
Graph Indexing: A Frequent Structure-based Approach ∗

Xifeng Yan† Philip S. Yu‡ Jiawei Han†

†Department of Computer Science
University of Illinois at Urbana-Champaign

{xyan, hanj}@cs.uiuc.edu
‡IBM T. J. Watson Research Center

psyu@us.ibm.com

ABSTRACT
Graph has become increasingly important in modelling com-
plicated structures and schemaless data such as proteins,
chemical compounds, and XML documents. Given a graph
query, it is desirable to retrieve graphs quickly from a large
database via graph-based indices. In this paper, we investi-
gate the issues of indexing graphs and propose a novel solu-
tion by applying a graph mining technique. Different from
the existing path-based methods, our approach, called gIndex,
makes use of frequent substructure as the basic indexing fea-
ture. Frequent substructures are ideal candidates since they
explore the intrinsic characteristics of the data and are rel-
atively stable to database updates. To reduce the size of
index structure, two techniques, size-increasing support con-
straint and discriminative fragments, are introduced. Our
performance study shows that gIndex has 10 times smaller
index size, but achieves 3–10 times better performance in
comparison with a typical path-based method, GraphGrep.
The gIndex approach not only provides an elegant solution
to the graph indexing problem, but also demonstrates how
database indexing and query processing can benefit from
data mining, especially frequent pattern mining. Further-
more, the concepts developed here can be applied to index-
ing sequences, trees, and other complicated structures as
well.

1. INTRODUCTION
Graphs have become increasingly important in modelling

complicated structures and schemaless data such as proteins,
circuits, images, Web, and XML documents. Conceptually,
any kind of data can be represented by graphs. Besides the
prevalent use of XML in Web documents, we also witness

∗ This work was supported in part by the U.S. National Sci-
ence Foundation NSF IIS-02-09199, an IBM Faculty Award,
and an IBM Summer Internship. Any opinions, findings,
and conclusions or recommendations expressed in this pa-
per are those of the authors and do not necessarily reflect
the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . .$5.00.

the wide usage of graph databases in various domains. For
example, in computer vision, graphs are used to represent
complex relationships, such as the organization of entities
in images. These relationships can be used to identify ob-
jects and scenes. Efficient retrieval of graph-based models
is an essential problem in pattern recognition, as indicated
by the wealth of research literature. In chemical informat-
ics and bio-informatics, scientists use graphs to represent
compounds and proteins. Daylight system [8], a commercial
product for compound registration, has already been used
in chemical informatics. Benefiting from such a system, re-
searchers are able to do screening, designing, and knowledge
discovery from compound or molecular databases.

In the core of many graph-related applications, lies a com-
mon and critical problem: how to efficiently process graph
queries and retrieve related graphs. In some cases, the suc-
cess of an application directly relies on the efficiency of the
query processing system. The classical graph query prob-
lem can be described as follows: Given a graph database
D = {g1, g2, . . . , gn} and a graph query q, find all the graphs
in which q is a subgraph. It is inefficient to perform a se-
quential scan on the graph database and check whether q is
a subgraph of gi. Sequential scan is very costly because one
has to not only access the whole graph database but also
check subgraph isomorphism which is NP-complete.

Clearly, it is necessary to build graph indices in order to
help processing graph queries. XML query is a simple kind
of graph query, which is usually built around path expres-
sions. Various indexing methods [6, 12, 5, 9, 4, 14, 3] have
been developed to process XML queries. These methods are
optimized for path expressions and tree-structured data. In
order to answer arbitrary graph queries, GraphGrep and
Daylight systems are proposed in [14, 8]. Since all of these
methods take path as the basic indexing unit, we catego-
rize them as path-based indexing approach. In this paper,
GraphGrep is taken as an example of path-based indexing
since it represents the state of the art technique for graph
indexing. Its general idea is as follows: enumerate all the
existing paths in a database up to maxL length and index
them, where a path is a vertex sequence, v1, v2, . . . , vk, s.t.,
∀1 ≤ i ≤ k − 1, (vi, vi+1) is an edge. It uses the index to
identify every graph gi that contains all the paths (up to
maxL length) in query q.

The path-based approach has two advantages:

1. Paths are easier to manipulate than trees and graphs.

2. The index space is predefined: all the paths up to
maxL length are selected.

In order to answer tree- or graph- structured queries, a
path-based approach has to break them into paths, search
each path separately for the graphs containing the path, and
join the results. Since the structural information could be
lost when breaking such queries apart, it is likely that many
false positive answers will be returned. Thus, a path-based
approach is not suitable for complex graph queries. The ad-
vantages mentioned above of path-based indexing now be-
come its weak points for indexing graphs:

1. Path is too simple: structural information is lost.

2. There are too many paths: the set of paths in a graph
database usually is huge.

The following example illustrates the disadvantages of path-
based approaches. Figure 1 is a sample chemical dataset
extracted from an AIDS antiviral screening database 1. For
simplicity, we ignore the bond type.

C C C C

(a)

C C

C

CC

C

(b)

C

C
C

C

C

C

C
C

C
C

(c)

Figure 1: A Sample Database

C C

C

C

C

C

Figure 2: A Sample Query

Figure 2 shows a sample query, 2,3-dimethylbutane. As-
sume that this query is posed to the sample database. Al-
though only graph (c) in Figure 1 is the answer, graphs (a)
and (b) cannot be pruned since both of them contain all the
paths existing in the query graph: c, c − c, c − c − c, and
c − c − c − c. In this case, carbon chains (up to length 4)
are not discriminative enough to tell the difference in the
sample graphs. This indicates that path may not be a good
structure to serve as the index feature for graph databases.

As another problem, a graph database may contain too
many paths if its graphs are large and diverse. For example,
by randomly extracting 10, 000 graphs from the antiviral
screening database, we find that there are totally around
100, 000 paths with length up to 10. Most of them are re-
dundant based on our observation. It is inefficient to index
all of them.

The above analysis motivates us to search for an alterna-
tive solution. “Can we use graph structure instead of path
as the basic index feature?” This study provides a firm an-
swer to this question. It shows that a graph-based index can
significantly improve query performance over a path-based
one. Certainly, the number of graph structures is usually
much larger than the number of paths in a graph database.
To overcome this difficulty, only frequent subgraphs (i.e., fre-
quent substructures) with length up to maxL are retained

1http://dtp.nci.nih.gov/docs/aids/aids data.html.

for indexing; whereas the frequent subgraphs can be gener-
ated by existing frequent graph mining algorithms efficiently
[7, 10, 20, 17, 2, 21].

In order to avoid the exponential growth of the number of
frequent subgraphs, the support threshold is progressively
increased when the subgraphs grow large. That is, we use
low support for small subgraphs and high support for large
subgraphs. Meanwhile, the concept of discriminative struc-
ture is introduced to reduce the redundancy among the fre-
quent subgraphs selected as index features. These ideas lead
to the development of our new algorithm, gIndex. gIndex
can scale down the number of indexing features in the above
example on the AIDS antiviral screening database to 3, 000,
but improve query response time by 3 to 10 times on average.
gIndex also explores novel concepts to improve query search
time, including using the Apriori pruning and maximum dis-
criminative structures to reduce the number of subgraphs to
be examined for index access and query processing.

Frequent subgraphs are ideal candidates for indexing since
they are relatively stable to database updates, thereby mak-
ing incremental maintenance of index affordable. They also
provide an efficient solution on index construction: we can
first mine discriminative structures from a small portion of
a large database, and then build the complete index based
on these structures by scanning the whole database once.

In this paper, the issues of feature selection, index search,
index construction, and incremental maintenance are thor-
oughly explored. The contribution of this study is not only
at providing a novel and efficient solution to graph indexing,
but also at the demonstration of how data mining technology
may help solving indexing and query processing problems.
This may inspire us to further explore the application of data
mining in query processing and data management. Further-
more, the concepts developed here can also be applied to
indexing sequences, trees, and other complex structures.

The remaining of the paper is organized as follows. Sec-
tion 2 defines the preliminary concepts and briefly analyzes
the graph query processing problem. Section 3 introduces
frequent fragment and the size-increasing support constraint.
Discriminative fragment is introduced in Section 4. Section
5 formulates the algorithm and presents the index construc-
tion and incremental maintenance processes. Our perfor-
mance study is reported in Section 6. Related work is dis-
cussed in Section 7, and Section 8 summarizes our study.

2. PRELIMINARIES
As a general data structure, labeled graph is used to

model complicated structures and schemaless data. In la-
beled graph, vertex and edge represent entity and relation-
ship, respectively. The attributes associated with entities
and relationships are called labels. XML is a kind of di-
rected labeled graph. The chemical compounds shown in
Figure 1 are undirected labeled graphs. In this paper, we
investigate indexing techniques for undirected labeled graphs.
It is straightforward to extend our method to process other
kinds of graphs.

As a notational convention, the vertex set of a graph g
is denoted by V (g), the edge set by E(g), and the size of
a graph by len(g), which is defined by |E(g)| in this paper.
A label function, l, maps a vertex or an edge to a label. A
graph g is a subgraph of another graph g′ if there exists a
subgraph isomorphism from g to g′, denoted by g ⊆ g′. g′

is called a super-graph of g.

Definition 1 (Subgraph Isomorphism). A subgraph
isomorphism is an injective function f : V (g) → V (g′), such
that (1) ∀u ∈ V (g), l(u) = l′(f(u)), and (2) ∀(u, v) ∈ E(g),
(f(u), f(v)) ∈ E(g′) and l(u, v) = l′(f(u), f(v)), where l and
l′ are the label function of g and g′, respectively. f is called
an embedding of g in g′.

Definition 2 (Graph Query Processing). Given a
graph database D = {g1, g2, . . . , gn} and a query graph q, it
returns the query answer set Dq = {gi|q ⊆ gi, gi ∈ D}.

Example 1. Figure 1 shows a sample labeled graph dataset.
This dataset will be used as our running example. For the
query q shown in Figure 2, the query answer set, Dq, has
only one element: graph (c) in Figure 1.

In general, graph query can be any kind of SQL state-
ments applied to graphs. Besides the topological condition,
one may also use other conditions to perform indexing. In
this paper, we focus on indexing graphs only based on their
topology.

The processing of graph queries can be divided into two
major steps:

1. Index construction, which is a preprocessing step, per-
formed by enumerating and selecting features in graph
database D. The graph feature set is denoted by F 2.
For any graph feature f ∈ F , Df is the set of graphs
containing f , Df = {gi|f ⊆ gi, gi ∈ D}.

2. Query processing, which consists of two substeps: (1)
Search, which enumerates all the features in a query
graph, q, to compute the candidate query answer set,
Cq =

⋂
f Df (f ⊆ q and f ∈ F); each graph in Cq

contains all q’s features in the feature set. Therefore,
Dq is a subset of Cq. (2) Verification, which checks
graph g in Cq to verify whether q is really a subgraph
of g.

Cost Analysis. In graph query processing, the major con-
cern is Query Response Time:

Tsearch + |Cq| ∗ Tiso test, (1)

where Tsearch is the time spent in the search step and Tiso test

is the average time of subgraph isomorphism testing, which
is conducted over query q and graphs in Cq. In the verifi-
cation step, it takes |Cq| ∗ Tiso test to prune false positives
in Cq. Usually the verification time dominates Eq. (1) since
the computational complexity of Tiso test is NP-complete.
Approximately, the value of Tiso test does not change too
much for a given query. Thus, the key to improve query re-
sponse time is to minimize the size of the candidate answer
set, |Cq|. If a graph database is very large such that the
index cannot be held in the memory, Tsearch may be critical
for the query response time.

We are also interested in minimizing the index size M ,
which is approximately proportional to the size of the feature
set |F |:

M ∝ |F | (2)

2A graph without any vertex and edge is denoted by f∅, f∅
is viewed as a special feature, which is a subgraph of any
graph. For completeness, F must include f∅.

Thus, in order to reduce the index size, it is important
to maintain a compact feature set. Otherwise, if the index
is too large to reside in the memory, the cost of accessing
F may be even greater than that of accessing the graph
database itself. In the next section, we will begin our exam-
ination of minimizing |Cq| and |F |.

3. FREQUENT FRAGMENT
Given a graph database D, |Dg| is the number of graphs

in D where g is a subgraph. |Dg| is called (absolute) support,
denoted by support(g). A graph g is frequent if its support
is no less than a minimum support threshold, minSup. As
one can see, frequent graph is a relative concept. Whether
a graph is frequent depends on the setting of minSup. We
use the term “fragment” to refer to a small subgraph (i.e.,
substructure) existing in graph databases and query graphs.
Figure 3 shows two frequent fragments in the sample database
with minSup = 2.

C

C

C

C

C

(a)

C

C

CC

(b)

Figure 3: Frequent Fragments

Frequent fragments expose the intrinsic characteristic of
a graph database. Suppose all the frequent fragments with
minimum support minSup are indexed. Given a query graph
q, if q is frequent, the graphs containing q can be retrieved
directly since q is indexed. Otherwise, q probably has a fre-
quent subgraph f whose support may be close to minSup.
Since any graph with q embedded must contain q’s sub-
graphs, Df is a candidate answer set of query q. If minSup is
low, it is not expensive to verify the small number of graphs
in Df in order to find the query answer set. Therefore, it
is feasible to index frequent fragments for graph query pro-
cessing.

A further examination helps clarify the case where query
q is not frequent in the graph database. We sort all q’s
subgraphs in the support decreasing order: f1, f2, . . . , fn.
There must exist a boundary between fi and fi+1 where
support(fi) ≥ minSup and support(fi+1) < minSup. Since
all the frequent fragments with minimum support minSup
are indexed, the graphs containing fj (1 ≤ j ≤ i) are known.
Therefore, we can compute the candidate answer set Cq by⋂

1≤j≤i Dfj , whose size is at most support(fi). For many

queries, support(fi) is likely to be close to minSup. Hence
the intersection of its frequent fragments,

⋂
1≤j≤i Dfj , leads

to a small size of Cq. Therefore, the cost of verifying Cq

is minimal when minSup is low. This is confirmed by our
experiments in Section 6.

The above discussion exposes our key idea in graph in-
dexing: It is feasible to construct high-quality indices using
only frequent fragments. However, for low support queries
(i.e., queries whose answer set is small), the size of candi-
date answer set Cq is related to the setting of minSup. If
minSup is set too high, the size of Cq may be too large. If
minSup is set too low, it is too difficult to generate all the
frequent fragments because there may exist an exponential
number of frequent fragments under low support.

Should we enforce a uniform minSup for all the frag-
ments? Let’s examine a simple example: a completely con-
nected graph with 10 vertices, each of which has a distinct
label. There are 45 1-edge subgraphs, 360 2-edge ones, and
more than 1, 814, 400 8-edge ones3. As one can see, in or-
der to reduce the overall index size, it is appropriate for
the index scheme to have low minimum support on small
fragments (for effectiveness) and high minimum support on
large fragments (for compactness). This criterion on the se-
lection of frequent fragments for effective indexing is called
size-increasing support constraint.

Definition 3 (Size-increasing Support). Given a
monotonically nondecreasing function, ψ(l), pattern g is fre-
quent under the size-increasing support constraint if and
only if support(g) ≥ ψ(len(g)), and ψ(l) is a size-increasing
support function.

By enforcing the size-increasing support constraint, we
bias the feature selection to small fragments with low mini-
mum support and large fragments with high minimum sup-
port. Especially, we always choose the (absolute) minSup to
be 1 for size-0 fragment to ensure the completeness of the in-
dexing. This method leads to two advantages: (1) the num-
ber of frequent fragments so obtained is much less than that
with the lowest uniform minSup, and (2) low-support large
fragments may be indexed well by their smaller subgraphs;
thereby we do not miss useful fragments for indexing.

0 5 10
0

5

10

15

20

fragment size (edges)

su
pp

or
t(

%
)

Θ

θ

(a) exponential

0 5 10
0

5

10

15

20

fragment size (edges)

su
pp

or
t(

%
)

Θ

θ

(b) piecewise-linear

Figure 4: Size-increasing Support Functions

Example 2. Figure 4 shows two size-increasing support
functions: exponential and piecewise-linear. We select size-
1 fragments with minimum support θ and larger fragments
with higher support until we exhaust fragments up to size of
maxL with minimum support Θ. A typical setting of θ and
Θ is 1 and 0.1N , respectively, where N is the size of the
database. We have a wide range of monotonically nonde-
creasing functions to use as ψ(l).

By using frequent fragments with the size-increasing sup-
port constraint, we have a smaller number of fragments to
index. However, the number of indexed fragments may still
be huge when the support is low. For example, 1,000 graphs
may easily produce 100,000 fragments of that kind. It is
both time and space consuming to index them. In the next
section, we design a distillation procedure to acquire the best
fragments, i.e., discriminative fragments, from the frequent
fragments. In the end, only the most useful fragments are
retained as indexing features.
3For any n-vertex complete graph with different vertex la-
bels, the number of size-k connected subgraphs is greater
than Ck+1

n × (k + 1)!/2, which is the number of size-k paths
(k < n).

4. DISCRIMINATIVE FRAGMENT
Do we need to index every frequent fragment? Let’s have

some analysis. If two similar frequent fragments, f1 and f2,
are contained by the same set of graphs in the database, i.e.,
Df1 = Df2 , it is probably wise to include only one of them
in the feature set. Generally speaking, among similar frag-
ments with the same support, it is often sufficient to index
only the smallest common fragment since more query graphs
may contain the smallest fragment. That is to say, if f ′, a
supergraph of f , has the same support as f , it will not be
able to provide more information than f if both are selected
as indexing features. Thus f ′ should be removed from the
feature set. In this case, we say f ′ is not more discrimina-
tive than f . Note that this is contrary to the closed graph
concept introduced in [21], which is to reduce the number
of frequent subgraphs generated in graph mining, where the
maximum fragments are retained.

Example 3. All the graphs in the sample database (Fig-
ure 1) contain carbon-chains: c, c−c, c−c−c, and c−c−c−c.
Fragments c−c, c−c−c, and c−c−c−c do not provide more
indexing power than fragment c. Thus, they are useless for
indexing.

So far, we considered only the discriminative power be-
tween a fragment and one of its subgraphs. This concept
can be further extended to the combination of its subgraphs.

Definition 4 (Redundant Fragment).
Fragment x is redundant with respect to feature set F if Dx ≈⋂

f∈F∧f⊆x Df .

Each graph in set
⋂

f∈F∧f⊆x Df contains all x’s sub-

graphs in the feature set F . If Dx is close to
⋂

f∈F∧f⊆x Df ,
it implies the presence of fragment x in a graph can be pre-
dicted well by the presence of its subgraphs. Thus, fragment
x should not be used as an indexing feature since it does not
provide any benefit to pruning if its subgraphs are already
being used as indexing features. In such case, x is a redun-
dant fragment. In contrast, there are fragments which are
not redundant, called discriminative fragments.

Definition 5 (Discriminative Fragment).
Fragment x is discriminative with respect to F if Dx ¿⋂

f∈F∧f⊆x Df .

Example 4. Let us examine the query example in Figure
2. As shown in Example 3, carbon chains, c − c, c − c − c,
and c − c − c − c, are redundant and should not be used as
indexing features in this dataset. The carbon ring (Figure
5 (c)) is a discriminative fragment since only graph (c) in
Figure 1 contains it while graphs (b) and (c) in Figure 1
have all of its subgraphs. Fragments (a) and (b) in Figure 5
are discriminative too.

Since Dx is always a subset of
⋂

f∈F∧f⊆x Df , x should be
either redundant or discriminative. Obviously, redundant
fragment is a relative concept. We provide a simple measure
on the degree of redundancy. Let fragments f1, f2, . . . , fn be
indexing features. Given a new fragment x, the discrimina-
tive power of x can be measured by

Pr(x|fϕ1 , . . . , fϕm), fϕi ⊆ x, 1 ≤ ϕi ≤ n. (3)

Eq. (3) shows the presence probability of x given the pres-
ence of fϕ1 , . . . , fϕm in a graph. We denote 1/Pr(x|fϕ1 , . . . ,

fϕm) by γ, called discriminative ratio. γ has the following
properties:

1. γ ≥ 1.

2. when γ = 1, fragment x is completely redundant since
the graphs indexed by this fragment can be fully in-
dexed by the combination of fragment fϕi .

3. when γ À 1, fragment x is more discriminative than
the combination of fragments fϕi . Thus, x becomes a
good candidate to index.

4. γ is related to the fragments which are already in the
feature set.

The discriminative ratio can be calculated by the following
formula:

γ =
|⋂i Dfϕi

|
|Dx| , (4)

where Dx is the set of graphs containing x and
⋂

i Dfϕi
is

the set of graphs which contain the subgraphs of x in the
feature set.

In order to mine discriminative fragments, we may set a
minimum discriminative ratio γmin and retain any fragment
whose discriminative ratio is no less than γmin. We shall
generate discriminative fragments from small size to large
size.

C

C

CC

(a)

C

C

C

C

C

(b)

C

C

C

C C

(c)

Figure 5: Discriminative Fragments

Example 5. Suppose we set ψ(l) ≡ 1 and γmin = 1.5
for the sample dataset in Figure 1. Figure 5 lists three of
discriminative fragments (usually, we shall also add f∅, a
fragment without any vertex and edge, into the feature set as
the initial fragment). There are other discriminative frag-
ments in this sample dataset. The discriminative ratio of
fragments (a), (b), and (c) is 1.5, 1.5, and 2.0, respectively.
The discriminative ratio of fragment (c) in Figure 5 can be
computed as follows: suppose fragments (a) and (b) have al-
ready been selected as index features. There are ”two” graphs
in the sample dataset containing fragment (b) and ”one”
graph containing fragment (c). Since fragment (b) is a sub-
graph of fragment (c), the discriminative ratio of fragment
(c) is 2/1 = 2.0.

5. GINDEX
In this section, we present the gIndex algorithm, exam-

ine the data structures storing the index, and discuss the
incremental maintenance of index that supports insertion
and deletion operations. We illustrate the design and imple-
mentation of gIndex in five subsections: (1) discriminative
fragment selection, (2) index construction, (3) search, (4)
verification, and (5) incremental maintenance.

4support(x) ≥ ψ(len(x)) and |⋂i Dfϕi
|/|Dx| ≥ γmin, for

fϕi ⊆ x.

Algorithm 1 featureSelection

Input: Graph database D, Discriminative ratio γmin,
Size-increasing support function ψ(l),
Maximum fragment size maxL.

Output: Feature set F .

1: let F = {f∅}, Df∅ = D, and l = 0;
2: while l ≤ maxL do
3: for each fragment x, whose size is l do
4: if x is frequent and discriminative4 then
5: F = F ∪ {x};
6: l = l + 1;
7: return F ;

5.1 Discriminative Fragment Selection
Applying the concepts introduced in Sections 3 and 4,

gIndex first generates all frequent fragments with the size-
increasing support constraint. Meanwhile, it distills these
fragments to eliminate the redundant ones. This feature se-
lection process proceeds in a level-wise manner, i.e., Breadth-
First Search (BFS). Algorithm 1 outlines the pseudo-code of
feature selection.

5.2 Index Construction
Once discriminative fragments are selected, gIndex has ef-

ficient data structures to store and retrieve them. It trans-
lates fragments into sequences and holds them in a prefix
tree. Each fragment is associated with an id list: the ids of
graphs containing this fragment. We present the details of
index construction in this section.

5.2.1 Graph Sequentialization
Substantial portion of computation involved in index con-

struction and searching is related to graph isomorphism check-
ing. One has to quickly retrieve a given fragment from the
index. Considering that graph isomorphism testing is hard
(It is suspected to be in neither P nor NP-complete, though
it is obviously in NP); it is inefficient to scan the whole fea-
ture set to match fragments one by one. An efficient solution
is to translate a graph into a sequence, called canonical la-
bel. If two fragments are the same, they must share the same
canonical label.

X

a

b

b

(a)

a

v0

X

Z Y

X

a

b

b

(b)

a
X

Z Y

v1

v2 v3

Figure 6: DFS Code Generation

A traditional sequentialization method is to concatenate
rows or columns of the adjacency matrix of a graph into an
integer sequence. Since most graphs in real applications are
sparse graphs, the traditional sequentialization method may
not work efficiently. There are too many useless 0’s in the

integer sequence. Furthermore, it is not space efficient to
store adjacency matrices. A novel graph sequentialization
method, called DFS coding, was introduced in [20, 21].

DFS coding can translate a graph into a unique edge
sequence, which is generated by performing a depth first
search (DFS) in a graph. The bold edges in Figure 6(b)
constitute a DFS search tree. Each vertex is subscripted
by its discovery time in a DFS search. The forward edge
set contains all the edges in the DFS tree while the back-
ward edge set contains the remaining edges. For the graph
shown in Figure 6(b), the forward edges are discovered in
the order of (v0, v1), (v1, v2), (v1, v3). Now we put backward
edges into the order as follows. Given a vertex v, all of its
backward edges should appear after the forward edge point-
ing to v. For vertex v2 in Figure 6(b), its backward edge
(v2, v0) should appear after (v1, v2). Among the backward
edges from the same vertex, we can enforce an order: given
vi and its two backward edges, (vi, vj), (vi, vk), if j < k,
then edge (vi, vj) will appear before edge (vi, vk). So far, we
complete the ordering of the edges in a graph. Based on this
order, a complete edge sequence for Figure 6(b) is formed:
〈(v0, v1), (v1, v2), (v2, v0), (v1, v3)〉. This sequence is called a
DFS code.

We represent a labeled edge by a 5-tuple, (i, j, li, l(i,j), lj),
where li and lj are the labels of vi and vj respectively and
l(i,j) is the label of the edge connecting vi and vj . Thus, the
above edge sequence can be written 〈 (0, 1, X, a, X) (1, 2,
X, a, Z) (2, 0, Z, b, X) (1, 3, X, b, Y) 〉. Since each graph
can have many different DFS search trees and each of them
has a DFS code, a lexicographic order is designed in [20,
21] to order the DFS codes. For any graph g, the minimum
DFS code is chosen among g’s DFS codes as its canonical
label, denoted by dfs(g). In the next subsections, we will
introduce how to store and search the minimum DFS codes
of discriminative fragments.

5.2.2 gIndex Tree
Using the above sequentialization method, each fragment

can be mapped to an edge sequence (e.g., DFS code). We
insert the edge sequences of discriminative fragments in a
prefix tree, called gIndex Tree.

level 0

...

level 2

level 1

...

discriminative

fragments

intermediate node

e1

e2

e3

f1

f2

f3

Figure 7: gIndex Tree

Example 6. Figure 7 shows a gIndex tree, where each
node represents a fragment (a DFS code). For example, two
discriminative fragments f1 = 〈e1〉 and f3 = 〈e1 e2 e3〉 are
stored in the gIndex tree (for brevity, we use ei to represent
edges in the DFS codes). Although fragment f2 = 〈e1 e2〉 is
not a discriminative fragment, we have to store f2 in order
to connect fragments f1 and f3.

The gIndex tree records all size-n discriminative fragments
in level n (size-0 fragments are graphs with only one vertex
and no edge; the root node in the tree is f∅). In this tree,
code s is an ancestor of s′ if and only if s is a prefix of
s′. We use black nodes to denote discriminative fragments.
White nodes (redundant fragments) are intermediate nodes
which connect the whole gIndex tree. All leaf nodes are dis-
criminative fragments since it is useless to store redundant
fragments in leaf nodes. In each black node fi, an id list (Ii),
the ids of graphs containing fi, is recorded. White nodes do
not have any id list. Assume we want to retrieve graphs
which contain both fragments fi and fj , what we need to
do is to intersect Ii and Ij .

gIndex tree has two advantages over other index struc-
tures such as B+ tree. First, gIndex tree records not only
discriminative fragments, but also some redundant fragments.
This setting makes the Apriori pruning possible (Section
5.3.1). Secondly, gIndex tree can reduce the number of in-
tersection operations conducted on id lists of discriminative
fragments by using (approximate) maximum fragments only
(Section 5.3.2). In short, the search time Tsearch will be sig-
nificantly reduced by using gIndex tree.

5.2.3 Remark on gIndex Tree Size
Upon examining the size of the gIndex tree, we find that

the graph id lists associated with black nodes fill the major
part of the tree. We may derive a bound for the number
of black nodes on any path from the root to a leaf node. In
the following discussion, we do not count the root as a black
node.

Let the discriminative fragments on a path be f0, f1, . . .,
fk−1, where fi ⊂ fi+1, 0 ≤ i ≤ k − 2. According to the def-
inition of discriminative fragments, |⋂j Dfj |/|Dfi | ≥ γmin,

where 0 ≤ j < i. Hence |Df0 | ≥ γmin|Df1 | ≥ . . . ≥
γk−1

min|Dfk−1 |. Since |Df0 | ≤ N/γmin and |Dfk−1 | ≥ 1, we
must have k ≤ logγmin

N .

Theorem 1. For any path in the gIndex tree, the number
of black nodes on the path is O(logγmin

N), where N is the
size of the graph database.

Theorem 1 delivers the upper bound on the number of
black nodes on any path from the root to a leaf node. Con-
sidering the size-increasing support constraint, we have

N/γk
min ≥ |Dfk−1 | ≥ ψ(l), (5)

where l is the size of fragment fk−1 (l ≥ k − 1).

Example 7. Suppose the size-increasing support function
ψ(l) is a linear function: l

maxL
×0.01N , where maxL = 10.

This means we index discriminative fragments whose size
is up to 10. If we set γmin to be 2, from Eq. 5, we know
1
2k ≥ k−1

1000
. It implies the maximum value of k, i.e., the

number of black nodes on any path in the gIndex tree, is less
than 8.

Are there lots of graph ids recorded in the gIndex tree?
For the number of ids recorded on any path from the root
to a leaf node, the following bound is obtained:

k−1∑
i=0

|Dfi | ≤ (
1

γmin
+

1

γ2
min

. . . +
1

γk
min

)N,

where f0, f1, . . . , fk−1 are discriminative fragments on the
path. If γmin ≥ 2,

∑k−1
i=0 |Dfi | ≤ N . Otherwise, we have

more ids to record. In this case, it is space inefficient to
record Dfi . An alternative solution is to store the differen-
tial id list, i.e., 4Dfi =

⋂
x Dfx − Dfi , where fx ∈ F and

fx ⊂ fi. Such a solution generalizes a similar idea which
was presented in [22], but handles multiple rather than one
id list. The scope of our study does not permit a further
examination of the differential id list.

5.2.4 gIndex Tree Implementation
The gIndex tree is implemented using a hash table to help

locating fragments and retrieving their id lists quickly; both
black nodes and white nodes are included in the hash ta-
ble. This is in lieu of a direct implementation of the tree
structure. Nonetheless, the gIndex tree concept is crucial in
determining the redundant (white) nodes which, as included
in the index, will facilitate the pruning of search space.

With graph sequentialization, we can map any graph to
an integer by hashing its canonical label.

Definition 6 (Graphic Hash Code). Given a
sequence hash function h and a graph g, h(dfs(g)) is called
graphic hash code.

We treat the graphic hash code as the hash value of a
graph. If two graphs g and g′ are isomorphic, then h(dfs(g)) =
h(dfs(g′)). Graphic hash code can help quickly locating
fragments in the gIndex tree.

5.3 Search
Given a query q, gIndex enumerates all its fragments up

to a maximum size and locates them in the index. Then it
intersects the id lists associated with these fragments. Al-
gorithm 2 outlines the pseudo-code of the search step.

Algorithm 2 Search

Input: Graph database D, Feature set F , Query q,
and Maximum fragment size maxL.

Output: Candidate answer set Cq.

1: let Cq = D;
2: for each fragment x ⊆ q and len(x) ≤ maxL do
3: if x ∈ F then
4: Cq = Cq ∩Dx;
5: return Cq;

5.3.1 Apriori Pruning
The pseudo-code in Algorithm 2 must be optimized. It is

inefficient to generate every fragment in the query graph first
and then check whether it belongs to the index. Imagine
how many fragments a size-10 complete graph may have.
We shall apply the Apriori rule: if a fragment is not in the
gIndex tree, we need not check its super-graphs any more.
That is why we record some redundant fragments in the
gIndex tree. Otherwise, if a fragment is not in the feature
set, one cannot conclude that none of its super-graphs will
be in the feature set.

A hash table H is used to facilitate the Apriori pruning.
As explained in Section 5.2.4. It contains all the graphic
hash codes of the nodes shown in the gIndex tree including
intermediate nodes. Whenever we find a fragment in the
query whose hash code does not appear in H, we need not
check its super-graphs any more.

5.3.2 Maximum Discriminative Fragments
Operation Cq = Cq∩Dx is done by intersecting the id lists

of Cq and Dx. We now consider how to reduce the number of
intersection operations. Intuitively, if query q has two frag-
ments, fx ⊂ fy, then Cq

⋂
Dfx

⋂
Dfy = Cq

⋂
Dfy . Thus,

it is not necessary to intersect Cq with Dfx . Let F (q) be
the set of discriminative fragments (or indexing features)
contained in query q, i.e., F (q) = {fx|fx ⊆ q ∧ fx ∈ F}.
Let Fm(q) be the set of fragments in F (q) that are not con-
tained by other fragments in F (q), i.e., Fm(q) = {fx|fx ∈
F (q),@fy, s.t., fx ⊂ fy ∧ fy ∈ F (q)}. The fragments in
Fm(q) are called maximum discriminative fragments. In
order to calculate Cq, we only need to perform intersec-
tion operations on the id lists of maximum discriminative
fragments. Sometimes, it is expensive to compute Fm(q) if
the subgraph enumeration algorithm does not generate all
super-graphs of each fragment. Thus, we may replace Fm(q)
with the approximate maximum discriminative fragment set
F ′m(q) = {fx|fx ∈ F (q), @fy, s.t., fy is fx’s descendant in
the gIndex tree and fy ∈ F (q)}. F ′m(q) includes the deepest
black nodes that a query can reach in the gIndex tree, which
is easy to compute.

5.3.3 Inner Support
The previous support definition is only counting the fre-

quency of a fragment in a graph dataset. Actually, one frag-
ment may appear several times even in one graph.

Definition 7 (Inner Support). Given a graph g, the
inner support of subgraph x is the number of embeddings of
x in g, denoted by inner support(x, g).

Lemma 1. If g is a subgraph of G and fragment x ⊂ g,
then inner support(x, g) ≤ inner support(x, G).

GraphGrep [14] uses the above lemma to improve the fil-
tering power. In order to put the inner support to use, we
have to store the inner support of discriminative fragments
together with their graph id lists, which means the space
cost is doubled. The pruning power of Lemma 1 is related
with the size of queries. If a query graph is large, it is pretty
efficient using inner support.

5.4 Verification
After getting the candidate answer set Cq, we have to ver-

ify whether the graphs in Cq really contain the query graph
or not. The simplest way to do it is to perform a subgraph
isomorphism test on each graph one by one. GraphGrep [14]
proposed an alternative approach. It records all the embed-
dings of paths in the graph database. Rather than doing real
subgraph isomorphism testing, it performs join operations
on these embeddings to figure out the possible isomorphism
mapping between the query graph and the graphs in Cq.
Considering there are lots of paths in the index and each
path may have tens of embeddings, we find that in some
cases it even performs worse than the simplest approach.
Thus, we only implement the simple one in our study.

5.5 Insert/Delete Maintenance
In this section, we present our index maintenance algo-

rithm to handle insert/delete operations. For each insert or
delete operation, we simply update the id lists of involved
fragments as shown in Algorithm 3. Algorithm 3 is very ef-
ficient and the index quality may be still good if the statis-
tics of old database and new database are similar. Here,

the statistics means the frequent graphs and their supports
in a graph database. If they do not change, then the dis-
criminative fragments will not change at all. Thus, we only
need to update the id lists of those fragments in the index,
just as Algorithm 3 does. Fortunately, frequent patterns are
relatively stable to database updates. A small number of in-
sert/delete operations will not change their distribution too
much. This property becomes one key advantage of using
frequent fragments in the index.

Algorithm 3 Insert/Delete

Input: Graph database D, Feature set F ,
Inserted (Deleted) graph g and its id gid,
Maximum fragment size maxL.

1: for each fragment x ⊆ g and len(x) ≤ maxL do
2: if x ∈ F then
3: Insert:

insert gid into the id list of x;
4: Delete:

delete gid from the id list of x;
5: return;

The incremental update property leads to another inter-
esting result: a single database scan algorithm for the index
construction. Rather than mining discriminative fragments
from the whole graph database, one can actually first sam-
ple a small portion of the original database randomly, load it
into the main memory, mine discriminative fragments from
this small amount of data and then build the index by scan-
ning the remaining database once. This strategy can signif-
icantly reduce the index construction time, especially when
the database is large. As long as the sample data reflects
the data distribution in the original database, the single
scan algorithm works very well, which was confirmed in our
experiments.

The quality of index may degrade over time after lots
of insertions and deletions. Thus, we need a measure to
monitor the quality of the discriminative fragments indexed
which may be out-of-date after updates. The effectiveness of

the gIndex can be measured by
|⋂f Df |
|Dx| , where f ∈ F, f ⊆ x,

over some set of randomly selected query graphs. This is
the ratio of the candidate answer set size over the actual
answer set size. We monitor the measure based on sampled
queries and check whether its average value changes much
over time. A sizable increase of the value implies that the
effectiveness of the index has deteriorated, probably because
some discriminative fragments are missing from the indexing
features. In this case, we have to consider recomputing the
index from scratch.

6. EXPERIMENTAL RESULT
In this section, we report our experiments that validate

the effectiveness and efficiency of the gIndex algorithm. The
performance of gIndex is compared with that of GraphGrep,
a path-based approach [14]. Our experiments demonstrate
that:

1. The index size of gIndex is more than 10 times smaller
than that of GraphGrep;

2. gIndex outperforms GraphGrep by 3 to 10 times in
various query loads; and

3. the index returned by the incremental maintenance al-
gorithm is effective: it performs as well as the index
computed from scratch provided the data distribution
does not change much.

We use two kinds of datasets in our experiments: one real
dataset and a series of synthetic datasets (we ignore the edge
labels). Most of our experiments have been performed on
the real dataset since it is the source of real demand.

1. The real dataset we tested is that of an AIDS an-
tiviral screen dataset containing chemical compounds.
This dataset is available publicly on the website of the
Developmental Therapeutics Program. As of March
2002, the dataset contains 43,905 classified chemical
molecules.

2. The synthetic data generator was provided by Ku-
ramochi et al. [10]. The generator allows the user to
specify the number of graphs (D), their average size
(T), the number of seed graphs (S), the average size
of seed graphs (I), and the number of distinct labels
(L).

All our experiments are performed on a 1.5GHZ, 1GB-
memory, Intel PC running RedHat 8.0. Both GraphGrep
and gIndex are compiled with gcc/g++.

6.1 AIDS Antiviral Screen Dataset
The experiments described in this section use the antiviral

screen dataset. We set the following parameters in Graph-
Grep and gIndex for index construction. In GraphGrep, the
maximum length of indexing paths is 10: GraphGrep enu-
merates all possible paths with length up to 10 and indexes
them. Another parameter in GraphGrep, the fingerprint
set size [14], is set as large as possible (10k). The finger-
print set consists of the hash values of indexing features. In
our experiments, we do not use the technique of fingerprint
since it has the similar effect on GraphGrep and gIndex:
the smaller the fingerprint set, the smaller the index size
and the worse the performance. In gIndex, the maximum
fragment size maxL is also 10; the minimum discriminative
ratio γmin is 2.0; and the maximum support Θ is 0.1N . The
size-increasing support function ψ(l) is 1 if l < 4; in all

other cases, ψ(l) is
√

l
maxL

Θ. This means that all the frag-

ments with size less than 4 are indexed. It should be noted
that the performance is not sensitive to the selection of ψ(l).
There are other size-increasing support functions which can
be applied, e.g., l

maxL
Θ, (l

maxL
)2Θ, and so on. We choose

to have the same maximum size of features in GraphGrep
and gIndex so that a fair comparison between them can be
done.

We first test the index size of GraphGrep and gIndex. As
mentioned before, GraphGrep indexes paths while gIndex
uses discriminative frequent fragments. The test dataset
consists of N graphs, denoted by ΓN , which are randomly
selected from the antiviral screen database. Figure 8 de-
picts the number of features used in these two algorithms
with the test dataset size varied from 1, 000 to 16, 000. The
curves clearly show that the index size of gIndex is at least

10 times smaller than that of GraphGrep. They also illus-
trate two salient properties of gIndex: its index size is small
and stable. When the database size increases, the index size
of gIndex does not change much. The stability of the index
is due to the fact that frequent fragments and discriminative
frequent fragments do not change much if the data have sim-
ilar distribution. In contrast, the index size of GraphGrep
may increase significantly because GraphGrep has to index
all possible paths existing in a database (up to length-10 in
our experiments).

103

104

105

106

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 f

ea
tu

re
s

Database size (x1k)

GraphGrep
gIndex

Figure 8: Index Size

Having verified the index size of GraphGrep and gIndex,
we now check their performance. In Section 2, we build a
query cost model. The cost of a given query is characterized
by the number of candidate graphs we have to verify, i.e.,
the size of candidate answer set Cq. We average the cost in

the following way: AV G(|Cq|) =
∑

q∈Q |Cq|
|Q| . The smaller the

cost, the better the performance. AV G(|Dq|) is the lower
bound of AV G(|Cq|). An algorithm achieving this lower
bound actually matches the queries in the graph dataset
precisely.

 10

 100

 5 10 15 20 25

C
an

di
da

te
 a

ns
w

er
 s

et
 s

iz
e

(|C
q|

)

Query size

GraphGrep
gIndex

Actual Match

Figure 9: Low Support Queries

We select Γ10,000 as the performance test dataset. Six
query sets are tested, each of which has 1, 000 queries: we
randomly draw 1, 000 graphs from the antiviral screen dataset
and then extract a connected size-m subgraph from each
graph randomly. These 1, 000 subgraphs are taken as a
query set, denoted by Qm. We generate Q4, Q8, Q12, Q16, Q20,
and Q24. Each query set is then divided into two groups:
low support group if its support is less than 50 and high
support group if its support is between 50 and 500. We

102

103

 5 10 15 20 25

C
an

di
da

te
 a

ns
w

er
 s

et
 s

iz
e

(|C
q|

)

Query size

GraphGrep
gIndex

Actual Match

Figure 10: High Support Queries

make such elaborate partitions to demonstrate that gIndex
can handle all kinds of queries very well, no matter whether
they are frequent or not and no matter whether they are
large or not.

Figures 9 and 10 present the performance of GraphGrep
and gIndex on low support queries and high support queries,
respectively. We also plot the average size of query answer
sets: AV G(|Dq|), which is the highest performance that an
algorithm can achieve. As shown in the figures, gIndex
outperforms GraphGrep nearly in every query set, except
the low support queries in query set Q4. GraphGrep works
better on Q4 simply because queries in Q4 are more likely
path-structured and the exhausted enumeration of paths in
GraphGrep favors these queries. Another reason is that the
setting of ψ(l) in gIndex has a minimum support jump on
size-4 fragments (from 1 to 632).

1

10

102

103

104

 1 10 100 1000 10000

C
an

di
da

te
 a

ns
w

er
 s

et
 s

iz
e

(|C
q|

)

Query answer set size (|Dq|)

GraphGrep
gIndex

Actual Match

Figure 11: Performance on the Chemical Data

Figure 11 shows the performance according to the query
answer set size (query support), i.e., |Dq|. X axis shows
the actual answer set size while Y axis shows the average
size of the candidate answer set, |Cq|, returned by these two
algorithms. The closer |Cq| to |Dq|, the better the perfor-
mance. The performance gap between gIndex and Graph-
Grep shrinks when query support increases. The underlying
reason is that higher support queries usually have simpler
and smaller structures, where GraphGrep works well. When
|Dq| is close to 10, 000, |Cq| will approach |Dq| since 10, 000
is their upper bound in this test. Overall, gIndex outper-
forms GraphGrep by 3 to 10 times when the answer set size
is below 1, 000.

Since gIndex uses frequent fragments, at the first sight,
one might suspect that gIndex may not process low support
queries well. However, according to the above experiments,
gIndex actually performs very well on queries which have
low supports or even no match in the database. This phe-
nomena might be a bit counter-intuitive. We find that the
size-increasing support constraint and the intersection power
of structure-based features in gIndex are the two key factors
for this robust result.

 150

 200

 250

 300

 350

 1 1.5 2 2.5 3 3.5 4
 1

 10

C
an

di
da

te
 a

ns
w

er
 s

et
 s

iz
e

(|C
q|

)

N
um

be
r

of
 f

ea
tu

re
s(

x1
03)

Minimum discriminative ratio

Average of |Cq|
Number of features

Figure 12: Sensitivity of Discriminative Ratio

Next, we check the sensitivity of minimum discriminative
ratio γmin. The performance and the index size with dif-
ferent γmin are depicted in Figure 12. In this experiment,
query set Q12 is processed on dataset Γ10,000. It shows that
the query response time gradually improves when γmin de-
creases. Simultaneously, the index size increases. In prac-
tice, we have to make a trade-off between the performance
and the space cost.

 100

 150

 200

 250

 300

 350

 400

 2000 4000 6000 8000 10000

R
un

tim
e

(i
n

se
co

nd
s)

Database size

Figure 13: Scalability

The scalability of gIndex is presented in Figure 13. We
vary the database size from 2, 000 to 10, 000 and construct
the index from scratch for each database. As shown in the
figure, the index construction time is proportional to the
database size. The linear increasing trend is pretty predica-
ble. We find that the feature set mined by gIndex for each
database has around 3, 000 discriminative fragments. This
number does not fluctuate a lot across different databases in
this experiment, which may explain why the index construc-
tion time increases linearly. Since the size-increasing sup-
port function ψ(l) follows the database size, ψ(l) ∝ Θ ∝ N ,
the frequent fragment set will be relatively stable if the

databases have similar distribution.

 20

 30

 40

 50

 60

 70

 80

 2000 4000 6000 8000 10000

C
an

di
da

te
 a

ns
w

er
 s

et
 s

iz
e

(|C
q|

)

Database Size

From scratch
Incremental

Figure 14: Incremental Maintenance

The stability of frequent fragments leads to the effective-
ness of our incremental maintenance algorithm. Assume we
have two databases D and D′ = D +

∑
i D+

i , where D+
i ’s

are the updates over the original database D. As long as
the graphs in D and D+

i are from the same reservoir, we
need not build a separate index for D′, instead, the feature
set of D may be reused for the whole dataset D′. This re-
mark is confirmed in the following experiment. We first take
Γ2,000 as the initial dataset D, and add another 2, 000 graphs
into it and update the index using Algorithm 3. We repeat
such addition and update four times until the dataset has
10, 000 graphs in total. The performance of the index ob-
tained from incremental maintenance is compared with the
index computed from scratch. We select the query set Q16

to test. Figure 14 shows the comparison between these two
approaches. It is surprising that the incrementally main-
tained index exhibits similar performance. Occasionally, it
even performs better in these datasets as pointed by the
small gap between the two curves in Figure 14.

The above experiments also support a potential improve-
ment discussed in Section 5.5: we can construct the index on
a small portion of a large database, and then use the incre-
mental maintenance algorithm to build the complete index
for the whole database in one scan.

6.2 Synthetic Dataset
In this section, we present the performance comparison

on synthetic datasets. The synthetic graph dataset is gener-
ated as follows: first, a set of S seed fragments are generated
randomly, whose size is determined by a Poisson distribution
with mean I. The size of each graph is a Poisson random
variable with mean T . Seed fragments are then randomly
selected and inserted into a graph one by one until the graph
reaches its size. More details about the synthetic data gen-
erator are available in [10]. A typical dataset may have the
following setting: it has 10,000 graphs and uses 1,000 seed
fragments with 50 distinct labels. On average, each graph
has 20 edges and each seed fragment has 10 edges. This
dataset is denoted by D10kI10T20S1kL50.

When the number of distinct labels (L) is large, the syn-
thetic dataset is much different from the AIDS antiviral
screen dataset. Although local structural similarity appears
in different synthetic graphs, there is little similarity exist-
ing among each synthetic graph. This characteristic results
in a simpler index structure. We find that maxL only need

to be 4 in order to achieve good performance. Both Graph-
Grep and gIndex perform very well on such datasets. For
example, if no two vertices in one graph share the same la-
bel, we only need the vertex labels to index the graphs. This
is similar to the inverted index technique (word - document
id list) in document retrieval. However, when we reduce the
number of distinct labels, more and more vertices share the
same label. The dataset becomes more difficult to index and
search. We test a synthetic dataset D10kI10T50S200L4 and
size-12 queries (the queries are constructed using a similar
method described in the previous section). The maximum
size of paths and fragments is set to 5 for GraphGrep and
gIndex, respectively. Figure 15 shows the average size of the
candidate answer sets with different support queries.

 1

 10

 100

 1 10 100

C
an

di
da

te
 a

ns
w

er
 s

et
 s

iz
e

(|C
q|

)

Query answer set size (|Dq|)

GraphGrep
gIndex

Actual Match

Figure 15: Performance on a Synthetic Dataset

As shown in Figure 15, gIndex performs much better than
GraphGrep. When |Dq| approaches 300, GraphGrep per-
forms well. We also tested other synthetic datasets with
different parameters. Similar results are also observed in
these experiments.

7. RELATED WORK
The problem of graph query processing has been addressed

in various fields since it is a critical problem for many ap-
plications. In content-based image retrieval, Petrakis and
Faloutsos [13] represent each graph as a vector of features
and index graphs in high dimensional space using R-trees.
In [15], Shokoufandeh et al. represent and index graphs by a
signature computed from the eigenvalues of adjacency ma-
trix. Instead of casting a graph to a vector form, Berretti
et al. [1] proposes a metric indexing scheme which organizes
graphs hierarchically according to their mutual distances.
In 3D protein structure search, algorithms using hierarchi-
cal alignments on secondary structure elements, e.g., Madej
et al. [11], or geometric hashing [19], have already been de-
veloped for a decade. There are other literatures related to
graph retrieval in these fields, which cannot be exhausted.
In short, these systems are designed for other graph retrieval
tasks, such as exact or similar whole graph retrieval [13, 15,
1] and 3D geometric graph retrieval [11, 19]. They are ei-
ther inapplicable or inefficient to the problem studied in this
paper.

In semistructured/XML databases, query languages built
on path expressions become popular. Efficient index tech-
niques for path expression are initially shown in DataGuide
[6] and 1-index [12]. A(k)-index [9] further proposes k-
bisimilarity to exploit local similarity existing in semistruc-

tured databases. APEX [4] and D(k)-index [3] consider the
adaptivity of index structure to fit the query load. Index
Fabric [5] represents every path in a tree as a string and
stores it in a Patricia trie. For more complicated graph
queries, Shasha et al. [14] extends the path-based tech-
nique to do full scale graph retrieval, which is also used
in Daylight system [8]. Srinivasa et al. [16] builds the index
based on multiple vector spaces with different abstract lev-
els of graphs. However, no algorithm is considered to index
graphs using frequent structures, which is the emphasis of
this study.

Washio and Motoda [18] has a general introduction on
the recent progress of graph-based data mining. In frequent
graph mining, Inokuchi et al. [7], Kuramochi and Karypis
[10], and Vanetik et al. [17] propose Apriori-based algo-
rithms to discover frequent subgraphs. Yan and Han [21]
and Borgelt and Berthold [2] apply the pattern-growth ap-
proach to directly generate frequent subgraphs. In this pa-
per, we adopt a pattern-growth approach similar to [21] as
the underlying graph mining engine because of its efficiency.
Certainly, any kind of frequent graph mining algorithm can
be used in the implementation because the mining engine it-
self will not influence our graph indexing results and query
performance.

8. CONCLUSIONS
Graph indexing plays a critical role at efficient query pro-

cessing in graph databases which have gained increasing
popularity in bioinformatics, Web analysis, and other ap-
plications involving complex structures. Previous graph-
indexing approaches take paths as indexing features and suf-
fer from overly large index size and substantial query pro-
cessing overhead.

In this paper, we have explored a rather different ap-
proach to graph indexing: indexing based on frequent sub-
graph structures. Recent progress in graph mining has turned
frequent substructure-based indexing into reality. Using canon-
ical labeling, subgraph structures can be mapped into or-
dered sequences. By exploring several novel concepts, es-
pecially size-increasing support constraint and discrimina-
tive structure, frequent subgraph-based indices can be made
compact and effective. Also, using the incremental updat-
ing property, gIndex can be constructed by a single scan of a
database. Our performance study shows that our graph in-
dexing method, gIndex, performs better and consumes less
space than the path-based indexing method.

This work can be extended to indexing trees, sequences,
and other structures based on their underlying frequent pat-
terns in the database. The frequent pattern-based indexing
makes indexing adaptable to the data stored in the database
and are relatively stable despite of frequent updates. This
work also shows that indexing and query processing can re-
ally benefit from data mining, which may promote more
studies on application of data mining at improving database
system performance.

9. ACKNOWLEDGMENTS
We would like to thank Rosalba Giugno and Dennis Shasha

for providing GraphGrep; and Michihiro Kuramochi and
George Karypis for providing the synthetic graph data gen-
erator.

10. REFERENCES
[1] S. Beretti, A. Del Bimbo, and E. Vicario. Efficient

matching and indexing of graph models in
content-based retrieval. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23:1089–1105,
2001.

[2] C. Borgelt and M. R. Berthold. Mining molecular
fragments: Finding relevant substructures of
molecules. In Proc. 2002 Int. Conf. on Data Mining
(ICDM’02), pages 211–218, Maebashi, Japan, Dec.
2002.

[3] Q. Chen, A. Lim, and K. W. Ong. D(k)-index: An
adaptive structural summary for graph-structured
data. In Proc. 2003 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’03), pages 134 – 144,
San Diego, CA, June 2003.

[4] C. Chung, J. Min, and K. Shim. Apex: An adaptive
path index for xml data. In Proc. 2002 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’02), pages
121 – 132, Madison, WI, June 2002.

[5] B. Cooper, N. Sample, M. J. Franklin, G. R.
Hjaltason, and M. Shadmon. A fast index for
semistructured data. In Proc. 2001 Int. Conf. Very
Large Data Bases (VLDB’01), pages 341–350, 2001.

[6] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistructured
databases. In Proc. 1997 Int. Conf. Very Large Data
Bases (VLDB’97), pages 436–445, 1997.

[7] A. Inokuchi, T. Washio, and H. Motoda. An
apriori-based algorithm for mining frequent
substructures from graph data. In Proc. 2000
European Symp. Principle of Data Mining and
Knowledge Discovery (PKDD’00), pages 13–23, Lyon,
France, Sept. 1998.

[8] C. A. James, D. Weininger, and J. Delany. Daylight
theory manual daylight version 4.82. Daylight
Chemical Information Systems, Inc, 2003.

[9] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes.
Exploiting local similarity for efficient indexing of
paths in graph structured data. In Proc. 2000 Int.
Conf. Data Engineering (ICDE’00), San Jose, CA,
Feb. 2002.

[10] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In Proc. 2001 Int. Conf. Data Mining
(ICDM’01), pages 313–320, San Jose, CA, Nov. 2001.

[11] T. Madej, J. F. Gibrat, and S. H. Bryant. Threading a
database of protein cores. Proteins, 3-2:289–306, 1995.

[12] T. Milo and D. Suciu. Index structures for path
expressions. Lecture Notes in Computer Science,
1540:277–295, 1999.

[13] E. G. M. Petrakis and C. Faloutsos. Similarity
searching in medical image databases. Knowledge and
Data Engineering, 9(3):435–447, 1997.

[14] D. Shasha, J.T-L Wang, and R. Giugno. Algorithmics
and applications of tree and graph searching. In Proc.
21th ACM Symp. Principles of Database Systems
(PODS’02), pages 39–52, Madison, WI, Jun. 2002.

[15] A. Shokoufandeh, S. J. Dickinson, K. Siddiqi, and
S. W. Zucker. Indexing using a spectral encoding of
topological structure. In Proc. IEEE Int’l Conf
Computer Vision and Pattern Recognition
(CVPR’99), Fort Collins, CO, Jun. 1999.

[16] S. Srinivasa and S. Kumar. A platform based on the
multi-dimensional data model for analysis of
bio-molecular structures. In Proc. 2003 Int. Conf.
Very Large Data Bases (VLDB’03), 2003.

[17] N. Vanetik, E. Gudes, and S. E. Shimony. Computing
frequent graph patterns from semistructured data. In
Proc. 2002 Int. Conf. on Data Mining (ICDM’02),
pages 458–465, Maebashi, Japan, Dec. 2002.

[18] T. Washio and H. Motoda. State of the art of
graph-based data mining. SIGKDD Explorations,
5:59–68, 2003.

[19] H.J. Wolfson and I. Rigoutsos. Geometric hashing: An
introduction. IEEE Computational Science and
Engineering, 4:10–21, 1997.

[20] X. Yan and J. Han. gSpan: Graph-based substructure
pattern mining. In Proc. 2002 Int. Conf. on Data
Mining (ICDM’02), pages 721–724, Maebashi, Japan,
Dec. 2002.

[21] X. Yan and J. Han. CloseGraph: Mining closed
frequent graph patterns. In Proc. 2003 Int. Conf.
Knowledge Discovery and Data Mining (KDD’03),
pages 286–295, Washington, D.C., Aug. 2003.

[22] M. J. Zaki and K. Gouda. Fast vertical mining using
diffsets. In Proc. 2003 Int. Conf. Knowledge Discovery
and Data Mining (KDD’03), pages 326–335,
Washington, DC, Aug. 2003.

