
An Algorithm for Subgraph Isomorphism

J. R. ULLMANN

National Physical Laboratory, Tedd, ngton, M, ddlcsex, England

ABSTRACT. Subgraph isomorphism can be determined by means of a brute-force tree-search enu-
meration procedure. In this paper a new algorithm is introduced that attains efficiency by inferentially
eliminating successor nodes in the tree search. To assess the time actually taken by the new algomthm,
subgraph isomorphism, chque detection, graph isomorphism, and directed graph isomorphism ex-
periments have been carried out with random and with various nonrandom graphs.

A parallel asynchronous logic-in-memory implementation of a vital part of the algorithm is also
described, although this hardware has not actually been bmlt The hardware implementation would
allow very rapid determination of isomorphism.

KEY WORDS AND PHRASES. graph, graph isomorphism, directed graph isomorphism, digraph iso-
morphism, subgraph, subgraph isomorphism, clique, clique detection, isomorphism algorithm, tree
search, search tree, game tree, parallel processing, array processing, special purpose computer, logic-
in-memory arrays, asynchronous sequential circuits, Boolean matrices

CR CATEGORIES" 3 64, 5 32. 6 22

1. Introduction

Corneil and Gotlieb [4] mention that one of the possible applications of subgraph iso-
morphism is for finding whether a given chemical compound is a subcompound of a
further specified compound, given the structural formulas. Subgraph isomorphism may
be useful in scene analysis [1, 10] for detecting a relationally descmbed object that is
embedded in a scene. Problems akin to subgraph isomorphism have also arisen in research
on the recognition of distorted shapes, where any admissible distortion conserves posi-
tional relationships within limits. There is some formal similarity between the problems
of finding whether two graphs are related by a 1:1 correspondence that conserves ad-
jacency and finding whether two patterns are related by a distortion that conserves
spatial relationships within known limits. This idea is explored at an introductory level
in [11, Sec. 7.3]; [11] also indicates the historical origin of the algorithm that is described
in the present paper.

I t is well known that isomorphism can be determined by brute-force enumeration. As
a first step toward introducing the original part of our algorithm, Section 2 of this paper
describes a brute-force enumeration procedure that is actually a depth-first tree-search
algorithm. Section 3 introduces the original part of the work, which consists of a proce-
dure that is entered after each node in the tree search. The result of this procedure is
generally a reduction in the number of successor nodes that must be searched, which
yields a reduction in the total computer time required for determining isomorphism.

In Corneil and Gotlieb's algorithm [4], the two graphs that are to be tested for iso-
morphism are separately subjected to a computation which produces representative

Copyright © 1976, Association for Computing Machinery, Inc. General permmslon to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Author's address. Division of Computer Science, National Physical Laboratory, Teddmgton, Middle-
sex TWll OLW, England.

Journal of the Assocmtlon for Computing Machinery, Vol 23, No I, J anua ry 1976, pp 31--42

3 2 J. R. ULLMANN

graphs. Like the tree-search algorithm of Berztiss [2], which we will discuss later, our
algorithm differs from tha t of Corneil and Gotlieb in tha t i t does not process the two
graphs separately: the abi l i ty to cope with subgraph isomorphism stems from the fact
tha t the computat ion always works on both graphs at once. We have not a t tempted to
find a graph proper ty tha t is possessed by all graphs which are isomorphic to a given
graph.

In this paper we will use the terminology of Nllsson [7] for tree-search computations,
and we will use the terminology of Hara ry [5] for graphs other than search trees. A graph
G consists of a finite nonempty set V of p elements tha t are called points, together with
a set E of q distinct unordered pairs of dist inct points tha t belong to V. A pair of points
tha t belongs to E is a line. A subgraph of G is a graph whose points and lines all belong
to G. A graph G, is ~somorphw to a subgraph of a graph Ga if and only if there is a 1 : 1
correspondence between the point sets of this subgraph and of G, tha t preserves adja-
cency.

2. Szmple Enumeratwn Algomthm for Subgraph Isomorphism

In this section we formulate a simple tree-search algorithm; for introductory purposes
we omit the vi tal procedure tha t eliminates successor nodes in the search. This procedure
is introduced in Section 3.

TiLe enumeration algorithm is designed to find all of the isomorphisms between a given
graph G, = (V , , E ,) and subgraphs of a further given graph Ga = (V~, E~). The
numbers of points and lines of G, and G~ are p , , q, and p~, q~, respectively. The adja-
cency matrices of G~ and G# are A = [a,~] and B = [b,j], respectively.

For reasons tha t will soon become apparent , we define an M' matrix to be a p , (rows) X
pa (columns) matrix whose elements are l ' s and O's, such tha t each row contains exactly
one 1 and no column contains more than one 1. A matrix M' = [m~:] can be used to
permute the rows and columns of B to produce a further matrix C. Specifically, we define
C = [c,~] = M'(M'B) T, where T denotes transposition. If i t is true tha t

(V iV j) (a , = 1) ~ (c,~ = 1), (1)
l<~<pa,

then M ~ specifies an isomorphism between G, and a subgraph of G~. In this case, if
m:j = 1, then the 3th point in G~ corresponds to the ~th point in G, in this isomorphisffa.

At, the s tar t of the enumeration algorithm, we construct a p , X p~ element matrix
M ° = ImPel in accordance with

= 1 if the degree of the j t h point of G~ is greater than or equal to the degree of
0 m ~ the i th point of G , ,

= 0 otherwise.

Indeed we would set m,~ = 0 if we had any a prior1 reason to be sure tha t the 3th point
of G~ could not correspond to the zth point of G, in any subgraph isomorphism.

The enumeration algorithm works by generating all possible matrices M' such tha t
for each and every element m~ of M J, (m~ = 1) ~ (m~ °, = 1). For each such matr ix
M' the algorithm tests for Isomorphism by applying condition (1). Matrices M' are
generated by systematically changing to 0 all but one of the l ' s in each of the rows of

0 M , subject to the definitory condition tha t no column of a matrix M' may contain more
than one 1. In the search tree, the terminal nodes are at depth d = p , and they corre-
spond to distinct matrices M' . Each nonterminal node at depth d < p~ corresponds to
a dist inct matrix M which differs from M ° in tha t in d of the rows, all but one of the l ' s
has been changed to 0.

The algorithm uses a p~-bit binary vector {F1, . . . , F , , . . . , Fpa I to record which
columns have been used at an intermediate state of the computat ion. F, = 1 if the zth
column has been used. The algorithm also uses a vector {H~, - . . , Ha , . . , Hr.} to

An Algorzthm for Subgraph Isomorphism 33

record which column has been selected at which depth . H~ = k if the kth co lumn has
been selected at dep th d.

We shall use the symbol := to denote assignment. Thus d := d + 1 means "se t d
equal to d + 1." Fur ther , we shall wri te M := M d , meaning "se t the entire matr ix M
equal to mat r ix Md ." Mat r ix M~ is a stored copy of matr ix M at dep th d. We have for-
mula ted the a lgor i thm so tha t i t is as similar as possible to the a lgor i thm of Sect ion 3
(for ins tance the complete ass ignment Md : = M is not really necessary in the present
section).

The simple enumera t ion a lgor i thm is as follows.

Step 1 M = M °, d "= 1; H1 = 0;
for allz = 1, .. , p, , set F, .= 0;

Step2 If there is no value of 3 such that md~ = landF~ = 0 then go to step 7;
Md = M,
i fd = 1 thent .= Hi elsek .= 0,

Step3 k '= k + 1,
ff mdk = 0 or Fk = 1 then go to step 3;
for all .7 # /~ set mdj := 0,

Step 4. If d < p. then go to step 6 else use condition (1) and give output if an isomorphism is found;
Step5 If there lsno3 >ksuchthatnmdj = l a n d F : = 0 then go to step 7;

M . = M a ,
go to step 3;

Step6 H~ = k, Fk = 1; d = d + 1;
go to step 2,

Step 7 If d = 1 then terminate algorithm,
Fk = 0 ; d . = d - 1, M =M,~, k .=H, t ,
go to step 5,

3. Algorzthm Employzng Refinement Procedure

To reduce the amoun t of computa t ion required for finding subgraph isomorphisms we
employ a procedure, which we call the refinement procedure, t ha t el iminates some of the
l ' s f rom the matr ices M, thus el iminat ing successor nodes m the t ree search.

To in t roduce the ref inement procedure, let us consider the mat r ix M tha t is associated
with any given nonterminal node in the search tree. Any subgraph isomorphism corre-
sponds to a par t icular matr ix M' . We say tha t an isomorphism is an isomorphism under
M if its te rminal node in the search t ree is a successor of the node with which M is asso-
ciated. The O's in the matr ix M merely preclude correspondences be tween points of V .

f

and V~. I f m, j = 0 for all lsomorphlsms under M, then if m . = 1 we can change m . = 1
to m . = 0 wi thout losing any of the isomorphisms under M : all such isomorphisms will
still be found by the t ree search. In the next paragraph we work out a condit ion tha t is
necessardy satisfied if m:~ = 1 for any isomorphisms under M. I f this necessary condi-
t ion is not satisfied and m . = 1, then the ref inement procedure changes m . = 1 to
m,j = O.

Let v~, be the i th point in V~, and let v~ be the 3th point in V~. Let
{v.1, - • • , v.~, • • , v.~} be the set of all points of G. tha t are ad jacent to v.~ in g . . Let
us consider the mat r ix M ' t h a t is associated ~ i t h any given isomorphism under M. F r o m
the definition of subgraph isomorphism it is necessary tha t if v.~ corresponds to vt~ in
the isomorphism, then for each x = 1, . - . , ~ there mus t exist a point ray in V~ t h a t is
ad jacent to v~j, such tha t v~y corresponds to v.~ in the isomorphism. I f v~v corresponds
to v.~ in the isomorphism, then the e lement of M ' t h a t corresponds to Iv.~, v~v} is 1.
Therefore if v.~ corresponds to v~j in any i somorphism under M, then for each
x = 1, . . , ~ there must be a 1 in M corresponding to some {v.~, v~y} such tha t va~ is
ad jacent to vt~ • In o ther words, ff v.~ corresponds to v~j in any isomorphism under M,
then

(Vx) ((a , , = 1) ~ (~ y) (m,~.b~, = 1)) . (2)

34 J .R. ULLMANN

The refinement procedure simply tests each 1 in M to find whether condition (2) is
satisfied. For any m,j = 1 such that (2) is not satisfied, m,~ = 1 is changed to m,j = 0.
Such changes may cause condition (2) to be no longer satisfied for furtherA's in M, so
that further changes can be made, and so on. In fact the refinement procedure applies
condition (2) in turn to each i in M, and it then does this over and over again until there
is an iteration in which all the l ' s in M are processed and none of them is changed to 0.
Note that there is no restriction on the order in which the l ' s in M should be processed;
this means that the refinement procedure can be implemented in asynchronous hardware
(see Section 5).

Generally the result of the refinement procedure is to change some of the l ' s in M
to O's. However, the refinement procedure may leave M unchanged, and this is particu-
larly important when M is a matrix M'. A necessary and sufficient condition for sub-
graph isomorphism is that the refinement procedure leaves M ' unchanged. Tlus follows
because if M' is unchanged by the refinement procedure, then (2) holds for each 1 in M'.
Therefore M' specifies a 1:1 mapping of V, into V~ such that if two points are adjacent
m G, then the two corresponding points in G~ are adjacent. We can therefore use the
refinement procedure as a test for subgraph isomorplnsm instead of using condition (1) :
if the refinement procedure results in any 1 in M' being changed to 0, then M' does not
specify an isomorphism.

During the refinement procedure we continually check whether any row of M contains
no 1. If any row of M contains no 1 then the procedure jumps to its FAIL exit, because
there is no advantage in continuing the procedure. Otherwise the procedure terminates
at its SUCCEED exit.

In the detailed program implementation, we do not use one computer word per ele-
ment of A, B, and M. Instead we ensure that each row of M is contained in a separate
computer word and each column of B is contained m a separate computer word. To
implement condition (2), we a n d the word containing the xth row of M with the word
containing the 3th column of B, and test whether the resulting word contains any l 's.
This is, of course, much faster than bit-by-bit computation, and it is important that the
refinement procedure can in this way exploit the limited parallelism of an ordinary digital
computer. The refinement procedure is formulated m Appendix 1.

Using the refinement procedure, our algorithm for subgraph isomorplnsm is as follows:

Step 1 M = M °, d = 1, HI = 0,
for all~ = l, -.- ,p, setF, .= 0;
refine M, if exit FAIL then terminate algorithm;

Step 2. If there ls no value of 3 such that me~ ~- landf~ = 0 then go to step 7 ,
Me .= M;
ifd = 1 tbenk -~ Hlelseb .= 0;

Step3 b = k ~ 1,
if mdk = 0 or fk = 1 then go to step 3;
for all 3 ~ k set md~ = 0;
refine M; if exit FAIL then go to step 5;

Step .i If d ~ p~ then go to step 6 else give output to indicate that aa isomorphmm has been found ;
Step5 I f t h e r e i s n o 3 > k s u c h t h a t m d ~ = l a n d f j = O t h e n g o t o s t e p 7 ,

M = M e ;
go to step 3,

Step6 ~He = k, Fk = 1; d = d--~ 1;
go to step 2,

Step 7. If d = 1 then terminate algorithm,
F~ =0 ; d • d - 1; M . = M ~ , k : = H d ;
go to step 5;

For simplicity we have formulated the algorithm so that d = 1, 2, .. • , p , correspond
respectively to the 1st, 2 n d , . . , p , t h rows of adjacency matrix A, but we have not
followed this in our experiments, Instead we have arranged that d = 1, 2, -. , p , cor-
respond respectively to the points of G, in order of decreasing degree. This is intended

An Algorithm for Subgraph Isomorphism 35

to enhance the effect of the refinement procedure at nodes near to the root node of the
search tree, since a point of high degree is adjacent to more points than a point of low
degree. An al ternative strategy might be more appropriate in a specific application of
the algorithm.

The refinement procedure necessarily converges in a finite number of steps because i t
never changes a 0 to a 1 in M and the number of l ' s in M is finite. Our complete algorithm
for subgraph isomorphism is t ruly an algorithm: it necessarily finds all subgraph isomor-
phisms within a finite time. To assess the time actually taken by the algorithm, we have
resorted to experiment.

4. Experzments

Experiments were carried out with a K D F 9 computer, which IS a somewhat unusual
machine of approximately 1963 vintage. This machine does logic and ari thmetic on the
last-in words of a last-in-first-out stack of words. To add together the two last-in words
takes 1 usec, and to fetch a 48-bit word from the core store to the stack takes 9 ~sec.
These figures are mentioned here in order to endow our computer-t ime results with
a l i t t le (but unfortunately not more than a little) meaning. The programs were writ ten
in the assembly language of the KDF9.

We used a pseudorandom number generator [91 to construct adjacency matrices. The
program was writ ten so tha t the probabil i ty of an off-diagonal element being 1 was
approximately 0.25. Each adjacency matrix produced by this program was tested for
connectedness, and if the corresponding graph was found not to be connected, 1 then the
adjacency matrix was rejected and a new one was constructed using further pseudo-
random numbers. In our experiments, all graphs were generated in this way, unless
otherwise stated. Figure 1 shows q versus p for such graphs. Each cross in Figure 1 de-
notes an average value of q over 50 trials with different graphs.

In our s tatements of experimental results, s.d. always means the square root of
(l / n) ~ z ~ - ((l / n) ~ z) 2 when there are n trials with variate z. Although in this
work the distributions are generally very skewed, we give s.d. values as a bet ter- than-
nothing rough measure of the variabi l i ty of the variate. In Figures 1 and 2, the length
of the vertical line through a cross is twice the s.d. value. Every random-graph result
tha t is reported below was obtained over fifty trials with different graphs.

The storage requirements of our algorithm are small except for the storage of p ,
matrices M, which occupy p2p~ bits, or p,~ words in our implementation.

SUBGRAPH ISOMORPHISM. For selected values of p , and p~ such tha t p , < p~, adja-
cency matrices A and B were generated as described above. Matr ix A was or'ed into
matr ix B by means of the following procedure: For each ~, j = 1 , - . - , p , set
b , := b , V a,~. Of course the resulting B matrices had higher values of qs than those
indicated in Figure 1. For each pair of matrices A and B, we applied the subgraph iso-
morphism algorithm of Section 3; Table I summarizes the results.

CLIQUE DETECTION. A clzque is a maximal complete subgraph [5]. As a further dem-
onstration of the subgraph isomorphism algorithm we apphed it, after suitable modifica-
tion, to the detection of cliques. We used the obvious method in which the subgraph iso-
morphism algorithm is applied to G~ and complete graphs G, for successively smaller
values of p , until a t least one isomorphism is found. The modifications to the Section 3
algorithm, and the reasons for them, are given in Appendix 2. Experimental results with
random graphs are summarized in Table II .

In the complete 3-parti te graph K(3 , 3, 3) our program found 27 3-point cliques in

If G= was a connected graph and if Ga was a dmconnected graph consmting of, for example, two con-
nected subgraphs G~L and G~, then we could test for isomorphmms between G= and subgraphs of Gat
and G~ separately, thus reducing the amount of computation required. Although this would be help-
ful in practice, it would tend to complicate our experiments, and this is why we have experimented
only with connected graphs.

36 J. R. ULLMANN

Avomge q'o~
~o

~ 0

I,

30

20 $

+
+

+

+

++
t +

,]O 110 p2]1, Jz6 IlS 120, 122 Ju [~ 12s po 1~2 I~ p6 1~8 1,0 F,2 I " I

FIG 1. Number of]iRes versus number of points for pseudorandomly generated graphs

TABLE I. RESULTS OF EXPERIMENTS WITH SUBGRAPH ISOMORPHISM

P. Pt3
Number of Tzme m seconds

q~ isomorphisms

av. s.d. av. s.d av s.d.

6 12 21.1 3.1 960 8 140.4 14.5 13.11
8 12 23.5 2 9 1223.0 142.8 44.5 55 4

10 12 26.0 3.4 949 1 121 2 124.0 90 4
7 14 28.3 4.0 4769 9 88.9 97.6 118 7

TABLE I I . RESULTS OF EXPERIMENTS WITH
CLIQUE DETECTION

Points per Number of Tzme m
p~ clique cliques seconds

av. s.d. av. s.d. av. s.d.

12 3.1 0.3 2.9 1 8 0 3 0 5
16 3.2 0 .4 5.3 3 5 0.7 0 .5

3.5 0 .5 7.1 6.6 1.6 0 6
24 3.8 0 .5 6 .4 8.3 3 1 0 .8
28 3.9 0 .4 7.0 9.7 6.3 1.6

An Algorithm for Subgraph Isomorphism 37

120

I15

~1-0

LOS
~0
9S
90
85
80

Z5
.7O
55

S'S

60
3S

z s

! o
l"S

~0

a I.

Average time I

t

t
t

t

D

I~o Ilz lu. It6 Ile Izo tzz 12~ Iz6 Iza 13o I~z 134 136 t3~ 14o t4z I - I

Fro. 2. Time in seconds versus number of points for determinatmn of isomorphism of pseudo-
randomly generated graphs

0.6 sec, and in the complete 4-parti te graph K(3, 3, 3, 3) our program found 81 4-point
cliques in 3.2 sec. For these graphs the tree-search clique detection procedure of Bron
and Kerbosch [3] appears to be faster than ours, bearing in mind that their procedure was
writ ten m ALGOL, ours was writ ten in assembly language, and the K D F 9 and EL-X8
are similar in speed. Osteen and Tou [8] have also reported tha t their clique detection
algorithm found these cliques in less t ime than ours, but using an IBM 360/65, which
is very roughly three times as fast as a KDF9.

GRAPH ISOMORPHISM. Figure 2 shows computing t ime versus p~ for determining all
isomorphisms between two identical graphs GA and G8 = G~. Here the matrices M ° were
constructed according to '{ m,~ = '1 if the degree of the i th point of GA is the same as the degree of the

~th point of GB, (3)
0 otherwise.

For p~ > 20 there was never more than one isomorphism between GA and G~.
For p , = 6, 8, 10 we also determined all isomorphisms between G~ and G~ = GA using

the simple enumeration algorithm of Section 2, with M ° constructed according to (3).
In over 50 trials the average times for p , = 6, 8, 10 were 0.2 see, 1.1 see, and 13.74 see,
respectively. Comparing these results with Figure 2, we see tha t on the average the
algorithm of Section 3 finds all lsomorphisms between a pair of 46-point 260-line graphs

38 J. R. ULLMANN

more quickly than the algorithm of Section 2 finds all isomorphisms between a pair of
10-point 13-line graphs.

From Figure 2 we see tha t for an average edge density equal to 0.25, the t iming of our
algorithm depends roughly on p,~, whereas Corneil and Gotheb [4] have reported tha t
the t iming of their algorithm on isomorphic random graphs depends on p2 . They have
specifically reported tha t their algorithm took 0.00447 min on an IBM 7094-II for edge
densi*y = 0.5 and p , = 20. Our algorithm took 0.0217 min = 1.3 sec on the average for
these graphs, and i t took 0.9 sec when we used the faster version of the refinement pro-
cedure tha t is mentioned at the end of Appendix 1. For isomorphic random graphs, the
Cornefl and Gotlieb algorithm appears to be more efficient than ours.

A referee commented tha t even a poor algorithm for isomorphism may work quite
well with random graphs. To provide a more stringent test, the referee kindly provided,
with the permission of D. Cornefi, a collection of strongly regular graphs tha t had been
used by D. Corneil and others. The first seven of these graphs each had 25 points. Using
the faster version of the refinement procedure, our algorithm took 1964, 1392, and 1652
sec respectively on the first three of these graphs On the fourth and fifth i t failed to find
all isomorphisms within 3000 sec, and we did not consider i t worthwhile to run the algo-
r i thm with further graphs in this collection, since the first five took so long. The adja-
cency matr ix for the first graph is

0 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 0
1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0
1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 o 0
1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1
1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1
1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0
0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1
1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0
0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0
0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1
1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0
0 1 0 0 1 0 4 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 o 1 1 1 0 1 0 o 0 0 1 o 1
0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0
1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 1 1
1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1
1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0
0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0
0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0
0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1
1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1
0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1
1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1
0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0

In the case of graph (not subgraph) isomorphism, in the refinement procedure we
could use, as well as (2), the inverse condition m,j = 1 only if

(Vv) (b,, = 1) ~ (3x) (a,~.~nx~ = 1).

However, this condition is not mathematical ly indispensible and we did not use it be-
cause i t would not have allowed exploitation of the parallelism tha t was mentioned in
Section 3.

Perhaps we should also mention tha t in the ease of graph isomorphism, if a matrix
M' is unchanged by the refinement procedure, then Ga is isomorphic to GB. To see this,
we can reason as in Section 3 to establish tha t if refinement leaves M' unchanged, then
if two points are adjacent in GA the corresponding points in G~ are adjacent. When M °

An Algorithm for Subgraph Isomorphism 39

is constructed according to (3) the degrees of corresponding points are the same, so
there can be no two adjacent points in Gs that correspond to nonadjacent points in
GA, if M' is unchanged by the refinement procedure.

DIGRAPH ISOMORPHISM. Berztiss [2] has provided a graph and subgraph isomorphism
procedure for directed graphs. A directed graph or digraph consists of a finite nonempty
set V of points, tegether with a set of ordered pairs of points in V. The algorithm intro-
duced in the present paper is similar to that of Berztiss in that it works by tree searching
instead of vertex classification, and it is an algorithm, not merely a heuristic procedure,
and not based on an unproven conjecture. Berztiss represents digraphs by linear formu-
las, and his algorithm constructs successively larger subformulas that match in the two
digraphs. Our algorithm differs in that at any stage of the search, we are not concerned
only with a subset of the rows of M: every 1 in M is processed every time the refinement
procedure is executed. In Berztlss' algorithm there is no obvious counterpart of the itera-
tion of the refinement procedure. Since our algorithm works directly with adjacency
matrices, we do not have to construct linear formulas.

To compare the timing of our procedure with that of Berztiss, we have experimented
with the same family of digraphs that Berztiss used. These are digraphs in which the in-
degree and outdegree of every point is exactly p~/2. To test for digraph Isomorphism,
we start by constructing M ° according to

i if the indegree of the zth point in GA is the same as the indegree of the 3th
0 point in GB and the outdegree of the ith point in GA is the same as the out-

m , = degree of t he j t h point in GB,
otherwise.

We then apply the algorithm of Section 3 with the refinement procedure modified as
follows: ~n,j = 1 is changed to m,j = 0 unless

(Vx) ((a,~ -- 1) ~ (~y) (m~ b~ = 1) and (Vx) ((a~ -- 1) ~ (3y) (mxy.byj = 1)).

For nonisomorphic and lsomorphm digraphs our experimental results are summarized
in Table I I I . There appears to be no significant difference between the timings on iso-
morphic and nonisomorphic digraphs, and the timing increases with p~ less rapidly than
that of Berztiss' algorithm.

5. Parallel Hardware Embodiment of Refinement Procedure

We now describe a logic-in-memory array that can execute the refinement procedure in
less than one t~sec. This hardware is remarkably simple, but it requires a very large
number of gates.

I t is convenient to regard A, B, and M as Boolean matrices in which 1 and 0 corre-
spond to true and false respectively. Further, it is convenient to define a p~ X pa Boolean
matrix R = [r,j] by

r~ = (3~)(m~y.b~j). (4)

T A B L E I I I . RESULTS OFF EXPERIMENTS WITH
DIGRAPH ISOMORPHISM

Time in seconds

p,~ Nonisomorphic Isomorphic

av. s d. av s d

6 03 05 0.3 05
8 0.8 0.6 10 09

10 2.5 11 2.8 1.2
12 65 24 6.4 2.4

40 z. R. ULLMANN

Condition (2) can now be written as m . = m,~ . (Vx) (d ,~ Y r~j), which can readily be
manipulated into

m,~ = m , . (3 x) (a , ~ . ~ j) . (5)

The hardware includes a separate bistable element (flip-flop) corresponding to each
element of each of the matrices A, B, and M. For instance, as in [6], the bistable corre-
sponding to a , is set to state 1 if a,: = 1 or to state 0 if a,~ = 0, we shall not discuss
the means by which this is done. For each x = 1, • • • , p , and y, 2 = 1, • • • , p~ there is
a separate and gate that derives its two inputs from the bistables that correspond to m~
and b~ . The network also includes one or gate for each x = 1, • • • , p , and2 = 1, - • • , p~.
Any such or gate computes r~ = (3 x) (m ~ - b ~) and its p~ inputs are derived from the
outputs of the and gates that compute m~.by~ for y = 1, . . . , p~. Corresponding to
each or gate r~j there is an inverter whose output is ~ j . For each x, z = 1, .. , p , and
j = I, . . . , p~ there is an and gate that computes a , ~ . ~ . Finally, the network includes
p~ ~ pz or gates, each of which computes (3x) (a ,~ ~) for different ~, 2- The inputs to
the or gate that computes (3x)(a,~. ~) are the outputs of the p , and gates that compute
a,~.~j for • = 1, -. , p , . Perhaps because the network is essentially four-dimensional
(~, j , x, y), we have not been able to produce a really helpful diagram of it.

The network operates as follows. At time to the matrix M is read into the p , X p~
bistables m , that are provided for it. At a time tl that is sufficiently delayed after to to
allow operation of all of the or gates r~j, the external inputs to bistables m,: are removed.
Thereafter the bistable m , is reset to state 0 if the or gate (3 x) (a , ~ - ~) produces output
1, and otherwise the state of the bistable m,j remains unchanged. At a later time t~ the
matrix M that results from the refinement procedure can be read out from the bistables
m , . The refinement procedure is executed asynchronously, and time t2 must be suffi-
ciently delayed after h to allow completion of the asynchronous iterative computation.

6. Boolean Matrix Formulatwn of the Refinement Procedure

For the purposes of the present section we regard (4) as the definition of a Boolean
product R = [r~] = M X B, and we also use the notation M = [~,~] and M . M ' =
[m,j m:j]. Using (5), this allows us to formulate the following refinement procedure:

Step 1 R = M X B,
Step2 M = M (A X R),
Step 3. If any row of M contains no l's then go to FAIL emt;
Step 4. If M was changed by step 2 then go to step 1 else go to SUCCEED emt,

We have introduced this formulation because it is succinct, but unfortunately it does
not express the asynchronous nature of the refinement procedure. This formulation sug-
gests that step 2 is carried out only after completion of step 1. In our software and hard-
ware implementations, m,~ is changed to m,~ = 0 as soon as condition (2) is not satisfied:
there would be no practical advantage in postponing such changes until the end of an
iteration.

7. Conclusion

For isomorphic random graphs our algorithm finds all isomorphisms in a time roughly
proportional to p 3 , and this satisfies Corneil and Gotlieb's criterion that an algorithm
is efficient if the time is proportional to a power of p , . However, for the very hmited
classes of graphs that we have used experimentally, our graph isomorphism algorithm
appears to be less efficient than that of Corneil and Gotheb [4] and our clique detection
procedure is probably less efficient than that of Bron and Kerbosch [3]. The principal
advantage of our algorithm is that it can cope with un&rected subgraph isomorphism,
although this may be a slow process when p, and p~ are large For mstance, we abandoned
subgraph isomorphism experiments with p , = 10 and p~ = 15 because fifty trials would
have been costly; and substantially less than fifty trials would not have given a worth-

An Algorithm for Subgraph Isomorphism 41

while estimate of the average time per trial. The slowness of the algorithm in this case
can be par t ly a t t r ibuted to the large values of q~ tha t result from or'ing adjacency matrix
A into adjacency matrix B. The algorithm obviously works more quickly the sparser
the matrix M °, and this is why the algorithm is more efficient for graph isomorphism
and clique detection than for general subgraph isomorphism.

I t is perhaps unnecessary to discuss the obvmus elaboratmns of the algorithm for
applicatmn to n-ary relational structures, where each such structure consists of a set of
V points together with a set of n-tuples of points m V.

Appendix 1. Statement of the Refinement Procedure

In the following formulation, h, ,, .1, k, and x are integer pointers, ehm is an integer whose
value is the number of l ' s tha t have been ehmmated so far m the present iteration, dogs is
the degree of the , th point in GA. 1st lS a list of all points that are adjacent to the , th
point in GA . SC lS a word tha t contains only one 1, which is used for scanning. At contains
the , th row of matrix A, B~ contains the ath column of matrix B, and M, contains the
, th row of matrix M. In each case the rightmost or bot tommost bit in a matrix row or
column is located at the least significant bi t of the computer word tha t contains it. &
means collation, e.g. 1100 & 1010 = 1000. NOT means negation of all bits, e.g. NOT
1100 = 0011. We have programmed the refinement procedure as follows:

Step 1 ehm .= 0,
~ ' = 1 ;

S t e p 2 k .= 1,
SC .= 2(Pa-l);
h ' = l ;

Step 3. l f s c & A, = 0 then go to s tep 4;
lst~ = h,
k . = k + l ;

Step 4. sc .= sc X 2 "1 ,
h ' = h + l ;
if k # d e g , + 1 then go to s tep 3;

Step 5. 3 = 1,
SC = 2 (pa-l),

Step 6. if M, &sc = 0 then go to step 9;
h .= I,

Step 7. x "=]sth,
if M, & Bs = 0 then go to step 8;
h = h + l ;
if h ~ d e g , + 1 then go to s tep 7 else go to s tep 9;

Step 8. M, = M, & N O T s c ,
ehm .= ehm + 1;
h - = h + l ;

Step 9. se .= se X 2-~;
a = 2 + 1 ;
if 3 # P~ + 1 then go 1o s tep 6;

S t e p l 0 if M, = 0 then go to FAIL exi t ;
= * + l ,

If * # p= + 1 then go to s tep 2;
if el im # 0 then go to s tep 1;
go to SUCCEED exi t ;

At the expense of using more storage area, the array 1st can of course be set up once-
and-for-all at the s tar t of the isomorphism program, so tha t it is unnecessary to repeat
stops 2, 3, and 4 in each iteration of the refinement procedure; computer t ime is thereby
saved.

Appen&x 2. Mo&ficatwn of the Isomorphzsm Algorithm for Use in Clique Detectwn

For use in clique detection we modified the algorithm of Section 3 by changing "if d = 1
then k := Hi else k := 0;" to "if d = 1 then k : = H~ else k : = H~_~ ;" in step 2.

4 2 J. R . U L L M A N N

A consequence of this modification is that in any generated matrix M', 3, < 3,+1 where
!

3, is the value of 3 such that m,j = 1. Dr. B. R. Heap pointed out that this fact can be
used to speed up the program by removing l ' s such that j , > j,+x from matrices M. In
all our experiments with clique detection, whenever the refinement procedure was exe-
cuted, it was immediately preceded by

i f d < p t h e n
b e g i n c . = k; f o r e := d @ l s t e p 1 u n t i l p ~ d o

h e g i t l f o r f ffi 1 s t e p l u n t i l c d o m e ! "= O;
c '= c-t- 1;

e n d
e n d ;

When this was used in step 1 of the algorithm of Section 3, we set k := 1.
If the algorithm of Section 3 had been used without modification, then when a clique

was found the algorithm would also have found all of the isomorphisms between G, and
this clique, thus m effect enumerating the automorphisms of the clique. We were not
interested in the number of automorphisms of a clique; we only wanted to know the
number of distinct cliques m G~. The modificatmn works by ensuring that in any gener-
ated raatrix M', 31 < j 2 < • • • < 3 p . w h e r e 3 x , 3 2 , • • • , 3 ~ . are the values of 3 correspond-
ing respectively to the p , l 's in M': the modification precludes all other permutations.

ACKNOWLEDGMENTS. The experiments with cliques were carried out at the suggestion
of Dr. B. R. Heap, who also proposed the modifications described in Appendix 2. The
author is grateful to the referee for his comments and, in particular, for recommending
comparison with References [2] and [3].

REFERENCES

1. BARROW, H. G , AMBLER, A. P , AND BURSTALL, R. M. Some techniques for recogmsing struc-
tures in pictures. In Frontiers of Pattern Recogn*twn, S. Watanabe, Ed., Academic Press, New
York, 1972, pp. 1-29

2. BERZTISS, A. T. A backtrack procedure for isomorphism of directed graphs. J. ACM ZO, 3
(July 1973), 365-377.

3. BRON, C , AND KERBOSCH, J Algorithm 457. Finding all chques in an undirected graph [H]
Comm. ACM 16, 9 (Sept. 1973), 575-577

4 CORNEIL, D. G , AND GOTLIEB, C C. An efficient algomthm for graph isomorphism J. ACM 17,
1 (Jan 1970), 51-64.

5 HARARY, F Graph Theory. Addison-Wesley, Reading, Mass , 1969.
6. I,EVITT, K. N., AND KAUTZ, W. H Cellular arrays for the solution of graph problems Comm.

ACM 15, 9 (Sept 1972), 789-801
7. NILSSON, N. J. Problem-Solving Methods ~n Artificial Inlelhgence. McGraw-Hill, New York,

1971
8. OSTEEN, R. E., AND TOU, J.T. Achque-detectlon algorithm based on neighbourhoods in graphs.

lnt J of Comput and Inform Sc~s ~, 4 (Dec. 1973), 257-268.
9. PIKE, M C , AND HILL, I .D . Algorithm 266: Pseudo-random numbers [G5]. Comm. ACM 8, 10

(Oct 1965), 605-606
10. SAK/~I, T., NAGAO, M., AND MATSUSHIMA, H. Extraction of invariant picture substructures by

computer. Comput Graphics and Image Process 1, 1 (April 1972), 81-96.
11. ULLMANN;-J. R Pattern Recogn~twn Techniques. Butterworths, London, and Crane Russak,

New York, 1973.

RECEIVED MARCH 1974; REVISED FEBRUARY 1975

Journal of the Aasoczatlon for Computing Machinery, VoI 23, No 1, January 1976

