considering
support measures that may count more than one occurrence within a single transaction.

4.4. Related work

Although the support measure is a central issue in data mining, there are few attempts to
define properties of support generally as is done in this paper. As mentioned before, the
common support measure is defined for transaction databases as the ratio of the number of
transactions containing an itemset to the total number of transactions in the database Agrawal
and Srikant (1994). Obviously, this measure is admissible.

In Chen et al., (1998) define a support measure for mining web traversals in a form of
trees. Each transaction is a tree, and the support of a subtree is defined as the number of
transactions containing the subtree, but with the restriction that only transactions with trees
which are not included in other transactions are counted (this is a very special restriction

Springer

Data Min Knowl Disc (2006) 13:243–260 259

which is quite difficult to generalize). It is easy to show that because of the special structure
of trees, this measure is admissible.

Wang and Liu (1998) discuss the mining of frequent structures of documents in another
form of trees. They are interested only in rooted tree patterns and define support as the
number of occurrences of such (maximal) trees in a set of documents. Again, this measure
is obviously admissible.

The most related papers on graph mining are Kuramochi and Karypis (2001) and Yan and
Han (2002). In both papers, the support is defined as in transaction databases. Each transaction
is a graph, and the support is defined as the number of transactions containing the pattern graph
(no matter how many times). Again, it is obvious that this support measure is admissible. It
is also obvious that this measure is not appropriate for a dataset defined as a single graph,
because such a support measure can only result in values of either 0 or 1 in this case, no
matter how many times the simple pattern occurs in the large graph. Earlier papers on graph
mining and their applications are (Chen et al. 1998; Lin et al., 1998; Wang and Liu, 1998;
Kuramochi and Karypis, 2001; Yan and Han, 2002). Paper (Wang et al., 2002) uses a hashing
approach, first introduced in Pennec and Ayache (1998), to obtain an approximate number of
a subgraphs (unique up to several graph-modifying operations) matching the given pattern.

The only other work which uses other notions of support that we know of in the context
of graph mining, besides our own (Vanetik and Gudes, 2004; Vanetik et al., 2002; Vanetik
et al., 2004; Vanetik, 2002), is that of Kuramochi and Karypis (2004) which was published
later. There, the concept of single graph setting is defined, and the paper proposes to use the
measure which we presented in Vanetik et al. (2002), namely the maximum independent set
measure. An interesting contribution of Kuramochi and Karypis (2004) is that the value of
the support measure may be dynamic or adaptive, but the definition itself does not change.
As far as we know, the current paper is the first attempt to define a general notion of support,
especially for graph mining, and prove its admissibility and related properties.

5. Conclusions

In this paper we discussed a general notion of support especially useful for mining of graph
datasets and databases. We defined the concept of admissible support measures and proved
sufficient and necessary conditions for admissibility. An intuitive measure (size of maximum
independent set) was presented and shown to be admissible. This latter measure was already
used in two other papers on graph mining. Future work includes finding other instances of
admissible support measure which are of interest for different classes of graphs.

References

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. Proc. of the 20th Int’l Conf. on
VLDB, Santiago, Chile

Bray T, Paoli J, Sperberg-McQueen C, (Eds.) (1998) Extensible Markup Language (XML) 1.0, February,
http://www.w3.org/XML/#9802xml10

Chamberlin D (2003) XQuery: A query language for XML, Proceedings of SIGMOD Conference
Chen MS, Park JS, Yu PS (1998) Efficient data mining for path traversal patterns. IEEE Transactions on

Knowledge and Data Engineering 10(2):209–221
Dehaspe L, Toivonen H, King RD (1998) Finding frequent substructures in chemical compounds. Proceedings

of the 4th International Conference on Knowledge Discovery and Data Mining (KDD-98) New York,
New York, pp. 30-36

Deutsch A, Fernandez M, Florescu D, Levy A, Maier D, Suciu D (1999) Querying XML data. IEEE Data
Engineering Bulletin 22(3):27–34

Springer

260 Data Min Knowl Disc (2006) 13:243–260

Deutsch A, Fernandez MF, Suciu D (1999) Storing semistructured data with STORED. Proceedings of
SIGMOD Conference, pp. 431–442

Domshlak C, Brafman R, Shimony SE (2001) Preference-based configuration of web page content. Proceed-
ings of IJCAI

Goldman R, Widom J (1997) DataGuides: Enabling query formulation and optimization in semistructured
databases. Proc. of 23rd VLDB Conf., Athens, Greece

Graph Matching Library, http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html
Yan X, Han J (2002) gSpan: Graph-based substructure pattern mining. Proceedings of ICDM, pp. 721–724
Huffman SB, Baudin C, Toward structured retrieval in semi-structured information spaces, Proceedings of

IJCAI-97, Nagaya, Japan, pp. 751–756
Inokuchi A, Washio T, Motoda H (2000) An apriori based algorithm for mining frequent substructures from

graph data. Proceedings of PKDD00
Kuramochi M, Karypis G (2004) Finding Frequent Patterns in a Large Sparse Graph Proceedings 2004 SIAM

Data Mining Conference, Orlando, Florida
Kuramochi M, Karypis G (2001) Frequent subgraph discovery. Proceedings of IEEE ICDM
Lin X, Liu Ch, Zhang Y, Zhou X (1998) Efficiently computing frequent tree-like topology patterns in a web

environment. Proceedings of 31st Int. Conf. on Tech. of Object-Oriented Language and Systems
Maximum weight clique program, http://www.tcs.hut.fi/ pat/wclique.html
McKay BD (1998) Isomorph-free exhaustive generation. Journal of Algorithms 26:306–324
Meisels A, Orlov M, Maor T (2001) Discovering associations in XML data. BGU Technical report
Milner R (1983) Calculi for synchrony and asynchrony. Proceedings of TCS 25:267–310
Ng RT, Lakshmanan LVS, Han J, A. Pang (1998) Exploratory mining and pruning optimizations of constrained

association rules. Proceedings of SIGMOD Conference, pp. 13–24
Movie database, http://us.imdb.com
Ostergard PRJ (2001) A new algorithm for the maximum-weight clique problem, Helsinki University of

Technology, internal report
Pennec X, Ayache N (1998) A geometric algorithm to find small but highly similar 3D substructures in

proteins. Bioinformatics 14(6):516–522
Srikant R, Agrawal R (1995) Mining generalized association rules. Proceedings of the 21st Int’l Conference

on Very Large Databases, Zurich, Switzerland
Vanetik N (2002) Discovery of frequent patterns in semi-structured data. M.Sc. thesis. Dept. of Computer

Science, Ben Gurion University
Vanetik N, Gudes E (2004) Mining frequent labeled and partially labeled graph patterns. Proceedings of

ICDE, Boston, pp. 91–102
Vanetik N, Gudes E, Shimony SE (2002) Computing frequent graph patterns from semistructured data.

Proceedings ICDM, pp. 458–465
Vanetik N, Shimony ES, Gudes E (2004) Computing frequent graph patterns using disjoint paths. submitted

for a journal publication
Vanetik N, Gudes E, Shimony SE (2005) Support measures for graph data. Technical Report FC-06-02,

Computer Science Dept., Ben Gurion University
Wang K, Liu H (1998) Discovering Typical Structures of Documents: A Road Map Approach. Proceedings

of SIGIR, pp. 146–154
Wang X, Wang JTLi, Shasha D, Shapiro B, Rigoutsos I, Zhang K (2002) Finding patterns in three-dimensional

graphs: Algorithms and applications to scientific data mining. IEEE Trans on Knowledge and Data Eng
14(4):731–749

Washio T, Motoda H (2003) State of the art of graph-based data mining. SIGKDD explorations

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

