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Abstract 
World Wide Web has evolved exponentially since its 
inception. Today, it has become important for the 
algorithms of the web applications like searching, web-
crawling, community discovery to exploit the information 
hidden in the hyperlink graph of the Web. This is the main 
driving force of the webmining community. We present in 
this paper an extensive analysis of the web, purely, based 
on the graph analysis algorithms. Prior work in the graph 
based analysis of the Web have been based on certain 
criteria and themes. But, we believe, for the web, which 
has evolved stochastically, only a pure graph based 
analysis can give us the true insights. We have carried 
out our analysis on isomorphic subgraphs of the Web to 
arrive at our conclusions. We reaffirm that the Web, is 
indeed a Fractal. Each structurally isomorphic subgraph 
shows the same characteristics as the Web and follows  
the classical Bow-tie model. 
 
1. Introduction 
 

The Web is an ever growing repository of large 
amount of information, spread across several servers in a 
complicated network. With the advent of Peer2Peer, web 
publishing every user is a disseminator of information. 
With every new webpage, a new node and with every 
link, a new directed edge is added to the web graph.  

This growth in the size of the web presents an 
important task of mining and extracting relevant 
information from the hyperlink graph which can be 
exploited by simple searching and crawling algorithms as 
well as by advanced web applications such as web-scale 
data mining, community extraction, construction of 
indices, taxonomies, and vertical portals. In the recent 
past many application have surfaced which exploit the 
knowledge of the hyperlink structure of the web. Few 
such applications are the advanced search applications [4, 
5, 6], browsing and information foraging [7, 8], 
community extraction [9], taxonomy construction [10].  
     Substantial amount of work has been carried out in the 
recent past [1, 2, 3].  [1] is very theoretical, and proposes 
stochastic models to explain the hyperlink structure of the 
Web. [3] talks about Small World Network and Scale 
Invariance in the structure of the Webgraph. It also 

proposes the classical bow-tie structure based on the 
various graph parameters (discussed in the next section). 
In [2], Kumar et. al. have extended the above model and 
have shown the self-similarity in the Web i.e., each 
thematically unified region displays the same 
characteristics as the Web at large. They have 
characterized sub graphs as collections of Web pages that 
share a common attribute like keyword, content, location 
and some randomly generated subgraphs. 

But, we believe to capture the true insights on the 
structure of the web, which has evolved stochastically 
over the period of its existence, we need to make use of 
pure graph based sub graph isomorphism algorithms. We 
applied iterative subgraph isomorphism algorithm on the 
webgraph to get the subgraphs. We then calculated 
various graph analysis parameter for those subgraphs. We 
found that each structurally similar subregion shows the 
same characteristic as the web and this holds for a number 
of parameters.  

In the subsequent sections we have described our 
experiments, our results and finally the conclusions. But 
before delving deeper into the experiment, in the next 
section we briefly discuss the hyperlink webgraph, the 
graph parameters and the subgraph isomorphism 
algorithm. 

   
 
2. Terminologies and Algorithm 
 
2.1. Web Graph 
 
    Our view of the Web as a graph is same as [2] i.e. we 
ignore the text and other content in pages, focusing 
instead on the links between pages. In the terminology of 
graph theory [11], we refer to pages as nodes, and to links 
as edges. In this framework, the Web is a large graph 
containing over a billion nodes, and a few billion edges. 
 
2.2. Graph Terminologies 
  
    A directed graph consists of a set of nodes, denoted as 
V and a set of edges, denoted as E. Each edge is an 
ordered pair of nodes (u, v) representing a directed 
connection from u to v. The outdegree of a node u is the 



number of distinct edges (u, v1), . . . . , (u, vn) (i.e., the 
number of links from u), and the indegree is the number 
of distinct edges (v1, u), . . . , (vn, u)  (i.e. the number of 
links to u). A path from node u to node v is a sequence of 
edges (u, u1), (u1, u2), . . . , (un, v). As the graph is 
directed, a path from u to v does not imply vice-versa. 
The distance from u to v is n+1, for the smallest value of 
n. If no path exists, the distance from u to v is infinity. If 
(u, v) is an edge, then the distance from u to v is 1. 
 
2.3. Graph Analysis Parameters 
 
     A brief description of the parameters we have used in 
the analysis of the Web graph: 
 
2.3.1. Characteristic Path Length and Diameter.  The 
characteristic path length defines the typical distance 
from every node to every other node. The diameter 
represents the maximum possible distance between all the 
pair of reachable nodes. The Characteristic path length is 
calculated by finding the median of the means of the 
shortest paths from each node to every other node. 
 
2.3.2. Clustering Coefficient. It is defined as the mean of 
the clustering indices of all the nodes in the graph. To 
find it, we find the neighbors of the node and then find 
the number of existing links amongst them. The ratio of 
the number of existing links to the number of possible 
links gives the clustering index of the node. 
 
 
2.3.3. Centrality and Centralization. The degree 
centrality for a node is defined as: 

 
where a (pi, pk) is 1 iff pi and pk are directly connected in 
the direction from pi to pk. The degree centrality of a 
point is useful as an index of a potential communication 
ability. 
 
2.3.4. Degree Centralization. The centralization of a 
network is calculated as the ratio of the centrality of each 
node of the network with a star network of the same size. 
 
2.3.5. Betweenness Centrality. It is based upon the 
frequency with which a point falls between pairs of other 
points on the shortest or geodesic paths connecting them.  
 
2.3.6. Closeness Centrality. It is related to the control of 
communication in a somewhat different manner. A point 
is viewed as central to the extent that it can avoid the 
control potential of others. 
 

2.4. Web Graph Characteristics 
 
As mentioned earlier Small World Network and Scale 
Invariance are two important characteristics reported in 
earlier works [1, 2, 3]. 
 
2.4.1. Small World Network.  It is a complex network in 
which the distribution of connectivity is not confined to a 
certain scale, and where every node can be reached from 
every other by a small number of hops or steps. The Web 
was shown to exhibit this characteristic first by [3], since 
then many have reinforced this assertion. 
 
2.4.2. Scale Free Networks. Scale-free Networks, are the 
outcome of random construction processes. One of their 
common property is that the vertex connectivities follow 
a scale free power-law distribution. Power-law 
distribution states that for a positive integer, the 
probability of the value i is directly proportional to i^(-k) 
for a small positive number k. Scale free Networks are 
generic and are preserved under random degree 
preserving rewiring. They are Self Similar and Domain 
Independent [12]. 
     Scale-free networks usually contain centrally located 
and interconnected high degree nodes, which influence 
the way the network operates. For example, random node 
failures have very little effect on a scale-free network's 
connectivity or effectiveness; but deliberate attacks on 
such a node can lead to a complete break down [12]. 
 
2.5. Subgraph isomorphism Algorithm 
 
     Although, graph isomorphism is a classical problem, 
this NP hard problem has no foolproof algorithm yet. 
Algorithms that we considered for our analysis were FSG 
[13], gFSG [14], gSPAN [15], GREW [16] and SUBDUE 
[17]. All these graph algorithms, except the last one, 
cannot handle graphs of more than 1000 nodes.  
      SUBDUE is heuristics based and hence is able to 
work on large unlabeled graphs. But, it gives an 
approximate result. Input to the SUBDUE system was the 
single web graph. SUBDUE outputs substructures that 
best compress the input dataset according to the 
Minimum Description Length (MDL) [18] principle. 
MDL has the fundamental idea that any regularity in a 
given set of data can be used to compress the data, i.e. to 
describe it using fewer symbols than needed to describe 
the data literally [17]. Since we wanted to select the 
hypothesis that captures the most regularity in the data, 
we looked for the hypothesis with which the best 
compression can be achieved. 
      SUBDUE performs a computationally-constrained 
beam search which begins from substructures consisting 
of all vertices with unique labels. The substructures are 



extended to generate candidate substructures. Candidate 
substructures are then evaluated according to how well 
they compress the Description Length (DL) of the dataset. 
Compression takes place by replacing all the subgraph 
instances by a single vertex. The DL of the input dataset 
G using substructure S can be calculated using the 
following formula, 

I(S) + I(G|S) 
where, S is the substructure used to compress the dataset 
G. I(S) and I(G|S) represent the number of bits required to 
encode S and dataset G after S compresses G. This 
procedure repeats until all substructures are considered or 
user-imposed computational constraints are exceeded. At 
the end of the procedure SUBDUE reports the best 
compressing substructures. This can also be carried out 
iteratively.  
    
3. Experimental Details 
 

We crawled webdata using WebMine [19]. We 
collected a hyperlink graph of websites of 1 million nodes 
and nearly 2 million edges. We have restricted our 
analysis to website graph because of the limitation of the 
SUBDUE algorithm in handling very large graphs. The 
graph was partitioned to make sample graphs of size 
ranging from 30K nodes to 100K nodes. Then SUBDUE 
algorithm was used to generate subgraphs of the sample 
graphs and also the complete webgraph. SUBDUE 
iteratively ran thrice for each sample to generate 
subgraphs at three levels of compression. WebMine tool 
was again used to compute various graph analysis 
parameters for the web graph. 
 
4. Results and Interpretation. 
 

We present our results in the tables below: 
 

Indegree ex. 
Coeff. (k) 

Outdegree ex. 
Coeff.(k) 

Sampl
e 

Numb
er of 

Nodes I1 I2 I3 I1 I2 I3 

Sample1 100K 2.17 2.16 2.16 2..23 2.21 2.18 
Sample2 80K 2.09 2.06 2.04 2.11 2.07 2.07 
Sample3 70K 2.11 2.08 2.06 2.15 2.13 2.12 
Sample4 50K 2.06 2.06 2.05 2.12 2.11 2.11 
Sample5 30K 2.13 2.13 2.10 2.13 2.12 2.12 

Table 1. Results for indegree and outdegree exp. coefficients 
for the power law equation. 

 
Table 1 shows the coefficient of the power law for 

indegree and outdegree. I1, I2 and I3 represents the 
iteration level of SUBDUE. We see that the sample 
graphs and their subgraphs adhere to the power law, 
which is a property of Scale free Graph. And the value of 
the Degree coefficient is near about 2.1, conforming to 

the earlier calculations [2, 3]. 
  

 
 

Figure 1. Graph diameter Vs Number of nodes 
 
Figure 1 shows the graph for Diameter Vs Number of 

nodes in the graph. Diameter was calculated for the 
sample graphs and their respective subgraphs. We can see 
it follows nearly a logarithmic increment. For the Web 
graph of 100K nodes it was 18. The diameter saturates 
near the value 17. This again reaffirms the scale free 
nature of the web. 

  
Table 2 gives the range of values of parameters for all 

the samples’ three iterative subgraphs, formed after the 
compression in SUBDUE, gave the following values for:                          

  
Parameter Range 

Clustering Coefficient 0.13-0.15 
Betweenness Centralization 0.03-0.04 

Closeness Centralization 0.36-0.41 
Table 2. Graph Parameter values 
 
The range of value of clustering index clearly indicates 

that the samples’ subgraphs are much clustered and, so, 
exhibit small world network. The value range of 
Betweenness Centralization indicates that there are a few 
nodes in the sample graphs that lie in the path of most of 
the pairs and, hence have a significant influence over the 
communication of the other nodes. This indicates the 
presence of a core inside the subgraphs. The value range 
of closeness centralization indicates that there are a few 
nodes that are close to most of the other nodes in the 
subgraphs and, thus again, indicates towards the existence 
of a core in the sample graph.  

 
Another interesting parameter that we evaluated was 

the compression quotient after every iteration level of 
SUBDUE.  



Q =  (Vf+Ef )/ (Vi+Ei) 
Where, Vf and Ef are number of Vertices and Edges in 

the compressed graph and Vi and Ei are the respective 
numbers in the original graphs. 

 
Sample Number 

of nodes 
Q1 Q2 Q3 

Sample1 100K 0.931 0.847 0.863 
Sample2 80K 0.891 0.871 0.875 
Sample3 70K 0.953 0.941 0.949 
Sample4 50K 0.924 0.911 0.918 
Sample5 30K 0.956 0.892 0.922 

Table 3. Results for compression Quotient 
 

We notice that the compression is more at the last level of 
SUBDUE iteration, which also supports the scale 
invariance in the sample webgraphs. 
 
5. Conclusion 
 

We have carried out a pure graph based analysis of the 
web. And we have concluded from an entirely structural 
point of view that the Web is a fractal - It has cohesive 
sub-regions, at various scales, which exhibit the similar 
characteristics as the web for a lot of parameters. Each 
isomorphic subgraph nearly follows the classical Bow-Tie 
structure, with a robust core. This scalefree structural self 
similarity in the Web holds the key to building the 
theoretical models for understanding the evolution of the 
World Wide Web [2]. 
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