
A (Sub)Graph Isomorphism Algorithm for
Matching Large Graphs

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone,
and Mario Vento

Abstract—We present an algorithm for graph isomorphism and subgraph

isomorphism suited for dealing with large graphs. A first version of the algorithm

has been presented in a previous paper, where we examined its performance for

the isomorphism of small and medium size graphs. The algorithm is improved here

to reduce its spatial complexity and to achieve a better performance on large

graphs; its features are analyzed in detail with special reference to time and

memory requirements. The results of a testing performed on a publicly available

database of synthetically generated graphs and on graphs relative to a real

application dealing with technical drawings are presented, confirming the

effectiveness of the approach, especially when working with large graphs.

Index Terms—Graph-subgraph isomorphism, large graphs, attributed relational

graphs.

�

1 INTRODUCTION

IN the last years, the scientific community active in the fields of
pattern analysis, pattern recognition, and computer vision has
considered graphs with increasing interest, and the applications
employing graphs have multiplied. Graphs are commonly used for
providing structural descriptions of images by decomposing them
into parts and associating graph nodes and branches to compo-
nents and their relationships. Handwritten characters, ideograms,
and symbols in documents and 3D scenes, just to mention a few
examples, have been described in this way [1], [2], [3], [4], [5].

From the point of view of pattern analysis and recognition, the
most important problem of graph processing is matching graphs or
subgraphs for comparing them. An extensive review of graph
matching algorithms for pattern recognition has been recentlymade
[6]. In exact graph matching, a strict correspondence between the
two graphs is sought; another basic research problem, called inexact
matching, concerns the extension of the matching concepts to the
case in which similarity between two graphs, not their exact
correspondence, is of interest [2]. The most common inexact
algorithms (error-correcting algorithms) use a set of editing
operations, such as node and branch insertion, deletion, or
substitution, in order to find an exact matching between the two
graphs [7], [8]. Algorithms evaluating the distance between graphs
in order to estimate their degree of similarity have also been
proposed (e.g., see [9]).

In this paper, the attention will be devoted to exact matching.
Besides being part of error correcting matching procedures, exact
matching may be of interest in different pattern analysis and
recognition contexts, thus deserving attention by the pattern
recognition community.

As it iswell-known, among the different types of graphmatching
(monomorphism, isomorphism, graph subgraph isomorphism)
subgraph isomorphism is a NP-complete problem, while it is still
an open question if also graph isomorphism is a NP-complete
problem. The exponential time requirement of matching algorithms

has been the main impediment for applications requiring graphs of
large size (hundreds or thousands of nodes).

Low complexity algorithms suited for matching large graphs
have been a subject of research during the last three decades. Some
of the proposed algorithms reduce the overall computational
complexity of the matching process by imposing restrictions on the
graphs (e.g., polynomial algorithms for trees, planar graphs, or
bounded valence graphs [10]).

An alternative approach is that of using an adequate represen-
tation of the searching process and pruning unprofitable paths in
the search space, without imposing any restriction on the graph
structure.

A procedure that significantly reduces the size of the search
space is the backtracking algorithm proposed by Ullmann [11].
This algorithm, devised for both graph isomorphism and subgraph
isomorphism, is still today one of the most commonly used for
exact graph matching. In [12], it is compared with other
algorithms, resulting the most convenient in terms of matching
time, in case of one-to-one matching. During the process, the
algorithm allows the integrated comparison of semantic informa-
tion. For the above reasons, in the following, we will systematically
compare our results with those of the Ullmann’s algorithm.

Among graph isomorphism algorithms, it is also necessary to
mention theNauty algorithm [13],which transforms thegraphs to be
matched to a canonical form before checking for the isomorphism.
Even if it is considered one of the fastest graph isomorphism
algorithms available, it has been shown that there are categories of
graphs forwhich it employs exponential time. Furthermore, it cannot
be used for solving the graph-subgraph isomorphism problem.

A rather recent method [14] attempts to reduce the overall
computational cost when matching a sample graph against a large
set of prototypes, resulting in a quadratic time with respect to
graph size, but with an exponential memory requirement and
preprocessing time. Other existing techniques, such as nondeter-
ministic ones (e.g., [15]), are so powerful as to reduce the
complexity, in most cases, from exponential to polynomial, but
are not guaranteed to find an exact and optimal solution.

In this paper, we propose a deterministic matching method for
verifying both isomorphism and subgraph isomorphism. The
algorithm has general validity since no constraints are imposed on
graph topology. A state space representation (SSR) of the matching
process is used and a set of five feasibility rules for pruning the
search tree are introduced. The adopted representation allows one
to simultaneously carry out the syntactic and semantic comparison
of the pairs of nodes to be matched. With respect to a preliminary
version of the algorithm, described in [16] and referred to as the
VF algorithm, the main improvement introduced is that the data
structures employed during the exploration of the search space are
organized in such a way to significantly reduce memory
requirements. Thus, the algorithm is suitable for matching graphs
with thousands of nodes and branches. An accurate testing has
been performed on a publicly available database of synthetically
generated graphs [17] and on attributed graphs obtained from a
real application in the field of technical drawings. A comparative
experimental analysis completes the performance characterization
of the algorithm.

The paper is organized as follows: In Section 2, a short
description of the improved graph-matching algorithm, named
VF2, is described and the results of the theoretical analysis of its
overall efficiency, in terms of computational and spatial complex-
ity, are presented. Section 3 is devoted to algorithm testing and
comparative analysis of the obtained results. Final notes and
conclusions are in Section 4.

2 THE VF2 ALGORITHM

A matching process between two graphs G1 ¼ ðN1; B1Þ and G2 ¼
ðN2; B2Þ consists in the determination of a mapping M which
associates nodes ofG1 with nodes ofG2 and vice versa, according to

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004 1367

. L.P. Cordella, P. Foggia, and C. Sansone are with the Dipartimento di
Informatica e Sistemistica, Universitá di Napoli ”Federico II” Via Claudio
21, I-80125 Napoli, Italy. E-mail: {cordel, foggiapa, carlosan}@unina.it.

. M. Vento is with the Dipartimento di Ingegneria dell’Informazione e di
Ingegneria Elettrica, Universitá di Salerno Via Ponte Don Melillo,
1 I-84084, Fisciano (SA), Italy. E-mail: mvento@unisa.it.

Manuscript received 16 Apr. 2002; revised 27 Jan. 2004; accepted 17 Feb. 2004.
Recommended for acceptance by E. Hancock.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 116354.

0162-8828/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

somepredefined constraints.Generally, themappingM is expressed
as the set of pairs ðn;mÞ (with n 2 G1 andm 2 G2) each representing
the mapping of a node n of G1 with a node m of G2. A mapping
M � N1 �N2 is said to be an isomorphism iff M is a bijective
function that preserves the branch structure of the two graphs. A
mappingM � N1 �N2 is said to be a graph-subgraph isomorphism
iffM is an isomorphism between G2 and a subgraph of G1.

The process of finding the mapping function can be suitably
described by means of a State Space Representation (SSR) [18].
Each state s of the matching process can be associated to a partial
mapping solution MðsÞ, which contains only a subset of M. MðsÞ
univocally identifies two subgraphs of G1 and G2, say G1ðsÞ and
G2ðsÞ, obtained by selecting from G1 and G2 only the nodes
included in MðsÞ, and the branches connecting them. In the
following, we will denote by M1ðsÞ, M2ðsÞ, B1ðsÞ, and B2ðsÞ the
sets of nodes of G1ðsÞ and G2ðsÞ and the corresponding branches.

According to these definitions, a transition from a generic state
s to a successor s0 represents the addition to the partial graphs
associated to s in the SSR, of a pair ðn;mÞ of matched nodes.

Among all the possible SSR states, only a small subset is
consistent with the wanted morphism type, in the sense that there
are no conditions that preclude the possibility of reaching a
complete solution. It can be proven that the consistency condition,
in case of isomorphism or graph subgraph isomorphism, is that the
partial graphs G1ðsÞ and G2ðsÞ associated to MðsÞ are isomorphic.

Our algorithm introduces a set of rules able to verify the
consistency conditions, making possible the generation of consis-
tent states only. Moreover, the number of states generated in the
process can be further reduced by adding a set of rules (that we call
k-look-ahead rules) for checking in advance if a consistent state s has
no consistent successors after k steps.

Hereinafter, all the mentioned rules will be called feasibility
rules. For the sake of convenience, let us introduce the so-called
feasibility function F ðs; n;mÞ, which is true if the addition to a state s
of the pair ðn;mÞ satisfies all the feasibility rules.

The above feasibility rules depend only on the structure of the
input graphs. However, if the input graphs have node and branch
attributes, they also must be taken into account. Thus, the most
general form of the feasibility function is:

F ðs; n;mÞ ¼ Fsynðs; n;mÞ ^ Fsemðs; n;mÞ; ð1Þ

where Fsyn (syntactic feasibility) depends only on the structure of the
graphs, and Fsem (semantic feasibility) depends on the attributes.

A high-level description of the algorithm we propose is
outlined in Fig. 1. In the initial state s0, the mapping function
does not contain any component, i.e., Mðs0Þ ¼ ;. For each
intermediate state s, the algorithm computes the set P ðsÞ (see next
section for more details) of the node pairs that are candidate to be
added to the current state s. For each pair p belonging to P ðsÞ, the

feasibility rules are evaluated; if they succeed, i.e., F ðs; n;mÞ is
true, being p ¼ ðn;mÞ, the successor state s0 ¼ s [p is computed
and the whole process recursively applies to s0. Note that the
algorithm explores the search graph in the SSR according to a
depth-first search strategy. Using this simple formulation, a state
can be reached through different paths. In order to avoid that,
during the matching process, the algorithm generates useless and
already generated states, a special procedure for generating a node
successor is used. An arbitrary, total order relation (denoted by �)
is defined on those nodes of G2 which belong to the set P ðsÞ. Since
the node insertion order in the partial solution MðsÞ does not
influence the resulting state, the algorithm ignores any pair ðni;mjÞ
in P ðsÞ if this set already contains a node mk � mj. This simple
strategy allows the algorithm to generate each state only once.

In the following section, we will examine how the set P ðsÞ is
defined; then, in Section 2.2, we will address the definition of the
feasibility rules.

2.1 Computation of the Candidate Pairs Set P ðsÞ
The set P ðsÞ of all the possible pairs candidate to be added to the
current state is obtained by considering first the sets of the nodes
directly connected to G1ðsÞ and G2ðsÞ. Let us denote with Tout

1 ðsÞ
and Tout

2 ðsÞ the sets of nodes, not yet in the partial mapping, that
are the destination of branches starting from G1ðsÞ and G2ðsÞ,
respectively; similarly, with T in

1 ðsÞ and T in
2 ðsÞ, we will denote the

sets of nodes, not yet in the partial mapping, that are the origin of
branches ending into G1ðsÞ and G2ðsÞ.

The set P ðsÞ will be made of all the node pairs ðn;mÞ, with n
belonging to T out

1 ðsÞ andm to T out
2 ðsÞ, unless one of these two sets is

empty. In this case, the set P ðsÞ is likewise obtained by considering
T in
1 ðsÞ and T in

2 ðsÞ, respectively. In presence of not connected graphs,
for some state s, all of the above sets may be empty. In this case, the
set of candidate pairs making up P ðsÞwill be the set PdðsÞ of all the
pairs of nodes not contained neither in G1ðsÞ nor in G2ðsÞ.

2.2 Feasibility Rules

Five feasibility rules are defined: Rpred, Rsucc, Rin, Rout, and Rnew.
The first two rules check the consistency of the partial solution
Mðs0Þ obtained by adding the considered candidate pair ðn;mÞ to
the current partial solution MðsÞ. The remaining three rules are
introduced for pruning the search tree; in particular, Rin and Rout

perform a 1-look-ahead in the searching process, and Rnew a 2-look-
ahead. In conclusion, the proposed feasibility function is:

Fsynðs; n;mÞ ¼ Rpred ^Rsucc ^Rin ^ Rout ^Rnew: ð2Þ

Given a graph G ¼ ðN;BÞ and a node n 2 N , the sets, respec-
tively, containing the predecessors and the successors of n will be
denoted by PredðG;nÞ and SuccðG;nÞ. Also, in the following
definitions, we will use the sets T1ðsÞ ¼ T in

1 ðsÞ [T out
1 ðsÞ and

1368 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004

Fig. 1. The VF2 matching algorithm.

~NN1ðsÞ ¼ N1 �M1ðsÞ � T1ðsÞ. Similar expressions hold for T2 and ~NN2.
Here, are the formal definitions of the five rules for the subgraph
isomorphism case:

Rpredðs; n;mÞ ()
ð8n0 2 M1ðsÞ \ PredðG1; nÞ9m0 2 PredðG2;mÞ j ðn0; m0Þ2MðsÞÞ^
ð8m0 2 M2ðsÞ \ PredðG2;mÞ9n0 2 PredðG1; nÞ j ðn0; m0Þ 2 MðsÞÞ;

ð3Þ

Rsuccðs; n;mÞ ()
ð8n0 2 M1ðsÞ \ SuccðG1; nÞ9m0 2 SuccðG2;mÞ j ðn0; m0Þ 2 MðsÞÞ^
ð8m0 2 M2ðsÞ \ SuccðG2;mÞ9n0 2 SuccðG1; nÞ j ðn0; m0Þ 2 MðsÞÞ;

ð4Þ

Rinðs; n;mÞ ()
ðCardðSuccðG1; nÞ \ T in

1 ðsÞÞ � CardðSuccðG2; mÞ \ T in
2 ðsÞÞÞ^

ðCardðPredðG1; nÞ \ T in
1 ðsÞÞ � CardðPredðG2; mÞ \ T in

2 ðsÞÞÞ;
ð5Þ

Routðs; n;mÞ ()
ðCardðSuccðG1; nÞ \ T out

1 ðsÞÞ � CardðSuccðG2; mÞ \ T out
2 ðsÞÞÞ^

ðCardðPredðG1; nÞ \ T out
1 ðsÞÞ � CardðPredðG2; mÞ \ T out

2 ðsÞÞÞ;
ð6Þ

Rnewðs; n;mÞ ()
Cardð ~NN1ðsÞ \ PredðG1; nÞÞ � Cardð ~NN2ðsÞ \ PredðG2; nÞÞ^
Cardð ~NN1ðsÞ \ SuccðG1; nÞÞ � Cardð ~NN2ðsÞ \ SuccðG2; nÞÞ:

ð7Þ

Considering the graph isomorphism instead of the subgraph
isomorphism, the rules Rsucc and Rpred maintain the same form,
while in rules Rin, Rout, and Rnew, the � operator must be
substituted by ¼ .

2.3 Semantic Feasibility

When we turn our attention to attributed graphs, the inclusion of
node/branch attributes in the matching algorithm can be
performed in two ways, depending on whether we have symbolic
or (real-valued) numeric attributes. For symbolic attributes that, in
some cases, are derived from numeric attributes through a
quantization process, we suppose that a compatibility relation �
is defined between two node/branch attributes. For some
applications, � may coincide with the equality relation, while in
other cases a more “tolerant” definition may be necessary. Each
time we check the feasibility of a new pair, the attributes of the
nodes and branches being added are tested for semantic
compatibility. Formally, we can define:

Fsemðs; n;mÞ () n � m

^ 8ðn0;m0Þ 2 MðsÞ; ðn; n0Þ 2 B1) ðn; n0Þ � ðm;m0Þ
^ 8ðn0;m0Þ 2 MðsÞ; ðn0; nÞ 2 B1) ðn0; nÞ � ðm0; mÞ:

ð8Þ

For numeric attributes, we exploit this information in two ways.
First, a compatibility relation is definedon the basis of a thresholding
on the absolute difference of the attributes beingmatched, leading to
a semantic feasibility function analogous to (8). Furthermore, a cost
function is introduced to give a quantitative evaluation of the
dissimilarity between two nodes or branches. The algorithm, in its
exploration of the search space, saves only thematching that obtains
theminimumtotal cost. Thecost is actually computed foreach state s,
as the sum of the cost of its parent state and of the costs due to the
newly added nodes and branches. Since these latter are assumed to
be not negative, the total cost of a statewill be greater than or equal to
the costs of all its ancestors. We can use this information to prune all
the states whose cost is greater than the cost of the best goal state
reached so far, further reducing the search space.

2.4 Data Structures and Implementation Issues

In order to make the algorithm run with an acceptable time and
space complexity also on large graphs, it is important to employ
well-devised data structures for performing the computation of
P ðsÞ and of F ðs; n;mÞ. In the actual implementation, the following
data structures are used:

. Two vectors, core_1 and core_2, whose dimensions
correspond to the number of nodes in G1 and G2,
respectively, containing the current mapping; in particular,
core_1[n] contains the index of the node paired with n, if
n is in M1ðsÞ, and the distinguished value NULL_NODE

otherwise. The same encoding is used for core_2.
. Four vectors, in_1, out_1, in_2, out_2, whose dimen-

sions are equal to the number of nodes in the correspond-
ing graphs, describing the membership of the terminal
sets. In particular, in_1[n] is nonzero if n is either in M1ðsÞ
or in T in

1 ðsÞ; similar definitions hold for the other three
vectors. The actual value stored in the vectors is the depth
in the SSR tree of the state in which the node entered the
corresponding set.

Using the vectors described above, the tests for the membership
of the various sets require a constant time. It follows that the
computation of P ðsÞ can be done in a time in the worst case
proportional to j N1 j þ j N2 j , while the computation of F ðs; n;mÞ
can be performed in a time proportional to the number of the
branches involving n and m.

It is important to note that all the vectors have the following
property: If an element is nonnull in a state s, it will remain
nonnull in all the states descending from s. This property, together
with the depth-first strategy of the search, is used to avoid the need
to store a different copy of the vectors for each state: When the
algorithm backtracks, it restores the previous value of the vectors.
The memory requirement, with respect to the number of nodes N ,
is quite lower than in other similar algorithms. In fact, except for
the six vectors, that are shared among the states, each state needs a
constant (and small) amount of memory, and the depth-first search
strategy ensures that there can be at most N states in memory at a
time. It follows that the memory required is �ðNÞ, with a small
constant factor. Table 1 summarizes the time and spatial complex-
ity of our algorithm compared with that of Ullmann’s Algorithm as
can be deduced from [11] and [12], in the best and worst case. The
analytical estimation of the computational complexity in the
average case is not a simple task unless some very restrictive
assumptions are made. For this reason, we have performed a set of
tests aimed at evaluating the average time required by the
matching in case of both isomorphism and graph-subgraph
isomorphism, as reported in the following section.

Time complexity has been obtained considering that in the best
case our algorithm visits N states, while in the worst case N ! states
need to be explored.

3 EXPERIMENTAL RESULTS

We have systematically compared the results of the VF2 algorithm
with those obtained on the same data by Ullmann’s Algorithm, for
the reasons mentioned in Section 1. Although an implementation
of the latter algorithm was already available on the Web (ftp://
ftp.iam.unibe.ch/pub/Tools/GUB_toolkit.tar.Z), for our testing
we have developed a more effective code and made it also
available on the Web (http://amalfi.dis.unina.it/graph/). More-
over, as regards the isomorphism case, we also compared the
results obtained by Ullmann’s Algorithm and by ours with those
obtained by the Nauty Algorithm. In particular, in our tests, we
used the version 2.0b9 of the Nauty Algorithm made available by
B.D. McKay at the URL: http://cs.anu.edu.au/~bdm/nauty.

For the isomorphism case, the database used for testing
algorithms’ performance was made of 10,000 couples of iso-
morphic graphs: This is part of a wider database of synthetically

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004 1369

generated graphs, especially developed for benchmarking pur-
poses [17] and available on the Web (http://www.iapr.org/
benchmarks.html). On the other hand, the performance of the
graph-subgraph matching algorithm has been evaluated in the
context of a real problem: the detection of component parts in large
images. Namely, mechanical line drawings and topographic maps
have been considered.

3.1 Graph Isomorphism

The performance of the three algorithms has been evaluated on the
following kinds of graphs: randomly connected graphs (3,000 couples),
regular and irregular 2D meshes (4,000 couples), and bounded valence
graphs (3,000 couples). Each category contains couples of graphs of
different size, ranging from a few dozens to about 1,000 nodes. For
each size and kind of graph, 100 different couples have been
considered. In the following, a brief description of each category is
given.

Randomly connected graphs are graphs where edges connect
nodes without any structural regularity. To generate these graphs,
we have adopted the same model proposed in [11]: It fixes the
value � of the probability that an edge is present between two
distinct nodes. The probability distribution is assumed to be
uniform, and the edges are independent.

2D mesh graphs are considered for simulating applications

dealing with regular structures as those operating at the lower

levels of a vision task. The considered meshes are 4-connected (i.e.,

each node is connected only with the nodes at north, south, east,

and west) by directed edges.
Irregular 2D meshes have been introduced for simulating the

behavior of the algorithms in presence of slightly distorted meshes.
These have been obtained from regular 2D meshes by the addition
of �N edges (where � is a positive constant), each connecting nodes
that have been randomly determined according to a uniform
distribution.

Bounded valence graphs model those applications in which each
object (i.e., a node) establishes a fixed number of relations (edges)

with other objects. Three different values of the valence v (3, 6, and
9) have been considered.

Table 2 summarizes the obtained results,1 showing the
algorithm that achieves the best performance for each combination
of graph size and type. From the table, it results that VF2 performs
better on 56 of the 100 considered combinations, while on the

remaining 44 cases the best algorithm is Nauty. Moreover, albeit it
is not evident from the table, in the cases in which Nauty obtains
the best performance, VF2 is always the second best; on the other
hand, there are six cases in which both VF2 and Ullmann’s
algorithms outperform Nauty.

From the analysis of the table, it appears that Nauty is more
convenient on randomly connected graphs that exhibit no regular
structure, especially when the edge density becomes high. This kind
of graph, anyway, does not adequately represent the graph
structures found in many applications, where the graphs often
show some form of regularity. On the other hand, for graphs with a
more regular structure, VF2 is more efficient, especially for large
graph sizes.

3.2 Graph-Subgraph Isomorphism of Attributed Graphs

In order to test our algorithm in the context of a graph-subgraph
isomorphism application, we have employed a set of attributed
graphs derived from large line drawings according to a method
described in [20]. In particular, we have used two publicly
available images,2 respectively, representing a mechanical draw-
ings (ENGINE-2) and a cadastral map (MAP-1). From each image,

a set of subimages corresponding to the image connected
components was extracted and represented as graphs. Features
of the obtained graphs and subgraphs are shown in Table 3. Fig. 2
shows the MAP-1 image with some of the component parts

1370 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004

TABLE 2
A Comparison between VF2 and Nauty as a Function of the Graph Size and of the Kind of the Graphs

TABLE 1
Spatial and Time Complexity of VF2 and of Ullmann’s Algorithm in the Best and Worst Case

1. Further experimental results can be found at the URL: http://
amalfi.dis.unina.it/graph.

2. A CD-ROM with the images was made available by M. Burge and
W. Kropatsch during the SSPR workshop held in Sidney in August 1998.

considered. In the adopted encoding of the images, graph branches

represent strokes and graph nodes represent stroke junctions or

end points. Nodes and branches are labeled with numeric

attributes characterizing absolute position of the points and shape

and orientation of the strokes connecting them. For our test, we

have neglected node attributes and used stroke length and

orientation as branch attributes.
A simple semantic feasibility rule has been defined, allowing

two branches to match if they are roughly similar. A semantic

feasibility rule requiring the equality of the corresponding

attributes would have been of course more effective in reducing

the matching effort, but, as already mentioned, an inexact rule

provides a more realistic estimate of the algorithm behavior in real

applications. The feasibility rule assumes that two branches are

similar if their lengths differ by less than 30 percent and their

orientations differ by less than 30 degrees.
The matching times of the VF2 algorithm have been compared

with those obtained with Ullmann’s Algorithm, modified so as to

take into account the same semantic feasibility rule. Fig. 3 reports

the performance of the two algorithms on the two considered

images. It can be seen that our algorithm performs significantly

better, especially when the size of the subgraphs is over about 20

nodes. In fact, while the matching time for Ullmann’s Algorithm

rises rapidly with the number of subgraph nodes, the time needed

by our algorithm is almost independent of the number of nodes.

The time ratio reaches four orders of magnitude for subgraphs of

more than 100 nodes.

4 CONCLUSIONS

We have presented and evaluated, both analytically and experi-

mentally, a graph matching algorithm, whose computational

complexity is reduced, due to the use of a set of feasibility rules

during the matching process. The algorithm is tailored for dealing

with large graphs without making particular assumptions on the

nature of the graphs to be matched and can be used for both

isomorphism and graph-subgraph isomorphism. Another distinc-

tive feature of the algorithm is its ability to deal also with

Attributed Relational Graphs, profitably exploiting the information

held by the semantic part of the ARG in order to further reducing

the matching time. The achievement seems of particular interest

since almost all of the algorithms presented in the literature till

now do not satisfy all the above requirements together.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004 1371

Fig. 2. (a) The MAP-1 image and (b) some of the parts used as subgraphs.

TABLE 3
Some Features of Graphs and Subgraphs Obtained from the Test Images

Fig. 3. Matching times for the subgraphs of the MAP-1 image (a) and of the ENGINE-2 image (b).

REFERENCES

[1] I. Rocha and T. Pavlidis, “A Shape Analysis Model with Application to a
Character Recognition System,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 16, pp. 393-404, 1994.

[2] L.G. Shapiro and R.M. Haralick, “Structural Description and Inexact
Matching,” IEEE Trans. Pattern Analysis and Machine Intelligence, no. 3,
pp. 505-519, 1981.

[3] L.P. Cordella and M. Vento, “Symbol Recognition in Documents: A
Collection of Techniques?” Int’l J. Document Analysis and Recognition, vol. 3,
pp. 73-88, 2000.

[4] L. Jianzhuang and L.Y. Tsui, “Graph-Based Method for Face Identification
from a Single 2D Line Drawing,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 23, no. 10, pp. 1106-1119, 2001.

[5] J. Llados, E. Marti, and J.J. Villanueva, “Symbol Recognition by Error-
Tolerant Subgraph Matching between Region Adjacency Graphs,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1137-1143,
2001.

[6] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty Years of Graph
Matching in Pattern Recognition,” Int’l J. Pattern Recognition and Artificial
Intelligence, vol. 18, no. 3, pp. 265-298, 2004.

[7] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento, “Subgraph Transforma-
tions for the Inexact Matching of Attributed Relational Graphs,” Computing,
vol. 12, pp. 43-52, 1998.

[8] W.H. Tsai and K.S. Fu, “Subgraph Error-Correcting Isomorphisms for
Syntactic Pattern Recognition,” IEEE Trans. Systems, Man, and Cybernetics,
vol. 13, pp. 48-62, 1983.

[9] L.G. Shapiro and R.M. Haralick, “A Metric for Comparing Relational
Descriptions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 7,
pp. 90-94, 1985.

[10] E.M. Luks, “Isomorphism of Graphs of Bounded Valence can be Tested in
Polynomial Time,” J. Computer System Science, pp. 42-65, 1982.

[11] J.R. Ullmann, “An Algorithm for Subgraph Isomorphism,” J. Assoc. for
Computing Machinery, vol. 23, pp. 31-42, 1976.

[12] B.T. Messmer, “Efficient Graph Matching Algorithms for Preprocessed
Model Graphs,” PhD Thesis, Inst. of Computer Science and Applied
Mathematics, Univ. of Bern, 1996.

[13] B.D. McKay, “Practical Graph Isomorphism,” Congressus Numerantium,
vol. 30, pp. 45-87, 1981.

[14] H. Bunke and B.T. Messmer, “Efficient Attributed Graph Matching and Its
Application to Image Analysis,” Proc. Image Analysis and Processing, pp. 45-
55, 1995.

[15] W.J. Christmas, J. Kittler, and M. Petrou, “Structural Matching in Computer
Vision Using Probabilistic Relaxation,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 17, no. 8, pp. 749-764, 1995.

[16] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento, “Evaluating
Performance of the VF Graph Matching Algorithm,” Proc. 10th Int’l Conf.
Image Analysis and Processing, pp. 1172-1177, Sept. 1999.

[17] P. Foggia, C. Sansone, and M. Vento, “A Database of Graphs for
Isomorphism and Sub Graph Isomorphism Benchmarking,” Proc. Third
IAPR TC-15 Int’l Workshop Graph Based Representations, pp. 176-188, 2001.

[18] N.J. Nilsson, Principles of Artificial Intelligence. Springer-Verlag, 1982.
[19] B.T. Messmer and H. Bunke, “A Decision Tree Approach to Graph and

Subgraph Isomorphism Detection,” Pattern Recognition, vol. 32, pp. 1979-
1998, 1999.

[20] M. Burge and W.G. Kropatsch, “A Minimal Line Property Preserving
Representation for Line Images,” Computing, vol. 62, no. 4, pp. 355-368, 1999.

. For more information on this or any computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

1372 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004

