
CAMLS: A Constraint-based Apriori Algorithm

for Mining Long Sequences⋆

Yaron Gonen, Nurit Gal-Oz, Ran Yahalom, and Ehud Gudes

Department of Computer Science, Ben Gurion University of the Negev, Israel
{yarongon,galoz,yahalomr,ehud}@cs.bgu.ac.il

Abstract. Mining sequential patterns is a key objective in the field of
data mining due to its wide range of applications. Given a database
of sequences, the challenge is to identify patterns which appear fre-
quently in different sequences. Well known algorithms have proved to
be efficient, however these algorithms do not perform well when min-
ing databases that have long frequent sequences. We present CAMLS,
Constraint-based Apriori Mining of Long Sequences, an efficient algo-
rithm for mining long sequential patterns under constraints. CAMLS is
based on the apriori property and consists of two phases, event-wise and
sequence-wise, which employ an iterative process of candidate-generation
followed by frequency-testing. The separation into these two phases al-
lows us to: (i) introduce a novel candidate pruning strategy that increases
the efficiency of the mining process and (ii) easily incorporate consider-
ations of intra-event and inter-event constraints. Experiments on both
synthetic and real datasets show that CAMLS outperforms previous al-
gorithms when mining long sequences.

Key words: data mining, sequential patterns, frequent sequences

1 Introduction

The sequential pattern mining task has received much attention in the data min-
ing field due to its broad spectrum of applications. Examples of such applica-
tions include analysis of web access, customers shopping patterns, stock markets
trends, DNA chains and so on. This task was first introduced by Agrawal and
Srikant in [4]: Given a set of sequences, where each sequence consists of a list of

elements and each element consists of a set of items, and given a user-specified

min support threshold, sequential pattern mining is to find all of the frequent

subsequences, i.e. the subsequences whose occurrence frequency in the set of

sequences is no less than min support. In recent years, many studies have con-
tributed to the efficiency of sequential mining algorithms [2, 14, 4, 8, 9]. The two
major approaches for sequence mining arising from these studies are: apriori
and sequence growth.

⋆ Supported by the IMG4 consortium under the MAGNET program of the Israel min-
istry of trade and industry; and the Lynn and William Frankel center for computer
science.

2 CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences

The apriori approach is based on the apriori property, as introduced in the
context of association rules mining in [1]. This property states that if a pattern α

is not frequent then any pattern β that contains α cannot be frequent. Two of the
most successful algorithms that take this approach are GSP [14] and SPADE [2].
The major difference between the two is that GSP uses a horizontal data format
while SPADE uses a vertical one.

The sequence growth approach does not require candidate generation, it
gradually grows the frequent sequences. PrefixSpan [8], which originated from
FP-growth [10], uses this approach as follows: first it finds the frequent single
items, then it generates a set of projected databases, one database for each fre-
quent item. Each of these databases is then mined recursively while concatenat-
ing the frequent single items into a frequent sequence. These algorithms perform
well in databases consisting of short frequent sequences. However, when mining
databases consisting of long frequent sequences, e.g. stocks values, DNA chains
or machine monitoring data, their overall performance exacerbates by an order
of magnitude.

Incorporating constraints in the process of mining sequential patterns, is a
means to increase the efficiency of this process and to obviate ineffective and
surplus output. cSPADE [3] is an extension of SPADE which efficiently consid-
ers a versatile set of syntactic constraints. These constraints are fully integrated
inside the mining process, with no post-processing step. Pei et al. [7] also discuss
the problem of pushing various constraints deep into sequential pattern mining.
They identify the prefix-monotone property as the common property of con-
straints for sequential pattern mining and present a framework (Prefix-growth)
that incorporates these constraints into the mining process. Prefix-growth leans
on the sequence growth approach [8].

In this paper we introduce CAMLS, a constraint-based algorithm for mining
long sequences, that adopts the apriori approach. The motivation for CAMLS
emerged from the problem of aging equipment in the semiconductor industry.
Statistics show that most semiconductor equipment suffer from significant un-
scheduled downtime in addition to downtime due to scheduled maintenance. This
downtime amounts to a major loss of revenue. A key objective in this context is
to extract patterns from monitored equipment data in order to predict its failure
and reduce unnecessary downtime. Specifically, we investigated lamp behavior
in terms of illumination intensity that was frequently sampled over a long period
of time. This data yield a limited amount of possible items and potentially long
sequences. Consequently, attempts to apply traditional algorithms, resulted in
inadequate execution time.

CAMLS is designed for high performance on a class of domains characterized
by long sequences in which each event is composed of a large number of items.
CAMLS consists of two phases, event-wise and sequence-wise, which employ
an iterative process of candidate-generation followed by frequency-testing. The
event-wise phase discovers frequent events satisfying constraints within an event
(e.g. two items that cannot reside within the same event). The sequence-wise
phase constructs the frequent sequences and enforces constraints between events

CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences 3

within these sequences (e.g. two events must occur one after another within
a specified time interval). This separation allows the introduction of a novel
pruning strategy which reduces the size of the search space considerably. We
aim to utilize specific constraints that are relevant to the class of domains for
which CAMLS is designed. Experimental results compare CAMLS to known
algorithms and show that its advantage increases as the mined sequences get
longer and the number of frequent patterns in them rises.

The major contributions of our algorithm are its novel pruning strategy
and straightforward incorporation of constraints. This is what essentially gives
CAMLS its high performance, despite of the large amount of frequent patterns
that are very common in the domains for which it was designed.

The rest of the paper is organized as follows. Section 2 describes the class of
domains for which CAMLS is designed and section 3 provides some necessary
definitions. In section 4 we characterize the types of constraints handled by
CAMLS and in section 5 we formally present CAMLS. Experimental results are
presented in section 6. We conclude by discussing future research directions.

2 Characterization of Domain Class

The classic domain used to demonstrate sequential pattern mining, e.g. [4], is
of a retail organization having a large database of customer transactions, where
each transaction consists of customer-id, transaction time and the items bought
in the transaction. In domains of this class there is no limitation on the total
number of items, or the number of items in each transaction.

Consider a different domain such as the stock values domain, where every
record consists of a stock id, a date and the value of the stock on closing the
business that day. We know that a stock can have only a single value at the
end of each day. In addition, since a stock value is numeric and needs to be
discretized, the number of different values of a stock is limited by the number of
the discretization bins. We also know that a sequence of stock values can have
thousands of records, spreading over several years. We classify domains by this
sort of properties. We may take advantage of prior knowledge we have on a class
of domains, to make our algorithm more efficient. CAMLS aims at the class of
domains characterized as follows:
– Large amount of frequent patterns.
– There is a relatively small number of frequent events.

Table 1 shows an example sequence database that will accompany us throughout
this paper. It has three sequences. The first contains three events: (acd), (bcd)
and b in times 0, 5 and 10 respectively. The second contains three events: a, c
and (db) in times 0, 4 and 8 respectively, and the third contains three events:
(de), e and (acd) in times 0, 7 and 11 respectively.

In section 6 we present another example concerning the behavior of a Quartz-
Tungsten-Halogen lamp, which has similar characteristics and is used for ex-
perimental evaluation. Such lamps are used in the semiconductors industry for
finding defects in a chip manufacturing process.

4 CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences

Table 1: Example sequence database. Every entry in the table is an event. The
first column is the identifier of the sequence. The second column is the time
difference from the beginning of the sequence to the occurrence of the event.
The third column shows all of the items that constitute the event.

Sequence id Event id items
(sid) (eid)

1 0 (acd)
1 5 (bcd)
1 10 b

2 0 a
2 4 c
2 8 (bd)

Sequence id Event id items
(sid) (eid)

3 0 (cde)
3 7 e
3 11 (acd)

3 Definitions

An item is a value assigned to an attribute in our domain. We denote an item as
a letter of the alphabet: a, b, ..., z. Let I = {i1, i2, ..., im} be the set of all possible
items in our domain. An event is a nonempty set of items that occurred at the
same time. We denote an event as (i1, i2, ..., in), where ij ∈ I, 1 ≤ j ≤ n. An
event containing l items is called an l-event. For example, (bcd) is a 3-event.
If every item of event e1 is also an item of event e2 then e1 is said to be a
subevent of e2, denoted e1 ⊆ e2. Equivalently, we can say that e2 is a super-

event of e1 or e2 contains e1. For simplicity, we denote 1-events without the
parentheses. Without the loss of generality we assume that items in an event
are ordered lexicographically, and that there is a radix order between different
events. Notice that if an event e1 is a proper superset of event e2 then e2 is radix
ordered before e1. For example, the event (bc) is radix ordered before the event
(abc), and (bc) ⊆ (abc).

A sequence is an ordered list of events, where the order of the events in the se-
quence is the order of their occurrences. We denote a sequence s as 〈e1, e2, ..., ek〉
where ej is an event, and ej−1 happened before ej . Notice that an item can
occur only once in an event but can occur multiple times in different events
in the same sequence. A sequence containing k events is called a k-sequence,
in contrast to the classic definition of k-sequence that refers to any sequence
containing k items [14]. For example, 〈(de)e(acd)〉 is a 3-sequence. A sequence
s1 =

〈

e1
1
, e1

2
, ..., e1n

〉

is a subsequence of sequence s2 =
〈

e2
1
, e2

2
, ..., e2m

〉

, denoted
s1 ⊆ s2, if there exists a series of integers 1 ≤ j1 < j2 < ... < jn ≤ m such that
e1
1
⊆ e2j1∧e

1

2
⊆ e2j2∧...∧e

1

n ⊆ e2jn . Equivalently we say that s2 is a super-sequence

of s1 or s2 contains s1. For example 〈ab〉 and 〈(bc)f〉 are subsequence of 〈a(bc)f〉,
however 〈(ab)f〉 is not. Notice that the subsequence relation is transitive, mean-
ing that if s1 ⊆ s2 and s2 ⊆ s3 then s1 ⊆ s3. An m-prefix of an n-sequence s

is any subsequence of s that contains the first m events of s where m ≤ n. For
example, 〈a(bc)〉 is a 2-prefix of 〈a(bc)a(cf)〉. An m-suffix of an n-sequence s is
any subsequence of s that contains the last m events of s where m ≤ n. For
example, 〈(cf)〉 is a 1-suffix of 〈a(bc)a(cf)〉.

CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences 5

A database of sequences is an unordered set of sequences, where every se-
quence in the database has a unique identifier called sid. Each event in every
sequence is associated with a timestamp which states the time duration that
passed from the beginning of the sequence. This means that the first event in
every sequence has a timestamp of 0. Since a timestamp is unique for each event
in a sequence it is used as an event identifier and called eid. The support or
frequency of a sequence s, denoted as sup(s), in a sequence database D is the
number of sequences inD that contain s. Given an input integer threshold, called
minimum support, or minSup, we say that s is frequent if sup(s) ≥ minSup. The
frequent patterns mining task is to find all frequent subsequences in a sequence
database for a given minimum support.

4 Constraints

A frequent patterns search may result in a huge number of patterns, most of
which are of little interest or useless. Understanding the extent to which a pat-
tern is considered interesting may help in both discarding ”bad” patterns and
reducing the search space which means faster execution time. Constraints are a
means of defining the type of sequences one is looking for.

In their classical definition [4], frequent sequences are defined only by the
number of times they appear in the dataset (i.e. frequency). When incorporat-
ing constraints, a sequence must also satisfy the constraints for it to be deemed
frequent. As suggested in [7], this contributes to the sequence mining process
in several aspects. We focus on the following two: (i) Performance. Frequent
patterns search is a hard task, mainly due to the fact that the search space is

extremely large. For example, with d items there are O(2d
k

) potentially frequent
sequences of length k. Limiting the searched sequences via constraints may dra-
matically reduce the search space and therefore improve the performance. (ii)
Non-contributing patterns. Usually, when one wishes to mine a sequence
database, she is not interested in all frequent patterns, but only in those meet-
ing certain criteria. For example, in a database that contains consecutive values
of stocks, one might be interested only in patterns of very profitable stocks. In
this case, patterns of unprofitable stocks are considered non-contributing pat-
terns even if they are frequent. By applying constraints, we can disregard non-
contributing patterns. We define two types of constraints: intra-event con-
straints, which refer to constraints that are not time related (such as values of
attributes) and inter-events constraints, which relate to the temporal aspect
of the data, i.e. values that can or cannot appear one after the other sequentially.
For the purpose of the experiment conducted in this study and in accordance
with our domain, we chose to incorporate two inter-event and two intra-events
constraints. A formal definition follows.

Intra-event Constraints

– Singletons Let A = {A1, A2, ...An} s.t. Ai ⊆ I, be the set of sets of items that
cannot reside in the same event. Each Ai is called a singleton. For example,

6 CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences

the value of a stock is an item, however a stock cannot have more than one
value at the same time, therefore, the set of all possible values for that stock
is a singleton.

– MaxEventLength The maximum number of items in a single event.

Inter-events Constraints

– MaxGap The maximum amount of time allowed between consecutive events.
A sequence containing two events that have a time gap which is grater than
MaxGap, is considered uninteresting.

– MaxSequenceLength The maximum number of events in a sequence.

5 The Algorithm

We now present CAMLS, a Constraint-based Apriori algorithm for Mining Long
Sequences, which is a combination of modified versions of the well known Apri-
ori [4] and SPADE [2] algorithms. The algorithm has two phases, event-wise and
sequences-wise, which are detailed in subsections 5.1 and 5.2, respectively. The
distinction between the two phases corresponds to the difference between the
two types of constraints. As explained below, this design enhances the efficiency
of the algorithm and makes it readily extensible for accommodating different
constraints. Pseudo code for CAMLS is presented in Algorithm 1.

Algorithm 1 CAMLS
Input

minSup: minimum support for a frequent pattern.

maxGap: maximum time gap between consecutive events.

maxEventLength: maximum number of items in every event.

maxSeqLength: maximum number of events in a sequence.

D: data set. A: set of singletons.

Output F : the set of all frequent sequences.

procedure CAMLS(minSup,maxGap,maxEventLength
,maxSeqLength,D,A)

1: {Event-wise phase}
2: F1 ←

allFrequentEvents(minSup,maxEventLength,A,D)
3: F ← F1

4: {Sequence-wise phase}
5: for all k such that 2 ≤ k ≤ maxSeqLength and Fk−1 6= φ do

6: Ck ←candidateGen(Fk−1,maxGap)
7: Fk ←prune(Fk−1, Ck,minSup,maxGap)
8: F ← F ∪ Fk

9: end for

10: return F

CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences 7

5.1 Event-wise Phase

The input to this phase is the database itself and all of the intra-event con-
straints. During this phase, the algorithm partially disregards the sequential
nature of the data, and treats the data as a set of events rather than a set of
sequences. Since the data is not sequential, applying the intra-event constraints
at this phase is very straightforward. The algorithm is similar to the Apriori
algorithm for discovering frequent itemsets as presented in [4].

Similarly to Apriori, our algorithm utilizes an iterative approach where fre-
quent (k − 1)-events are used to discover frequent k-events. However, unlike
Apriori, we calculate the support of an event by counting the number of se-
quences that it appears in rather than counting the number of super-events that
contain it. This means that the appearance of an event in a sequence increases
its support by one, regardless of the number of times that it appears in that
sequence.

Denoting the set of frequent k-events by Lk (referred to as frequent k-itemsets
in [4]), we begin this phase with a complete database scan in order to find L1.
Next, L1 is used to find L2, L2 is used to find L3 and so on, until the resulting
set is empty, or we have reached the maximum number of items in an event as
defined by MaxEventLength. Another difference between Apriori and this phase
lies in the generation process of Lk from Lk−1. When we join two (k−1)-events to
generate a k-event candidate we need to check whether the added item satisfies
the rest of the intra-event constraints such as Singletons.

The output of this phase is a radix ordered set of all frequent events satisfying
the intra-event constraints, where every event ei is associated with an occurrence

index. The occurrence index of the frequent event ei is a compact representation
of all occurrences of ei in the database and is structured as follows: a list li of
sids of all sequences in the dataset that contain ei, where every sid is associated
with the list of eids of events in this sequence that contain ei. For example,
Figure 1a shows the indices of events d and (cd) based on the example database
of Table 1. We are able to keep this output in main memory due to the nature
of our domain in which the number of frequent events is relatively small.

Since the support of ei equals the number of elements in li, it is actually
stored in ei’s occurrence index. Thus, support is obtained by querying the index
instead of scanning the database. In fact, the database scan required to find
L1 is actually the only single scan of the database. Throughout the event-wise
phase, additional scans are avoided by keeping the occurrence indices for each
event. The allFrequentEvents procedure in line 2 of Algorithm 1 is responsible
for executing the event-wise phase as described above.

Notice that for mining frequent events there are more efficient algorithms
than Apriori, for example FP-growth [10], however, our tests show that the
event-wise phase is negligible compared to the sequence-wise phase, so it has no
real impact on the running time of the whole algorithm.

8 CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences

(a) The occurrence indices of events d and (cd) from
the example database of Table 1. Event d occurs in
sequence 1 at timestamps 0 and 5, in sequence 2 at
timestamp 8 and in sequence 3 at timestamps 0 and
11. Event (cd) occurs in sequence 1 at timestamps 0
and 5 and in sequence 3 at timestamps 0 and 11.

<d(cd)>

1

3

5

11

eidssids

(b) Example of the occur-
rence index for sequence
< d(cd) > generated from
the intersection of the in-
dices of sequences < d >
and < (cd) >.

Fig. 1: Example of occurrence index.

5.2 Sequence-wise Phase

The input to this phase is the output of the previous one. It is entirely temporal-
based, therefore applying the inter-events constraints is straightforward. The
output of this phase is a list of frequent sequences satisfying the inter-events
constraints. Since it builds on frequent events that satisfied the intra-event con-
straints, this output amounts to the final list of sequences that satisfy the com-
plete set of constraints.

Similarly to SPADE [2], this phase of the algorithm finds all frequent se-
quences by employing an iterative candidate generation method based on the
apriori property. For the kth iteration, the algorithm outputs the set of frequent
k-sequences, denoted as Fk, as follows: it starts by generating the set of all k-
sequence candidates, denoted as Ck from Fk−1 (found in the previous iteration).
Then it prunes candidates that do not require support calculation in order to
determine that they are non-frequent. Finally, it calculates the remaining can-
didates’ support and removes the non-frequent ones.

The following subsections elaborate on each of the above steps. This phase
of the algorithm is a modification of SPADE in which the candidate generation
process is accelerated. Unlike SPADE, that does not have an event-wise phase
and needs to generate the candidates at an item level (one item at a time),
our algorithm generates the candidates at an event level, (one event at a time).
This approach can be significantly faster because it allows us to use an efficient
pruning method(section 5.2) that would otherwise not be possible.

Candidate Generation We now describe the generation of Ck from Fk−1.
For each pair of sequences s1, s2 ∈ Fk−1 that have a common (k − 2)-prefix,
we conditionally add two new k-sequence candidates to Ck as follows: (i) if
s1 is a generator (see section 5.2), we generate a new k-sequence candidate
by concatenating the 1-suffix of s2 to s1; (ii) if s2 is a generator, we generate
a new k-sequence candidate by concatenating the 1-suffix of s1 to s2. It can
be easily proven that if Fk−1 is radix ordered then the generated Ck is also

CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences 9

radix ordered. For example, consider the following two 3-sequences: 〈(ab)c(bd)〉
and 〈(ab)cf〉. Assume that these are frequent generator sequences from which
we want to generate 4-sequence candidates. The common 2-prefix of both 3-
sequences is 〈(ab)c〉 and their 1-suffixes are 〈(bd)〉 and 〈f〉. The two 2-sequences
we get from the concatenation of the 1-suffixes are 〈(bd)f〉 and 〈f(bd)〉. Therefore,
the resulting 4-sequence candidates are 〈(ab)cf(bd)〉 and 〈(ab)c(bd)f〉. Pseudo
code for the candidate generation step is presented in Algorithm 2.

Algorithm 2 Candidate Generation
Input Fk−1: the set of frequent (k − 1)-sequences.

Output Ck: the set of k-sequence candidates.

procedure candidateGen(Fk−1)

1: for all sequence s1 ∈ Fk−1 do

2: for all sequence s2 ∈ Fk−1 s.t. s2 6= s1 do

3: if prefix(s1) = prefix(s2) then
4: if isGenerator(s1) then
5: c← concat(s1, suffix(s2))
6: Ck ← Ck ∪ {c}
7: end if

8: if isGenerator(s2) then
9: c← concat(s2, suffix(s1))
10: Ck ← Ck ∪ {c}
11: end if

12: end if

13: end for

14: end for

15: return Ck

Candidate Pruning Candidate generation is followed by a pruning step. Pruned
candidates are sequences identified as non-frequent based solely on the apriori
property without calculating their support. Traditionally, [2, 14], k-sequence can-
didates are only pruned if they have at least one (k− 1)-subsequence that is not
in Fk−1. However, our unique pruning strategy enables us to prune some of
the k-sequence candidates for which this does not apply, due to the following
observation: in the kth iteration of the candidate generation step, it is possi-
ble that one k-sequence candidate will turn out to be a super-sequence of an-
other k-sequence. This happens when events of the subsequence are contained
in the corresponding events of the super-sequence. More formally, if we have
the two k-sequences s1 =

〈

e1
1
, e1

2
, ..., e1k

〉

and s2 =
〈

e2
1
, e2

2
, ..., e2k

〉

then s1 ⊆ s2
if e1

1
⊆ e2

1
∧ e1

2
⊆ e2

2
∧ ... ∧ e1k ⊆ e2k. If s1 was found to be non-frequent, s2 can

be pruned, thereby avoiding the calculation of its support. For example, if the
candidate 〈aac〉 is not frequent, we can prune 〈(ab)ac〉, which was generated in
the same iteration.

Our pruning algorithm is decribed as follows. We iterate over all candidates
c ∈ Ck in an ascending radix order (this does not require a radix sort of Ck

because its members are generated in this order - see section 5.2). For each c,
we check whether all of its (k − 1)-subsequences are in Fk−1. If not, then c is

10 CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences

not frequent and we add it to the set Pk which is a radix ordered list of pruned
k-sequences that we maintain throughout the pruning step. Otherwise, we check
whether a subsequence cp of c exists in Pk. If so then again c is not frequent and
we prune it. However, in this case, there is no need to add c to Pk because any
candidate that would be pruned by c will also be pruned by cp. Note that this
check can be done efficiently since it only requires O(log(|Pk|) · k) comparisons
of the events in the corresponding positions of cp and c. Furthermore, if there
are any k-subsequences of c in Ck that need to be pruned, the radix order of the
process ensures that they have been already placed in Pk prior to the iteration
in which c is checked. Finally, if c has not been pruned, we calculate its support.
If c has passed the minSup threshold then it is frequent and we add it to Fk.
Otherwise, it is not frequent, and we add it to Pk. Pseudocode for the candidate
pruning is presented in Algorithm 3.

Support Calculation In order to efficiently calculate the support of the k-
sequence candidates we generate an occurrence index data structure for each
candidate. This index is identical to the occurrence index of events, except that
the list of eids represent candidates and not single events. A candidate is rep-
resented by the eid of the last event in it. The index for candidate s3 ∈ Ck

is generated by intersecting the indices of s1, s2 ∈ Fk−1 from which s3 is de-
rived. Denoting the indices of s1, s2 and s3 as inx1, inx2 and inx3 respectively,
the index intersection operation inx1 ⊙ inx2 = inx3 is defined as follows: for
each pair sid1 ∈ inx1 and sid2 ∈ inx2, we denote their associated eids list
as eidList(sid1) and eidList(sid2), respectivly. For each eid1 ∈ eidList(sid1)
and eid2 ∈ eidList(sid2), where sid1 = sid2 and eid1 < eid2, we add eid2
to eidList(sid1) as new entry in inx3. For example, consider the 1-sequences
s1=< d > and s2=< (cd) > from the example database of Table 1. Their
indices, inx1 and inx2, are described in Figure 1a. The index inx3 for the 2-
sequence s3=< d(cd) > is generated as follows: (i) for sid1=1 and sid2=1, we
have eid1=0 and eid2=5 which will cause sid=1 to be added to inx3 and eid=5
to be added to eidList(1) in inx3; (ii) for sid1=3 and sid2=3, we have eid1=0
and eid2=11 which will cause sid=3 to be added to inx3 and eid=11 to be added
to eidList(3) in inx3. The resulting inx3 is shown in Figure 1b. Notice that the
support of s3 can be obtained by counting the number of elements in the sid list
of inx3. Thus, the use of the occurrence index enables us to avoid any database
scans which would otherwise be required for support calculation.

Handling the MaxGap Constraint Consider the example database in Ta-
ble 1, with minSup = 0.5 and maxGap = 5. Now, let us look at the following
three 2-sequences: 〈ab〉, 〈ac〉, 〈cb〉, all in C2 and have a support of 2 (see sec-
tion 5.3 for more details). If we apply the maxGap constraint, the sequence 〈ab〉
is no longer frequent and will not be added to F2. This will prevent the algo-
rithm from generating 〈acb〉, which is a frequent 3-sequence that does satisfy the
maxGap constraint. To overcome this problem, during the support calculation,
we mark frequent sequences that satisfy the maxGap constraint as generators.
Sequences that do not satisfy the maxGap constraint, but whose support is

CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences 11

Algorithm 3 Candidate Pruning
Input

Fk−1: the set of frequent (k − 1)-sequences.

Ck: the set of k-sequence candidates.

minSup: minimum support for a frequent pattern.

maxGap: maximum time gap between consecutive events.

Output Fk: the set of frequent k-sequence.

procedure prune(Fk−1, Ck,minSup,maxGap)

1: Pk ← φ
2: for all candidates c ∈ Ck do

3: isGenerator(c)← true;
4: if ∃s ⊆ c ∧ s is a (k − 1)-sequence ∧s /∈ Fk−1 then

5: Pk.add(c)
6: continue
7: end if

8: if ∃cp ∈ Pk ∧ cp ⊂ c then

9: continue
10: end if

11: if !(sup(c) ≥ minSup) then
12: Pk.add(c)
13: else

14: Fk.add(c)
15: if !(c satisfies maxGap) then
16: isGenerator(c)← false;
17: end if

18: end if

19: end for

20: return Fk

higher than minSup, are marked as non-generators and we refrain from pruning
them. In the following iteration we generate new candidates only from frequent
sequences that were marked as generators. The procedure isGenerator in Algo-
rithm 3 returns the mark of a sequence (i.e., whether it is a generator or not).

5.3 Example

Consider the sequence database D given in Table 1 with minSup set to 0.6 (i.e.
2 sequences), maxGap set to 5 and the set {a, b} is a Singleton.

Event-wise phase. Find all frequent events in D. They are: 〈(a)〉 : 3, 〈(b)〉 :
2 , 〈(c)〉 : 3 , 〈(d)〉 : 3 , 〈(ac)〉 : 2, 〈(ad)〉 : 2, 〈(bd)〉 : 2, 〈(cd)〉 : 2 and 〈(acd)〉 : 2,
where 〈(event)〉 : support represents the frequent event and its support. Each of
the frequent events is marked as a generator, and together they form the set F1.

Sequence-wise phase. This phase iterates over the the candidates list un-
til no more candidates are generated. Iteration 1, step 1: Candidate generation.

F1 performs a self join, and 81 candidates are generated: 〈aa〉, 〈ab〉 , 〈ac〉, ...,
〈a(acd)〉, 〈ba〉, 〈bb〉, ..., 〈(acd)(acd)〉. Together they form C2. Iteration 1, step 2:

Candidate pruning. Let us consider the candidate 〈aa〉. All its 1-subsequences
appear in F1, so the Fk−1 pruning passes. Next, P2 still does not contain any
sequences, so the Pk pruning passes as well. However, it does not pass the fre-
quency test, since its support is 0, so 〈aa〉 is added to P2. Now let us consider

12 CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences

the candidate 〈a(ac)〉. It passes the Fk−1 pruning, however, it does not pass
the Pk pruning since a subsequence of it, 〈aa〉, appears in P2. Finally, let us
consider the candidate 〈bc〉. It passes both Fk−1 and Pk pruning steps. Since it
has a frequency of 2 it passes the frequency test, however, it does not satisfy
the maxGap constraint, so it is marked as a non-generator, but added to F2.
All the sequences marked as generators in F2 are: 〈ac〉 : 2, 〈cb〉 : 2, 〈cd〉 : 2 and
〈c(bd)〉 : 2. The other sequences in F2 are marked as non-generators and are:
〈ab〉 : 2, 〈ad〉 : 2, 〈a(bd)〉 : 2, 〈dc〉 : 2, 〈dd〉 : 2 and 〈d(cd)〉 : 2.
Iteration 2 At the end of this iteration, only one candidate passes all the pruning
steps: 〈acb〉 : 2, and since no candidates can be generated from one sequences,
the process stops.

6 Experimental Results

In order to evaluate the performance of CAMLS, we implemented SPADE, Pre-
fixSpan (and its constrained version, Prefix-growth) and CAMLS in Java 1.6
using the Weka [5] platform. We compared the run-time of the algorithms by
applying them on both synthetic and real data sets. We conducted several runs
with and without including constraints. Since cSPADE does not incorporate all
of the constraints we have defined, we have excluded it from the latter runs.
All tests were conducted on an AMD Athlon 64 processor box with 1GB of
RAM and a SATA HD running Windows XP. The synthetic datasets mimic
real-world behavior of a Quartz-Tungsten-Halogen lamp. Such lamps are used
in the semiconductors industry for finding defects in a chip manufacturing pro-
cess. Each dataset is organized in a table of synthetically generated illumination
intensity values emitted by a lamp. A row in the table represents a specific
day and a column represents a specific wave-length. The table is divided into
blocks of rows where each block represents a lamp’s life cycle, from the day it is
first used to the last day it worked right before it burned out. To translate this
data into events and sequences, the datasets were preprocessed as follows: first,
the illumination intensity values were discretized into 50 bins using equal-width

0.9 0.7 0.5

SYN10−3

Minimum Support

Run
time

(se
con

ds)

0.0
0.5

1.0
1.5

2.0

27 31
80

170
460

0.9 0.7 0.5

SYN10−5

Minimum Support

Run
time

(se
con

ds)

0
20

40
60

80
100

120
140

368
2599

3835

7431

10855

0.9 0.7 0.5

SYN30−3

Minimum Support

Run
time

(se
con

ds)

0
20

40
60

80
100

33 171
621

1961

4643

CAMLS

SPADE

PrefixSpan

Fig. 2: Execution-time comparisons between CAMLS, SPADE and PrefixSpan on
synthetic datasets for different values of minimum support, without constraints.
The numbers appearing on top of each bar state the number of frequent patterns
that exist for the corresponding minimum support.

CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences 13

0.5 0.4 0.3 0.2

R30

Minimum Support

Ru
ntim

e(s
eco

nds
)

0.0
1

0.0
5

0.5
0

5.0
0

2
14

82

2531CAMLS

SPADE

PrefixSpan

0.5 0.4 0.3 0.2

R100

Minimum Support

Ru
ntim

e(s
eco

nds
)

1e−
02

1e+
00

1e+
02

2
582

21957307199

Fig. 3: Execution-time comparisons between CAMLS, SPADE and PrefixSpan on
two real datasets for different values of minimum support, without constraints.
The numbers appearing on top of each bar state the number of frequent patterns
that exist for the corresponding minimum support.

discretization [12]. Next, 5 items were generated: (i) the highest illumination
intensity value out of all wave-lengths, (ii) the wave-length at which the highest
illumination intensity value was received (iii) an indication whether or not the
lamp burned out at the end of that day, (iv) the magnitude of the light inten-
sity gradient between two consecutive measurements and (v) the direction of the
light intensity gradient between two consecutive measurements. We then created
two separate datasets. For each row in the original dataset, an event consisting
of the first 3 items was formed for the first dataset and an event consisting of
all 5 items was formed for the second one. Finally, in each dataset, a sequence
was generated for every block of rows representing a lamp’s life cycle from the
events that correspond to these rows. We experimented with four such datasets
each containing 1000 sequences and labeled SYNα-β where α stands for the se-
quence length and β stands for the event length. The real datasets, R30 and
R100, were obtained from a repository of stock values [13]. The data consists of
the values of 10 different stocks at the end of the business day, for a period of
30 or 100 days, respectively. The value of a stock for a given day corresponds to
an event and the data for a given stock corresponds to a sequence, thus giving
10 sequences of either 30 (in R30) or 100 (in R100) events of length 1. As a
preprocessing step, all numeric stock values were discretized into 50 bins using
equal-frequency discretization [12].

Figure 2 compares CAMLS, SPADE and PrefixSpan on three synthetic datasets
without using constraints. Each graph shows the change in execution-time as
the minimum support descends from 0.9 to 0.5. The amount of frequent pat-
terns found for each minimum support value is indicated by the number that
appears above the respective bar. This comparison indicates that CAMLS has
a slight advantage on datasets of short sequences with short events (SYN10-
3). However, on datasets containing longer sequences (SYN30-3), the advantage
of CAMLS becomes more pronounced as the amount of frequent patterns rises
when decreasing the minimum support (around 5% faster than PrefixSpan and
35% faster than SPADE on the avarage). This is also true for datasets contain-
ing longer events (SYN10-5) despite the lag in the proccess (the advantage of

14 CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences

CAMLS is gained only after lowering the minimum support below 0.7). This
lag results from the increased length of events which causes the check for the
containment relation in the pruning strategy (line 8 of 3) to take longer. Similar
results can be seen in Figure 3 which compares CAMLS, SPADE and PrefixSpan
on the two real datasets. In R30, SPADE and PrefixSpan has a slight advantage
over CAMLS when using high minimum support values. We believe that this can
be attributed to the event-wise phase that slows CAMLS down, compared to the
other algorithms, when there are few frequent patterns. On the other hand, as
the minimum support decreases, and the number of frequent patterns increases,
the performance of CAMLS becomes better by an order of magnitude. In the
R100 dataset, where sequences are especially long, CAMLS clearly outperforms
both algorithms for all minimum support values tested. In the extreme case of
the lowest value of minimum support, the execution of SPADE did not even end
in a reasonable amount of time. Figure 4 compares CAMLS and Prefix-growth
on SYN30-3, SYM30-5 and R100 with the usage of the maxGap and Singletons
constraints. On all three datasets, CAMLS outperforms Prefix-growth.

0.9 0.7 0.5

SYN30−3

Minimum Support

Run
time

(sec
onds

)

0
10

20
30

40

33 171

621

1961

4643

CAMLS

Prefix−growth

0.9 0.7 0.5

SYN30−5

Minimum Support

Run
time

(sec
onds

)

0
20

40
60

80
100

120
140

129

519

1209

2021

3901

0.5 0.4 0.3 0.2

R100

Minimum Support

Run
time

(sec
onds

)

0
20

40
60

80
100

1 582

21957

51351

Fig. 4: Execution-time comparisons between CAMLS and Prefix-growth on
SYN30-3 SYN30-5 and R100 with the maxGap and Singletons constraints for
different values of minimum support. The numbers appearing on top of each bar
state the number of frequent patterns that exist for the corresponding minimum
support.

7 Discussion

In this paper we have presented CAMLS, a constraint-based algorithm for min-
ing long sequences, that adopts the apriori approach. Many real-world domains
require a substantial lowering of the minimum support in order to find any fre-
quent patterns. This usually amounts to a large number of frequent patterns.
Furthermore, some of these datasets may consist of many long sequences. Our
motivation to develop CAMLS originated from realizing that well performing
algorithms such as SPADE and PrefixSpan could not be applied on this class
of domains. CAMLS consists of two phases reflecting a conceptual distinction
between the treatment of temporal and non temporal data. Temporal aspects
are only relevant during the sequence-wise phase while non temporal aspects are
dealt with only in the event-wise phase. There are two primary advantages to this
distinction. First, it allows us to apply a novel pruning strategy which accelerates

CAMLS: A Constraint-based Apriori Algorithm for Mining Long Sequences 15

the mining process. The accumulative effect of this strategy becomes especially
apparent in the presence of many long frequent sequences. Second, the incor-
poration of inter-event and intra-event constraints, each in its associated phase,
is straightforward and the algorithm can be easily extended to include other
inter-events and intra-events constraints. We have shown that the advantage of
CAMLS over state of the art algorithms such as SPADE, PrefixSpan and Prefix-
growth, increases as the mined sequences get longer and the number of frequent
patterns in them rises.

We are currently extending our results to include different domains and
compare CAMLS to other algorithms. In future work, we plan to improve the
CAMLS algorithm to produce only closed sequences and to make our pruning
strategy even more efficient.

References

1. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. In: 20th Int.
Conf. Very Large Data Bases, VLDB. 487–499. Morgan Kaufmann (1994)

2. Zaki M. J.: SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning Journal, special issue on Unsupervised Learning, 31–60 (2001)

3. Zaki M. J.: Sequence mining in categorical domains: incorporating constraints. In
9th Int. Conf. on Information and knowledge management, 422–429. ACM (2000)

4. Agrawal R., Srikant R.: Mining Sequential Patterns. In: 11th Int. Conf. Data Engi-
neering. 3–14. IEEE Computer Society (1995)

5. Witten, Ian H. and Frank, E: Data mining: practical machine learning tools and
techniques with Java implementations. J. SIGMOD Rec. 31, 1, 76–77 (2002)

6. Han, J. and Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kauf-
mann (2006)

7. Pei, J., and Han, J. and Wang, W: Constraint-based sequential pattern mining: the
pattern-growth methods. J. Intell. Inf. Syst. 28, 2, 133–160 (2007)

8. Pei J., Han J., Mortazavi-Asl B., Wang J., Pinto H., Chen Q., Dayal U. and Hsu M.:
Mining sequential patterns by pattern-growth: The PrefixSpan approach. J. IEEE
Transactions on Knowledge and Data Engineering. 16, (2004)

9. Mannila H., Toivonen H. and Verkamo A.: Discovery of Frequent Episodes in Event
Sequences J. Data Min. Knowl. Discov. 1, 3, 259–289, Kluwer Academic Publishers
(1997)

10. Han J., Pei J., Yin Y. and Mao R.: Mining Frequent Patterns without Candidate
Generation A Frequent-Pattern Tree Approach J. Data Min. Knowl. Discov. 8, 1,
53–87, Kluwer Academic Publishers (2004)

11. Orlando, S., Perego, R. and Silvestri, C.: A new algorithm for gap constrained
sequence mining. In: The 2004 ACM symposium on Applied computing, 540–547,
ACM (2004)

12. Pyle, D.: Data preparation for data mining. Morgan Kaufmann (1999)
13. Torgo, L.: Daily stock prices from January 1988 through October 1991, for ten

aerospace companies. http://www.liaad.up.pt/~ltorgo/Regression/DataSets.

html

14. Srikant, R. and Agrawal, R.: Mining sequential patterns: Generalizations and per-
formance improvements. In: 5th International Conference on Extending Database
Technology. Springer (1996)

