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ABSTRACT
In this paper we study a large query log of more than twenty
million queries with the goal of extracting the semantic re-
lations that are implicitly captured in the actions of users
submitting queries and clicking answers. Previous query log
analyses were mostly done with just the queries and not the
actions that followed after them. We first propose a novel
way to represent queries in a vector space based on a graph
derived from the query-click bipartite graph. We then an-
alyze the graph produced by our query log, showing that
it is less sparse than previous results suggested, and that
almost all the measures of these graphs follow power laws,
shedding some light on the searching user behavior as well
as on the distribution of topics that people want in the Web.
The representation we introduce allows to infer interesting
semantic relationships between queries. Second, we provide
an experimental analysis on the quality of these relations,
showing that most of them are relevant. Finally we sketch
an application that detects multitopical URLs.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database applications—
Data mining ; H.3.5 [Information Systems]: Information
Search and Retrieval—Query formulation

General Terms
Experimentation, Measurement

Keywords
Graph mining, query logs analysis, knowledge extraction.

1. INTRODUCTION
One of the recurrent goals of mankind has been to recol-

lect all human knowledge, as the wisdom of all the people
is larger than any particular individual (e.g. the wisdom
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of crowds [16]). The Web can be seen as the largest in-
tent to store all human knowledge, either explicitly (e.g.
Wikipedia) or implicitly. Social media (also called Web 2.0)
has allowed more people to be able to contribute content in
the Web, something that a few years ago was not true. The
collaborative tagging work on sites like Flickr has created
non-hierarchical categories called folksonomies. Neverthe-
less, still not all the people participate on social media, so a
first question is: can we tap on the knowledge of more peo-
ple? Below we argue that the answer is on the positive side.

Queries submitted to search engines convey implicit knowl-
edge if we assume that most of the time user actions are
meaningful. Queries can be seen as tags associated to doc-
uments clicked by the people making those queries, in a
similar way that link anchor text is used as surrogate text
of the linked Web pages. So we can look at queries as an
implicit folksonomy. However queries contain more seman-
tic relations: some are equivalent, other are more specific,
etc. In fact, those relations imply a pragmatic taxonomy,
the taxonomy of the language that people use to search the
Web (a kind of webslang). Hence, the challenge is how to
extract interesting relations from very large query logs and
find some structure for the webslang. This paper is one of
the first attempts towards this ambitious goal. One natural
starting point is to infer a graph from the queries. One such
graph is the bipartite graph of queries and URLs, where a
query and a URL are connected if a user clicked in a URL
that was an answer for a query. Another possibility, more
frequent in previous research, is to define a similarity (or dis-
tance) function between queries. This also implies a graph
based on this function. One drawback of defining a function
is that it is more difficult to understand why two queries are
similar and in some degree we add artificial artifacts that
can add noise to data that is already noisy.

In this paper we give two different contributions. First we
present a natural distance among queries that is related to
previous work and we analyze large graphs that are gener-
ated by such a distance. The graphs are less sparse than in
previous work, perhaps because before large data sets were
usually not available. We analyze several characteristics of
these graphs. This analysis provides information not only
about how people query but also about how they behave af-
ter a query and the content distribution of what they look at.
We then attempt to extract knowledge using the previously
mentioned bipartite graph as starting point. Basically two
queries are connected if there is a path between them in the
bipartite graph. We also define different edge colors based
on the URLs that connect two queries, which imply possi-
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ble semantic relations among queries. To explore our ideas
we use more than twenty million queries from the Yahoo!
search engine and we do a manual and automatic evalua-
tion of the results. Moreover, we sketch an application that
employs the graph to detect multitopical URLs, providing a
promising approach to tackle the noise issue. In Section 2
we discuss previous work in query similarity and knowledge
extraction from queries. In section 3 we describe a natural
vector model to define similar queries and define semantic re-
lations among queries. In section 4 we analyze a large graph
generated from a large query log and in section 5 we evaluate
our results. We end with some conclusions and future work.

2. PREVIOUS WORK
Most of the work on query similarity is related to query

expansion or query clustering. One early technique proposed
by Raghavan and Sever [14] attempts to measure query sim-
ilarity using the differences in the ordering of documents re-
trieved in the answers, which is not feasible in the current
Web. Later, Fitzpatrick and Dent [11], measured query sim-
ilarity using the normalized set intersection of the top 200
documents in the answers for the queries. Again, this is not
meaningful in the Web as the intersection for semantically
similar queries that use different synonyms can and will be
very small.

Wen et al [17] proposed to cluster similar queries to rec-
ommend URLs to frequently asked queries of a search en-
gine. They used four notions of query distance based on:
(1) keywords or phrases of the query; (2) string matching of
keywords; (3) common clicked URL’s; and (4) the distance
of the clicked documents in some pre-defined hierarchy. Bef-
ferman and Berger [4] also proposed a query clustering tech-
nique based on distance notion (3). As the average number
of words in queries is small (about two) and the number of
clicks in the answer pages is also small [1], notions (1) and
(2) generate very sparse distance matrices. Notion (4) needs
a concept taxonomy and the clicked documents to be clas-
sified into the taxonomy, which cannot be done in a large
scale. Also (3)is sparse, but this sparsity can be diminished
using large query logs, as in this paper.

Fonseca et al [12] propose to discover related queries us-
ing association rules. The query log is viewed as a set of
transactions, with each transaction representing a session

in which a single user submits a sequence of related queries
in a time interval. The method shows good results, but two
problems arise: it is difficult to determine sessions of queries
belonging to the same search process; moreover the most in-
teresting related queries, those submitted by different users,
cannot be discovered, since the support of a rule increases
only if its queries appear in the same query session (i.e. they
are submitted by the same user.)

Baeza-Yates et al. [2, 3] used the content of clicked Web
pages to define a term-weight vector model for a query. They
consider terms in the URLs clicked after a query. Each
term is weighted according to the number of occurrences
of the query and the number of clicks of the documents in
which the term appears. Then the similarity of two queries
is equivalent to the similarity of their vector representations,
like the cosine distance function. This notion of query sim-
ilarity has several advantages. First, it is simple and easy
to compute. On the other hand, it allows to relate queries
that happen to be worded differently but stem from the
same topic, hence capturing semantic relationships among

queries.Recently, Sahami and Heilman [15] used a query sim-
ilarity based on the snippets of the answers to the queries.
However, they do not consider the feedback of the users (i.e.
clicked pages). Another related paper defines a query tax-
onomy to cluster the answers [18], but query logs are not
used, while in Cid et al. [5] they use query logs to maintain
a taxonomy, but not to build one.

In the work by Chuang et al. [6, 7, 8, 13] query logs are
used to build a query taxonomy, but no user feedback is
used. This idea of building a taxonomy based on queries
is extended in [9], but this is not the same as building a
taxonomy of the queries, which is what we would call a
query taxonomy. The closest work to ours is by Dupret
and Mendoza [10] where relations among queries are defined
using the rank of clicked URLS. Although with a different
goal, they do generate query relations that can be associated
to parts of a query taxonomy.

3. THE COVER GRAPH
In this section we define a graph that naturally comes

from user actions after a query. It is based on the notion
(3) explained on the previous section. Before continuing, we
define the main concepts used in the sequel of the paper:

• Query instance: query (set of words or sentence) plus
zero or more clicks related to that query. Formally:

QI = (q, u∗) where q = {words or phrase}

being q the query, and u a clicked URL. Moreover,
given a query instance QI we denote with QIq the
query associated to QI and with QIc(u) the set of its
clicked URLs.

• URL Cover: set of all URLs clicked by a query. That
is:

UCp =
[

QIq=p

QIc(u)

We are interested in the aggregation of equal queries (e.g.
same set of words or same phrase) independently of other
attributes of the query. Hence from now on, we will use
query to denote the set of all equivalent queries (queries for
which the set of words is the same), and we will use as URL

cover the union of all covers for the equivalent queries.
We now introduce a vectorial representation for the queries.

Queries are represented as points in a high dimensional space,
where each dimension corresponds to a unique URL u. That
is, a query is based on all the different URLs in its URL
cover. Given a query q, denote its representation with q̄.
Each component of the vector q̄ is assigned a weight equal
to the frequency with which the corresponding URL u has
been clicked for that query q. We now define a graph based
on this vectorial representation.

Each query is a node of the graph. Two nodes (queries)
are connected by an edge iff they share at least one URL u
(that is, their vectorial representations have one component
that is positive in both queries). Hence we obtain a non-
directed graph. Edges are weighted according to the cosine
similarity of the queries they connect. Hence, if e = {q, q′}
and the URL space has D dimensions (total number of dif-
ferent URLs), the weight of e is given by:

W (e) =
q̄ · q̄′

|q̄| |q̄′|
=

P

i≤D
q(i) · q′(i)

q

P

i≤D
q(i)2 ·

q

P

i≤D
q′(i)2
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Full Graph Filtered Graph Filtered Graph Filtered Graph
(Clicks > 10) (Edge Weight > 0.5) (Multitopical URLs)

Total Queries: 20840741 7501654 7501654 20840741
Total Clicks: 10015280 3229174 3229174 -
Nodes: 2841520 100057 100057 2841520
Isolated nodes: 1412208 25437 74532 -
Edges: 361029245 10370388 60945 11M
Unique URL: 4927978 973187 973187 4927578

Table 1: Some figures about the studied graphs.

We define the weighted degree of a node, the sum of the
weights of all its edges divided by its degree δ(q). That is,
the weighted degree δW (q) of a node q is:

δW (q) =
1

δ(q)

X

q∈e

W (e)

This graph can be computed relatively fast. The edges
can be computed by sorting the URLs clicked by a query.
The weights of the edges can be computed in linear time
in the worst case, much faster on average as queries do not
share many URLs. Let M be the maximal number of URLs
between two queries. Hence the graph can be computed in
max{M E, n log n} time, where E is the number of edges
in the graph and n is the number of nodes. On average,
M = O(1).

3.1 Relating Queries
We now define different edge types based on the set re-

lations among URLs that connect two query nodes. We
classify the edges in three types, such that there is an edge
between q1 and q2 if:

• Identical cover (red edges or type I): UCq1 = UCq2 .
This edge is undirected and should imply that both
queries are in practice equivalent. We later give exam-
ples of different types of equivalences.

• Strict complete cover (green edges or type II): UCq1 ⊂
UCq2 . This is a directed edge from q1 to q2. Seman-
tically this should imply that q1 is more specific than
q2.

• Partial cover (black edges or type III): UCq1 ∩UCq2 6=
∅, but does not fulfill any of the previous two con-
ditions. This is the most typical edge and can exist
for many reasons: due to multi-topic URLs to truly
related queries.

For most of the analysis of the graph that is carried out in
the next section we do not consider this distinction between
different edges. On the other hand, for extracting knowledge
from the graph, we focus on the first two types of edges.

These notions of set covers can be relaxed using a param-
eter α. That is, we say that a query q1 is α−included in q2 if
the Euclidean norm of the vector we obtain by projecting q1

on the URLs it shares with q2 is at least α. More formally,

q1 ⊆α q2 if and only if
q

P

u∈UC(q1,q2) q1(u)2 ≥ α where

UC(q1, q2) = UCq1 ∩ UCq2 .
We say that an edge e = {q1, q2} is α−red if q1 ⊆α q2 and

q2 ⊆α q1.
We say that a directed edge e = (q1, q2) is α−green if

q1 ⊆α q2 and q2 *α q1.
We use this relaxation as a way to filter the graph for

noisy data, reducing also its size.

3.2 Multitopical Web Pages
As we already said in the introduction, the main purposes

of this graph is to provide a tool for extracting semantic re-
lations between queries. One of the factors leading to edges
representing relations of poor quality is the presence of Mul-

titopical URLs: URLs that cover either several topics or a
single very general topic. URLs related to e-commerce sites
are examples of the former, and portals about music or travel
of the latter. Even very different queries can lead to clicks
on such sites, hence a shared click on such a URL is not very
informative. If we were able to detect such URLs we could
filter them out thus possibly providing relations of better
quality. To this end, we propose a simple but effective ap-
proach. We start by noticing that low weight edges are more
likely to represent poor quality semantic relations. Hence,
URLs involved in such edges are not likely to be very spe-
cific. This leads us to this heuristic: consider low weight
edges as voters and let the URLs be the candidates. Each
edge votes for its URLs (that is, for the URLs its queries
share.) Now we can sort URLs according to the number of
votes they received: the more votes a URL gets, the more
multitopical it is. We can then apply a threshold (either on
the number of votes or of URLs we want to get rid off) and
compute a new graph without the selected URLs.

4. ANALYSIS OF A LARGE GRAPH
We have used several query logs containing up to fifty mil-

lion queries and the results are similar for all of them, so here
we present data from only one log piece of 2005 coming from
the Yahoo! search engine. For building this graph we have
used all the queries in the log piece with at least one click.
As this graph is very large, we have filtered both its edges
and its nodes. Concerning the nodes, we have filtered the
queries with few clicks, while for the edges we have used a
weight criterion. Intuitively, when cutting low weight edges
we are also reducing the noise, since those edges represent
weak relations between queries. Similarly, queries with few
clicks tend to be more noisy since we have less information
at disposal. The application that we have in mind for this
graph (see section 5) leads us to consider also another way
to filter our graph. This last technique, described in the
previous subsection, essentially consists in detecting and fil-
tering out multitopical URLs. We first describe the data
for the whole graph and its versions obtained by simpler
filtering techniques. Data concerning the more refined one
are postponed to subsection 5.2 were also an experimental
evaluation of the technique is presented.

Table 1 gives the main characteristics of the different ver-
sions of the graph.For all the generated graphs we have stud-
ied different parameters. In the following each of them is dis-
cussed, and the corresponding plots are presented. Often,
the observed behavior clearly follows a power law. When
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Figure 1: First row: Queries frequency and query click distribution for the whole one piece of log. Second:
Clicked URL distribution and query frequency vs. clicks (the last two expressed as fractions). Third: Node
Degree distribution, and Queries Frequencies vs. Node Degree.
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Power laws: A · xB A B
Query Frequency

Overall 10191819 -2.38
With Clicks - -

No clicks 2521970 -3.06
Query Click

Full Graph 10810986 -2.39
Filtered 5541161 -2.53

Node Degree
Full Graph 548004 -1.43

Filtered (clicks) 31819 -1.37
Filtered (edge) 31819 -2.05

Connected Components
Full Graph 1765795 -3.66

Filtered (clicks) 29035 -3.94
Filtered (edge) 50838 -3.13

Table 2: Power Laws.

this is the case, the associated law is also plotted. Moreover,
in Table 2 the interested reader can find the coefficients of
all the laws.

The left hand side of the first row of Figure 1 shows the
frequency of the queries in the whole log. Each entry in
the query log is counted as a distinct query occurrence.
Three curves are shown, one counts the occurrences of all
the queries, one counts the occurrences of the queries for
which at least one result has been clicked, and the last one
the occurrences of the queries without any click. All the
curves exhibit a power law behavior. Clicked queries essen-
tially show the same behavior (and actually they follow the
same power law) of what is observed in whole log. On the
other hand, queries without clicks appear to be more biased.
The plot on the right hand side of the same row shows the
query click distribution. Each point represents the number
of queries (y axis) with a given number of clicks (x axis).
Again we can see that for the full graph there is a power
law at work (and this holds also for its filtered versions, not
shown in the plot.)

The plot on the left hand side of the second row shows
the clicks distribution from the URLs point of view. Each
point represents the number of URLs with a given number
of clicks. Not very surprisingly, also this distribution clearly
follows a power law. On the right hand side of the same row,
the queries click distribution is plotted against the queries
frequency. That is, each point represents the number of oc-
currences and the number of clicks for a given query. Both
axis are normalized by dividing either by the total occur-
rences (x axis) or by the total number of clicks (y axis.)
The bottom left part of the graph clearly shows much more
variance than the rest. That is because less frequent queries
have more click variance while very frequent queries tend to
have a bit less than one click on average.

The plots on the last row of figure 1 are probably ones of
the most interesting. On the left it is shown the node de-
gree distribution (normalized so that each point shows the
number of nodes with a given degree), while on the right
one each node degree is plotted against the number of oc-
currences of the corresponding query. As we can see from
the graph, the node degree distribution follows a power law.
Moreover, this is true for all the graphs we have analyzed.

Figure 3: Connected Components

Hence this property seems to remain constant even if you
filter the graph, both on the nodes and on the edges. Thus,
the cover graph we have generated could be seen as a kind of
free-scale and autosimilar network. We also underline that
the curve for the graph filtered according to the edge weight,
shows even more clearly such a property. Thus, low weight
edges (weak semantic relation between queries) are responsi-
ble of the outliers and probably many of them are just noise.
Moreover, this kind of noise can be easily removed (by just
filtering the low weight edges.)

On the first row of figure 2, the nodes weight (left) and
edges weight distributions are plotted. In both graphs, the
y axis is normalized, showing the fraction of nodes (edges)
with a given weight. The weight of a node is just its weighted
degree, as previously defined. The curve for the graph that
has been filtered according to the edges weight is obviously
truncated at the threshold we have used. The same applies
for the other graph.

The last plot, Figure 3 shows the connected components
distribution. Each points represent the number of compo-
nents of a given size (expressed as a fraction of the total
number of nodes). Also in this case we see that for all three
graphs the distribution follows a power law. Interestingly
enough, all graph exhibits a connected component that is a
good fraction of the whole graph, resembling somehow what
is observed in the web graph. Moreover, the ratio between
the size of the biggest connected component and the num-
ber of nodes, varies according to which kind of filtering we
apply. In particular, we can observe that this ratio increases
when the click filter is used but it gets smaller when the edge
weight filter is used.

Tables 3 and 4 shows examples of type I (red) edges and
type II (green) edges. The first table has the webslang ex-
amples at the end, detailing the type of equivalence found.
The second table shows path examples on similar queries.
In figure 4 we show a small part of a cover graph, that in-
cludes several separate components. Notice that edges with
larger weights are darker, dashed (red) edges are identical
covers and dotted (green) edges are complete covers.
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Figure 2: First row: Node and Edge weight distribution (as fractions). Second: graph structure as edges are
filtered

Equivalent Edges
Queries Sim Type of Equivalence

( tfcu, teachers federal credit union ) 1.0 acronym
( fhb, first hawaiian bank ) 1.0 acronym
( wtvf , news channel 5 ) 1.0 synonyms (Nashville TV channel)

( ccap, wcca ) 1.0 synonyms (Wisconsin court Internet access)
( free hispanic chat, latinopeoplemeet ) 1.0 synonym for domain name

( lj, www.livejournal.com ) 1.0 acronym for URL
( bable fish, alta vista babel fish ) 1.0 synonyms

( aj , askgeeves ) 1.0 synonyms with misspell
( yahoo for kids, yahooligains ) 0.90 synonym for misspelled domain name

( unit conversion, online conversions ) 0.85 synonym
( merriam, m-w.com ) 0.84 name for domain name

( yahoo directions, maps.yahoo.com ) 0.48 synonim for URL

Table 3: Examples of equivalent queries.
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Paths on Similar Queries
how to learn guitar → online guitar lessons → berklee college of music

latest nokia mobiles → mobile phones
toyota auto parts → wholesale car parts → used auto parts → auto parts

wire window boxes → window box → decorative iron → wrought iron fence
www.mysiemens.com → siemens phones

Table 4: Some path examples on similar queries.

Figure 4: An example showing all possible edge types (equivalent queries are dashed edges, similar dotted)

4.1 Using edges weight as filter
The weight associated to an edge could be interpreted as

a measure of the confidence we have in the fact that queries
joined by that edge are related. Hence, it is interesting to
study how the graph changes as only edges of increasing
weight are left. Plots on the second row of figure 2 reports
our finding to this respect. In particular we let the edge
weight threshold vary between 0 (all edges are kept) and
0.9 (edges with weight lesser than 0.9 are discarded), and
check how the node degree distribution, the number of iso-
lated nodes and the size of the largest connected component
change. The first plot shows the node degree distribution:
each point shows the degree of a node, with nodes being
sorted in decreasing order with respect to their degree. In-
terestingly enough, as we filter more and more edges, the
behaviour of the distribution does not change much. How-
ever, as the threshold increases, we can notice that long
sequences of nodes with the same degree appears: these are
usually clique induced by a single URL. On the second plot,
we can see that the percentage of isolated nodes increases
somewhat faster than linearly in the threshold value. As
the threshold reach 0.9, the graph gets almost completely
disconnected. On the other hand, the size of the largest
connected component does not decrease very fast: this in-
dicates that to heavily modify the structure of the graph
many edges have to be removed. Also similar observations
hold for the connected component distribution, which we do
not show here due to lack of space.

5. EXPERIMENTAL EVALUATION
In this section we report some experiments that we have

carried out to assess how good in practice are the relation-
ships represented by the edges of our graphs. Later, we

provide an experimental evaluation of our heuristic for de-
tecting multitopical URLs.

5.1 Semantic Relations
Evaluating the quality of semantic relations is difficult, in

particular for webslang, as there are no linguistic resources
available. We mainly focus on the first kind of edges, the
ones induced by identical covers. From the user perspective
queries in these edges are very related, since they give rise
to clicks on exactly the same set of URLs. We have done
both a manual evaluation by a human expert, and auto-
matic evaluation, on different samples of type I (red) edges.
More precisely, for the evaluation we have used four different
samples of the edges, each of them containing one thousand
edges. The four samples differ in the number of clicks in-
volved in their edges. Remember that an edge consists of two
queries and that to each query is associated the sets of URLs
users clicked after having submitted that query. Hence we
can count, for each query, how many times a user did click
on one of the results (notice that of course this number is
usually different from the number of distinct URLs clicked
for a given query.) The first sample is selected at random
among edges that contain queries with just one click as-
sociated, that is, queries which, no matter of the number
of times were submitted, gave rise to just one click. Our
second sample was chosen by selecting (again at random)
edges for which both queries have associated at least four
clicks. The third sample is chosen by selecting, among all
red(green) edges, those that maximize the sum of the clicks
associated to the queries. The last sample is chosen by se-
lecting those edges which maximize the minimum number
of clicks involved, that is edges that maximize the number
of clicks associated to the query with less clicks in the edge.
The intuition behind varying the clicks in the sample is that
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the more information (clicks) we have about a query, the
better the semantic relation that we infer is going to be.

For the automatic evaluation we have used data from the
Open Directory Project1. As the reader may know, when a
user types a query in ODP, besides site matches, we can also
find categories matches in the form of paths between direc-
tories. Moreover, these categories are ordered by relevance.
For instance, the query “Spain” would provide (among oth-
ers) the category “Regional/ Europe/ Spain”, while one of
the results for “Barcelona” would be “Regional/ Europe/
Spain/ Autonomous Communities/ Catalonia/ Barcelona”.
Hence, to measure how related two queries are, we can use
a notion of similarity between the corresponding categories
(as provided by ODP.) In particular, we measure the sim-
ilarity between two categories D and D′ as the length of
their longest common prefix P (D, D′) divided by the length
of the longest path between D, D′. More precisely, denot-
ing the length of a path with |D|, this similarity is de-
fined as: Sim(D, D′) = |P (D, D′)|/max{|D| , |D′|}. For
instance, the similarity between the two queries above is 3/7
since they share the path “Regional/Europe/Spain” and the
longest one is made of seven directories. We have evaluated
the similarity between two queries by measuring the similar-
ity between the most similar categories of the two queries,
among the top k answers provided by ODP, for various val-
ues of k.

The first row of plots in figure 5 shows the results con-
cerning the red edges. On the y axis the similarity is shown,
while on the x axis we let the parameter k change. The
results supports our intuition about using the clicks as an
indicator of the reliability of the inferred relations. In fact,
the samples for which we get the best results are the one that
were chosen by maximizing the minimum numbers of clicks
in the pairs and the one in which both queries contain at least
four clicks. That is because such edges are less noisy: for
both queries we have a reasonable amount of information.
The fact that we obtain good performances for the latter
sample is also interesting from a applicative point of view:
for practical purposes this means that our technique can be
applied to a large number of queries and not only to those
with many clicks. On the right side we see that we can relax
the graph a lot and still get good results (actually results in
some cases even improve). On the other hand, we can see
that by selecting edges that maximize the sum of the clicks,
we do even worse than if we select edges in which there are
queries with one click. Intuitively, that is because one noisy
query (the one with few clicks), is enough to make the edge
not very informative. Moreover, the typical edge selected in
this way contains one query with many clicks and one with
just one click, which makes the first query a good candidate
for being a popular query and the second for being a rather
obscure or not well formulated query. Hence, having poor
results for such edges is not really very surprising.

The same set of results concerning green edges are given
in figure 6. Similarly to what happens with the red edges,
here the samples that performs better are the one with at
least four clicks and the one that maximizes the minimum
number of clicks, for the same reasons discussed before. The
sample that maximizes the sum of the clicks performs even
worse than the one in which there are queries with just one
click. Actually, these edges seem not to be very interesting

1http://www.dmoz.org/

Sample Red Edges Green Edges
One click 26% 24%
Max Sum 26% 35%
Four Click 38% 42%
Max Min 42% 45%

Table 5: Matches in ODP for both types of edges.

since most of them contains a very specific query (with few
clicks, often just one, perhaps even a mistake) and a very
general one, like a search engine or a portal (with many
clicks). Comparing figure 6 with figure 5, we can see that
overall the similarity in the first plot is lower than in the
second one. This is to be expected, since these edges ex-
press weaker semantic relations than the red ones, as they
are meant to describe pairs of queries in which the first one
is more specific than the second one. Hence a very high sim-
ilarity is nor expected neither desired. Actually, since the
most obvious application of edges of this kind is for query
recommendation/expansion/reformulation, edges with per-
fect similarity are not very useful: for such edges you are
likely to get the same set of results for both queries. Instead,
we are more interested in queries which are similar, but not
too much, since from such queries we can get different re-
sults. The second plot in the same figure shows for each
connected component (except for the largest one) the per-
centace of red and green edges. We can observe that as long
as the size of the component is relatively small, both compo-
nents where the vast majority of edges is red (or green) and
components where these kind of edges are a small percent-
age can be found. As the size of the component increases,
the behaviour seems to somewhat stabilize.

On the second row of plots in figure 5, we can compare all
three types of edges (for type I and II edges a sample with
four clicks was used as before). The first plot shows that the
kind of edges we are considering does make the difference:
red edges show a quite higher similarity than green edges,
which in turn show a much higher similarity than partial
cover edges. Moreover, as a sanity tester, we also evaluated
random edges between queries that in the graph do not share
an edge: as the plot shows, this kind of edges show a very
low similarity. The second plot shows the ODP similarity (x
axis) versus the click similarity (the weight) of the samples
evaluated in the previous plot. As we can see, for all samples
there is not a strong correlation between the two measures.

Table 5 shows for each of the samples that we studied,
the percentage of both type of edges that we were able to
retrieve from ODP. We counted a positive match whenever
both queries had at least one category listed. We can notice
that the sample for which we get the best results are also
the ones for which there is a better coverage in ODP. This
implies that the webslang relations could be up to more than
50% of all the extracted relations, and a high percentage of
them can be relevant.

5.2 Multitopical Web Pages
We experimented our approach on the large graph and

observed some interesting facts. Looking at the distribution
of votes (plot omitted due to lack of space), which again
follows a power law, we decided to cut the 400 URLs that
got most votes. This brought a very drastic change in the
number of edges: it decreased from 361 to only 11 million.
On the other hand and rather surprisingly, such a dramatic
change concerning the edges, did not alter much the struc-
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Figure 5: Similarity of the different samples found for equivalences for different k (left) and different α (right).

Sample Precision Votes
Top 0.83 > 2000
Middle 0.69 300-289
Bottom 0.59 117-115

Table 6: Precision against votes for all samples.

ture of the graph: the connected components distribution re-
mained almost unaltered, in particular the associated power
law exhibits exactly the same coefficients. Also the number
of isolated nodes remained essentially unaltered. We regard
these two facts as a good hint that our approach goes in the
right direction for addressing the noise issue. In fact our
results seem to indicate that we are able to remove edges
without changing the underlying structure of the graph.

In order to evaluate the effectiveness of our classification,
we have ordered the URLs by vote and selected the first 2%
among the URLs that received at least one vote. Among
the original (about) five million URLs, about 157K received
at least one vote. We studied how the precision varies with
the number of votes by manually classifying three different
samples of 50 distinct URLs, taken respectively in the top,
middle and bottom of the list. We manually measured the

precision by counting in each sample, how many URLs were
actually multitopical. For the evaluation, broken URLs were
removed and discarded. Table 6 shows how precision varies
among the three samples. It also shows the votes range.
As the table shows, we get quite good precision with the
top of the list, while precision decreases as we go further
down in the list. This implies that the number of votes
and how multitopical a URL is, are correlated, providing
experimental support to our heuristic. Moreover, we also
found this approach to be, at least to some extent successful
with respect to our original goal: the filtered graph provided
semantic relations that gave an improvement of up to 5% on
the average similarity.

6. CONCLUDING REMARKS
Our results are really promising if we consider that the

query log was actually small and over a short period of time.
This implies that we can neither follow patterns over time
nor consider the number of different users involved in the
clicks (more users, more wisdom). So an immediate exten-
sion is to use larger logs and include information on unique
users to classify the quality of results.
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Figure 6: Similarity for different samples of green edges.

Also, we underline that the similarity measure used in the
experimental evaluation is quite strict: often queries that are
not related according to ODP, are actually equivalent. For
instance, the two queries ”anchorage alaska newspaper” and
”adn com”, do not share any ODP category but they refer
to the same thing: (adn.com is the site of the Anchorage

Daily News.) Hence, the figures reported in the evaluation
are more a lower bound on the performance we can achieve,
rather than an exact measure. In fact, we did a manual
evaluation of a random sample of 130 pairs from the first
two sample sets and we found that the precision was 63%,
which is pretty close and larger than our results. From the
relevant pairs, we found that at least 40% were synonyms,
17% were site name-domain equivalences and more than 5%
were webslang (e.g. typos), which cannot be found normally
in ODP.

Quality of results could also be improved by incorporat-
ing in the query representation information about the order
of clicked URLs. Actually, it is well known that the clicks
distribution is biased by the order in which the results are
presented.If we were able to remove the bias, and weight
each click taking into account a positional factor, then we
could obtain a more faithful representation of the “informa-
tion need” associated with each query.

Further analysis of the structure of the graph can sur-
face even more relations. For example, a graph clique often
implies that there is at least one URL that was clicked for
all the queries in the clique. One potential reason could be
again multi-topical URLs, so we can also use the graph to
typify web content.

The graph mining techniques proposed in this paper, ap-
plied to larger query logs, can generate huge amounts of
interesting relations: according to searchenginewatch.com,
the number of queries of large search engines per day is of
the order of hundred of millions. A one day graph would
have then more than 10 billion edges. According to our re-
sults, around 6% of them will be equivalent queries and 15%
of them similar queries. Considering a 50% precision for the
first set and a 20% precision for the second, we have a total

of 300 million potential interesting relations! That is, we are
just seeing the tip of the iceberg, because also the potential
number of applications of query graphs is huge.

7. REFERENCES
[1] R. Baeza-Yates. Applications of web query mining. ECIR’05.

[2] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
clustering for boosting web page ranking. AWIC’04,

[3] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
recommendation using query logs in a search engine. EDBT
Workshops, 2004.

[4] D. Beeferman and A. Berger. Agglomerative clustering of a
search engine query log. KDD’99. Boston, MA USA.

[5] A. Cid, C- Hurtado, and M- Mendoza. Automatic maintenance
of Web directories using clickthrough data. WIRI’06.

[6] S.-L. Chuang and L.-F. Chien. Automatic query taxonomy
generation for information retrieval applications. Online
Information Review 27(4), 2003.

[7] S.-L. Chuang and L.-F. Chien. Enriching web taxonomies
through subject categorization of query terms from search
engine logs. Decision Support System 30(1), 2003.

[8] S.-L. Chuang and L.-F. Chien. Towards automatic generation
of query taxonomy: A hierarchical query clustering approach.
ICDM’02.

[9] P.-J. Cheng, C.-H. Tsai, C.-M. Hung, and L.-F. Chien. Query
Taxonomy Generation for Web Search (poster). CIKM’06.

[10] G. Dupret and M. Mendoza. Automatic Query
Recommendation using Click-Through Data. IFIP PPAI’06.

[11] L. Fitzpatrick and M. Dent. Automatic feedback using past
queries: Social searching? In SIGIR’97.

[12] B. M. Fonseca, P. B Golgher, E. S. De Moura, and N. Ziviani.
Using association rules to discovery search engines related
queries. In LA-WEB’03.

[13] H.-T. Pu, S.-L. Chuang, and C. Yang. Subject categorization
of query terms for exploring web users’ search interests.
JASIST 53(8),2002.

[14] V. V. Raghavan and H. Sever. On the reuse of past optimal
queries. SIGIR’95.

[15] M. Sahami and T. D. Heilman. A web-based kernel function
for measuring the similarity of short text snippets. WWW’06.

[16] James Surowiecki. The Wisdom of Crowds: Why the Many Are
Smarter Than the Few and How Collective Wisdom Shapes
Business, Economies, Societies and Nations, Little and Brown,
2004.

[17] J. Wen, J. Mie, and H. Zhang. Clustering user queries of a
search engine. WWW’01.

[18] H. -J. Zeng, Q. -C. He, Z. Chen, W. -Y. Ma, and J. Ma.
Learning To Cluster Search Results. SIGIR’04.

Research Track Paper

85


