
The Hybrid Representation Model for Web Document Classification, by A. Markov, M.
Last, and A. Kandel, to appear in Journal of Intelligent Systems, Copyright © 2008 Wiley
Periodicals, Inc.

1Department of Information Systems Engineering
Ben-Gurion University of the Negev

Beer-Sheva 84105, Israel
{markov,mlast}@bgu.ac.il

2Department of Computer Science and Engineering

University of South Florida
Tampa, FL 33620, USA

kandel@cse.usf.edu

Abstract. Most web content categorization methods are based on the vector-space model
of information retrieval. One of the most important advantages of this representation
model is that it can be used by both instance-based and model-based classifiers.
However, this popular method of document representation does not capture important
structural information, such as the order and proximity of word occurrence or the location
of a word within the document. It also makes no use of the mark-up information that can
easily be extracted from the web document HTML tags.

A recently developed graph-based web document representation model can preserve
web document structural information. It was shown to outperform the traditional vector
representation using the k-Nearest Neighbor (k-NN) classification algorithm. The
problem, however, is that the eager (model-based) classifiers cannot work with this
representation directly. In this paper, three new, hybrid approaches to web document
classification are presented, built upon both graph and vector space representations, thus
preserving the benefits and overcoming the limitations of each. The hybrid methods
presented here are compared to vector-based models using the C4.5 decision-tree and the
probabilistic Naïve Bayes classifiers on several benchmark web document collections.

The results demonstrate that the hybrid methods presented in this paper outperform, in
most cases, existing approaches in terms of classification accuracy, and in addition,
achieve a significant reduction in the classification time.
Keywords: Information retrieval, web content mining, document classification, graph
theory.

1 INTRODUCTION
The huge amount of digital information stored on the web and on private intranets is

growing at an amazing rate. Ever since the Internet and World Wide Web revolutionized

♣ Corresponding author

The Hybrid Representation Model for Web
Document Classification

A. Markov1, M. Last1♣ and A. Kandel2

 2

the information delivery technology, information overload1 [16] has become a crucial
problem in people’s daily life. Under such circumstances, manual organization of
documents is too costly and sometimes even impossible. Automated content-based
document management methods, generally known as information retrieval techniques,
are needed to deal with these amounts of data. Classification is one of the tasks involved.

Document classification (a.k.a document categorization or topic spotting) is the
labeling of documents with a set of predefined thematic categories. The first document
classification approaches belonged to the so-called knowledge engineering domain. These
categorization techniques were based on rules separately generated by knowledge experts
for each one of the available categories. Such rule generation was very expensive, and its
prediction capability was low. Nowadays machine learning and data mining approaches
are most commonly used for classification purposes. These techniques use a training set
of pre-classified documents to build a classification model. This model is then used to
classify previously unseen documents.

Web document classification became a very important sub-field of document
categorization in the last decade due to the rapid growth of the Internet. Most web
categorization methods originated in traditional text classification techniques that use
only the HTML body text for document representation and classification model
induction. Such an approach is not optimal for web documents, since it completely
ignores the fact that web documents contain markup elements (HTML tags), which are an
additional source of information. These tags can be used for identification of hyperlinks,
the title, the underlined or bold text, etc. Furthermore, as demonstrated by Chakrabarti et
al. in 8], a categorization algorithm can utilize the hyperlinks for exploring the “small
neighborhoods” of web documents though this approach slows down the classification
speed as it requires downloading the neighbor texts from the Internet. Major document
representation techniques also give no weight to the order and position of words in the
text. We believe that this kind of structural information may be critical for accurate web
page classification. An enhanced document representation model is a solution for the
problems explained above.

The Graph-Theoretic Web Document Representation Technique was recently
developed [33]. The strength of the graph approach is in its ability to capture important
structural information hidden in the document and its HTML tags. Capability to calculate
the similarity between two graphs [5, 6] allows the classification of graphs using some
distance-based lazy algorithms such as k-Nearest Neighbors (k-NN); the computational
complexity of such algorithms is, however, very high. It is obvious, therefore, that lazy
algorithms cannot be used for massive or online document classification. The major
shortcoming of the graph representation is that most model-based classification
algorithms, such as C4.5 [29], Naïve Bayes [15] and others cannot work with it. This fact
prevents quick document categorization based on a pre-induced classification model.

In this paper we present a new method of web document representation, based on
frequent sub-graph extraction that can help us to overcome problems of traditional bag-
of-words [30] and graph techniques [4]. Our method has two main benefits: (1) we keep
the important structural web page information by extracting relevant sub-graphs from a

1 Information overload is defined as the problem that occurs when people are faced with so much
information that they are unable to attend all of it.

 3

graph that represents this page; (2) we can use most model-based classification
algorithms for inducing a classification model because, eventually, a web document is
represented by a simple vector with Boolean values.

2 Related Work
In information retrieval techniques, the vector space model [30] is typically used for

document representation. A set of terms T(t1,...,t|T|) that occurred at least once in at least
one document, serves as a feature set and each document dj is represented as vector⎯dj =
(w1,...,w|T|), where each wi is a significance weight of a term ti in a document dj. The set T
is usually called vocabulary or dictionary2. The differences between the various
approaches are in:
1. the method used to define a term
2. the method used to calculate the weight of each term

In traditional information retrieval techniques single words are used as terms. This
method is called a 'set' or 'bag-of-words' and it is widely used in document categorization
studies and applications. Some examples can be found in [25, 36, 21, and 7]. According
to this approach, the vocabulary is constructed from either all or N most weighted words
that appear in training set documents. Though this simple representation provides
relatively good classification results in terms of accuracy, its limitations are obvious. This
popular method of document representation does not capture important structural
information, such as the order and proximity of term occurrence or the location of a term
within a document.

As to the term weight calculation, the TF × IDF (term frequency × inverse document
frequency) measure [31, 32] is most frequently used. Such a measure assigns the highest
weight to terms that occur frequently in a specific document but do not occur at all in
most other documents. The Boolean model of Information Retrieval is also very popular
and it usually produces good accuracy results [1, 18]. Here a document is represented as a
vector where dimension values are Boolean with 0 indicating the absence and 1
indicating the presence of the corresponding dictionary term in the document.

In a number of works more sophisticated text representation techniques were presented
and evaluated. These representations did not yield better results compared to the bag-of-
words in [31]. In [11], for instance, syntactic phrases were used as a supplement to single
words for the improvement of text retrieval effectiveness. Syntactic phrase indexing is
the use of syntactic analysis to produce multiword indexing terms. The phrasal term is
considered to be assigned to a document only when all its component words appear in the
document and have the proper syntactic relationship. Experiments presented in [11] have
shown only minor improvements in some cases.

As shown by Hotho et al. in [17], the traditional bag-of-words text representation can
be enhanced using background knowledge available in the form of ontology like
Wordnet. The paper presents and evaluates several optional strategies for adding or
replacing terms by concepts. The results of [17] are quite promising, especially when a
domain-specific ontology is used. However, detailed and comprehensive ontologies are
not available yet in many domains of human knowledge, while non-English lexicons for

2 The difference between dictionary and bag/set of words is that in the first one, the term is not defined and
can be any combination of characters and words, while in the second one, the term is a single word.

 4

domain-specific ontologies are even scarcer.
The major goal of Lewis's experiment [20] was to compare four different ways to

define terms: words, phrases, word clusters, and phrase clusters. Reuter's data set was
used for comparison. Term clustering [20] is the use of cluster analysis in an attempt to
group together semantically related indexing terms (classification features). Cluster
analysis forms groups of objects which have similar values for some set of features. In
term clustering, the objects to be clustered are indexing terms, which are themselves
documents features. Lewis calls the features of indexing terms metafeatures3. Most
research on term clustering has used metafeatures which correspond to documents. When
clustering terms from a 200 document collection, each term would be represented by 200
metafeatures, with each metafeature indicating the presence or absence of that term in
one of the 200 documents. Each cluster, in this case, will lead to terms that frequently
occur together in the same documents. After clustering, all words in a specific cluster
became a single term, so that, if some document includes all the words in the cluster, the
weight of this term in the vector representation of this document will not be zero. In this
particular work, metafeatures are the documents under the same category. The major
conclusions of the research were:
1. Optimal effectiveness occurs when using only a small proportion of the indexing

terms available;
2. Effectiveness peaks at a higher feature set size and lower effectiveness level for a

syntactic phrase indexing than for word-based indexing;
3. Reported term clustering methods cannot provide an improvement in text

representations compared to word term representation – bag of words.
Relational logic document representation that includes word order information is

proposed in [9]. Labeled examples of the target class C are represented as facts of the
form +c(d) and –c(d) for positive and negative examples, respectively. Here d is a
constant that identifies a specific document. Documents are also identified with a set of
facts of type wi (d, p), indicating that word wi appears in the document d at position p.
Positions are integers 1 ≤ p ≤ n, where n is the length of the longest document. A set of
facts from type wi (d, p) is used as background relationships or knowledge and makes it
possible to define predicates needed for representation and categorization. Predefined
predicates that were used are:

near1(p1, p2) is true when |p1 – p2| ≤ 1
near2(p1, p2) is true when |p1 – p2| ≤ 2
near3(p1, p2) is true when |p1 – p2| ≤ 3
after(p1, p2) is true when p1 < p2
succ(p1, p2) is true when p2 = p1 + 1
Then c(d) facts are used as training examples, where each example is represented by a

list of facts extracted from the predicates above. Classifiers that can learn data
represented this way belong to the subfield of Machine Learning called Inductive Logic
Programming or ILP. ILP and its learning principles are explained in greater detail in
[12]. A popular Induction Rules Learning algorithm that can work with such a
representation, and was used in [9], is FOIL [28]. An interesting implementation of the
relational representation for web document classification is given in [10]. Its assumption
is that taking into account relationships between pages in the representation stage can

3 Metafeatures in this case are basically the documents themselves.

 5

improve the classification performance. Some relational predicates that were used in
order to make it possible are:
• has_word(page): this set of Boolean relationship predicates indicates which word

exists in which page. If the value of predicate is true then page page contains word
word. A set of these predicates covers conventional bag-of-words encoding;

• link_to (pageA, pageB): these predicates describe relationships between pages. If true
then pageA points to pageB by hyperlink. The problem with this predicate is that, if
pageA belongs to a training set and pageB does not, then the predicate is useless. In
such a case, a hyperlink pointed to pageB should be ignored or pageB must be
manually classified and added to the training set.

An Induction Rules Learning FOIL classifier was used by the authors for this specific
research. The classification results obtained in the experiments described above were
compared to the bag-of-words-based representations, using the Naïve Bayes classifier, on
the same data set. The relational representation achieved a slightly higher level of
accuracy. Since both the representation type and the classifier were replaced during the
comparison, it is hard to say what caused this improvement: a better representation, a
better classifier, or both.
The n-gram language models have also been used for various text classification tasks
including authorship attribution, language identification, and topic detection (e.g., see
[26] and [35]). An n-gram is simply a consecutive sequence of characters or words of a
fixed window size n. The authors of [26] have enhanced the classical Naïve Bayes
Classifier model by forming a Markov chain of consecutive attributes. They have
experimented with various character and word level models where the order n was
limited to the values of 8 and 4 respectively. However, on the topic detection task in a
large collection of English documents (Reuter's Dataset), the absolute accuracy
improvement vs. the state-of the-art text classification methods was quite marginal: at
most 0.5% using the word level and at most 1.5% using the character level. The results
of another study [35] have suggested that using bigrams in addition to unigrams can be
helpful for more accurate identification of some document categories.

The graph-based approach to web document representation was introduced in [33]. Its
overview is provided in Section 3 below. In [22], we have presented the “Naïve” method
for term extraction from document graphs. The more sophisticated, “Smart” term
extraction method was initially introduced by us in [23] and then enhanced in [24]. In
this paper, we have significantly extended [24] by providing a comprehensive evaluation
of the three proposed hybrid representations of web documents (Hybrid Naïve, Hybrid
Smart, and Hybrid Smart with Fixed Threshold) using two model-based classifiers (C4.5
and Naïve Bayes) and four benchmark document collections.

3 Graph Document Models: An Overview
In this section, we describe a novel, graph-based methodology, designed especially for
web document representation [33]. The main benefit of graph-based techniques is that
they allow keeping the inherent structural information of the original document. Before
describing the graph-based methodology, the definition of a graph, subgraph and graph
isomorphism should be given.

A graph G is a 4-tuple: G= (V, E,α,β), where V is a set of nodes (vertices), E ⊆ V×V is

 6

a set of edges connecting the nodes, α : V → ∑v is a function labeling the nodes, and
β : V×V → ∑e is a function labeling the edges (∑v and ∑e being the sets of labels that
can appear on the nodes and edges, respectively). For brevity, we may refer to G as G=
(V, E) by omitting the labeling functions.

A graph G1=(V1,E1,α1,β1) is a subgraph of a graph G2=(V2,E2,α2,β2), denoted G1 ⊆ G2,
if V1 ⊆ V2, E1 ⊆ E2 ∩ (V1 × V1), α1(x) = α2(x) ∀ x∈V1 and β1(x, y) = β2(x, y) ∀ (x, y) ∈
E1. Conversely, graph G2 is also called a supergraph of G1.

All graph representations proposed in [33] are based on the adjacency of terms in an
HTML document. Under the standard method, each unique term (keyword) appearing in
the document becomes a node in the graph representing that document. Distinct terms
(stems, lemmas, etc.) can be identified by a stemming algorithm and other language-
specific normalization techniques. Each node is labeled with the term it represents. The
node labels in a document graph are unique, since a single node is created for each term
even if a term appears more than once in the text. Second, if a word a immediately
precedes a word b somewhere in a "section" s of the document, then there is a directed
edge from the node corresponding to term a to the node corresponding to term b with an
edge label s. An edge is not created between two words if they are separated by certain
punctuation marks (such as periods). Sections defined for the standard representation are:
title, which contains the text related to the document's title and any provided keywords
(meta-data); link, which is the anchor text that appears in hyper-links on the document;
and text, which comprises any of the visible text in the document (this includes
hyperlinked text, but not the text in the document's title and keywords). Graph
representations are language-independent: they can be applied to a normalized text in any
language. An example of a standard graph representation of a short English web
document is shown in Figure 1, where TL denotes the title section, L indicates a
hyperlink, and TX stands for the visible text.

[Figure 1: Standard Graph Document Representation]

In principle, the graph-based document representations are equivalent to aggregations

of word-level n-gram models, where the order n varies between 1 (unigrams) and the
maximum size of a document graph. However, the methodology of [33] does not require
or use the computation of probabilities for word sequences (chains) in a document.

After the representation stage, documents can be classified with the lazy k-NN
classifier. Authors of [33] used several distance and similarity measures for classification.
An example of such distance measure is given below.

),(
),(

1),(
21

21
21 GGMCS

GGmcs
GGdMMCSN −=

where:
•),(21 GGdMMCSN - normalized distance between graphs G1 and G2 (MMCSN is for

Maximum Minimum Common Subgraph/Supergraph Normalized)
• mcs (G1, G2) – maximal common subgraph of G1 and G2
• MCS (G1, G2) – minimal common supergraph of G1 and G2

 7

The authors of [33] reported a significant improvement in classification accuracy
achieved with graph vs. bag-of-words representation, using the k-NN classifier. In terms
of time needed to classify one document, however, graphs were found to be much slower
than vectors.

Another problem of graph representation is that documents represented by graphs
cannot be classified with most model-based classifiers. On the other hand, the
computational complexity of instance-based algorithms is typically very high and they
cannot be used for massive online web document classification like the model-based data
mining algorithms, which use the conventional vector-space representation and are
generally much faster than the lazy ones.

4 Hybrid Document Models Using Graphs

4.1 Term Definition
In order to represent a web document, a term first has to be defined. The proposed
methodology is based on graph document representation [33]. In the representation
methods presented here, terms (discriminative features) are defined as subgraphs selected
to represent a document already converted into a graph form. It is obvious that all
possible subgraphs in a document graph cannot be taken as attributes because of their
quantity, so some subgraph selection criteria and techniques are needed. In this work,
three optional subgraph selection procedures are proposed, namely Hybrid Naïve,
Hybrid Smart, and Hybrid Smart with Fixed Threshold.

At this point, it is important to emphasize that our methods are not aimed at
identifying syntactic phrases (e.g., noun phrases, adjective phrases, etc.) in a document
though some of extracted subgraphs may happen to be such phrases. Our goal is to select
discriminative subgraphs in a given document without applying language-specific and
computationally intensive operations like Part-of-Speech Tagging, Named Entity
Recognition, and Sentence Parsing. Relying on either a general-purpose or a domain-
specific ontology and a related lexicon (like in 17]) is also beyond the scope of this work.

4.2 Categorization Model Induction Based on a Hybrid
Document Representation

The process for inducing a classification model from labeled web documents
represented by graphs is shown in
Figure 2.

[Figure 2: Classification Model Induction]

First we obtain a training set of labeled web documents D = (d1,…, d|D|) and a set of

categories as C = (c1, …, c|C|), where each document di ∈ D; 1≤i≤|D| belongs to one and
only one category cv ∈ C; 1≤v≤|C|. Then graph representation of documents is generated
(see Section 3) and a set of labeled graphs G = (g1, …, g|D|) is obtained. Now we are able
to extract predictive features (subgraphs in this case) by identifying the subgraphs, which
are most relevant for classification in a set of training graphs. The Naïve or the Smart

 8

methods can be used. A set of terms (subgraphs), or vocabulary T = (t1, …, t|T|) is the
output of this stage.

Using T we can now represent all document graphs as vectors of Boolean features for
every subgraph term in the set T ("1" – a subgraph from the set, created in the previous
stage, appears in the graph of a particular document; “0” - otherwise). Feature selection
may be performed to identify best attributes (Boolean features) for classification. Then
prediction model creation and extraction of classification rules can be performed by one
of the "eager" classification algorithms. Naïve Bayes Classifier and the C4.5 algorithm
were used for evaluation purposes in this particular research study.

4.3 The Hybrid Naïve Approach
The Naïve approach to term extraction was initially introduced by us in [22]. All graphs
representing the web documents are divided into groups by class attribute value (for
instance: business and sports). A frequent sub-graph extraction algorithm is then applied
to each group with a user-specified threshold value tmin. Every subgraph more frequent
than tmin is selected by the algorithm to be a term (discriminative feature), and stored in
the vocabulary. All obtained groups of subgraphs (discriminative features) are combined
into one set.

In this work, so-called the Standard Graph Representation from [33] was used.
Standard representations and others proposed in [33], convert a document into a graph,
where each node is labeled by the word it represents. An important property of the graphs
is that the vertex labels are unique in each graph, which makes the graph and the
subgraph isomorphism identification much easier than the standard subgraph discovery
case [19, 37], where such a restriction does not exist. We used the FSG algorithm [19] for
frequent subgraphs extraction with all selection methods.

The Naïve method is based on a simple postulation that a feature explains the category
best if it appears frequently in that category; in real-world cases, however, this is not
necessarily true. For example if a sub-graph g is frequent in more than one category, it
can be chosen as a feature by the Naïve method though it is not helpful for making a
distinction between documents belonging to those categories. The Smart extraction
method presented in the next sub-section has been developed to overcome this problem.

4.4 The Hybrid Smart Approach
The first publication related to the Smart term extraction appears in [23]. As in the

Naïve representation, all graphs representing the web documents are divided into groups
by class attribute value. In order to extract subgraphs, which are relevant for
classification, some measures are defined, as follows:
SCF – Sub-graph Class Frequency:

()() ()
()i

ik
ik

cN
cfgcgSCF

′
=′

Where
()()ik cgSCF ′ - Frequency of sub-graph kg ′ in category ic .

 9

()ik cfg′ - Number of graphs containing a sub-graph g’k in category ci.
()icN - Number of graphs in category ic .

ISF - Inverse Sub-graph Frequency:

()() } ;{

0)c(if)c(2log

0)c(if
)c(

)c(
log

jj

j
j

j

2

 2

ijCc

fgN

fg
fg

N
cgISF j

k

k
kik ≠∈∀

⎪
⎪
⎩

⎪⎪
⎨

⎧

=∑ ′∑×

>∑ ′
′=′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∑
∑

()()ik cgISF ′ - Measure for inverse frequency of sub-graph kg ′ in category ic .
)(jcN - Number of graphs in category cj.

)(jk cfg ′ - Number of graphs containing g’k in category cj.

And finally we calculate the CR – Classification Rate:

()() ()() ()()ikikik cgISFcgSCFcgCR ′×′=′
()()ik cgCR ′ - Classification Rate of sub-graph kg ′ in category ic . The interpretation of

this measure is how well kg ′ explains category ic . ()()ik cgCR ′ reaches its maximum
value when every graph in category ic contains kg ′ and graphs in other categories do
not contain it at all.

 According to the Smart method, CRmin (minimum classification rate) is defined by
the user and only sub-graphs with CR value higher than CRmin are selected as terms and
entered into the vocabulary. The calculation of the Classification Rate for each candidate
subgraph is a slightly more complicated and time-consuming procedure in the Smart
approach than finding only the subgraph frequency because of the ISF (Inverse Sub-
graph Frequency) calculation where graphs from other categories are taken into account.
Notwithstanding, as can be seen below, in some cases using Smart representation
produces better results in terms of accuracy.

4.5 The Hybrid Smart Approach with Fixed Threshold
In this type of extraction we define a minimal classification rate CRmin together

with the minimal frequency threshold tmin. In order to select a subgraph g’k as relevant for
classification, two conditions should be met:

• SCF (g’k(ci)) > tmin
• CR (g’k(ci)) > CRmin

The first condition was added because, in some cases, when a subgraph is infrequent in
some category but even less frequent or non-existent in other categories it can still pass
the CRmin threshold. This hypothesis is theoretically logical, but in practice it did not
provide a significant improvement in classification accuracy. However, introduction of a
fixed threshold for additional elimination of non relevant subgraphs should reduce the
computation time. The extraction process is similar to the Smart extraction with one
small difference – when Sub-graph Class Frequency (SCF) is calculated for a specific
term, it is compared to tmin. If SCF ≤ tmin – the subgraph is dropped, otherwise we
proceed with calculating the classification rate CR.

 10

4.6 Frequent Sub-Graph Extraction
The input of the sub-graph discovery problem is, in our case, a set of labeled, directed
graphs and threshold parameters tmin and/or CRmin. The goal of the frequent sub-graph
discovery is to find all connected sub-graphs that satisfy the classification relevancy
constraints defined above. Additional property of our graphs is that a labeled vertex is
unique in each graph. This fact makes our problem much easier than the standard sub-
graph discovery case [19] where such restriction does not exist. The most complex task in
frequent sub-graph discovery problem is the sub-graph isomorphism identification4. It is
known as NP-complete problem when nodes in the graph are not uniquely labeled but in
our case it has a polynomial O(n2) complexity. We use breadth first search (BFS)
approach and simplify the FSG algorithm given in [19] for sub-graph detection.
Our Naïve algorithm for frequent subgraph extraction and its notations are presented in
Algorithm 1 and Table 1 respectively. First, all frequent nodes in the input set of graphs
are detected and inserted into the frequent subgraph set. At each iteration of the While
loop (Row 3), we try to extend each frequent subgraph of size k by finding subgraph
isomorphism between it and the graphs from the input set and adding outgoing edge to
the subgraph (Row 7). Then we construct a set Ck of all possible candidate subgraphs
(Rows 8 to 13). We store frequent candidates in the frequent set Fk (Row 14) and return
the union of all frequent subgraph sets obtained after each iteration (Row 16). The
outline of the Smart approach to frequent subgraph extraction is given in Algorithm 2.

Table 1 Notations Used

Notation Description

G Set of document graphs
tmin Subgraph frequency threshold
K Number of edges in the graph
G Single graph
sg Single subgraph
sgk Subgraph with k edges
Fk Set of frequent subgraphs with k edges
Ek Set of extension subgraphs with k edges
Ck
CRmin

Set of candidate subgraphs with k edges
Minimum classification rate

4 Means that a graph is isomorphic to a part of another graph.

 11

Algorithm 1: The Naïve Approach to Frequent Subgraph Extraction

Naïve-Extraction (G, tmin)
 1: F0 ← Detect all frequent 1 node subgraphs (vertexes) in G
 2: k ← 1
 3: While Fk-1 ≠ Ø Do
 4: For Each subgraph sgk-1 ∈ Fk-1 Do

 5: For Each graph g ∈ G Do
 6: If sgk-1 ⊆ g Then
 7: Ek ← Detect all possible k edge extensions of sgk-1 in g
 8: For Each subgraph sgk ∈ Ek Do
 9: If sgk already a member of Ck Then
10: {sgk ∈ Ck}.Count++
11: Else
12: sgk.Count ← 1
13: Ck ← sgk
14: Fk ← {sgk in Ck | sgk.Count > tmin * |G|}
15: k++
16: Return F1, F2, …Fk-2

 12

Algorithm 2: The Smart Approach to Frequent Subgraph Extraction

4.7 Computational Complexity
The computational complexity of our algorithm is similar to the complexity of apriori
based FSG [19] with little differences resulting from the way we are looking for subgraph
extensions, that can probably be further optimized. Additional and much more important
difference is in subgraph and graph isomorphism identification complexity, which are
most time expensive tasks in the process of frequent subgraphs extraction. While graph
isomorphism identification is not known to be either P or NP complete [13], subgraph
isomorphism problem has been shown to be NP complete [14]. This, of course, relates to
general graph's case when vertices are not uniquely labeled. In our case, graphs are
directed and have unique vertices so subgraph isomorphism between graphs G1 and G2
(G1 ⊆ G2) can be determined by the following procedure:

1. Check that G2 contains all vertices of G1 (α1(x) = α2(x) ∀ x∈V1)

Smart-Extraction (G,⎯G, CRmin)
 1: F0 ← Detect all 1 node subgraphs sg0 (vertexes) in G for which CR (sg0) >
CRmin
 2: k ← 1
 3: While Fk-1 ≠ Ø Do
 4: For Each subgraph sgk-1 ∈ Fk-1 Do

 5: For Each graph g ∈ G Do
 6: If sgk-1 ⊆ g Then
 7: Ek ← Detect all possible k edge extensions of sgk-1 in
g
 8: For Each subgraph sgk ∈ Ek Do
 9: If sgk already a member of Ck Then
10: {sgk ∈ Ck}.SCF+= 1/|G|
11: Else
12: sgk. SCF ← 1/|G|
13: Ck ← sgk
14: For Each sgk ∈ Ck Do
15: sgk.ISF ← ISF (sgk,⎯G)
16: sgk.CR ← sgk. SCF × sgk.ISF
17: Fk ← {sgk ∈ Ck | sgk.CR > CRmin}
18: k++
19: Return F1, F2, …Fk-2

 13

2. For each pair of common vertices check that they are connected with the identical
labeled edges (β1(x, y) = β2 (x, y) ∀ (x, y) ∈ V1 × V1))

 Complexity of the first step is O (|V1| × |V2|) since we need only to compare each node
label of one graph to each node label of another one and determine matching. Complexity
of the second step is

2
1

2
1

1

12
1

1 ||||||
!2)!2|(|

|!|||||
2

||
VOVs

V
VVs

V
=×+

×−
=×+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

where:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

|| 1V
 - possible number of pairs

|s| - constant number of sections (three in our standard graph representation) so
2

1 |||| Vs × is maximal number of edges connecting nodes in |V1|
Total complexity of subgraph isomorphism identification is
O(|V1|×|V2| + |V1|2) ≤ O(|V2|2)= O(|V|2) where |V| = max(|V1|, |V2|).
Complexity of graph isomorphism identification is calculated exactly the same way while
number of nodes in both graphs is equal (|V1|=|V2|) so |V| = |V1| = |V2|.

5 Comparative Evaluation

5.1 Description of Benchmark Data Sets
In order to evaluate the performance of the methods studied in this work, several
experiments were performed using four different collections of web documents, called
the F-series [2], the J-series [3], the K-series [4] and the U-series [10]. These four
document collections were selected for two major reasons. First, all of the original
HTML documents are available for these data sets, which is necessary if the web
documents are to be represented using the proposed hybrid methodology. Many other text
categorization collections provide only a pre-processed vector representation or the plain
text, which are both unsuitable for use with our methods. Second, the ground truth class
assignments are provided for each data set, with the classes representing easily
understandable groupings that relate to the content of the documents. Most web
document collections are not labeled or prepared with some other task in mind than
content-related classification (e.g., building a predictive model based on user
preferences). In this paper, we compare the bag-of-words representation of these four
collections with our hybrid techniques using two model based classifiers: Naïve Bayes
and C4.5.

The F-series originally contained 98 documents belonging to one or more of 17
subcategories of four major category areas: manufacturing, labor, business & finance and
electronic communication & networking. Since there are multiple subcategory
classifications from the same category area for many of these documents, the number of
categories was reduced to just the four major categories mentioned above in order to
simplify the problem. There were five documents that had conflicting classifications (i.e.,
they were classified to belong to two or more of the four major categories) which were
removed, leaving a total of 93 documents.

 14

The J-series contains 185 documents and ten classes: affirmative action, business
capital, information systems, electronic commerce, intellectual property, employee rights,
materials processing, personnel management, manufacturing systems, and industrial
partnership. This data set has not been modified for this study.

The K-series consists of 2,340 documents and 20 categories: business, health,
politics, sports, technology, entertainment, art, cable, culture, film, industry, media,
multimedia, music, online, people, review, stage, television, and variety. The last 14
categories are subcategories related to entertainment, while the entertainment category
refers to entertainment in general. Experiments on this data set are presented in [34].
These were originally news pages hosted at Yahoo (www.yahoo.com). The F, J and K
series data sets can be downloaded from the following FTP directory:
ftp://ftp.cs.umn.edu/dept/users/boley/PDDPdata.

The U-series is the largest dataset used in this study. It contains 4,167 documents taken
from the computer science department of four different universities: Cornell, Texas,
Washington, and Wisconsin. Previously documents were divided into seven different
categories: course, faculty, students, project, staff, department and other that catch all
other documents. For the classification experiments only four of these classes were used:
course, faculty, students, and project, and the remaining examples were pooled into a
single other class. This collection can be found and downloaded at
http://www.cs.cmu.edu/~webkb.

5.2 Preprocessing and Representation
The following preprocessing steps were applied before using the bag-of-words and
hybrid representation techniques:
• All meaningless words (“stopwords”) were removed from each document using the

list of stopwords given in Appendix B of 33].
• Stemming was done using the Porter stemmer [27].

To construct a dictionary for the bag-of-words representation, N most frequent words
were selected from each document. Unique words were inserted in the dictionary. The TF
(term frequency) approach to word selection is more efficient than the TF-IDF (term
frequency – inverted document frequency) scheme, which is popular in the information
retrieval [31], since it does not require recalculation of all term weights with an addition
of every new document to the training corpus. The different values of N which were used
in these experiments together with the dictionary sizes obtained for the bag-of-words
representation can be found in Table 2. Each document was then represented as a vector
of Boolean values, 1 for presence and 0 for absence of a dictionary word in the document.
The simplest, Boolean representation was chosen to save the preprocessing computations
and produce more compact classification models that should maximize the classification
speed of unlabeled documents. As can be understood from Table 2, the longest vector
(21,463 words) was obtained using the U-series data set and N = 100. After the
representation stage, a classification model was induced from the training documents and
applied to the documents in a validation set. Since in some cases the accuracy gap
between two different cross validation runs with the same dictionary can reach 1.5 – 2%,
the average of ten runs of a ten-fold cross validation was used as the final accuracy result

 15

for each collection and dictionary size.

Table 2: Dictionary sizes per data set and N
N

Series

20 30 40 50 100

F 846 1135 1422 1695 2774

J 1301 1773 2173 2518 3956

K 6553 7988 9258 10663 16874

U

9313 11814 13911 15594 21463

As for Hybrid techniques, the same N most frequent words in each document were

taken for graph construction, that is exactly the same words in the document were used
for both the graph creation and the bag-of-words representation. Subgraphs relevant for
classification were then extracted using the Naïve, the Smart, and the Smart with Fixed
Threshold approaches. A dictionary containing subgraphs instead of simple words was
constructed. Each document was then represented as a vector of Boolean values, 1 for
presence and 0 for absence of a dictionary term (subgraph) in the document. Hundreds of
experiments were performed, with N being varied together with tmin and CRmin for the
Naïve and the Smart approaches, respectively.

The Smart with Fixed Threshold approach was applied by defining the fixed threshold
tmin = 0.1 together with CRmin, and performing smart extraction. The value of tmin was not
chosen arbitrarily. The assumption was that subgraphs that appear in less than 10% of the
graphs cannot be attributes.

5.3 Comparison of Hybrid and Bag-of-words
Representations Using the C4.5 Classifier

Only the best results for each technique are presented here. Classification results for F, J,
K and U-series are given in Figures 3, 4, 5, and 6, respectively.

As can be seen from the figures, in all cases the Hybrid approaches achieved better
classification results than the regular Vector Space Model (bag-of-words) representation,
especially in F, J and U-series data sets where all Hybrid representations showed much
better results for all values of N. In the K-series data set case (Figure 5), the bag-of-words
representation outperformed the Hybrid Smart and the combined approach for some
values of N. However, the best classification accuracy was still found to belong to the
Hybrid Naïve method. The values of input parameters together with the subgraph
dictionary sizes for the best accuracy results are shown in Table 3. The best accuracy
results for each data set across all methods are emphasized in bold and it can be easily
seen that they were all produced by the hybrid techniques with mostly minor differences
between various hybrid representations. Using the Normal approximation to the
Binomial distribution, all best accuracy results of the hybrid methods were found

 16

significantly higher than the best results of the bag-of-words representation (at the
significance level lower than 0.001).

[Figure 3: Comparative results for F-series with C4.5 classifier]

[Figure 4: Comparative results for J-series with C4.5 classifier]

[Figure 5: Comparative results for K-series with C4.5 classifier]

[Figure 6: Comparative results for U-series with C4.5 classifier]

 17

Table 3: Input parameters and obtained dictionary sizes for the best accuracy results (C4.5)

Data Set Method

Number of
Frequent

Words
Used for

Dictionary
or Graph
Creation

N

Minimal
Subgraph
Frequency
Threshold

tmin

Minimal
Classification

Rate
CRmin

Dictionary
Size Accuracy

Hybrid
Smart 50 n/a 0.8 411 86.56%

Hybrid
Naïve 50 0.2 n/a 152 86.02%

Hybrid
with Fixed
Threshold

50 0.1 0.8 300 88.6%
F-series

Bag-of-
words 20 n/a n/a 846 78.06%

Hybrid
Smart 30 n/a 1.2 2503 85.24%

Hybrid
Naïve 20 0.15 n/a 1668 84.65%

Hybrid with
Fixed

Threshold
20 0.1 0.7 1635 83.41%

J-series

Bag-of-
words 50 n/a n/a 2518 58.32%

Hybrid
Smart 20 n/a 1.1 2102 74.68%

Hybrid
Naïve 100 0.25 n/a 24.35 78.18%

Hybrid with
Fixed

Threshold
100 0.1 1.4 3644 73.86%

K-series

Bag-of-
words 50 n/a n/a 10663 73.01%

Hybrid
Smart 100 n/a 1.1 64 82.44%

Hybrid
Naïve 100 0.1 n/a 360 81.75%

Hybrid with
Fixed

Threshold
100 0.1 1 80 82%

U-series

Bag-of-
words 20 n/a n/a 9313 78.11%

The times needed to build a classification model and categorize one document in the U-

series data set, which was the most time-consuming task in our experiments, were also

 18

measured and compared. The time required for each procedure was measured on the
same system under the same operation conditions: a 2GHz Pentium 4 processor with one
Gigabyte of RAM. Execution time was measured for the most accurate cases
(see Table 3) of each approach. The total time span needed to create a classification
model with each method is given in Table 4. It is called the offline classification time
because the classification model is usually constructed before the massive categorization
stage and does not change in the process5. The model generation stage consists of the
following steps applied to the training collection of documents:
1. Time to Build Graphs – time needed to build graphs from each document in the

collection (not relevant for the bag-of-words representation)
2. Time to Build Dictionary – for the Hybrid technique this is the time needed to extract

relevant subgraphs, while for the bag-of-words it is the time needed to find and
combine the most frequent words from every document.

3. Time to Construct Vectors – time required for documents representation in the vector
format.

4. Time to Induce Classification Model – inducing a classification model from the
feature vectors with a classification algorithm (e.g., C4.5 or Naïve Bayes Classifier).

It is interesting to note that the extraction process using the Smart method took much
more time than the Naive Hybrid technique. Such a difference occurred because an
infrequent subgraph cannot be dropped without calculating its CR. Another fact which
catches one's attention is that creating a dictionary using the hybrid approach with fixed
threshold (subgraphs extraction) is faster than creating a dictionary for bag-of-words,
even for relatively small N (20 in this case). All Hybrid techniques also demonstrated
faster document representation and model creation times than the bag-of-words
representation. This fact can be easily explained by the size of the dictionary obtained
using the hybrid approaches, which is much smaller than the dictionary used with the
bag-of-words representation (see Table 3). Finally, the shortest total time is reached with
the Hybrid Smart approach using a fixed threshold, where nearly the highest accuracy is
also reached.

The average time needed to classify one document, or online classification time, for
current cases is presented in Table 5. This parameter is much more important than the
model generation time when real-time categorization of massive web document streams
is required. As can be seen, documents represented by the hybrid techniques are
classified much faster than documents represented as “bags of words”. This is due to the
relatively small dictionary size and the resultant smaller decision-tree model.

5 Incremental induction of classification models is beyond the scope of this research

 19

Table 4: Total time needed to induce a classification model (C4.5)

Data
Set Method

Time
 to Build
Graphs
(sec)

Time to Build
Dictionary

(sec)

Time to
Construct
Vectors

(sec)

Time to
Build

Classification
Model
(sec)

Total Time
Offline
(sec)

Hybrid
Smart 223.2 2628.56 5.59 4.36 2861.71

Hybrid
Naïve 223.2 43.4 31.16 76.59 374.35

Hybrid
with

Fixed
Threshold

223.2 66.35 7.47 6.09 303.11

U-
series

Bag-of-
words n/a 300.9 133.2 330.32 764.42

Table 5: Average time to classify one document (C4.5) – U Series

Method Average Time to Classify One
Document(sec)

Hybrid Smart 2.88 × 10-4
Hybrid Naïve 4.56 × 10-4
Hybrid with Fixed Threshold 3.12 × 10-4
Bag-of-words 1.68 × 10-3

In this study, we were also interested to explore in more details the added value of

multi-node subgraphs, since single-node subgraphs are equivalent to the bag-of-words
model. We define a multi-node graph as the one that contains two or more nodes.
Obviously, the presence of such graphs into a term set T makes the difference between
the hybrid and bag-of-words representations. In Figures 7-10 we show the percentage of
multi-node subgraphs in term sets T for the best classification accuracy results in each
document collection. As can be seen in Figure 7, for instance, with the Hybrid Naïve
representation and 20 node document graph size we have more than 50% multi-node
subgraphs in the term set T. It is noteworthy that a relatively high percentage of multi-
node subgraphs was found in J and K series collections so the impact of multi-node
subgraphs in those collections was high too. As a rule we can say that the amount and the
resulting impact of multi-node subgraphs were found significant in most cases.

[Figure 7: Percentage of Multi-Node Sub-Graphs in T for F-Series (Best C4.5 results)

[Figure 8: Percentage of Multi-Node Graphs in T for C4.5, J-Series (Best C4.5 results)]

[Figure 9: Percentage of Multi-Node Graphs in T for C4.5, K-Series (Best C4.5 results)]

[Figure 10: Percentage of Multi-Node Graphs in T for C4.5, U-Series (Best C4.5 results)]

 20

5.4 Comparison of Hybrid and Bag-of-words
Representations Using Probabilistic Naïve Bayes Classifier

In the experiments using the Naïve Bayes Classifier (NBC) the same preprocessing stages
as in the previous section were performed. Exactly the same input parameter values and
document representations were used in the empirical evaluation. Since the document
representation stage remained unchanged, the dictionaries used for the C4.5 runs stayed
exactly the same. Accuracy results for the F, J, K and U-series collections are presented
in Figures 11-14, respectively. An overview of the best accuracy results along with the
corresponding input parameters and dictionary sizes are given in Table 6. The best
accuracy results for each data set across all methods are again emphasized in bold. In
case of the Naïve Bayes (NBC), the hybrid techniques are better than the bag-of-words
representation for three document collections out of four (F, J, and U-series). All
differences are statistically significant at the level lower than 0.001. However, for the K-
series collection (see Figure 13), the bag-of-words representation achieved slightly better
accuracy results for most values of N. This may be explained by the NBC's ability to
perform well with a large number of uncorrelated or weakly correlated features.

 21

Table 6: Input parameters and obtained dictionary sizes for the best accuracy results (NBC)

Data Set Method

Number of
Frequent

Words
Used for

Dictionary
or Graph
Creation

N

Minimal
Subgraph
Frequency
Threshold

tmin

Minimal
Classification

Rate
CRmin

Dictionary
Size Accuracy

Hybrid
Smart 50 1.2 n/a 108 94.84%

Hybrid
Naïve 50 0.2 n/a 152 94.84%

Hybrid
with Fixed
Threshold

50 0.1 1.3 93 95.27%
F-series

Bag-of-
words 20 n/a n/a 846 91.16%

Hybrid
Smart 100 n/a 1.8 347 84.49%

Hybrid
Naïve 100 0.4 n/a 202 90.7%

Hybrid with
Fixed

Threshold
30 0.1 0.9 567 83.46%

J-series

Bag-of-
words 20 n/a n/a 1301 57.68%

Hybrid
Smart 100 n/a 1.8 891 75.18%

Hybrid
Naïve 20 0.15 n/a 497 73.55%

Hybrid with
Fixed

Threshold
100 0.1 0.9 1575 75.43%

K-series

Bag-of-
words 20 n/a n/a 6553 76.97%

Hybrid
Smart 100 n/a 1.2 48 78.97%

Hybrid
Naïve 20 0.2 n/a 24 76.53%

Hybrid with
Fixed

Threshold
100 0.1 1.2 48 78.97%

U-series

Bag-of-
words 100 n/a n/a 21463 72.59%

 22

[Figure 11: Comparative results for F-series with Naïve Bayes Classifier]

[Figure 12: Comparative results for J-series with Naïve Bayes Classifier]

[Figure 13: Comparative results for K-series with Naïve Bayes Classifier]

[Figure 14: Comparative results for U-series with Naïve Bayes Classifier]

Comparative timing results for classification model creation and single document
categorization are given in Tables 6 and 7, respectively. The classification model
induction took more time with the Hybrid Smart extraction than with the bag-of-words,
but other hybrid techniques succeeded in performing faster. Computational time
reduction with other hybrid approaches is explained by the presence of a fixed frequency
threshold that helps to remit the number of candidate subgraphs. A significant
improvement is also seen in the average time required to classify one document using all
hybrid approaches vs. the bag-of-words, which, of course, results from a smaller
dictionary size, obtained by the hybrid methods. The percentages of multi-node
subgraphs in term sets T that provided the best NBC accuracy results in each document
collection were similar to the best term sets used by the C4.5 algorithm and we do not
show them here due to space limitations.

Table 7: Total time needed to create classification model (NBC)

Data
Set Method

Time to
Build
Graphs(sec)

Time to Build
Dictionary(sec)

Time to
Construct
Vectors(sec)

Time to
Build
Classification
Model(sec)

Total Time
Offline(sec)

Hybrid
Smart 223.2 2460.87 4.21 0.12 2688.4

Hybrid
Naïve 283.64 1.46 0.5 0.08 285.68

Hybrid
with
Fixed
Threshold

223.2 62.3 4.19 0.12 289.81

U-
series

Bag-of-
words n/a 51.55 286.34 42.62 380.51

Table 8: Average time to classify one document (NBC) – U Series

Method Average Time to Classify One
Document(sec)

Hybrid Smart 1.2 × 10-3
Hybrid Naïve 6.49 × 10-4
Hybrid with Fixed
Threshold 5.7 × 10-4

Bag-of-words 0.125

 23

6 Conclusions and Future Research
The goal of this research study was to propose novel graph-based document
representations for efficient categorization of web documents with model-based
classifiers. An important objective was also to maintain or even improve the prediction
performance of document categorization. The proposed hybrid representation models
were shown to be considerably faster than the traditional vector-space model in terms of
online classification speed, while also outperforming the predictive accuracy of the same
model, in most cases. Thus, the techniques described here can now be used for real-time
document categorization applications.

As for future research, some issues are still open:
1. Some heuristic should be developed for finding the optimal representation model and

its input parameters (like N, CRmin and tmin) for a given classification task. The
evaluation in this research study was purely empirical, and the experiments were run
using a wide range of input values for three different hybrid representations to
achieve better classification results. Despite the relatively small accuracy difference
between the best and the worst classification results, there is still a need in some
simple heuristic.

2. In this research, the ability of the hybrid representations to perform a document
classification task was examined. However, we hope that the techniques presented in
this work can also be easily applied to other web content mining tasks such as web
document clustering. This capability should be further explored and evaluated.

3. The techniques presented here can be tested with other classifiers, beyond C4.5 and
NBC that may provide even better results. They can also be used together with other
representation techniques. A good example would be the relational representation [9,
 10], where relevant subgraphs can be used as background knowledge instead of
simple words.

Acknowledgment
This work was partially supported by the National Institute for Systems Test and
Productivity at the University of South Florida under the USA Space and Naval Warfare
Systems Command Grant No. N00039-01-1-2248.

References
1. C. Apt'e, F. J. Damerau and S. M. Weiss, "Automated learning of decision rules for

text categorization", ACM Transactions on Information Systems 12, 3, 233–251,
1994.

2. D. L. Boley, "Principal Direction Divisive Partitioning", Data Mining and Knowledge
Discovery 2(4):325-344, 1998.

3. D. Boley, M. Gini, R. Gross, S. Han, K. Hastings, G. Karypis, V. Kumar, B.
Mobasher, J. Moore, "Partitioning-Based Clustering for Web Document
Categorization", Decision Support Systems, 1999.

4. D. Boley, M. Gini, R. Gross, E.-H. (Sam) Han, K. Hastings, G. Karypis, V. Kumar,
B. Mobasher, J. Moore, "Document Categorization and Query Generation on the
World Wide Web Using WebACE", AI Review, 13:365-391, 1999.

 24

5. H. Bunke, "On a relation between graph edit distance and maximum common
subgraph", Pattern Recognition Letters, Vol.18, 1997, pp.689–694.

6. H. Bunke, "Error Correcting Graph Matching: On the Influence of the Underlying
Cost Function", IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol.21, No.9, September 1999, pp.917–922.

7. R. Carreira, J. M. Crato, D. Goncalves, and J. A. Jorge, "Evaluating Adaptive User
Profiles for News Classification", Proc. 9th International Conference on Intelligent
User Interface, January 2004.

8. S. Chakrabarti, B. Dom, and P. Indyk, “Enhanced hypertext categorization using
hyperlinks”, in Proceedings of the 1998 ACM SIGMOD international Conference on
Management of Data (Seattle, Washington, United States, June 01 - 04, 1998). A.
Tiwary and M. Franklin, Eds. SIGMOD '98. ACM Press, New York, NY, pp. 307-
318, 1998.

9. W.W. Cohen, "Learning to classify English text with ILP methods", In Advances in
Inductive Logic Programming (Ed. L. De Raedt), IOS Press, 1995.

10. M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam and S.
Slattery, "Learning to extract symbolic knowledge from the World Wide Web", In
Proceedings of the Fifteenth National Conference on Artificial Intellligence
(AAAI98), pages 509-516, 1998.

11. J. Fagan, "Experiments in Automatic Phrase Indexing for Document Retrieval: A
Comparison of Syntactic and Non-Syntactic Methods", PhD thesis, Dept. of
Computer Science, Cornell University, 1987.

12. P. Flach, "The logic of learning: a brief introduction to Inductive Logic
Programming", Technical Report: CS-EXT-1998-141, 1988.

13. S. Fortin, "The graph isomorphism problem", Technical Report TR96-20, Department
of Computing Science, University of Alberta, 1996.

14. M. R. Garey, D. S. Johnson, "Computers and Intractability: A Guide to the Theory of
NP-Completeness", W. H. Freeman and Company, New York, 1979.

15. H.George, J&P. Langley, "Estimating Continuous Distributions in Bayesian
Classifiers", Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo.

16. H. Hall, "Networked information: dealing with overload", Proceedings of Information
1997 (Strathclyde Business School, November 1997), Library Association CIG
Scotland, Paisley, 37-44.

17. A. Hotho, S. Staab, and G. Stumme, “Wordnet improves Text Document Clustering”,
In Proc. of the Semantic Web Workshop of the 26th Annual International ACM SIGIR
Conference, Toronto, Canada, 2003.

18. D. Koller, and M. Sahami, "Hierarchically classifying documents using very few
words", In Proceedings of ICML-97, 14th International Conference on Machine
Learning, (Nashville, US, 1997), pp. 170–178, 1997.

19. M. Kuramochi and G. Karypis, An Efficient Algorithm for Discovering Frequent
Subgraphs. IEEE Transactions on Knowledge and Data Engineering 16, 9 (Sep.
2004), pp. 1038-1051.

20. D. D. Lewis, 1992a, "An evaluation of phrasal and clustered representations on a text
categorization task", In Proceedings of SIGIR-92, 15th ACM International
Conference on Research and Development in Information Retrieval, pp. 37–50, 1992.

 25

21. N. Maria, and M. J. Silva, "Theme-based Retrieval of Web news", Proc. 23rd Annual
International ACM SIGIR Conference on Research and Development In Information
Retrieval, July 2000.

22. A. Markov and M. Last, "A Simple, Structure-Sensitive Approach for Web Document
Classification", in P.S. Szczepaniak et al. (Eds.), Advances in Web Intelligence,
Proceedings of the 3rd Atlantic Web Intelligence Conference (AWIC 2005),
Springer-Verlag, LNAI 3528, pp. 293–298, Berlin Heidelberg 2005.

23. A. Markov and M. Last, "Efficient Graph-Based Representation of Web Documents",
Proceedings of the Third International Workshop on Mining Graphs, Trees and
Sequences (MGTS2005), pp. 52-62, October 7, 2005, Porto, Portugal.

24. A. Markov, M. Last, and A. Kandel, “Model-Based Classification of Web Documents
Represented by Graphs”, Proceedings of the WebKDD 2006 Workshop on
Knowledge Discovery on the Web at KDD 2006, pp. 31-38, Philadelphia, PA, USA,
Aug. 20, 2006.

25. A. McCallum, and K. Nigam, "A Comparison of Event Models for Naive Bayes Text
Classification", Proc. AAAI--98 Workshop on Learning for Text Categorization,
1998.

26. F. Peng, D. Schuurmans, “Combining Naive Bayes and n-Gram Language Models for
Text Classification”, in Advances in Information Retrieval: Proc. 25th European
Conference on IR Research, ECIR 2003, Pisa, Italy, April 14-16, pp. 335 – 350, 2003.

27. M. Porter, "An algorithm for suffix stripping", Program Vol. 14, No. 3, 130-137,
1980.

28. J. R. Quinlan, R. M. Cameron-Jones, "Induction of logic programs: FOIL and related
systems", New Generation Computing, 13(3, 4), 287–312, 1995.

29. J.R. Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers
Inc, 1993.

30. G. Salton, A. Wong, and C. Yang, C. (1975). A Vector Space Model for Automatic
Indexing, J. Communications of the ACM, 18(11), pp. 613--620.

31. G. Salton, and C. Buckley, "Term Weighting Approaches in Automatic Text
Retrieval", Technical Report: TR87-881, Cornell University, November 1988.

32. G. Salton, and M. McGill, "Introduction to Modern Information Retrieval", McGraw
Hill, 1983.

33. A. Schenker, H. Bunke, M. Last, and A. Kandel, "Graph-Theoretic Techniques for
Web Content Mining", Series in Machine Perception and Artificial Intelligence, 62,
World Scientific, 2005.

34. A. Strehl, J. Ghosh, and R. J. Mooney, "Impact of similarity measures on web-page
clustering", In Proc. AAAI Workshop on AI for Web Search (AAAI 2000), Austin,
pages 58-64. AAAI/MIT Press, July 2000.

35. C.-M. Tan, Y.-F. Wang, and C.-D. Lee, “The use of bigrams to enhance text
categorization”, Information Processing and Management, Vol. 38, 2002, pp. 529–
546.

36. S. M. Weiss, C. Apte, F. J. Damerau, D. E. Johnson, F. J. Oles, T. Goetz and T.
Hampp, "Maximizing Text-Mining Performance", J. IEEE Intelligent Systems, 14(4),
July/August, pp. 63—69, 1999.

37. X. Yan and J. H. Gspan, “gSpan: Graph-Based Substructure Pattern Mining”, In
Proceedings of the 2002 IEEE international Conference on Data Mining (ICDM'02)

 26

(December 09 - 12, 2002). ICDM. IEEE Computer Society, Washington, DC, pp.
721-724.

 27

Figures

Figure 1: Standard Graph Document Representation

Figure 2: Classification Model Induction

Set of graphs
creation

Set of sub-
graphs

creation
Dictionary

Text
representation

Feature selection

Creation of
prediction

model
Document

classification
rules

Web
documents

CULTURE

FREE

AMERICAN EUROPE

MARKET MUSLIM PERSPECTIVE

TL

TL TL

TX L

TX
TX

 28

Accuracy Comparison for C4.5, F-series

65%

70%

75%

80%

85%

90%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y

Bag-of-words Hybrid Naïve
Hybrid Smart Hybrid Smart with Fixed Threshold

Figure 3: Comparative results for F-series with C4.5 classifier

Accuracy Comparison for C4.5, J-series

50%

55%

60%

65%

70%

75%

80%

85%

90%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

C
la

s
s
if

ic
a
ti

o
n

 A
c
c
u

ra
c
y

Bag-of-words Hybrid Naïve
Hybrid Smart Hybrid Smart with Fixed Threshold

Figure 4: Comparative results for J-series with C4.5 classifier

Accuracy Comparison for C4.5, K-series

65%

70%

75%

80%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y

Bag-of-words Hybrid Naïve
Hybrid Smart Hybrid Smart with Fixed Threshold

Figure 5: Comparative results for K-series with C4.5 classifier

 29

Accuracy Comparison for C4.5, U-series

70%

75%

80%

85%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y

Bag-of-words Hybrid Naïve
Hybrid Smart Hybrid Smart with Fixed Threshold

Figure 6: Comparative results for U-series with C4.5 classifier

Relative Number of Multi Node Graphs for C4.5, F-series

0%

10%

20%

30%

40%

50%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

M
u

lt
i

N
o

d
e
 G

ra
p

h
s

Hybrid Naïve Hybrid Smart Hybrid Smart with Fixed Threshol

Figure 7: Percentage of Multi-Node Sub-Graphs in T for F-Series (Best C4.5 results)

Relative Number of Multi Node Graphs for C4.5, J-series

20%

30%

40%

50%

60%

70%

80%

90%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

M
u

lt
i

N
o

d
e
 G

ra
p

h
s

Hybrid Naïve Hybrid Smart Hybrid Smart with Fixed Threshold

Figure 8: Percentage of Multi-Node Graphs in T for C4.5, J-Series (Best C4.5 results)

 30

Relative Number of Multi Node Graphs for C4.5, K-series

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

M
u

lt
i

N
o

d
e
 G

ra
p

h
s

Hybrid Naïve Hybrid Smart Hybrid Smart with Fixed Threshold

Figure 9: Percentage of Multi-Node Graphs in T for C4.5, K-Series (Best C4.5 results)

Relative Number of Multi Node Graphs for C4.5, U-series

0%

10%

20%

30%

40%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

M
u

lt
i

N
o

d
e
 G

ra
p

h
s

Hybrid Naïve Hybrid Smart Hybrid Smart with Fixed Threshold

Figure 10: Percentage of Multi-Node Graphs in T for C4.5, U-Series (Best C4.5 results)

Accuracy Comparison for NBC, F-series

75%

80%

85%

90%

95%

100%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y

Bag-of-words Hybrid Naïve
Hybrid Smart Hybrid Smart with Fixed Threshold

Figure 11: Comparative results for F-series with Naïve Bayes Classifier

 31

Accuracy Comparison for NBC, J-series

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y

Bag-of-words Hybrid Naïve
Hybrid Smart Hybrid Smart with Fixed Threshold

Figure 12: Comparative results for J-series with Naïve Bayes Classifier

Accuracy Comparison for NBC, K-series

50%

55%

60%

65%

70%

75%

80%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y

Bag-of-words Hybrid Naïve
Hybrid Smart Hybrid Smart with Fixed Threshold

Figure 13: Comparative results for K-series with Naïve Bayes Classifier

Accuracy Comparison for NBC, U-series

50%

55%

60%

65%

70%

75%

80%

20 30 40 50 60 70 80 90 100

Frequent Terms Used

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y

Bag-of-words Hybrid Naïve
Hybrid Smart Hybrid Smart with Fixed Threshold

Figure 14: Comparative results for U-series with Naïve Bayes Classifier

