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ABSTRACT 
In this paper we present an efficient algorithm, called DSPM, for 
mining all frequent subgraphs in large set of graphs. The algorithm 
explores the search space in a DFS fashion, while generating 
candidates in advance to each mining phase just like the Apriori 
algorithm does. It combines the candidate generation and anti 
monotone pruning into one efficient operation thanks to the unique 
mode of exploration. DSPM efficiently enumerates all frequent 
patterns by using diagonal search, which is a general scheme for 
designing effective algorithms for hard enumeration problems. Our 
experiments show that DSPM has better performance, from 
several aspects, than the current state of the art - gSpan algorithm.  
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1. INTRODUCTION 
Whereas in the past, data mining was mainly applied to structured 
data and flat files, there is growing interest for mining semi-
structured data such as web links [8], chemical compounds [4], or 
efficient database indexing [9]. The problem of frequent 
substructure pattern mining is to find frequent subgraphs over a 
collection of graphs. Frequent subgraph mining serves meaningful 
structured information such as widespread web access patterns, 
common protein structures, and shared patterns in object 
recognition. Another application is to cluster XML documents 
based on their common structures. Furthermore, a graph is a 
general data structure which covers all previous well-researched 
frequent patterns, thus it can fuse the mining process into one 
framework.  

Problem Statement. Given a dataset of transactions D, each 
transaction t ∈ D is a labeled undirected subgraph. Edges and 
vertices have their labels. Given a minimum support, minSup, 
DSPM finds all connected structured patterns that occur in at least 
minSup transactions. 

Related Work. There are two general approaches in efficient 
frequent structured patterns mining. The Apriori approach [1,2,3] 

adopts the breadth-first search which was first developed in the 
context of association rules by Agrawal and Srikant [10]. The 
Apriori-based algorithm works as follows: given all connected 
frequent patterns from size k, construct out of this group a set of 
candidates such that each candidate pattern is from size k+1. A 
candidate generation of size k+1 can be accepted, for example, by 
joining two frequent patterns from size k that share a common 
kernel from size k-1. The next step, usually, will be to count 
support, i.e., how many transactions in DB each one of the 
candidates occurs. For each candidate with a count above minSup 
will be considered as a frequent pattern. This way we discover at 
each phase larger and larger frequent patterns, one group after 
another. The detailed algorithms, in general, distinguish themselves 
in using different building blocks: vertices in [1], edges in [2], and 
edge-disjoint paths in [3]. The second approach is DFS 
exploration, represented by [4,5,6], which adopts a pattern-growth 
by  growing patterns from a single graph directly, that is depth-first 
search. The algorithms map each pattern to a unique canonical 
label. By using these labels, a complete order relation is imposed 
over all possible patterns. This lexicographic order (over all 
patterns) is also used to impose tree-hierarchy search order over all 
patterns. One of the characteristics of the (search space) tree is 
that all nodes at level k of the tree represent all connected patterns 
with k edges and only them. An in-order search over the tree 
enables to discover all frequent patterns as opposed to the BFS 
approach that discovers all frequent k-patterns (patterns with k 
edges) before discovering frequent (k+1)- patterns. The main idea 
of our method is to construct a hybrid which combines the two 
approaches. The algorithms which most closely related to our 
current attempt are FSG [2] and gSpan [5]. Our algorithm, DSPM, 
explores the search space in a depth search. It can use several 
mining techniques which are especially applicable for DFS 
algorithms, such as, using transactions id lists like gSpan [5] or 
maintaining an embedding set for each frequent subgraph like 
FFSM from [6]. We adopt from gSpan its canonical graph 
representation and corresponding tree search space. On the other 
hand, we adopt from FSG its notable frequency anti-monotone 
pruning (checking for each generated candidate, with k+1 edges, if 
all its subgraphs with k edges were found to be frequent in 
previous step. If not, then the candidate isn't frequent and therefore 
can be dropped). Our algorithm enjoys from this anti-monotone 
pruning technique since it keeps all previous mined subgraphs alike 
Apriori does. Once DSPM explores a pattern from size k, only 
some of the frequent patterns from size k-1 were discovered till 
that moment. Still, we will show that frequency anti-monotone 
pruning technique can be applied without any special constraint 
thanks to the unique reverse depth exploration. The reverse depth 
exploration contributes for easy generation of candidates, fast anti-
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monotone pruning and the ability to explore efficiently more space 
in a single step of the algorithm unlike previous DFS algorithms. In 
addition we represent several novel ideas that can be integrated by 
previous mentioned algorithms. 

2. PRELIMINARY CONCEPTS  
In section 2.1 we describe the main algorithm idea by developing it 
for the well-known task of association rules. We will get 
familiarized with the search space of frequent itemsets and the way 
DSPM algorithm explores it. As a framework for subgraph mining, 
section 2.2 defines the search space for the frequent subgraphs 
problem. It uses the graph representation of gSpan algorithm [5] 
though it is not bound to this specific representation. 

2.1 Algorithm Outline 
 Itemsets mining is simpler than subgraphs mining in many aspects. 
Thus, for clarity we choose to start describing DSPM with respect 
to itemsets. An example of an itemsets tree is illustrated in Figure 1 
(forest). Consider the curved-dashed line in Figure 1. The problem 
of mining frequent itemsets can be viewed as finding a cut through 
the lattice such that all elements above the cut are infrequent 
itemsets, and all elements below are frequent itemsets and their 
counting support is known. 

Definition 1 (Prefix Based Lattice). Let τ ∈ {itemsets, 
sequences, trees, graphs} be a frequent pattern problem. Let τ-
order be a complete order over the patterns (i.e., over the 
canonical representation of patterns), and let τ-space be the 
corresponding search space of the problem which has a tree 
shape. Given a pattern pk, k >1, subpatterns(pk) = { pk-1 | pk-1 is a 
subpattern of pk }. Then, the τ-space is Prefix Based Lattice if (i) 
The parent of each pattern pk, k > 1, is the minimum τ-order 
pattern from the set subpatterns(pk). (ii) An in-order search over 
τ-space follows ascending τ-order. (iii) The search space is 
complete.  

The itemset search space as depicted in Figure 1 is a prefix based 
lattice. From now on we will assume implicitly that for each given 
τ problem, the corresponding τ-space is defined to be prefix based 
lattice. 

Definition 2 (Reverse Depth Search). Regular depth search over 
τ-space which explores the sons of each visited node (pattern) in a 
descending τ-order.  

As depicted in Figure 1, the lattice is divided into diagonal strips, 
counted from right to left. The strips are explored one after 
another, from right to left by DSPM algorithm. Each strip is 
explored in a reverse depth search by the algorithm. We consider 
the τ-space as a forest rather than one tree. Each tree in τ-space 
will correspond to one strip such that the root will be a pattern 
from size 1. 

Property 1 (FAM: Frequency Anti-Monotone). If a pattern pk 
is frequent, then any subpattern of pk must be frequent. It is equal 
to say, if pk isn't frequent then any pattern that contains pk isn't 
frequent also. 

FSG algorithm uses property 1, by checking for each candidate 
ck+1 if all its subpatterns from set subpatterns(ck+1) found to be 
frequent in the previous phase. DSPM applies the same pruning for 
candidates, that is, although DSPM explores the search space by 
using a reverse depth search, it can still apply FAM pruning. 
Consider Figure 1. When candidate {c, d, e} is generated, the only 
discovered itemsets at that point are the ones which appear in 
strips 1, 2 and 3 only. In this case we can apply FAM checking on 
{c, d, e} because all its 2-subsets (In Figure 1, connected to {c, d, 
e} with dashed lines, that is {c, d}, {c, e} and {d, e}) their 
frequency were determined already. Is there a possibility that 
DSPM might visit a candidate that it can't apply on it FAM 
pruning? i.e., is it possible DSPM will discover {x1, x2, …, xk}  
before determining the frequency of  {x1, x2, …,xi-1, xi+1,… xk} for 
some 1 ≤ i ≤ k? The answer is no and the following theorem claims 
that this technique of exploration can be used not only for itemsets 
but also for any problem τ as long as the search space is a prefix 
based lattice. 

Theorem 1. Given a pattern problem τ and the corresponding τ-
order and τ-space, then by exploring τ-space in reverse depth 
search it enables checking FAM for each explored pattern, if all 
previous mined patterns are kept. (Proof omitted). 

Figure 1. Lattice (Itemset Search Space)  
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Intuitively, DSPM generates candidates in advance, the same 
manner Apriori algorithms does. Unlike Apriori, when the reverse 
depth search visits pk, only a part of the frequent patterns of size k 
are known. And the only joining of pk can be done with k-patterns 
which are τ-order bigger than pk. Nevertheless, there is no need to 
know the frequent k-patterns which are τ-order smaller than pk in 
an attempt to generate sons-candidates to pk. Because each son of 
pk , named ck+1, can be accepted by joining only pairs of k-patterns 
from the set subpatterns(ck+1) and because pk is the smallest one in 
subpatterns(ck+1), then pattern pk is the last one to be explored by a 
reverse depth search from all the patterns in the set 
subpatterns(ck+1). That guarantees for DSPM the ability to extend 
from each visited pattern pk all its sons by using join operation with 
some of the k-patterns discovered so far.  

2.2 Lexicographic Ordering in Graphs 
This section discusses a canonical graph representation and a 
corresponding search space, based on [5] work. It includes 
mapping each graph to a DFS Code (a unique label), building a 
lexicographic ordering among these codes and constructing a 
complete search space, with a tree shape, of all the DFS Codes. 
Since the defined search space is an instance of prefix based lattice, 
we can use it with DSPM algorithm. 

When performing a depth search in a subgraph, if the search visits 
an edge which leads to a new node that wasn't explored by the 
search previously, then the edge is a forward edge. Otherwise, it is 
a backward edge with respect to the given depth search [7]. A 
corresponding DFS Tree can be constructed from the set of 
Forward edges. For example, Figure 2(g), without the dashed 
lines, is a DFS Tree which was accepted from the depth search 
2(a)-(g). The depth search defined by [5] explores all backward 
edges before it finds the next forward edge. The depth search of 
the vertices forms a linear order. The magnitude of subscripts is 
used to illustrate this order according to their discovery time [7]. i 
< j means vi is discovered before vj (Figure 2). We denote G 
subscripted with a DFS tree T by GT. T is named also a DFS 
subscripting of G. The right most path of GT is the path from v0 to 
vn, and the right most vertex is vn. 

Consider Figure 2. At each state of the given depth search, another 
edge is discovered. Under each state we can see 5-tuple that 
represents the discovered edge. The DFS Code that represents the 
DFS Tree in Figure 2(g) (which represents the depth search in 
Figure 2) is the sequence of 5-tuples that is accepted from the 
depth search. Of course, one subgraph may have many DFS Codes 
because we can apply different depth search over a single 
subgraph. For that reason, [5] constructed a lexicographic order 

Figure 2: Depth search and its DFS Code 

Figure 3:  DFS Code Search Space 

53



among all valid DFS Codes so we can choose a canonical 
representation for each subgraph, G, by picking the minimum DFS 
Code that can be accepted among all DFS Codes. 

Since we are aimed to construct a search space for graphs, we 
need to consider also how we can extend a graph. Given graph G 
and T0 (The canonical subscripting of G). Edge e can extend G 
from the right-most vertex connecting to any other vertices on the 
right-most path (backward extension), or e can extend G from 
vertices on the right-most path and introduce a new vertex 
(forward extension). We consider these two kinds of restricted 
extension as legal extensions, denoted by G • e. This way of 
extensions fits well for extending DFS Code representation since it 
follows a continuing depth search. 

In a DFS Code search space, each node represents a DFS code, 
the relation between parent and child node complies with the 
extension described above. The relation among siblings is 
consistent with the DFS Lexicographic Order, so the pre-order 
exploration of DFS Code search space follows the DFS 
lexicographic order. Figure 3 shows a DFS Code search space. 
Through depth search of the code tree, all the minimum DFS codes 
of frequent subgraphs can be discovered in this way. 

Theorem 2 (DFS Code Pruning). (i) Given a DFS Code Tree, by 
exploring only nodes with Minimum DFS Codes, and pruning all 
other nodes, it is guaranteed to keep the search space 
completeness, i.e, Minimum DFS Code can only grow from 
Minimum DFS Code. (ii) All descendents DFS Codes of 
infrequent DFS Code in Tree are also infrequent. (see [5] for 
proof). 

Theorem 3. DFS Code Tree is Prefix based lattice.   

3. ALGORITHM DETAILS 
Section 3.1 illustrates the main procedure of the algorithm using a 
recursive procedure, named ExploreLattice. The recursive 
procedure is aimed to explore the DFS Code search space and 
discover all the nodes which represent frequent subgraphs. Section 
3.2 shows how candidates can be generated in each phase. Section 
3.3 further develops the generation of candidates and integrates in 
it a novel technique for fast Frequency Anti-Monotone Pruning 
(FAM Pruning). Finally, section 3.4 explains about the support 
counting method. 

3.1 Main Procedure 
As explained above, DSPM explores the search space in a Reverse 
depth search. Since it keeps all previous mined frequent patterns 
and since the defined search space is a prefix based lattice, it can 
generates from each frequent pattern a group of candidates and 
also apply FAM pruning by using previous mined patterns. The 
high level structure of the algorithm is shown in Figure 4. 

The procedure gets a transaction set of graphs and minimum 
support, minSup. It returns all frequent subgraphs stored in the 
container F.  Line 1 removes infrequent vertices and edges labels 

from the graph set D. Line 2 sorts all representative frequent edges 
(with two vertices) and store result in E. Now, in a reverse 
lexicographic order, for each edge e∈E (Line 4) the algorithm 
constructs a one edge subgraph g1 from edge e (Line 6), and 
makes a call at line 10 to the recursive procedure ExploreLattice 
with g1. The recursive procedure explores in a reverse DFS search 
all the induced subtree under subgraph g1 in the defined search 

space, i.e., finding all frequent subgraphs whose min DFS Codes 
appear as a descendant subgraphs of g1 in the DFS Code search 
space. 

Suppose we have a set of transactions D. Each transaction is a 
labeled graph. For simplicity, there are different labels on edges but 
all vertices has the same label v. Suppose also that the frequent 
edges are A, B and C. Infrequent edges were removed. Therefore 
E will holds after the sorting at line 3 the set {(v, A, v), (v, B, v), 
(v, C, v)}.  

In the first for loop (with reverse lexicographic order over the 
edges in E) a subgraph with single edge is constructed from edge 
(v, C, v) which results with DFS Code (0, 1, v, C, v). For 
abbreviation we shall write the 1-subgraph as g1

C. The recursive 
method ExploreLattice (Line 10) explores the induced subtree of 
subgraph g1

C, that is all the frequent subgraphs which contain 
edges with label C only. Figure 3 (strip 1) shows the explored tree 
and its frequent subgraphs in the subtree space that are discovered. 
In the second round, ExploreLattice explores induced subtree of 
subgraph g1

B, which is to explore all frequent subgraphs that 
contain edges with label B and maybe also label C (Figure 3 - strip 
2). In the third and last round, ExploreLattice explores induced 
subtree of g1

A, i.e., finds out all frequent subgraphs which contains 
edges with label A, and possibly also labels B and C (Figure 3 - 
strip 3). 

We can improve the algorithm in the following way. In the first 
round, instead of exploring the tree in Figure 3(strip 1) by mining 
transaction set D, we can project from D to D* only occurrences 
of edges with label C, and mine transaction set D* instead. This is 
applicable because the graphs in Figure 3(strip 1) have edges with 
label C only. In the second round the algorithm needs to explore 
the tree in Figure 3(strip 2), which contains graphs that their edges 
have labels B and C only. And so on. This enhancement is reflected 
in Figure 4 at lines 5, 9 and also line 10 which calls procedure 
ExploreLattice with D* instead of D. The outcome is faster 
searches over smaller projected graphs than the ones in D. Similar 
approach can be found in [5]. 

Line 7 builds the transaction ID list (TID list) for subgraph g1, that 
is, we keep a list of transaction identifiers that support it. We will 
do so for any frequent subgraph. Once we need to compute the 
frequency of a son-candidate of subgraph gk, the algorithm can 

DSPM(D, minSup) 
1. Remove infrequent vertices and edges 

considering minSup 
2. E:= all frequent 1-edge graphs in D, sorted 

in ascending DFS lexicographic order 
3. D*:= {}, F:= {} 
4. For each e ∈ E, in reverse lexicographic 

order, do 
5. D*:= D* ∪ { all occurrences of e in D} 
6. g1:= {e} 
7. TID(g1):= {t.id | t ∈ D, g1 is subgraph of 

t}  
8. F1:=F1 ∪ {g1}  /* Fk:={frequent k-

subgraphs}. Fk
⊂F */ 

9. sons(g1):= {mine all frequent 1-edge 
extensions for g1 from D*}         /* 
sons(g1) are attached to g1. */ 

10. ExploreLattice(D*,F,g1, minSup) 
11.  Return F 

 
Figure 4: The Main procedure for mining all frequent 

subgraphs from transaction set D. 
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limit the support counting only to the set of transactions in the TID 
of gk. As soon as the recursive function ends a visit at gk, it can 
delete TID list of gk.  

Line 8 inserts each frequent 1-subgraph, g1, into Frequent-
subgraphs data structure F.  Line 9 finds all frequent 1-edge 
extensions to g1. Line 9 mines also 2-subgraph at this stage of the 
algorithm in an attempt to satisfy the precondition of the recursive 
function that comes at line 10 (this will become clear in the 
following paragraph). 

Figure 5 presents the recursive procedure ExploreLattice for 
exploration of DFS Code search space in a reverse depth search. 
The recursion receives parameter gk which is a DFS Code to visit, 
so as to explore all induced subtree of gk.  Following are pre and 
post condition of ExploreLattice procedure. Precondition: (i) 
Graph gk is frequent k-subgraph that has its TID list. (ii) None of 
gk's descendants were explored yet, except to its sons. Post 
condition: (i) induced subtree of gk in DFS Code Tree was 
explored, i.e., all frequent-descendants subgraphs (in DFS Code 
search space) of gk were discovered and stored in F.  

Consider Figure 3 which depicts the subgraphs lattice. All white 
nodes represents discovered frequent subgraphs up till now, gray 
nodes represents candidates. The recursion visits node Q1. The 
precondition of the recursion in order to visit Q1 is that Q1 has its 
TID list and its frequent sons are known (white nodes). Line 5 
grows from each son of gk a group of candidates (gray nodes) by 
calling GenerateCandiates procedure. The support counting 
method at line 8 counts support for all candidates that were 
generated from all sons of gk and in the same time also builds TID 
lists for all sons of gk. As a result from line 8, each son of gk will be 
linked to two sets. One set will be its TID list and the other one is 
its frequent sons. Lines 9-10, for each son of gk, in reverse 
lexicographic order, a recursive call applied to discover the 
induced subtree of each son. As can be seen, DSPM explores the 
search space two steps a head instead of one in order to earn a 
larger set of candidates that can be enumerated in a single support 
counting. Since it generates a group of candidates by using FAM 
pruning, it still needs to handle in each recursion frame only a 
limited set of candidates. 

3.2 Candidates Generation 
Algorithm FSG generates candidates of size k+1 by joining two 
frequent k-subgraphs. In order for two such frequent k-subgraphs 
to be eligible for joining they must contain the same (k-1)-subgraph 
as their core. This joining procedure is called fsg-join. For each of 

the generated candidates, FSG algorithm checks if it is already in 
the set of candidates. If not then it verifies that if all its subgraphs 
of size k are frequent, i.e., FAM pruning. On the other hand, 
DSPM isn't worried if a candidate was generated before, but only 
whether the generated candidate can be a son of the frequent 
subgraph from which it grew, more precisely, whether the DFS 
Code which was received by extending min DFS Code of a 
frequent subgraph (by adding one edge) is also a min DFS Code 
(See Theorem 2(i) – DFS Code Pruning). Thus DSPM generates 
and validates candidates in three steps as follows: (i) Candidate 
Generation & FAM Pruning (ii) Validating min DFS-Code. (iii) 
Support counting. 

Consider again Figure 3. It is shown how DFS Code tree is 
explored by DSPM. The algorithm visits node Q1 whose frequent 
sons are known, R1 and R2. The algorithm needs to generate from 
nodes R1 and R2 a set of candidates.    

Let's concentrate on R2. The algorithm finds from all the 3-
subgraphs which produced till that moment (i.e., from all the 3-
subgraphs that are τ-order not smaller than R2) which ones share a 
common (k-1)-subgraph with R2 and can be joined with it. Trying 
to join a given k-subgraph with all previous mined frequent k-
subgraphs is simply unacceptable. As an alternative, we can access 
directly to all previous mined k-subgraphs which share a common 
core with the subgraph we want to generate its sons candidates by 
keeping for each frequent (k-1)-subgraph, gk-1, a list of extensions 
to all frequent k-subgraphs that can be accepted from gk -1 by 
adding one edge. 

The extensions list of gk -1 will be constructed from a set of pairs. 
The first item in a pair will be a reference to a k-subgraph which 
can be accepted from gk-1 by adding the edge that is kept as the 
second item in a pair. Consider Figure 3. Regarding subgraph Q4, 
we can conclude the following: extensions(Q4) = {<R2,(1, 3, v, A, 
v)>, <R3,(2, 3, v, A, v)>, <R5,(1, 3, v, B, v)>, <R6,(1, 3, v, C, 
v)>}. The set sons(pk) is subset of extensions(pk). For a given 
subgraph, its set of sons is determined only once along the 
algorithm execution that is when the recursion visits the subgraph, 
but the set of extensions is always updated. Consider Figure 5, line 
4. Each time we find another frequent k-subgraph, besides from 
adding it into the frequent set F, we now also need to update the 
extensions set of all its (k-1)-subgraphs. 

What we can do now to facilitate generation of candidates from 
R2, is searching only after its subpatterns(R2) . Then for each 
Qj∈subpatterns(R2), for each extension <Ri, e> ∈ extensions(Qj), 
we can join R2 and Ri with core Qj. This way we can directly 
access all previous mined 3-subgraphs that share a common core 
with R2 and as well we know in advance their common core. 

ExploreLattice(D*, F, gk, minSup) 
1. if (sons(gk) is empty set) 
2. return; 
3. for each gk+1 ∈ sons(gk), in reverse order, 

do 
4. Fk+1:= Fk+1 ∪{gk+1} 
5. GeneratesCandidates(gk+1, F) 
6. if no candidates were produced then 
7. return; 
8. SupportCounting(D*, gk, minSup) 
9. For each gk+1 ∈ sons(gk), in reverse order, 

do 
10. ExploreLattice(D* , F , gk+1 , minSup) 

 

Figure 5: The recursive procedure which explores the 
search space. 

GeneratesCandidates(gk)     
1. T:= {} 
2. for each <gk-1,e> ∈ subpatterns(gk) 
3. T:= T ∪ dfs-join(gk, < gk-1, e>) 
4. {check AMP for each candidate in T } 
5. for each gk+1 ∈ T 
6. if min(gk+1) ≠ gk+1 
7. remove(gk+1) from T 
8. sons-candidates(gk):= T 
 

Figure 6: The Generation of candidates. 
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In Figure 3 all subpatterns(R2) are connected with dashed lines to 
R2. Those are Q1, Q2 and Q4. Consider subgraph Q4. Subgraph 
R2 will be joined with each of 3-subgraphs in extensions(Q4), i.e., 
R2 (self join), R3, R5 and R6, and the common core will be Q4. 
Same technique will be applied also with cores Q1 and Q2 in order 
to generate candidates from R2. This idea reflected at lines 2-3 in 
Figure 6. Procedure dfs-join returns a set of candidates which is 
received from joining gk with each of the extensions of core gk-1.  

Our join operation can be more efficient relative to fsg-join. Each 
constructed candidate is designated to be son of R2 and so several 
constraints can be added to the join operation. This is explained in 
the following subsection. Line 4 checks FAM for the generated 
candidates. If a candidate doesn't obey to FAM it is discarded. In 
lines 5-7, the algorithm checks, for each candidate, if it has a min 
DFS Code. Those who don't have are removed from the set T (see 
Theorem 3.2 – DFS Code Pruning). One novel idea of our 
algorithm is to combine the dfs-join procedure with FAM pruning. 
This is explained in section 3.3.  

The dfs-join procedure. Consider Figure 7. Procedure dfs-join 
gets one k-subgraph gk, one (k-1)-subgraph gk-1 and an edge 
e∈V(gk), so gk \ e = gk-1. Subgraph gk-1 holds already all the set of 
k-subgraphs to join with gk, the ones who kept as frequent 
extensions to gk-1, while the common core for the join operation is 
gk-1.  

Each edge extension e' to gk-1 represents a frequent k-subgraph gk' 
which is received by adding edge e' to gk-1. We can join gk and gk' 
with common core gk-1 by mapping edge e' to gk through an 
isomorphism from gk-1 to gk \ e. Since we are using min DFS Code 
to represent subgraphs then it is equivalent to see subgraph gk as a 
subscripted graph (see section 2.2 for details). For each edge 
extension e' to gk-1, we confine all combinations of mapping e' (line 
3) to subscripted graph gk such that e' grows from right most path 
of gk as a legal forward edge or backward edge. This restriction 
causes dropping of many candidates and helps finding more 
bounded group over the desired frequent subgraphs. 

dfs-join finds at line 2 all isomorphisms from gk-1 to (gk \ e) and for 
each given isomorphism σ, it maps edge e' from gk-1 to gk and 
stores the joining result at line 5 only if σ(e') represents a valid 
forward edge or a backward edge growing in gk.  

As for line 2 in Figure 7, we don't really need to generate all this 
isomorphisms. The parent procedure GenerateCandiates( gk , F ) 
already did this job when it found all (k-1)-subgraphs of gk. In fact, 
it is not the only one to do so. Procedure ExploreLattice, before 
calling to GenerateCandiates, inserted graph gk in data structure F, 
and as mentioned, this means that it needs to find all (k-1)-
subgraphs of gk and updates their extensions list and this is the first 
(and last) time to generate all isomorphisms from gk to all its (k-1)-

subgraphs. These isomorphisms are passed as a parameter to 
GenerateCandiates and to dfs-join procedures. 

3.3 Freq. Anti-Monotone Pruning (FAM) 
One way to do FAM is to find for each generated candidate, of 
size k+1, all its k-subgraphs and checking if each one of them was 
found to be frequent, like FSG does. This technique demands a 
massive computation, i.e., applying k isomorphisms in the worst 
case for each (k+1)-candidate not to mention the searching cost. 
We can do much better than that with some compromising over 
FAM pruning. Instead of applying FAM we would apply only 
Partial-FAM which on the average is expected (see experiments 
section – table 1) to give results almost as good as FAM.  

Method GenerateCandidates can be changed a little such that the 
FAM pruning becomes a trivial operation (Figure 6, line 4) with no 
computation effort. Several of the candidates are generated more 
than once. We will prove that the number of tries in which the 
same candidate is generated has a strong relation to FAM pruning.  

Consider an edge extension e' to subgraph gk so that (k+1)-
subgraph gk • e' is a nominee to be a frequent child of gk. Suppose 
it is. Then each k-subgraph of gk • e' must be frequent also. Now 
let us look at some gk-1

∈subpatterns(gk) which is received by 
dropping some edge e from gk. We can add to gk-1 edge e' at the 
same place we added to gk (with only one exception), under 
isomorphism consideration, and get a frequent k-subgraph gk-1 • e'. 
This is so because gk-1 • e' is subgraph of gk • e'. Thus edge e' must 
appear in the extensions set of gk-1 and therefore we would expect 
that the procedure call dfs-join(<gk, e >, gk-1) would return 
candidate gk • e' among several others. Since we didn't limit the 
discussion to specific gk-1

∈ subpatterns(gk) thus each calling to dfs-
join with each subgraph gk-1

∈ subpatterns(gk) would return 
candidate gk • e' among several others. We can conclude that a 
candidate cannot be frequent if exist gk-1

∈ subpatterns(gk) such 
that the result of dfs-join(<gk, e >, gk-1) doesn't include the 
candidate. This simple condition is applied in Figure 6, line 4 by 
dropping candidates which were generated less than 
|subpatterns(gk)| times.  

Yet, there is a specific type of edge extension that might be missed. 
If the edge extension, e', relative to gk, is a forward edge which 
grows from a node v∈V(gk) such that degree(v)=1 then at most 
one of the (k-1)-subgraphs of gk doesn't have node v, under 
isomorphism consideration, and therefore cannot be extended with 
edge e'. Therefore the algorithm need to identify this special 
extension and exclude it only if it was generated less than 
|subpatterns(gk)|-1 times. 

3.4 Support Counting 
Once a set of candidates have been generated, DSPM algorithm 
computes their frequency. The simplest way to achieve this 
frequency is, for each candidate subgraph, to scan each one of the 
transaction graphs and determine if there is a subgraph 
isomorphism or not. Even so, having to compute this isomorphism 
is particularly expensive and this approach is not feasible for large 
datasets. DSPM algorithm uses another technique in order to make 
this heavy task to be more efficient.  

Following are pre and post condition for SupportCouting 
procedure. Precondition: (i) Graph gk is frequent k-subgraph that 
has its TID list. (ii) None of gk's descendants where explored yet, 
except to his sons. (iii) Each son of gk, signed gk+1, has a set of 

dfs-join(gk, < gk-1, e>) 
1. C:= {} 
2. M:= generate all isomorphisms from gk-1 to 

(gk \ e)  
3. for each extension <gk',e'> ∈ extensions(gk-

1) do 
4. for each isomorphism σ ∈ M do 
5. C:= C ∪ {generate candidates of size 

k+1 from the set gk, e, e', gk-1 and σ. } 
6. return C 

 

Figure 7. The joining procedure. 
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candidates that might be its frequent sons. Postcondition: (i) All 
frequent sons of gk have their own TID lists. (ii) All frequent 
grandchildren of gk are known. 

The method applies subgraph isomorphism with graph gk over all 
the projected transactions that appear in TID of gk. For each 
occurrence of gk in some transaction the algorithm tries to extend 
the occurrence to each of gk 's children. For a successful extension 
to a child gk+1, the algorithm adds to TID list of gk+1 the current 
transaction ID and tries to further extend to each one of the 
candidate-sons of gk+1. If the algorithm succeeds to further extend 
it to a candidate that grows from gk+1 then it updates the support 
counting of this candidate.  

After we have finished counting support, the method checks which 
candidates have support above minSup and update those frequent 
ones to be frequent-sons of their parents. If none of gk+1 extensions 
is frequent the sons(gk+1) becomes empty which is the exit 
condition of the recursive procedure ExploreLattice. 

 

4. PERFORMANCE STUDY 
The experiments were carried out on Intel 2.0GHz machine with 
256MB main memory, running Windows XP operating system, 
and compiled by Visual C++ 6.0. Besides implementing DSPM we 
have also implemented gSpan algorithm. 

Both algorithms use underneath two nontrivial components of 
subgraph isomorphism and canonical labeling (isomorphism 
problem) for graphs. It is crucial to use the same subgraph-
isomorphism, canonical-labeling and graph-representation 

components for both algorithms, in order to have an accurate 
comparison. As we stated, we choose to use TID list for DSPM 
just like gSpan and not list of embeddings like FFSM [6] or some 
other kind of list so as to prove that DSPM’s efficiency is not an 
outcome of keeping more informative lists than TID lists but a 
result of efficient candidate generation and effective exploring and 
pruning of search space. 

Synthetic Graph-Sets. The first part of the experiments included 
testing synthetic data sets. The datasets generator, provided by 
Kuramochi [2,12], is controlled by a set of parameters and outputs 
a set of synthetic graphs. Figure 8 shows the overall running time 
of DSPM and gSpan with minSup=0.01 over different graph-sets 
with varied number of labels. All graph-sets are with D = 40000 
transactions; The average size of transactions, in terms of the 
number of edges is T=20; The average size of potentially frequent 
kernels is I=15; and the number of potentially frequent kernels is 
L= 1000.  

Both algorithms have support method that scans the dataset each 
iteration to determine the support of a set of candidates (which 
share a common kernel). Let’s assume that an access to dataset to 
count support for a set of candidates considered to be one db-
access. Each db-access results with many subgraphs isomorphism 
for measuring support value (which might also cost with an access 
to physical memory for big dataset). Then the number of times 
gSpan access database is equal to the number of discovered 
frequent patterns exactly. Each time it finds a frequent pattern, 
gSpan tries to extend it and therefore another db-access to count. 
DSPM on the other hand explores recursively the search space two 

Figure 8. Runtime with respect to Number of 
different labels in graph-set. 
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(1) running 
time <sec> 

(2) # of  
candidates minSup 

DSPM gSpan DSPM FSG 

Frequent 
Patterns 

 

0.0911 0.85 1.81 1276 1168 1049 

0.0588 2.0 4.6  2705 2694 2326 

0.0294 23.5 49.7 24119 24064 22758 

0.0205 128.4 240.9 139790 139666 136949 

Table 1.  Using Chemical Compound dataset. (1) Running 
time comparsion of DSPM and gSpan. (2) Number of 
candidates comparsion of DSPM and FSG. 
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steps a head and that is why the number of db-access it needs is no 
more than the number of frequent-patterns-nodes in tree-space 
without the leaves. In fact it is even less because it can prune a 
branch in the search space without any db-access thanks to FAM 
pruning it applies in advance. Figure 9 shows the number of db-
accesses we count for each one of the tests from Figure 8. 

Chemical Compound Datasets. Table 1(1) shows the running 
time of DSPM and gSpan over chemical compound dataset for 
predictive Toxicology Evaluation1 which was also tested by [3,6]. 
Table 1(2) shows the number of candidates that was generated by 
DSPM compared to the number of candidates that was reported by 
FSG [6] for the same dataset with the same support-thresholds. 
The main inefficiently of FSG results from the special care it gives 
to each candidate in the generation phase and from executing 
support-counting per candidate. FSG uses in addition intersection 
of tid-lists to prune even further the number of candidates, but as 
comes out from table 1(2), the pruning technique of DSPM is 
almost as strong as the one of FSG whereas DSPM uses trivial 
operation for that purpose, with least cost.  

5. CONCLUSIONS  
We formulated our frequent graph mining framework in terms of 
reverse depth search and a prefix based lattice which is also 
applicable to other known types of patterns. We suggested the 
DSPM algorithm among many others possible algorithms that can 
be developed for making full use of prefix based lattice properties. 
DSPM algorithm uses several new techniques for graph mining 
which can be adapted rather easily by the predecessor algorithms 
such as effective candidate generation, fast anti-monotone pruning 
and mass support counting for a large set of candidates in a single 
pass. As is shown in our experiments DSPM adopted successfully 
ideas from two inherently different approaches for pattern mining 
(DFS and BFS) with no compromising over the running time, and 
with better results over the best known algorithm gSpan. 
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