
Graph and Web Mining -
Motivation, Applications and

Algorithms -
Chapter 2

Prof. Ehud Gudes

Department of Computer Science

Ben-Gurion University, Israel

Outline

 Basic concepts of Data Mining and Association rules
 Apriori algorithm
 Sequence mining

 Motivation for Graph Mining
 Applications of Graph Mining
 Mining Frequent Subgraphs - Transactions

 BFS/Apriori Approach (FSG and others)
 DFS Approach (gSpan and others)
 Diagonal Approach
 Constraint-based mining and new algorithms

 Mining Frequent Subgraphs – Single graph
 The support issue
 The Path-based algorithm

Problem Statement:
Transaction Setting

 Input: (D, minSup)

 Set of labeled-graphs transactions D={T1, T2, …, TN}

 Minimum support minSup

 Output: (All frequent subgraphs)

 A subgraph is frequent if it is a subgraph of at least
minSup|D| (or #minSup) different transactions in D

 Each subgraph is connected

 Notation: k-subgraph is a graph with k edges

 Note, the number of occurences within a single graph is
not important if it is>0!

Problem Statement
(single graph setting)

 Input: (D, minSup)

 A single graph D (e.g., the Web or DBLP or an XML file)

 Minimum support minSup

 Output: (All frequent subgraphs)

 A subgraph is frequent if the support function of its
occurrences in D is above an admissible support measure

 Definition of an admissible support measure?

 The intuitive definition – number of occurrences is
wrong! – we‘ll see later

Graph Mining: Transaction
Setting

Finding Frequent Subgraphs:
Input and Output

Input
 Database of graph transactions
 Undirected simple graph

(no loops, no multiples edges)
 Each graph transaction has

labels associated with its
vertices and edges

 Transactions may not be
connected

 Minimum support threshold σ

Output
 Frequent subgraphs that satisfy

the minimum support constraint
 Each frequent subgraph is

connected

S upp o rt = 100 %

S upp o rt = 66%

S upp o rt = 66%

Inpu t: G raph T ransac tions O u tpu t: F reque n t C onn ec ted S ubg rap hs

The two Approaches

 At the core of any frequent subgraph mining algorithm are two
computationally challenging problems

 Subgraph isomorphism

 Efficient enumeration of all frequent subgraphs

 Recent subgraph mining algorithms can be roughly classified into two
categories

 Use a level-wise search like Apriori to enumerate the recurring subgraphs,
e.g. AGM, FSG

 Use a depth-first search for finding candidate frequent subgraphs, e.g.
gSpan, FFSM, MoFa, Gaston

Different Approaches for GM

 Apriori Approach
 AGM
 FSG
 Path Based

 DFS Approach
 gSpan
 FFSM

 Diagonal Approach
 DSPM

 Greedy Approach
 Subdue

http://images.google.com/imgres?imgurl=http://www.thechain.com/~scs/silverstrong.com/images/tsi/magnify.jpg&imgrefurl=http://www.thechain.com/~scs/silverstrong.com/assess_tsi.php&h=168&w=162&sz=6&tbnid=i_zpvZjCRcsJ:&tbnh=92&tbnw=89&start=17&prev=/images%3Fq%3Dmagnify%2Bglass%26hl%3Den%26lr%3D

9

Properties of Graph Mining Algorithms

 Search order

 breadth vs. depth

 Generation of candidate subgraphs

 apriori vs. pattern growth

 Elimination of duplicate subgraphs

 passive vs. active

 Support calculation

 embedding store or not

 Growing patterns by

 Node edge path tree graph

Problem Definition

 A labeled graph G is a 4-tuple (V,E,L,l)

 V = set of vertices

 E = set of edges, within V x V

 L = set of labels

 l = label function, V υ E -> L

 Undirected Graph G

 Each edge is an unordered pair of vertices

Problem Complexity

a a

a a

b

a a

a a

b

a a

a a

b

a a

a a

b

 Isomorphism: An isomorphism from G’ to G is a function f : V’ -> V,
such that:

1. For any vertex u V’

 f(u) V and l’(u) = l(f(u))

2. For any edge (u,v) E’

 (f(u), f(v)) E and l’(u,v) = l(f(u), f(v))

 Subgraph Isomorphism: sub-graph isomorphism from G’ to G is an
isomorphism from G’ to a sub-graph of G

 Automorphism: an automorphism of G is an isomorphism from G to
itself

 Examples for automorphism:

Problem Definition
 If each graph’s vertices and edges have a unique label, then each

graph can be modeled as a set of edges, and then use existing

frequent itemset discovery algorithms to find all frequently

occurring sub-graphs

 Since mapping of vertices and edges to labels is non-unique,

frequent itemset solutions cannot be used – in this type of problem

any frequent sub-graph discovery algorithm needs to solve many

instances of sub-graph isomorphism problem, which is NP-complete

 Efficient frequent sub-graph mining algorithm tries to reduce the

number of sub-graph isomorphism tests by reducing the search

space

13

Apriori-Based Approach

…

G

G1

G2

Gn

k-edge
(k+1)-edge

G’

G’’

Join Prune

check the frequency of

each candidate

G1

Gn

Subgraph

isomorphi

sm test

NP-

complete

14

Pattern Growth Method

…

G

G1

G2

Gn

k-edge

(k+1)-edge

…

(k+2)-edge

…

duplicate
graph

Agenda

 Introduction

 Problem Definition

 FSG

 gSpan

 Scalable mining of large Disk-based Graph
Databases

Original version:

Kuramochi and G. Karypis. Frequent subgraph discovery.

[ICDM 2001]

Paper version: (with many optimizations)

M. Kuramochi, G. Karypis, "An Efficient Algorithm for
Discovering Frequent Subgraphs" IEEE TKDE,
September 2004 (vol. 16 no. 9)

FSG Algorithm – Apriori based

Init: Scan the transactions to find F1 and F2 the sets of
all frequent 1-subgraphs and 2-subgraphs, together
with their counts;

For (k=3; Fk-1 ; k++)

1) Candidate Generation - Ck, the set of candidate k-subgraphs, from
Fk-1, the set of frequent (k-1)-subgraphs found in the previous
step;

2) Candidates pruning - a necessary condition of candidate to be
frequent is that each of its (k-1)-subgraphs is frequent.

3) Frequency counting - Scan the transactions to count the
occurrences of subgraphs in Ck;

4) Fk = { c CK | c has counts no less than #minSup }

Return F1 F2 …… Fk (= F)

FSG Algorithm

Frequent SubGraph Discovery

 Follows the level-by-level structure of the Apriori algorithm used for
finding frequent itemsets

 FSG increase the size of frequent subgraphs by adding an edge
one-by-one

 Initially, enumerates all the frequent single and double edge
graphs

 During each iteration it first generates candidate subgraphs
whose size is greater than the previous frequent ones by one
edge

 Candidates which do not satisfy the downward closure property
are pruned

 Next, it counts the frequency for each of these candidates, and
prunes subgraphs that do not satisfy the support constraint

Trivial Operations Become
Complicated with Graphs

 Candidate generation

 To determine two candidates for joining, we need to
perform sub-graph isomorphism (checking if the two
graphs have the same ―core‖)

 Candidate pruning

 To check downward closure property, we need graph
isomorphism

 Frequency counting

 Sub-graph isomorphism for checking containment of a
frequent sub-graph within a graph

Candidates Generation Based
on Core Detection

+

+

+

a) the difference between the shared core
and the two subgraphs can be a vertex
that has the same or different label in
both k-subgraphs

b) the core itself may have multiple
automorphisms. Each of them can lead
to a different (k + 1)-candidate

c) two frequent subgraphs may have
multiple cores

Candidate Generation Based On
Core Detection (cont.)

F irs t C o re

S e co nd C o re

F irs t C o re S e co nd C o re

Multiple cores

between two

(k-1)-subgraphs

Candidate pruning:
Downward closure property

 Every (k-1)-
subgraph must be
frequent

 For all the (k-1)-
subgraphs of a given
k-candidate, check if
downward closure
property holds

3-candidates:

4-candidates:

Frequent

1-subgraphs

3-candidates

4-candidates

.

Frequent

2-subgraphs

Frequent

3-subgraphs

Frequent

4-subgraphs

core

Computation challenges

 Candidate generation
 To determine if we can join two candidates, we need to perform

subgraph isomorphism to determine if they have a common subgraph

 There is no obvious way to reduce the number of times that we
generate the same sub-graph

 Need to perform graph isomorphism for redundancy checks (see
canonical labeling…)

 The joining of two frequent sub-graphs can lead to multiple candidate
sub-graphs

 Candidate pruning
 To check downward closure property, we need sub-graph isomorphism

 Frequency counting
 Sub-graph isomorphism for checking containment of a frequent sub-

graph

FSG Optimizations

Key to FSG‘s computational efficiency
 Uses an efficient algorithm to determine a

canonical labeling of a graph and use these
“strings” to perform identity checks (simple
comparison of strings!)

 Uses a sophisticated candidate generation
algorithm that reduces the number of times each
candidate is generated

 Uses an augmented TID-list based approach to
speedup frequency counting

FSG Algorithm - details

FSG Algorithm - Candidate Generation

For each pair of frequent -

canonical labeling -cl))subgraph

Detect shared core

Generates all possible

candidates of size k+1

Test downward closure

property

Add to candidate set

FSG - Candidate Generation(Cont.)

Core identification - Candidate Generation

 The key computational steps in candidate generation are:

 Core identification

 Joining

 Using the downward closure property for pruning candidates

 A straightforward way of performing these tasks:

 A core between a pair of graphs Gi
k and Gj

k can be identified by creating
each of the (k-1)-subgraphs of Gi

k by removing each of the edges and
checking whether this subgraph is also a subgraph of Gj

k

 Join two size k-subgraph, to obtain size (k+1)-candidates, by integrating
two edges, one from each subgraph added to core

 For a candidate of size (k+1), generate each one of the k-size subgraphs
by removing the edges and check if exists in F k

Core identification (Cont.)

 Using frequent subgraph lattice and canonical labeling to reduce
complexity

 Core identification:

 Solution 1: for each frequent k-subgraph we store the canonical labels
of its frequent (k - 1)-subgraphs, then the cores between two frequent
subgraphs can be determined by simply computing the intersection of
these lists. The complexity is quadratic on the number of frequent
subgraphs of size k (i.e., |Fk|)

 Solution 2 - inverted indexing scheme - for each frequent subgraph
of size k - 1, we maintain a list of child subgraphs of size k. Then, we
only need to form every possible pair from the child list of every size k -
1 frequent subgraph.

This reduces the complexity of finding an appropriate pair of subgraphs
to the square of the number of child subgraphs of size k

Candidate Generation

Frequent k – 1

subgraphs

Frequent k

subgraphs

Solution 1: Each frequent k-subgraph stores the canonical labels of its

frequent (k - 1)-subgraphs

Solution 2: inverted indexing scheme - Each frequent subgraph of size

k - 1 maintains a list of child subgraphs of size k

Optimization- Candidate Generation

 Given a frequent sub-graph of size k – Fi, it contains at most k
(k-1) sub-graphs. Order these sub-graphs by their canonical labels.

 Call the smallest and second smallest sub-graphs Hi1 and Hi2, define

P(Fi) = {Hi1 , Hi2 }

 An interesting property:

 Fi and Fj can be joined only if the intersection of P(Fi)
and P(Fj) is not empty!

This dramatically reduces the number of possible joins!

Proof in Appendix of 2004 paper

Frequency Counting

 For each frequent subgraph we keep a list of transaction
identifiers that support it

 When computing the frequency of Gk+1, we first compute
the intersection of the TID lists of its frequent k-
subgraphs.

 If the size of the intersection is below the support, Gk+1 is
pruned

 Otherwise we compute the frequency of Gk+1 using
subgraph isomorphism by limiting our search only to the
set of transactions in the intersection of the TID lists

Another FSG Heuristic:
Frequency Counting

Transactions

gk-1
1 , gk-1

2 T1

gk-1
1 T2

gk-1
1 , g

k-1
2 T3

gk-1
2 T6

gk-1
1 T8

gk-1
1 , g

k-1
2 T9

Frequent subgraphs

TID(gk-1
1) = { 1, 2, 3, 8, 9 }

TID(gk-1
2) = { 1, 3, 6, 9 }

Candidate

ck = join(gk-1
1, g

k-1
2)

TID(ck) TID(gk-1
1) TID(gk-1

2)

TID(ck) { 1, 3, 9}

• Perform subgraph-iso to T1, T3 and T9 with ck and determine TID(ck)

• Note, TID lists require a lot of memory (but paper has some memory
optimizations)

Canonical Labeling

 FSG relies on canonical labeling to efficiently perform a number of
operations such as:
 Checking whether or not a particular pattern satisfies the downward

closure property of the support condition

 Finding whether a particular candidate subgraph has already been
generated or not

 Efficient canonical labeling is critical to ensure that FSG can scale to
very large graph datasets

 Canonical label of a graph is a code that uniquely identifies the graph
such that if two graphs are isomorphic to each other, they will be
assigned the same code

 A simple way of assigning a code to a graph is to convert its adjacency
matrix representation into a linear sequence of symbols. For example,
by concatenating the rows or the columns of the graph‘s adjacency
matrix one after another to obtain a sequence of zeros and ones or a
sequence of vertex and edge labels

Canonical Labeling - Basics

 The code derived from adjacency matrix cannot be used as the graph
canonical label since it depends on the order of the vertices

 One way to obtain isomorphism-invariant codes is to try every possible
permutation of the vertices and its corresponding adjacency matrix, and to
choose the ordering which gives lexicographically the largest, or the
smallest code

Time complexity: O(|V|!)

Code: 000000111100100001000 Code: aaazyx

FSG: Canonical Representation for
graphs (based on adjacency Matrix)

zy

xy

xz

a a b

a

a

b

Code(M
1
) = “aabyzx”

Code(M
2
) = “abaxyz”

yx

zx

zy

a b a

a

b

a

a

a

b

y z

x

Graph G:

Code(G) = min{ code(M) | M is adj. Matrix}

M
1
:

M
2
:

FSG: Finding the Canonical
Labeling

 The problem is as complex as Graph
Isomorphism (exponential?), (because we
need to check all permutations) but

 FSG suggests some heuristics to speed it up,
such as

 Vertex invariants (e.g., degree)

 Neighbor lists

 Iterative partitioning

 Basically the heuristics allow to eliminate
equivalent permutations

Canonical Labeling – Vertex Invariants

 Vertex invariants are properties assigned to a vertex which do
not change across isomorphism mappings

 Vertex invariants is used to reduce the amount of time required
to compute a canonical labeling, as follows:

 Given a graph, the vertex invariants can be used to partition the
vertices of the graph into equivalence classes such that all the vertices
assigned to the same partition have the same values for the vertex
invariants

 maximize over those permutations that keep the vertices in each
partition together

 Let m be the number of partitions created, containing p1,p2,…,pm

vertices, then the number of different permutations to consider
is ∏i=1

m(pi!) (instead of (p1+p2+…+pm)!)

Canonical Labeling – Vertex Invariants

Vertex Degrees and Labels:

 Vertices are partitioned into disjointed groups such that each partition
contains vertices with the same label and the same degree

 Partitions are sorted by the vertex degree and label in each partition (e.g.
V0 and V3)

 We can consider (x,y) and (y,x) for V0 only…

 Only 1!*2!*1! = 2 permutations, instead of 4!=24

Canonical Labeling – Vertex Invariants

Neighbor Lists:

 Incorporates information about the labels of the edges incident
on each vertex, the degrees of the adjacent vertices, and their
labels

 Adjacent vertex v is described by a tuple (l (e),d (v),l (v)):

 l (e) is the label of the incident edge e

 d (v) is the degree of the adjacent vertex v

 l (v) is its vertex label

 For each vertex u, construct its neighbor list nl(u) that contains
the tuples for each one of its adjacent vertices

 Partition the vertices into disjoint sets such that two vertices u
and v will be in the same partition if and only if nl(u) = nl(v)

Canonical Labeling – Vertex Invariants

Neighbor Lists – continue:

 This partitioning is performed within the partitions already
computed by the previous set of invariants (e.g. V2 and V4 have the

same NL)

Neighbor list

Search space reduced from 4!*2! to 2!

Vertex degrees and

labels partitioning

Neighbor lists

partitioning incorporated

Canonical Labeling – Vertex Invariants

Iterative Partitioning:

 Generalization of the idea of the neighbor lists, by incorporating
the partition information

 See Paper

Degree-based Partition Ordering

 Overall runtime of the canonical labeling can be further reduced
by properly ordering the various partitions

 Partitions ordering may allow us to quickly determine whether a
set of permutations can potentially lead to a code that is smaller
than the current best code; thus, allowing us to prune large
parts of the search space:
 When we permute the rows and the columns of a particular partition,

the code corresponding to the columns of the preceding partitions in
not affected

 If the code is smaller than the prefix of the currently best code, than
the exploration of this set of permutations can be terminated

 Partitions are sorted in decreasing order of the degree of their
vertices

Canonical Labeling

Canonical Labeling - Degree-based Partition Ordering

Example

All vertices are

labeled: a

Partitions sorted by

vertex degree in

ascending order

Partitions sorted by

vertex degree in

descending order

Some permutation of p1

of (c), resulting with

smaller prefix than (c) –

saves us the

permutations of p0

Experimental results
Comparison of various optimizations using the chemical compound dataset

Note: Run-time with this and previous optimizations (left to right)

•Chemical compound dataset: 340 chemical compounds, 24

different element names, 66 different element types, 4 types of

bonds

Experimental results

Database size scalability

|T| - average size of transactions (in terms of number of edges)

DTP Dataset (chemical compounds)
(Random 100K transactions)

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

Minimum Support [%]

R
u

n
n

in
g

 T
im

e
 [

s
e
c
]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
u

m
b

e
r

o
f

P
a
tt

e
rn

s

D
is

c
o

v
e
re

d

Running Time [sec]

#Patterns

FSG extension - Topology Is Not
Enough (Sometimes)

O

O

I

O
H

H

H

H

H

H

H

H

H

H

H

H

H

H

H H

H

H

H

H

H

H

H

O

O

H
H

H

H

H

HH

H

H

H

H

H

OH

H
H

H

H

H H

H

H

H

H

H

H

H

 Graphs arising from physical
domains have a strong geometric
nature
 This geometry must be taken into

account by the data-mining
algorithms

 Geometric graphs
 Vertices have physical 2D and 3D

coordinates associated with them

gFSG—Geometric Extension Of FSG
(Kuramochi & Karypis ICDM 2002)

Same input and same output as
FSG

 Finds frequent geometric connected
subgraphs

Geometric version of (sub)graph
isomorphism

 The mapping of vertices can be
translation, rotation, and/or scaling
invariant

 The matching of coordinates can be
inexact as long as they are within a
tolerance radius of r

 R-tolerant geometric isomorphism

A

B

Different Approaches for GM

 Apriori Approach
 AGM
 FSG
 Path Based (later)

 DFS Approach
 gSpan
 FFSM

 Diagonal Approach
 DSPM

 Greedy Approach
 Subdue

Y. Xifeng and H. Jiawei

gspan: Graph-Based

Substructure Pattern Mining

ICDM, 2002

http://images.google.com/imgres?imgurl=http://www.thechain.com/~scs/silverstrong.com/images/tsi/magnify.jpg&imgrefurl=http://www.thechain.com/~scs/silverstrong.com/assess_tsi.php&h=168&w=162&sz=6&tbnid=i_zpvZjCRcsJ:&tbnh=92&tbnw=89&start=17&prev=/images%3Fq%3Dmagnify%2Bglass%26hl%3Den%26lr%3D

gSpan Outline

 Defines a canonical representation for
graphs

 Defines Lexicographic order over the
canonical representations

 Defines Tree Search Space (TSS)
based on the lexicographic order

 Discovers all frequent subgraphs by
DFS exploration of TSS

Part 1

Part 2

http://homepage.ntlworld.com/anthony.field/tree.gif

Part 1

Defining the Tree Search Space (TSS)

Part 2

gSpan Finds all frequent graphs

by Exploring TSS

http://homepage.ntlworld.com/anthony.field/tree.gif

Motivation
DFS exploration vs. itemsets

Itemset Search space – prefix based (Note at the

time we explore ‗abe‘ we don‘t have enough info. to prune it…)

ba c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

http://homepage.ntlworld.com/anthony.field/tree.gif

Motivation
Itemsets TSS properties

 Canonical representation of itemset is
accepted by a complete order over the items

 Each possible itemset appear in TSS exactly
once; No duplications or omissions

 Properties of Tree Search Space

 For each k-label, its parent is the k-1 prefix
of the given k-label

 The relation among siblings is in ascending
lexicographic order

http://homepage.ntlworld.com/anthony.field/tree.gif

Targets

 Enumerating all frequent subgraphs by
constructing a TSS, so

 Completeness—There will be no

duplications/omissions

 A child (in tree) will be accepted from a
parent, by extending the parent pattern

 Correct pruning techniques

http://homepage.ntlworld.com/anthony.field/tree.gif

DFS Code representation

 Map each graph (2-Dim) to a sequential
DFS Code (1-Dim)

 Lexicographically order the codes

 Construct TSS based on the
lexicographic order

http://homepage.ntlworld.com/anthony.field/tree.gif

DFS-Code construction

 Given a graph G
 For each Depth First Search over graph G,

construct a corresponding DFS-Code

X

Y

X

Z

Z

a
a

b

c
b

d

v0
X

Y

X

Z

Z

a
a

b

c
b

d

v0

v1

X

Y

X

Z

Z

a

a

b

c
b

d

v0

v1

v2

X

Y

X

Z

Z

a
a

b

c
b

d

v0

v1

v2

X

Y

X

Z

Z

a
a

b

c

b
d

v0

v1

v2

v3

X

Y

X

Z

Z

a

a

b

c
b

d

v0

v1

v2

v3

X

Y

X

Z

Z

a
a

b

c
b

d

v0

v1

v2

v3

v4

(0,1,X,a,Y) (1,2,Y,b,X) (2,0,X,a,X) (2,3,X,c,Z) (3,1,Z,b,Y) (1,4,Y,d,Z)

(a) (b) (c) (d) (e) (f) (g)

Dfs_Code(G, dfs) /*dfs - give some depth search over G*/

http://homepage.ntlworld.com/anthony.field/tree.gif

Single graph, Several DFS-Code

X

Y

X

Z

Z

a
a

b

c

b d

v0

v1

v2

v3

v4

X

Y

X

Z

Z

a
a

b

c
b

d

Y

X

X

Z

Za

b
a

c

d
v0

v1

v2

v3

v4

b

X

X

Y

Z

Z

a

b

a

b
d

v0

v1

v2

v3

c

(a)

(b) (c)

(c)(b)(a)

(0, 1, X, a, X)(0, 1, Y, a, X)(0, 1, X, a, Y)1

(1, 2, X, a, Y)(1, 2, X, a, X)(1, 2, Y, b, X)2

(2, 0, Y, b, X)(2, 0, X, b, Y)(2, 0, X, a, X)3

(2, 3, Y, b, Z)(2, 3, X, c, Z)(2, 3, X, c, Z)4

(3, 0, Z, c, X)(3, 0, Z, b, Y)(3, 1, Z, b, Y)5

(2, 4, Y, d, Z)(0, 4, Y, d, Z)(1, 4, Y, d, Z)6

G

http://homepage.ntlworld.com/anthony.field/tree.gif

Single graph,
Single Min DFS-Code!

X

Y

X

Z

Z

a
a

b

c

b d

v0

v1

v2

v3

v4

X

Y

X

Z

Z

a
a

b

c
b

d

Y

X

X

Z

Za

b
a

c

d
v0

v1

v2

v3

v4

b

X

X

Y

Z

Z

a

b

a

b
d

v0

v1

v2

v3

v4

c

(a)

(b) (c)

(c)(b)(a)

(0, 1, X, a, X)(0, 1, Y, a, X)(0, 1, X, a, Y)1

(1, 2, X, a, Y)(1, 2, X, a, X)(1, 2, Y, b, X)2

(2, 0, Y, b, X)(2, 0, X, b, Y)(2, 0, X, a, X)3

(2, 3, Y, b, Z)(2, 3, X, c, Z)(2, 3, X, c, Z)4

(3, 0, Z, c, X)(3, 0, Z, b, Y)(3, 1, Z, b, Y)5

(2, 4, Y, d, Z)(0, 4, Y, d, Z)(1, 4, Y, d, Z)6

Min

DFS-Code

G

DFS code in column

http://homepage.ntlworld.com/anthony.field/tree.gif

May 21, 2010
Mining and Searching Graphs in

Graph Databases 61

DFS Lexicographic Order

 Let Z be the set of DFS codes of all graphs. Two DFS

codes a and b have the relation a<=b (DFS

Lexicographic Order in Z) if and only if one of the
following conditions is true. Let

a = (x0, x1, …, xn) and

b = (y0, y1, …, yn),

(i) if there exists t, 0<= t <= min(m,n), xk=yk for all
k, s.t. k<t, and xt < yt

(ii) xk=yk for all k, s.t. 0<= k<= m and m <= n.

Minimum DFS-Code

 The minimum DFS code min(G), in DFS
lexicographic order, is the canonical
representation of graph G.

 Graphs A and B are isomorphic if and
only if:

min(A) = min(B)

http://homepage.ntlworld.com/anthony.field/tree.gif

DFS-Code Tree:
Parent-Child Relation

 If min(G1) = { a0, a1, ….., an}

min(G2) = { a0, a1, ….., an, b}

 G1 is parent of G2

 G2 is child of G1

 A valid DFS code requires that b grow
from a vertex on the right most path.

(inherited property from DFS search)

http://homepage.ntlworld.com/anthony.field/tree.gif

X

Y

X

Z

Z

a
a

b

c
b

d

v0

v1

v2

v3

v4

(0,1,X,a,Y) (1,2,Y,b,X) (2,0,X,a,X) (2,3,X,c,Z) (3,1,Z,b,Y) (1,4,Y,d,Z)

Graph G
1

Min(g) =

X

Y

X

Z

Z

a
a

b

c
b

d

v0

v1

v2

v3

v4

A child of Graph g must grow edge from

right most path of G
1

(necessary condition)

?

?

?

?

?

?

v5

v5

v5

?
?v5

wrong

X

Y

X

Z

Z

a
a

b

c
b

d

v0

v1

v2

v3

v4

?

?

Forward EDGE Backward EDGE

Graph G
2

http://homepage.ntlworld.com/anthony.field/tree.gif

May 21, 2010
Mining and Searching Graphs in

Graph Databases 65

GSPAN (Yan and Han ICDM‘02)

Right-Most Extension

Theorem: Completeness

The Enumeration of Graphs
using Right-most Extension is

COMPLETE

May 21, 2010
Mining and Searching Graphs in

Graph Databases 66

DFS Code Extension
 Let a be the minimum DFS code of a graph G and b be

a non-minimum DFS code of G. For any DFS code d
generated from b by one right-most extension,

(i) d is not a minimum DFS code,

(ii) min_dfs(d) cannot be extended from b, and

(iii) min_dfs(d) is either less than a or can be
extended from a.

THEOREM [RIGHT-EXTENSION]

The DFS code of a graph extended from a

Non-minimum DFS code is NOT MINIMUM

Search Space:
DFS code Tree

 Organize DFS Code nodes as parent-
child

 Sibling nodes organized in ascending
DFS lexicographic order

 In Order traversal follows DFS
lexicographic order!

http://homepage.ntlworld.com/anthony.field/tree.gif

C

C

A

C

C

C

B

C

C

B

B

B

B

B

C

B

C

A

A

A A

C

C

A

B

A

C

A

C

C

A

C

B

A

B

C

A A

C

A

B

C

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2
3

0

1

2
3

0

1

2

3

0

1

2

0

1

2

0

1

0

1

0

1

0

1

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2 3 Not Min

DFS-Code

Min

DFS-Code

S

P
 R

 U
 N

 E
 D

…

A

S’

http://homepage.ntlworld.com/anthony.field/tree.gif

Tree Pruning

 All of the descendants of infrequent
node are infrequent also
(just like with itemsets!)

 All of the descendants of a non
min-DFS code are also non min-DFS
code

 Therefore as soon as you discover a
non min-DFS graph you can prune it!

http://homepage.ntlworld.com/anthony.field/tree.gif

Part 1

Defining the Tree Search Space (TSS)

Part 2

gSpan Finds all frequent graphs

by Exploring TSS

http://homepage.ntlworld.com/anthony.field/tree.gif

gSpan Algorithm

gSpan(D, F, g)

1: if g min(g)

return;

2: F F { g }

3: children(g) [generate all g’ potential

children with one edge growth]*

4: Enumerate(D, g, children(g))

5: for each c children(g)

if support(c) #minSup

SubgraphMining (D, F, c)

* gSpan improve this line

The gSpan Algorithm (details)

// Note with every iteration graph becomes smaller

Cont.))The gSpan Algorithm

- Enumerate children The gSpan Algorithm

Enumerate Example

Frequent

Subgraph

Possible
children

Graph in a
graph dataset

Occurrences of
graph (a) in

(b)

 Pruning- The gSpan Algorithm

The s ≠ min(s) Pruning:

 s ≠ min(s) prunes all DFS codes which are not minimum

 Significantly reduces unnecessary computation on duplicate
subgraphs and their descendants

 Two ways for pruning

 Pre-pruning: cutting off any child whose code is not minimum before
counting frequency and after generating all potential children (after
line 4 of Subgraph_Mining)

 Post-pruning: pruning after the real counting

 First approach is costly since most of duplicate subgraphs are
not even frequent, on the other hand counting duplicate
frequent subgraphs is a waste

 Next: Optimizations

Pruning - The gSpan Algorithm

The s ≠ min(s) Pruning (cont.):

A trade-off between pre-pruning and
post-pruning: prune any discovered child
in four stages:

If the first edge of s minimum DFS code is e0, then
a potential child of s does not contain any
edge smaller than e0

example: minimum DFS code of (a) is

(0,1,x,a,x) e0

(1,2,x,c,y)
(2,3,y,a,z)
(2,4,y,b,z)
If a potential child of s could add the edge
(x,a,a)
(x,a,a) < (x,a,x) → s child pruned

a

a

Database

graph

Frequent

subgraph

potential

children

(a) growth

(0,1,x,a,x)

(1,2,x,c,y)

(2,3,y,a,z)

(2,4,y,b,z)

(4,1,z,a,x)

The gSpan Algorithm - Pruning

The s ≠ min(s) Pruning (cont.):

(2For any backward edge growth from s
(vi, vj) i > j, this edge should be no
smaller than any edge which is
connected to vj in s

example:

S ≠ min)s)

(a) min DFS

(0,1,x,a,x)

(1,2,x,c,y)

(2,3,y,a,z)

(2,4,y,b,z)

Growth min

DFS

(0,1,x,a,x)

(1,2,x,a,z)

(2,3,z,b,y)

(3,1,y,c,z)

(3,4,y,a,z)

Database

graph

Frequent

subgraph

potential

children

a

The gSpan Algorithm - Pruning

The s ≠ min(s) Pruning (cont.):

3) Edges which grow from other than the
rightmost path are pruned

example: edge (z,a,w) is pruned

4) Post-pruning is applied to the remaining
unpruned nodes

Database

graph

Frequent

subgraph

potential

children

aaa

a

c a
a

a

bb bb

b

b

c c c

c a

c

c

c

T2 T3T1

Given database D

Task Mine all frequent subgraphs with support 2 (#minSup)

Another Example

aaa

a

c a
a

a

bb bb

b

b

c c c

c a

c

c

c

T2

A

A

A A

C

C

A

B

A

C

A A

C

0

1

2

0

1

0

1

0

1

2

0

1

2

0

1

2 3

A

T3T1

TID={1,3} TID={1,2,3} TID={1,2,3}

TID={1,3}

TID={1,2,3}

TID={1,3}

CB
0

1

0

1

aaa

a

c a
a

a

bb bb

b

b

c c c

c a

c

c

c

T2

CBA

A

A A

C

C

A

B

A

C

A A

C

A

B

C

0

1

2

0

1

2

0

1

0

1

0

1

0

1

0

1

2

0

1

2

0

1

2 3

A

T3T1

TID={1,2,3} TID={1,2,3}

TID={1,2}

aaa

a

c a
a

a

bb bb

b

b

c c c

c a

c

c

c

T2

C

C

C

B

C
C

B

B

B

B

B
C

B

C

A

A

A A

C

C

A

B

A

C

A

C

C

A

C

B

A

B

C

A A

C

A

B

C

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2
3

0

1

2
3

0

1

2

0

1

2

0

1

0

1

0

1

0

1

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2 3

A

T3T1

gSpan - Analysis

 No Candidate Generation and False Test – the frequent (k
+ 1)-edge subgraphs grow from k-edge frequent subgraphs
directly

 Space Saving from Depth-First Search – gSpan is a DFS
algorithm, while Apriori-like ones adopt BFS strategy and suffers
from much higher I/O and memory usage

 Quickly Shrunk Graph Dataset – at each iteration the mining
procedure is performed in such a way that the whole graph
dataset is shrunk to the one containing a smaller set of graphs,
with each having less edges and vertices

gSpan – Analysis(cont.)

 gSpan runtime measured by the number of subgraph and/or
graph isomorphism (which is an NP-complete problem) tests:

O(kFS + rF)

[bounds the maximum number of s≠min(s) operations]

[bounds the number of isomorphism tests that should be done]

k – the maximum number of subgraph isomorphisms existing between a

frequent subgraph and a graph in the dataset

F – the number of frequent subgraphs

S – the dataset size

r – the maximum number of duplicate codes of a frequent subgraph that

grow from other minimum codes

gSpan Experiments

Scalability

gSpan Experiments

gSpan vs. FSG

 On Synthetic databsets it was 6-10
times faster than FSG

 On Chemical compounds datasets it
was 15-100 times faster!

 But this was comparing to OLD
versions of FSG!

gSpan Performance

May 21, 2010 88

GASTON (Nijssen and Kok, KDD‘04)

 Extend graphs directly

 Store embeddings

 Separate the discovery of different

types of graphs

 path tree graph

 Simple structures are easier to mine and

duplication detection is much simpler

Different Approaches for GM

 Apriori Approach
 AGM
 FSG
 Path Based (later)

 DFS Approach
 gSpan
 FFSM

 Diagonal Approach
 DSPM

 Greedy Approach
 Subdue

Moti Cohen, Ehud Gudes

Diagonally Subgraphs Pattern

Mining.

DMKD 2004, pages 51-58,

2004

http://images.google.com/imgres?imgurl=http://www.thechain.com/~scs/silverstrong.com/images/tsi/magnify.jpg&imgrefurl=http://www.thechain.com/~scs/silverstrong.com/assess_tsi.php&h=168&w=162&sz=6&tbnid=i_zpvZjCRcsJ:&tbnh=92&tbnw=89&start=17&prev=/images%3Fq%3Dmagnify%2Bglass%26hl%3Den%26lr%3D

 Diagonal Approach is a general scheme
for frequent pattern mining

 DSPM is an algorithm for mining
frequent graphs which is based on the
Diagonal Approach

 The algorithm combines ideas from
Apriori & DFS approaches and also
introduces several new ones

Diagonal Approach &
DSPM Algorithm

DSPM – Hybrid Algorithm

Similar to Operation

BFSCandidates Generation

BFSCandidates Pruning

DFSSearch Space exploration

DFSEnumerating Subgraphs

Diagonal Approach

 Prefix based Lattice

 Reverse Depth Exploration

DSPM Algorithm

 Fast Candidate Generation &
Frequency Anti-Monotone (FAM)
Pruning

 Deep Depth Exploration

 Mass Support Counting

Concepts / Outline

http://www.clipart.com/en/close-up?o=883469&memlevel=A&a=c&q=machine&s=181&e=210&show=&c=&cid=&findincat=&g=&cc=&page=7

 Let {itemsets, sequences, trees, graphs} be a frequent
pattern problem

 -order is a complete order over the patterns
 -space is a search space of the problem which has a tree

shape

Notation subpatterns(pk) = { pk-1 | pk-1 is a subpattern of pk}

 Then, a -space is Prefix Based Lattice of if
 The parent of each pattern pk, k > 1, is the minimum -order

pattern from the set subpatterns(pk)
 An in-order search over -space follows ascending

-order
 The search space is complete

Definition: Prefix Based Lattice

Example: Prefix Based Lattice
(Itemsets)

Example: Prefix Based Lattice
(Subgraphs)

[gSpan Algorithm of X. Yan, J. Han – an instance of PBL]

Reverse Depth Exploration

 Depth search over -space explores
the sons of each visited node
(pattern) in a descending -order

Observation

 Exploring prefixed based -space in

reverse depth search enables checking

Frequency Anti-Monotone (FAM)

property for each explored pattern, if

all previous mined patterns are kept.

Reverse Depth exploration + FAM Pruning

(Intuition wrt. Itemset)

Reverse Depth exploration + FAM Pruning

{a, c, f} {a, c, h} {a, c, k} {a, c, m} {a, f, h} {a, f, j} {a, f, m} {c, f, h} {c, f, m}

{a, c} {c, f}{a, f}

{a, c, f, h} {a, c, f, m}

….

{c, f, z}

###. . .

. . .

.

{a} {c}…. ….

….

. . . ###

###

Tid

Lis

t

Tid

Lis

t

D
F

S

Consider Itemset {a, c, f}.

How to generate all its sons-candidates

Which restrict to FAM pruning?

Fast Candidate Generation & FAM Pruning
(The idea wrt. Itemset)

?

{a, c, f} {a, c, h} {a, c, k} {a, c, m} {a, f, h} {a, f, j} {a, f, m} {c, f, h} {c, f, m}

{a, c} {c, f}{a, f}

{a, c, f, h} {a, c, f, m}

….

{c, f, z}

###. . .

. . .

.

{a} {c}…. ….

….

. . . ###

###

D
F

S

C {f, h, k, m}

C C {h, j, m}

C C {h, m, z}

sons-candidates({a, c, f}) {h, m}

Fast Candidate Generation & FAM Pruning
(intersect the respective lists)

{f, h, k, m} {h, j, m} {h, m, z}

Fast Candidate Generation & FAM Pruning

 DSPM algorithm adapted this idea to
generate and prune subgraphs candidates.

This technique of candidate generation and
FAM Pruning is highly efficient.

 Outcomes

 More space can be explored each iteration.

 More efficient support counting.

Performance of DSPM

 Was about twice better than gSpan on a

synthetic database

Different Approaches for GM

 Apriori Approach
 AGM
 FSG
 Path Based

 DFS Approach
 gSpan
 FFSM

 Diagonal Approach
 DSPM

 Greedy Approach
 Subdue

D. J. Cook and L. B. Holder

Graph-Based Data Mining

Tech. report, Department of

CS Engineering, 1998

http://images.google.com/imgres?imgurl=http://www.thechain.com/~scs/silverstrong.com/images/tsi/magnify.jpg&imgrefurl=http://www.thechain.com/~scs/silverstrong.com/assess_tsi.php&h=168&w=162&sz=6&tbnid=i_zpvZjCRcsJ:&tbnh=92&tbnw=89&start=17&prev=/images%3Fq%3Dmagnify%2Bglass%26hl%3Den%26lr%3D

Subdue Algorithm

 A greedy algorithm for finding some of
the most prevalent subgraphs.

 This method is not complete, as it may
not obtain all frequent subgraphs,
although it pays in fast execution.

Subdue Algorithm (Cont.)

It discovers substructures that compress the
original data and represent structural concepts
in the data.

 Based on Beam Search - Like breadth-first
search in that it progresses level by level. Unlike
breadth-first search, however, beam search
moves downward only through the best W
nodes at each level. The other nodes are
ignored.

Step 1: Create substructure for each unique vertex label

circle

rectangle

left

triangle

square

on

on

triangle

square

on

on

triangle

square

on

on

triangle

square

on

on
left

left left

left

Substructures:

triangle (4)

square (4)

circle (1)

rectangle (1)

Subdue Algorithm steps

DB:

Subdue Algorithm steps (Cont.)

Step 2: Expand best substructure by an edge or edge and

neighboring vertex

circle

rectangle

left

triangle

square

on
triangle

square

on

on

triangle

square

on

on

triangle

square

on

on
left

left left

left

triangle

square

on

on

circle

triangle

square

circleleft
square

rectangle

square

on

rectangle

triangle

on

Substructures:DB:

Step 3: Keep only best substructures on queue (specified by

beam width)

Step 4: Terminate when queue is empty or when the number

of discovered substructures is greater than or equal to

the limit specified.

Step 5:Compress graph and repeat to generate hierarchical

description

Subdue Algorithm steps (Cont.)

Agenda

 Introduction

 Problem Definition

 FSG

 gSpan

 Scalable mining of large Disk-based DBs
(Wang et. Al. – KDD 2004)

Motivation

 Graph Mining has very broad applications
 Mining structural patterns from chemical compounds

 Plan databases

 XML Documents (on semantic web)

 Citation/social networks

 But these are really large datasets:

 XML Documents

 Semantic web is www size, plus metadata

 Hundreds or even thousands of different labels for data

 Chemical Structures

 Millions of different structures

 Easily hundreds of labels in these graphs

Motivation - Previous Approaches

 Many approaches to this exist already
 Most assume that databases are not very large

 Assume that the entire database fits into main memory

 Computation-centric

 Perform poorly on larger datasets that are I/O bound

 gSpan as an example (Yan, et al.)

 Performance is reported for data sets up to only 320 KB

 Test machine has 448MB main memory

 Running time scales exponentially with large numbers of graph
labels (raising from 10 to 45 labels, increases runtime by a factor of
84)

 Not effective on large datasets!

Frequent Operations

 Major data access operations in mining frequent graph patterns
(specifically in gSpan‘s):

1. Given an edge, find its support in the graph database
2. Given an edge, find the actual graphs where the edge appears in the

database
3. Given an edge, find the adjacent edges (to expand the current graph

pattern)

 gSpan typically needs random access to elements of the graph
database and to its projections
 Don‘t want to have to go to disk for each of these operations

ADI (Adjacency Index) Structures

 Linked List of Graph id’s

 Graph id’s for a particular edge

stored contiguously

 Efficient to retrieve all of them

from memory at once

 Facilitates operation

2: retrieve graphs of

which an edge is a

member
 The length of this list is stored in

the edge table

 Facilitates operation

1: support query for

edge

Space requirements

 Total size of ADI is bounded by
number of edges in all graphs:

 Generally smaller than this
 Graphs are often sparse on edges

 Users typically only interested in
frequently occurring edges.

 Not all of the ADI need be in
memory
 Can store bottom 1-3 levels on

disk, if needed.

Constructing the ADI

 Requires only 2 passes through the database

 Identify frequent edges
 Creates edge table

 Read and process graphs one by one
 Builds graph lists

 fills in adjacency info

 2 major costs are

 Adjacency lists = cost of copying original DB +
bookkeeping

 Updating graph id lists needs random access
to edge table and linked lists
 Needs good caching of lists to be efficient

 Can be expensive, but only needs to be done once.

Constructing the ADI

Algorithm ADI-Mine

A pattern growing algorithm – improvement of gSpan:

 First constructs the ADI structure if it doesn‘t already exist

 Obtain frequent edges from edges table in the ADI

 Use these edges‘ frequent adjacent edges to grow larger frequent
graph patterns

Algorithm ADI-Mine

Differences with gSpan

 gSpan loads graphs into memory repeatedly and checks if they
contain particular edges

 Can end up searching more than we need to by loading graphs
that may not have the edge we‘re looking for

 Really, bigger issue is that this loads the graph into memory, and
it‘s costly to go to disk.

 ADI-Mine can simply go straight through the edge table, by the label
of the edge it‘s searching for

 Graphs we need are readily available

 Located in contiguous memory

 No extra searching and no loading of unnecessary graphs from
disk (in large databases)

Scalability on size

Memory and large on-disk DB‘s, respectively

•Note at right that gSpan is unable to work on datasets larger than about 300K

graphs

Runtime vs. main memory

 Runtime vs. main memory for
large, disk-based runs

 We‘re probably swapping pages
(in the B-tree) more frequently
at the lower memory sizes, so
performance suffers.

 Performance converges when
we can fit the working set in
memory

ADI size

Size of the ADI structure grows
linearly with amount of data

Outline

 Basic concepts of Data mining and Association rules
 Apriori algorithm

 Motivation for Graph mining
 Applications of Graph Mining
 Mining Frequent Subgraphs - Transactions

 BFS/Apriori Approach (FSG and others)
 DFS Approach (gSpan and others)
 Diagonal Approach
 Greedy Approach

 Mining Frequent Subgraphs – Single graph
 The support issue
 The Path-based algorithm
 Constraint-based mining

 Conclusions

