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Outline

 Basic concepts of Data Mining and Association rules
 Apriori algorithm
 Sequence mining

 Motivation for Graph Mining
 Applications of Graph Mining
 Mining Frequent Subgraphs - Transactions

 BFS/Apriori Approach (FSG and others)
 DFS Approach (gSpan and others)
 Diagonal Approach 
 Constraint-based mining and new algorithms

 Mining Frequent Subgraphs – Single graph
 The support issue
 The Path-based algorithm



Problem Statement:
Transaction Setting

 Input: (D, minSup)

 Set of labeled-graphs transactions D={T1, T2, …, TN}

 Minimum support minSup

 Output: (All frequent subgraphs)

 A subgraph is frequent if it is a subgraph of at least 
minSup|D| (or #minSup) different transactions in D

 Each subgraph is connected

 Notation: k-subgraph is a graph with k edges

 Note, the number of occurences within a single graph is 
not important if it is>0!



Problem Statement
(single graph setting)

 Input: (D, minSup)

 A single graph D (e.g., the Web or DBLP or an XML file)

 Minimum support minSup

 Output: (All frequent subgraphs)

 A subgraph is frequent if the support function of its 
occurrences in D is above an admissible support measure

 Definition of an admissible support measure?

 The intuitive definition – number of occurrences is 
wrong! – we‘ll see later



Graph Mining: Transaction  
Setting



Finding Frequent Subgraphs:
Input and Output

Input
 Database of graph transactions
 Undirected simple graph 

(no loops, no multiples edges)
 Each graph transaction has 

labels associated with its 
vertices and edges

 Transactions may not be 
connected

 Minimum support threshold σ

Output
 Frequent subgraphs that satisfy 

the minimum support constraint
 Each frequent subgraph is 

connected

S upp o rt =  100 %  

S upp o rt =  66%  

S upp o rt =  66%  

Inpu t: G raph  T ransac tions  O u tpu t: F reque n t C onn ec ted  S ubg rap hs  



The two Approaches

 At the core of any frequent subgraph mining algorithm are two 
computationally challenging problems

 Subgraph isomorphism

 Efficient enumeration of all frequent subgraphs

 Recent subgraph mining algorithms can be roughly classified into two 
categories

 Use a level-wise search like Apriori to enumerate the recurring subgraphs, 
e.g. AGM, FSG

 Use a depth-first search for finding candidate frequent subgraphs, e.g. 
gSpan, FFSM, MoFa, Gaston



Different Approaches for GM

 Apriori Approach
 AGM
 FSG
 Path Based 

 DFS Approach
 gSpan
 FFSM

 Diagonal Approach
 DSPM

 Greedy Approach 
 Subdue
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Properties of Graph Mining Algorithms

 Search order

 breadth vs. depth

 Generation of candidate subgraphs

 apriori vs. pattern growth

 Elimination of duplicate subgraphs

 passive vs. active

 Support calculation

 embedding store or not

 Growing patterns by

 Node  edge  path  tree  graph



Problem Definition

 A labeled graph G is a 4-tuple (V,E,L,l)

 V = set of vertices

 E = set of edges, within V x V

 L = set of labels

 l = label function, V υ E -> L

 Undirected Graph G

 Each edge is an unordered pair of vertices



Problem Complexity
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 Isomorphism: An isomorphism from G’ to G is a function f : V’ -> V, 
such that:

1. For any vertex u     V’

 f(u)    V and l’(u) = l(f(u))

2. For any edge (u,v)     E’

 (f(u), f(v))     E and l’(u,v) = l(f(u), f(v))

 Subgraph Isomorphism: sub-graph isomorphism from G’ to G is an 
isomorphism from G’ to a sub-graph of G

 Automorphism: an automorphism of G is an isomorphism from G to 
itself

 Examples for automorphism:











Problem Definition
 If each graph’s vertices and edges have a unique label, then each 

graph can be modeled as a set of edges, and then use existing 

frequent itemset discovery algorithms to find all frequently 

occurring sub-graphs

 Since mapping of vertices and edges to labels is non-unique, 

frequent itemset solutions cannot be used – in this type of problem 

any frequent sub-graph discovery algorithm needs to solve many 

instances of sub-graph isomorphism problem, which is NP-complete

 Efficient frequent sub-graph mining algorithm tries to reduce the 

number of sub-graph isomorphism tests by reducing the search 

space
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Apriori-Based Approach
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Pattern Growth Method

…
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Agenda

 Introduction

 Problem Definition

 FSG

 gSpan

 Scalable mining of large Disk-based Graph 
Databases



Original version:

Kuramochi and G. Karypis. Frequent subgraph discovery. 

[ICDM 2001] 

Paper version: (with many optimizations)

M. Kuramochi, G. Karypis, "An Efficient Algorithm for 
Discovering Frequent Subgraphs" IEEE TKDE, 
September 2004 (vol. 16 no. 9) 

FSG Algorithm – Apriori based



Init: Scan the transactions to find F1 and F2 the sets of 
all frequent 1-subgraphs and 2-subgraphs, together 
with their counts; 

For (k=3; Fk-1   ; k++)

1) Candidate Generation - Ck, the set of candidate k-subgraphs, from 
Fk-1, the set of frequent (k-1)-subgraphs found in the previous 
step;

2) Candidates pruning - a necessary condition of candidate to be 
frequent is that each of its (k-1)-subgraphs is frequent.

3) Frequency counting - Scan the transactions to count the 
occurrences of subgraphs in Ck;

4) Fk = { c CK | c has counts no less than #minSup }

Return F1  F2  …… Fk    (= F )

FSG Algorithm 



Frequent SubGraph Discovery

 Follows the level-by-level structure of the Apriori algorithm used for 
finding frequent itemsets

 FSG increase the size of frequent subgraphs by adding an edge
one-by-one

 Initially, enumerates all the frequent single and double edge 
graphs

 During each iteration it first generates candidate subgraphs 
whose size is greater than the previous frequent ones by one 
edge

 Candidates which do not satisfy the downward closure property 
are pruned

 Next, it counts the frequency for each of these candidates, and 
prunes subgraphs that do not satisfy the support constraint



Trivial Operations Become 
Complicated with Graphs

 Candidate generation

 To determine two candidates for joining, we need to 
perform sub-graph isomorphism (checking if the two 
graphs have the same ―core‖ )

 Candidate pruning

 To check downward closure property, we need graph 
isomorphism

 Frequency counting

 Sub-graph isomorphism for checking containment of a 
frequent sub-graph within a graph



Candidates Generation Based 
on Core Detection

+

+

+

a) the difference between the shared core 
and the two subgraphs can be a vertex 
that has the same or different  label in 
both k-subgraphs

b) the core itself may have multiple 
automorphisms. Each of them can lead 
to a different (k + 1)-candidate

c) two frequent subgraphs may have 
multiple cores



Candidate Generation Based On 
Core Detection (cont. )

 

F irs t C o re  

S e co nd  C o re  

F irs t C o re  S e co nd  C o re  

Multiple cores 

between two 

(k-1)-subgraphs 



Candidate pruning:
Downward closure property

 Every (k-1)-
subgraph must be 
frequent

 For all the (k-1)-
subgraphs of a given      
k-candidate, check if 
downward closure 
property holds

3-candidates:

4-candidates:



Frequent

1-subgraphs

3-candidates

4-candidates

. . . . . .

Frequent

2-subgraphs

Frequent

3-subgraphs

Frequent

4-subgraphs

core



Computation challenges

 Candidate generation
 To determine if we can join two candidates, we need to perform 

subgraph isomorphism to determine if they have a common subgraph

 There is no obvious way to reduce the number of times that we 
generate the same sub-graph

 Need to perform graph isomorphism for redundancy checks (see 
canonical labeling…)

 The joining of two frequent sub-graphs can lead to multiple candidate 
sub-graphs

 Candidate pruning
 To check downward closure property, we need sub-graph isomorphism

 Frequency counting
 Sub-graph isomorphism for checking containment of a frequent sub-

graph



FSG Optimizations

Key to FSG‘s computational efficiency
 Uses an efficient algorithm to determine a

canonical labeling of a graph and use these 
“strings” to perform identity checks (simple 
comparison of strings!)

 Uses a sophisticated  candidate generation 
algorithm that reduces the number of times each 
candidate is generated

 Uses an augmented TID-list based approach to 
speedup frequency counting



FSG Algorithm - details



FSG Algorithm - Candidate Generation

For each pair of frequent -

canonical labeling -cl))subgraph

Detect shared core

Generates all possible 

candidates of size k+1

Test downward closure 

property

Add to candidate set



FSG - Candidate Generation(Cont.)



Core identification - Candidate Generation

 The key computational steps in candidate generation are:

 Core identification

 Joining 

 Using the downward closure property for pruning candidates

 A straightforward way of performing these tasks:

 A core between a pair of graphs Gi
k and Gj

k can be identified by creating 
each of the (k-1)-subgraphs of Gi

k by removing each of the edges and 
checking whether this subgraph is also a subgraph of Gj

k

 Join two size k-subgraph, to obtain size (k+1)-candidates, by integrating 
two edges, one from each subgraph added to core

 For a candidate of size (k+1), generate each one of the k-size subgraphs 
by removing the edges and check if exists in F k



Core identification (Cont.)

 Using frequent subgraph lattice and canonical labeling to reduce 
complexity

 Core identification:

 Solution 1: for each frequent k-subgraph we store the canonical labels 
of its frequent (k - 1)-subgraphs, then the cores between two frequent 
subgraphs can be determined by simply computing the intersection of 
these lists. The complexity is quadratic on the number of frequent 
subgraphs of size k (i.e., |Fk|)

 Solution 2 - inverted indexing scheme - for each frequent subgraph 
of size k - 1, we maintain a list of child subgraphs of size k. Then, we 
only need to form every possible pair from the child list of every size k -
1 frequent subgraph. 

This reduces the complexity of finding an appropriate pair of subgraphs 
to the square of the number of child subgraphs of size k



Candidate Generation

Frequent  k – 1

subgraphs

Frequent  k

subgraphs

Solution 1: Each frequent k-subgraph stores the canonical labels of its 

frequent (k - 1)-subgraphs

Solution 2: inverted indexing scheme - Each frequent subgraph of size 

k - 1 maintains a list of child subgraphs of size k



Optimization- Candidate Generation

 Given a frequent sub-graph of size k – Fi, it contains at most k   
(k-1) sub-graphs. Order these sub-graphs by their canonical labels. 

 Call the smallest and second smallest sub-graphs Hi1 and Hi2, define 

P(Fi) = {Hi1 , Hi2 }

 An interesting property:

 Fi and Fj can be joined only if the  intersection of  P(Fi) 
and  P(Fj) is not empty!

This dramatically reduces the number of possible joins!

Proof in Appendix of 2004 paper



Frequency Counting

 For each frequent subgraph we keep a list of transaction 
identifiers that support it

 When computing the frequency of Gk+1, we first compute 
the intersection of the TID lists of its frequent k-
subgraphs.

 If the size of the intersection is below the support, Gk+1 is 
pruned

 Otherwise we compute the frequency of Gk+1 using 
subgraph isomorphism by limiting our search only to the 
set of transactions in the intersection of the TID lists



Another FSG Heuristic:
Frequency Counting

Transactions

gk-1
1 , gk-1

2  T1

gk-1
1  T2

gk-1
1 , g

k-1
2  T3

gk-1
2  T6

gk-1
1  T8

gk-1
1 , g

k-1
2  T9

Frequent subgraphs

TID(gk-1
1) = { 1, 2, 3, 8, 9 }

TID(gk-1
2) = { 1, 3, 6, 9 }

Candidate

ck = join(gk-1
1, g

k-1
2)

TID(ck)  TID(gk-1
1)  TID(gk-1

2) 



TID(ck )  { 1, 3, 9}

• Perform subgraph-iso to T1, T3 and T9 with ck and determine TID(ck)

• Note, TID lists require a lot of memory (but paper has some memory 
optimizations)



Canonical Labeling

 FSG relies on canonical labeling to efficiently perform a number of 
operations such as:
 Checking whether or not a particular pattern satisfies the downward 

closure property of the support condition 

 Finding whether a particular candidate subgraph has already been 
generated or not

 Efficient canonical labeling is critical to ensure that FSG can scale to 
very large graph datasets

 Canonical label of a graph is a code that uniquely identifies the graph 
such that if two graphs are isomorphic to each other, they will be 
assigned the same code

 A simple way of assigning a code to a graph is to convert its adjacency 
matrix representation into a linear sequence of symbols. For example, 
by concatenating the rows or the columns of the graph‘s adjacency 
matrix one after another to obtain a sequence of zeros and ones or a 
sequence of vertex and edge labels



Canonical Labeling - Basics

 The code derived from adjacency matrix cannot be used as the graph 
canonical label since it depends on the order of the vertices

 One way to obtain isomorphism-invariant codes is to try every possible 
permutation of the vertices and its corresponding adjacency matrix, and to 
choose the ordering which gives lexicographically the largest, or the 
smallest code

Time complexity: O(|V|!)

Code: 000000111100100001000 Code: aaazyx



FSG: Canonical Representation for 
graphs (based on adjacency Matrix)
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FSG: Finding the Canonical 
Labeling

 The problem is as complex as Graph 
Isomorphism (exponential?), (because we 
need to check all permutations) but

 FSG suggests some heuristics to speed it up, 
such as

 Vertex invariants (e.g., degree)

 Neighbor lists

 Iterative partitioning

 Basically the heuristics allow to eliminate 
equivalent permutations 



Canonical Labeling – Vertex Invariants

 Vertex invariants are properties assigned to a vertex which do 
not change across isomorphism mappings

 Vertex invariants is used to reduce the amount of time required 
to compute a canonical labeling,  as follows:

 Given a graph, the vertex invariants can be used to partition the 
vertices of the graph into equivalence classes such that all the vertices 
assigned to the same partition have the same values for the vertex 
invariants

 maximize over those permutations that keep the vertices in each 
partition together

 Let m be the number of partitions created, containing p1,p2,…,pm

vertices, then the number of different permutations to consider 
is ∏i=1

m(pi!) (instead of (p1+p2+…+pm )!  )



Canonical Labeling – Vertex Invariants

Vertex Degrees and Labels:

 Vertices are partitioned into disjointed groups such that each partition 
contains vertices with the same label and the same degree

 Partitions are sorted by the vertex degree and label in each partition (e.g. 
V0 and V3)

 We can consider (x,y) and (y,x) for V0 only…

 Only 1!*2!*1! = 2 permutations, instead of 4!=24



Canonical Labeling – Vertex Invariants

Neighbor Lists:

 Incorporates information about the labels of the edges incident 
on each vertex, the degrees of the adjacent vertices, and their 
labels

 Adjacent vertex v is described by a tuple (l (e),d (v),l (v)):

 l (e) is the label of the incident edge e

 d (v) is the degree of the adjacent vertex v

 l (v) is its vertex label

 For each vertex u, construct its neighbor list nl(u) that contains 
the tuples for each one of its adjacent vertices

 Partition the vertices into disjoint sets such that two vertices u 
and v will be in the same partition if and only if nl(u) = nl(v)



Canonical Labeling – Vertex Invariants

Neighbor Lists – continue:

 This partitioning is performed within the partitions already 
computed by the previous set of invariants (e.g. V2 and V4 have the 

same NL)

Neighbor list

Search space reduced from 4!*2! to 2! 

Vertex degrees and 

labels partitioning

Neighbor lists 

partitioning incorporated



Canonical Labeling – Vertex Invariants

Iterative Partitioning:

 Generalization of the idea of the neighbor lists, by incorporating 
the partition information

 See  Paper



Degree-based Partition Ordering

 Overall runtime of the canonical labeling can be further reduced 
by properly ordering the various partitions

 Partitions ordering may allow us to quickly determine whether a 
set of permutations can potentially lead to a code that is smaller 
than the current best code; thus, allowing us to prune large 
parts of the search space:
 When we permute the rows and the columns of a particular partition, 

the code corresponding to the columns of the preceding partitions in 
not affected

 If the code is smaller than the prefix of the currently best code, than 
the exploration of this set of permutations can be terminated

 Partitions are sorted in decreasing order of the degree of their 
vertices

Canonical Labeling



Canonical Labeling - Degree-based Partition Ordering 

Example

All vertices are 

labeled: a

Partitions sorted by 

vertex degree in 

ascending order

Partitions sorted by 

vertex degree in 

descending order

Some permutation of p1 

of (c), resulting with 

smaller prefix than (c)  –

saves us the 

permutations of p0



Experimental results
Comparison of various optimizations using the chemical compound dataset

Note: Run-time with this and previous optimizations (left to right)

•Chemical compound dataset: 340 chemical compounds, 24 

different element names, 66 different element types, 4 types of 

bonds



Experimental results

Database size scalability

|T| - average size of transactions (in terms of number of edges)



DTP Dataset (chemical compounds)
(Random 100K transactions)
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FSG extension - Topology Is Not 
Enough (Sometimes)

O

O

I

O
H

H

H

H

H

H

H

H

H

H

H

H

H

H

H H

H

H

H

H

H

H

H

O

O

H
H

H

H

H

HH

H

H

H

H

H

OH

H
H

H

H

H H

H

H

H

H

H

H

H

 Graphs arising from physical 
domains have a strong geometric 
nature
 This geometry must be taken into 

account by the data-mining 
algorithms 

 Geometric graphs
 Vertices have physical 2D and 3D 

coordinates associated with them



gFSG—Geometric Extension Of FSG 
(Kuramochi & Karypis ICDM 2002)

Same input and same output as 
FSG

 Finds frequent geometric connected 
subgraphs

Geometric version of (sub)graph 
isomorphism

 The mapping of vertices can be 
translation, rotation, and/or scaling 
invariant

 The matching of coordinates can be 
inexact as long as they are within a 
tolerance radius of r

 R-tolerant geometric isomorphism

A

B



Different Approaches for GM

 Apriori Approach
 AGM
 FSG
 Path Based (later)

 DFS Approach
 gSpan
 FFSM

 Diagonal Approach
 DSPM

 Greedy Approach 
 Subdue

Y. Xifeng and H. Jiawei

gspan: Graph-Based 

Substructure Pattern Mining

ICDM, 2002
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gSpan Outline 

 Defines a canonical representation for 
graphs

 Defines Lexicographic order over the 
canonical representations

 Defines Tree Search Space (TSS)  
based on the lexicographic order

 Discovers all frequent subgraphs by 
DFS exploration of TSS

Part 1

Part 2

http://homepage.ntlworld.com/anthony.field/tree.gif


Part 1 

Defining the Tree Search Space (TSS)

Part 2

gSpan Finds all frequent graphs 

by Exploring TSS

http://homepage.ntlworld.com/anthony.field/tree.gif


Motivation
DFS exploration vs. itemsets

Itemset Search space – prefix based (Note at the 

time we explore ‗abe‘ we don‘t have enough info. to prune it…)

ba c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

http://homepage.ntlworld.com/anthony.field/tree.gif


Motivation 
Itemsets TSS properties

 Canonical representation of itemset is 
accepted by a complete order over the items

 Each possible itemset appear in TSS exactly 
once; No duplications or omissions

 Properties of Tree Search Space

 For each k-label, its parent is the k-1 prefix 
of the given k-label

 The relation among siblings is in ascending 
lexicographic order

http://homepage.ntlworld.com/anthony.field/tree.gif


Targets

 Enumerating all frequent subgraphs by 
constructing a TSS, so

 Completeness—There will be no 

duplications/omissions 

 A child (in tree) will be accepted from a 
parent, by extending the parent pattern

 Correct pruning techniques

http://homepage.ntlworld.com/anthony.field/tree.gif


DFS Code representation

 Map each graph (2-Dim) to a sequential 
DFS Code (1-Dim)

 Lexicographically order the codes

 Construct TSS based on the 
lexicographic order

http://homepage.ntlworld.com/anthony.field/tree.gif


DFS-Code construction

 Given a graph G
 For each Depth First Search over graph G, 

construct a corresponding DFS-Code
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Dfs_Code(G, dfs)  /*dfs - give some depth search over G*/
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Single graph, Several DFS-Code
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Single graph, 
Single Min DFS-Code!
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DFS Lexicographic Order

 Let Z be the set of DFS codes of all graphs.  Two DFS 

codes a and b have the relation a<=b (DFS 

Lexicographic Order in Z) if and only if one of the 
following conditions is true.  Let

a = (x0, x1, …, xn) and 

b = (y0, y1, …, yn),

(i) if there exists t, 0<= t <= min(m,n), xk=yk for all 
k, s.t. k<t, and xt < yt

(ii) xk=yk for all k, s.t.  0<= k<= m and m <= n.



Minimum DFS-Code

 The minimum DFS code min(G), in DFS 
lexicographic order, is the canonical 
representation of graph G.

 Graphs A and B are isomorphic if and 
only if:

min(A) = min(B)

http://homepage.ntlworld.com/anthony.field/tree.gif


DFS-Code Tree:
Parent-Child Relation

 If min(G1) = { a0, a1, ….., an}

min(G2) = { a0, a1, ….., an, b}

 G1 is parent of G2

 G2 is child of G1

 A valid DFS code requires that b grow 
from a vertex on the right most path.

(inherited property from DFS search)

http://homepage.ntlworld.com/anthony.field/tree.gif
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GSPAN (Yan and Han ICDM‘02)

Right-Most Extension

Theorem: Completeness

The Enumeration of Graphs 
using Right-most Extension is 

COMPLETE
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DFS Code Extension
 Let a be the minimum DFS code of a graph G and b be 

a non-minimum DFS code of G.  For any DFS code d
generated from b by one right-most extension,

(i) d is not a minimum DFS code,

(ii) min_dfs(d) cannot be extended from b, and

(iii) min_dfs(d) is either less than a or can be 
extended from a.

THEOREM [ RIGHT-EXTENSION ]

The DFS code of a graph extended from a 

Non-minimum DFS code is NOT MINIMUM



Search Space:
DFS code Tree

 Organize DFS Code nodes as parent-
child

 Sibling nodes organized in ascending 
DFS lexicographic order

 In Order traversal follows DFS 
lexicographic order!

http://homepage.ntlworld.com/anthony.field/tree.gif
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Tree Pruning

 All of the descendants of infrequent 
node are infrequent also
(just like with itemsets!)

 All of the descendants of a non
min-DFS code are also non min-DFS 
code

 Therefore as soon as you discover a 
non min-DFS graph you can prune it!

http://homepage.ntlworld.com/anthony.field/tree.gif


Part 1 

Defining the Tree Search Space (TSS)

Part 2

gSpan Finds all frequent graphs 

by Exploring TSS

http://homepage.ntlworld.com/anthony.field/tree.gif


gSpan Algorithm

gSpan(D, F, g)

1: if  g  min(g) 

return;

2: F  F  { g }

3: children(g)  [generate all g’ potential 

children with one edge growth]*

4: Enumerate(D, g, children(g))

5: for each c  children(g)

if support(c)  #minSup

SubgraphMining (D, F, c)

___________________________

* gSpan improve this line



The gSpan Algorithm (details)

// Note with every iteration graph becomes smaller



Cont.) )The gSpan Algorithm



- Enumerate children  The gSpan Algorithm

Enumerate Example

Frequent

Subgraph

Possible 
children

Graph in a 
graph dataset

Occurrences of 
graph (a) in 

(b)



 Pruning- The gSpan Algorithm

The s ≠ min(s) Pruning:

 s ≠ min(s) prunes all DFS codes which are not minimum

 Significantly reduces unnecessary computation on duplicate 
subgraphs and their descendants

 Two ways for pruning

 Pre-pruning: cutting off any child whose code is not minimum before 
counting frequency and after generating all potential children (after 
line 4 of Subgraph_Mining)

 Post-pruning: pruning after the real counting

 First approach is costly since most of duplicate subgraphs are 
not even frequent, on the other hand counting duplicate 
frequent subgraphs is a waste

 Next: Optimizations



Pruning - The gSpan Algorithm

The s ≠ min(s) Pruning (cont.):

A trade-off between pre-pruning and 
post-pruning: prune any discovered child 
in four stages:

If the first edge of s minimum DFS code is e0, then 
a potential child of s does not contain any 
edge smaller than e0

example: minimum DFS code of (a) is

(0,1,x,a,x)  e0

(1,2,x,c,y)
(2,3,y,a,z)
(2,4,y,b,z)
If a potential child of s could add the edge 
(x,a,a)
(x,a,a) < (x,a,x) → s child pruned

a

a

Database 

graph

Frequent 

subgraph

potential 

children



(a) growth

(0,1,x,a,x)

(1,2,x,c,y)

(2,3,y,a,z)

(2,4,y,b,z)

(4,1,z,a,x)

The gSpan Algorithm - Pruning

The s ≠ min(s) Pruning (cont.):

(2For any backward edge growth from s
(vi, vj) i > j, this edge should be no 
smaller than any edge which is 
connected to vj in s

example:

S ≠ min)s)

(a) min DFS

(0,1,x,a,x)

(1,2,x,c,y)

(2,3,y,a,z)

(2,4,y,b,z)

Growth min 

DFS

(0,1,x,a,x)

(1,2,x,a,z)

(2,3,z,b,y)

(3,1,y,c,z)

(3,4,y,a,z)

Database 

graph

Frequent 

subgraph

potential 

children

a



The gSpan Algorithm - Pruning 

The s ≠ min(s) Pruning (cont.):

3) Edges which grow from other than the 
rightmost path are pruned

example: edge (z,a,w) is pruned

4) Post-pruning is applied to the remaining 
unpruned nodes

Database 

graph

Frequent 

subgraph

potential 

children
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Given database D

Task Mine all frequent subgraphs with support  2  (#minSup)

Another Example
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gSpan - Analysis

 No Candidate Generation and False Test – the frequent (k 
+ 1)-edge subgraphs grow from k-edge frequent subgraphs 
directly

 Space Saving from Depth-First Search – gSpan is a DFS 
algorithm, while Apriori-like ones adopt BFS strategy and suffers 
from much higher I/O and memory usage

 Quickly Shrunk Graph Dataset – at each iteration the mining 
procedure is performed in such a way that the whole graph 
dataset is shrunk to the one containing a smaller set of graphs, 
with each having less edges and vertices



gSpan – Analysis(cont.)

 gSpan runtime measured by the number of subgraph and/or 
graph isomorphism (which is an NP-complete  problem) tests: 

O(kFS + rF)

[bounds the maximum number of s≠min(s) operations]

[bounds the number of isomorphism tests that should be done] 

k – the maximum number of subgraph isomorphisms existing between a 

frequent subgraph and a graph in the dataset

F – the number of frequent subgraphs

S – the dataset size

r – the maximum number of duplicate codes of a frequent subgraph that 

grow from other minimum codes



gSpan Experiments

Scalability



gSpan Experiments

gSpan vs. FSG



 On Synthetic databsets it was 6-10 
times faster than FSG

 On Chemical compounds datasets it 
was 15-100 times faster!

 But this was comparing to OLD 
versions of FSG!

gSpan Performance
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GASTON (Nijssen and Kok, KDD‘04)

 Extend graphs directly

 Store embeddings

 Separate the discovery of different 

types of graphs

 path  tree  graph

 Simple structures are easier to mine and 

duplication detection is much simpler



Different Approaches for GM

 Apriori Approach
 AGM
 FSG
 Path Based (later)

 DFS Approach
 gSpan
 FFSM

 Diagonal Approach
 DSPM

 Greedy Approach 
 Subdue

Moti Cohen, Ehud Gudes

Diagonally Subgraphs Pattern 

Mining. 

DMKD 2004, pages 51-58, 

2004

http://images.google.com/imgres?imgurl=http://www.thechain.com/~scs/silverstrong.com/images/tsi/magnify.jpg&imgrefurl=http://www.thechain.com/~scs/silverstrong.com/assess_tsi.php&h=168&w=162&sz=6&tbnid=i_zpvZjCRcsJ:&tbnh=92&tbnw=89&start=17&prev=/images%3Fq%3Dmagnify%2Bglass%26hl%3Den%26lr%3D


 Diagonal Approach is a general scheme 
for frequent pattern mining

 DSPM is an algorithm for mining 
frequent graphs which is based on the 
Diagonal Approach

 The algorithm combines ideas from 
Apriori & DFS approaches and also 
introduces several new ones

Diagonal Approach & 
DSPM Algorithm



DSPM – Hybrid Algorithm

Similar to Operation

BFSCandidates Generation

BFSCandidates Pruning

DFSSearch Space exploration

DFSEnumerating Subgraphs 



Diagonal Approach

 Prefix based Lattice

 Reverse Depth Exploration

DSPM Algorithm

 Fast Candidate Generation &
Frequency Anti-Monotone (FAM) 
Pruning

 Deep Depth Exploration

 Mass Support Counting

Concepts / Outline

http://www.clipart.com/en/close-up?o=883469&memlevel=A&a=c&q=machine&s=181&e=210&show=&c=&cid=&findincat=&g=&cc=&page=7


 Let   {itemsets, sequences, trees, graphs} be a frequent
pattern problem

 -order is a complete order over the patterns
 -space is a search space of the  problem which has a tree

shape

Notation subpatterns(pk) = { pk-1 | pk-1 is a subpattern of pk}

 Then, a -space is Prefix Based Lattice of  if
 The parent of each pattern pk, k > 1, is the minimum -order

pattern from the set subpatterns(pk)
 An in-order search over -space follows ascending

-order
 The search space is complete

Definition: Prefix Based Lattice



Example: Prefix Based Lattice
(Itemsets)



Example: Prefix Based Lattice
(Subgraphs)

[gSpan Algorithm of X. Yan, J. Han – an instance of PBL]



Reverse Depth Exploration

 Depth search over -space explores 
the sons of each visited node 
(pattern) in a descending -order



Observation

 Exploring prefixed based -space in 

reverse depth search enables checking 

Frequency Anti-Monotone (FAM) 

property for each explored pattern, if 

all previous mined patterns are kept.



Reverse Depth exploration + FAM Pruning

(Intuition wrt. Itemset)



Reverse Depth exploration + FAM Pruning



{a, c, f} {a, c, h} {a, c, k} {a, c, m} {a, f, h} {a, f, j} {a, f, m} {c, f, h} {c, f, m}

{a, c} {c, f}{a, f}

{a, c, f, h} {a, c, f, m}

….

{c, f, z}

###.  .  . 

.  .  . 

.  .  . . . .

{a} {c}…. ….

….

### .  .  . ### ###

### ###

Tid

Lis

t

Tid

Lis

t

D
F

S

Consider Itemset {a, c, f}. 

How to generate all its sons-candidates

Which restrict to FAM pruning?

Fast Candidate Generation & FAM Pruning
(The idea wrt. Itemset)

?



{a, c, f} {a, c, h} {a, c, k} {a, c, m} {a, f, h} {a, f, j} {a, f, m} {c, f, h} {c, f, m}

{a, c} {c, f}{a, f}

{a, c, f, h} {a, c, f, m}

….

{c, f, z}

###.  .  . 

.  .  . 

.  .  . . . .

{a} {c}…. ….

….

### .  .  . ### ###

### ###

D
F

S

C  {f, h, k, m}

C  C  {h, j, m}

C  C  {h, m, z}

sons-candidates({a, c, f})  {h, m} 

Fast Candidate Generation & FAM Pruning
(intersect the respective lists)

{f, h, k, m} {h, j, m} {h, m, z}



Fast Candidate Generation & FAM Pruning

 DSPM algorithm adapted this idea to 
generate and prune subgraphs candidates.

This technique of candidate generation and 
FAM Pruning is highly efficient.

 Outcomes 

 More space can be explored each iteration.

 More efficient support counting.



Performance of DSPM

 Was about twice better than gSpan on a 

synthetic database



Different Approaches for GM

 Apriori Approach
 AGM
 FSG
 Path Based 

 DFS Approach
 gSpan
 FFSM

 Diagonal Approach
 DSPM

 Greedy Approach 
 Subdue

D. J. Cook and L. B. Holder

Graph-Based Data Mining

Tech. report, Department of 

CS Engineering, 1998
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Subdue Algorithm

 A greedy algorithm for finding some of 
the most prevalent subgraphs. 

 This method is not complete, as it may 
not obtain all frequent subgraphs, 
although it pays in fast execution.



Subdue Algorithm (Cont.)

It discovers substructures that compress the 
original data and represent structural concepts 
in the data.

 Based on Beam Search - Like breadth-first 
search in that it progresses level by level. Unlike 
breadth-first search, however, beam search 
moves downward only through the best W
nodes at each level. The other nodes are 
ignored.



Step 1: Create substructure for each unique vertex label
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Subdue Algorithm steps

DB:



Subdue Algorithm steps (Cont.)

Step 2: Expand best substructure by an edge or edge and

neighboring vertex

circle

rectangle

left

triangle
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on
triangle

square

on

on

triangle
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Substructures:DB:



Step 3:  Keep only best substructures on queue (specified by

beam width)

Step 4: Terminate when queue is empty or when the number 

of discovered substructures is greater than or equal to 

the limit specified.

Step 5:Compress graph and repeat to generate hierarchical 

description

Subdue Algorithm steps (Cont.)



Agenda

 Introduction

 Problem Definition

 FSG

 gSpan

 Scalable mining of large Disk-based DBs 
(Wang et. Al. – KDD 2004 )



Motivation

 Graph Mining has very broad applications
 Mining structural patterns from chemical compounds

 Plan databases

 XML Documents (on semantic web)

 Citation/social networks

 But these are really large datasets:

 XML Documents

 Semantic web is www size, plus metadata

 Hundreds or even thousands of different labels for data

 Chemical Structures

 Millions of different structures

 Easily hundreds of labels in these graphs



Motivation - Previous Approaches

 Many approaches to this exist already
 Most assume that databases are not very large

 Assume that the entire database fits into main memory

 Computation-centric

 Perform poorly on larger datasets that are I/O bound

 gSpan as an example (Yan, et al.)

 Performance is reported for data sets up to only 320 KB

 Test machine has 448MB main memory

 Running time scales exponentially with large numbers of graph 
labels (raising from 10 to 45 labels, increases runtime by a factor of 
84)

 Not effective on large datasets!



Frequent Operations

 Major data access operations in mining frequent graph patterns 
(specifically in gSpan‘s):

1. Given an edge, find its support in the graph database
2. Given an edge, find the actual graphs where the edge appears in the 

database
3. Given an edge, find the adjacent edges (to expand the current graph 

pattern)

 gSpan typically needs random access to elements of the graph 
database and to its projections
 Don‘t want to have to go to disk for each of these operations



ADI (Adjacency Index) Structures

 Linked List of Graph id’s

 Graph id’s for a particular edge 

stored contiguously

 Efficient to retrieve all of them 

from memory at once

 Facilitates operation 

2: retrieve graphs of 

which an edge is a 

member
 The length of this list is stored in 

the edge table

 Facilitates operation 

1: support query for 

edge



Space requirements

 Total size of ADI is bounded by 
number of edges in all graphs:

 Generally smaller than this
 Graphs are often sparse on edges

 Users typically only interested in 
frequently occurring edges.

 Not all of the ADI need be in 
memory
 Can store bottom 1-3 levels on 

disk, if needed.



Constructing the ADI

 Requires only 2 passes through the database

 Identify frequent edges
 Creates edge table

 Read and process graphs one by one
 Builds graph lists

 fills in adjacency info

 2 major costs are

 Adjacency lists = cost of copying original DB + 
bookkeeping

 Updating graph id lists needs random access 
to edge table and linked lists
 Needs good caching of lists to be efficient

 Can be expensive, but only needs to be done once.



Constructing the ADI



Algorithm ADI-Mine

A pattern growing algorithm – improvement of gSpan:

 First constructs the ADI structure if it doesn‘t already exist

 Obtain frequent edges from edges table in the ADI

 Use these edges‘ frequent adjacent edges to grow larger frequent 
graph patterns



Algorithm ADI-Mine



Differences with gSpan

 gSpan loads graphs into memory repeatedly and checks if they 
contain particular edges

 Can end up searching more than we need to by loading graphs 
that may not have the edge we‘re looking for

 Really, bigger issue is that this loads the graph into memory, and 
it‘s costly to go to disk.

 ADI-Mine can simply go straight through the edge table, by the label 
of the edge it‘s searching for

 Graphs we need are readily available

 Located in contiguous memory

 No extra searching and no loading of unnecessary graphs from 
disk (in large databases)



Scalability on size

Memory and large on-disk DB‘s, respectively

•Note at right that gSpan is unable to work on datasets larger than about 300K 

graphs



Runtime vs. main memory

 Runtime vs. main memory for 
large, disk-based runs

 We‘re probably swapping pages 
(in the B-tree) more frequently 
at the lower memory sizes, so 
performance suffers.

 Performance converges when 
we can fit the working set in 
memory



ADI size

Size of the ADI structure grows 
linearly with amount of data



Outline

 Basic concepts of Data mining and Association rules
 Apriori algorithm

 Motivation for Graph mining
 Applications of Graph Mining
 Mining Frequent Subgraphs - Transactions

 BFS/Apriori Approach (FSG and others)
 DFS Approach (gSpan and others)
 Diagonal Approach 
 Greedy Approach

 Mining Frequent Subgraphs – Single graph
 The support issue
 The Path-based algorithm
 Constraint-based mining

 Conclusions


