

Graph and Web Mining -

Motivation, Applications and
Algorithms -
Chapter 2

Prof. Ehud Gudes
Department of Computer Science
Ben-Gurion University, Israel

Outline

� Basic concepts of Data mining and Association rules
� Apriori algorithm

� Motivation for Graph mining
� Applications of Graph Mining
� Mining Frequent Subgraphs - Transactions

� BFS/Apriori Approach (FSG and others)
� DFS Approach (gSpan and others)
� Diagonal Approach
� Greedy Approach

� Mining Frequent Subgraphs – Single graph
� The support issue
� The Path-based algorithm
� Constraint-based mining
� Other algorithms

 Single Graph Setting

Most existing algorithms use a Transaction setting
approach.
That is, if a pattern appears in a transaction even
multiple times it is counted as 1! (FSG, gSPAN)

What if the entire database is a single graph?
This is called: the single transaction setting

We need a different Support definition!

Problem Statement (single
graph setting)

� Input: (D, minSup)
� A single graph D (e.g. the Web or DBLP or an XML file)
� Minimum support minSup

� Output: (All frequent subgraphs).
� A subgraph is frequent if the number of its
“occurrences” in D is above an admissible support
measure

� Definition of an admissible support measure?

single graph setting -
Motivation

� Often the input is a single large graph

� Examples:
� The web or portions of it
� A social network (e.g. a network of users
communicating by email at BGU)

� A large XML database such as: DBLP or Movies
database

� Mining such large graph databases is very useful!

The Path Algorithm (Vanetik, Gudes, Shimony
ICDM 2002, TKDE 2006)

Goal: Find all frequent connected subgraphs of a database graph.

Basic approach: Apriori or BFS

But the basic building block is a Path not an Edge!
This works since any graph can be decomposed to a set of
disjoint paths

Result: faster convergence of the algorithm

Support issue (DAMI J. Sept 2006)

Definition a support measure S is admissible if for any pattern
 P and any sub-pattern Q ⊂⊂⊂⊂ P => S(Q)≥≥≥≥S(P).

Problem: the number of appearances of the graph pattern in the database
 graph is not an admissible support measure!

Graph A appears 3 times in the database graph, while graph B ⊂⊂⊂⊂ A
appears only once!.

The Instance graph
Definition

 An instance graph I(P) of pattern P in database graph G
 is a graph

 G = (V,E) where V = {g ⊂⊂⊂⊂ G, g ≈≈≈≈ P} and
 E = {(g,h), g,h ∈∈∈∈V and E(g) ∩∩∩∩ E(h) ≠≠≠≠ ∅∅∅∅}.

That is: it’s a graph where each node represents a different occurrence
of the pattern in the database graph, and an edge between two nodes
indicates that there is at least one edge overlap between the
corresponding occurences

Support issue

Operations on instance graph:
• clique contraction
 replacing a clique C by a single node c such that only the nodes that
 were adjacent to each node of C may become adjacent to c
� node expansion
 replacing an existing node v by a new subgraph whose nodes may or
may not be adjacent to the nodes adjacent to v
� node addition
 adding a new node to the graph and arbitrary edges between the
 new node and the old ones
� edge removal

Example of operations on the instance graph

 • clique contraction • vertex addition

 • vertex expansion • edge removal

The main result

Theorem

A support measure S is an admissible support measure
if and only if
 it is non-decreasing on the instance graph I(P) of
every pattern P under clique contraction, node
expansion, node addition and edge removal.

See KDD journal (DAMI) Sept. 2006

Example of support measure - MIS

Admissible support measure - MIS: easy to show that’s its admissible

 Maximum independent set size of instance graph
MIS = _____________________________________

 Number of edges in the database graph

Motivation for MIS measure:
 We are interested in typical structure, i.e. structures created by
 many users that are somewhat independent.
 A single complex structure that has many references is
 less interesting for us.

 Most common support measures are covered by this
 definition, including the standard support measure for
 transaction databases.

The MIS Measure - Example

Definition a support measure S is admissible if for any pattern
 P and any sub-pattern Q ⊂⊂⊂⊂ P => S(Q)≥≥≥≥S(P).

Instance graph for A is also a triangle, therefore MIS(A) = 1
Instance graph for B is one node, therefore MIS(B) = 1
MIS(B) < = MIS(A) Admissible!

The MIS Measure

� The only measure found so far to be
admissible (challenge – find others!)

� Was also adopted by Kuramochi- Finding
Frequent Patterns in a Large Sparse Graph
[SDM2004])

� Since finding the MIS is an NP-complete
problem, Kuramochi suggests several
approximating measures which are easier to
compute.

Path-based mining algorithm
(Vanetik, Gudes, Shimony)

� The algorithm uses paths (instead of edges)
as basic building blocks for pattern
construction. Larger building blocks may
make the search more efficient

� It starts with one-path graphs and combines
them into 2-, 3- etc. path graphs.

� The combination technique does not use
 graph operations and is easy to implement.

Path number

Definition. Path number p(G) of a graph is the minimal number
 of edge-disjoint paths that cover all edges in the graph.
 A collection of p(G) paths that cover all edges is called
 a minimal path cover.
 A graph G is Eulerian if it can be covered by a single
 cyclic path (i.e P(G) = 1), Otherwise:

For an undirected graph G=(V,E),
2

)(
)(

oddisvdVv
Gp

∈
=

For a directed graph G=(V,E),
2

)()(
)(
∑
∈

−+ −
= Vv

vdvd
Gp

Path Facts

Definition Graph G’=G\P where P is an edge-disjoint path
denotes the graph obtained by removing from G all edges of
path P

Claim 1: Let P be any path from minimal path cover of a
 connected graph G. Then p(G\P)=p(G)-1.

Claim 2: In any path cover of a connected graph G there are
 at least two paths
 P1,P2 such that G\ P1 and G\ P2 are connected.

We also define an order ≤P on paths in order to represent a path
decomposition of a graph in a unique way.
We only store decompositions that are minimal with respect to this
Order (denoted by P-minimal).

Order on paths

Let P be a path in an undirected (or directed) graph G.
Path degree pd(v) (path indegree pd+(v) and path outdegree pd-(v)) of a
node v in P is a number of edges in P adjacent to v (the number of ingoing
and outgoing edges for v in P).

A representative tuple RT(v) of vertex v in path P is a tuple
 <label(v), pd(v)> (<label(v), pd+(v), pd-(v)> if P is
 directed).

These tuples can be compared lexicographically.

Order on paths (cont.)

Path descriptor D(P) of path P is the ordered set {RT(v) | v∈V(P)}
 where representative tuples are arranged in non-decreasing
 order with respect to the natural lexicographical order
 on them.

Definition. Let P,Q be paths. Then P≤pQ iff D(P)≤D(Q).

This relation allows us to compare path covers as follows.

Let X and Y be path covers of G, sorted in non-decreasing order
according to ≤p order. Then X≤PY if X is lexicographically smaller than or
equal to Y.

Order on paths : example

We have paths P1 = v1,v2,v3,v4,v5 and P2 = v1,v5,v2

D (P1) = <A,0,1>,<A,1,1>,<B,1,0>,<C,1,1>,<D,1,1>
D (P2) = <A,0,1>,<A,1,0>,<B,1,1> (order is
Lexicographic not by vertex order)
Therefore, P2≤PP1.

The Three phases of the mining algorithm

� Phase #1 finds all frequent graph patterns with
 path number 1

� Phase #2 finds all frequent graph patterns with
 path number 2 by “joining” pairs of patterns found
 in phase #1

� Phase #3 finds all frequent graph patterns with path
 number n≥3 by “joining” pairs of patterns with
 path number (n-1) (and apply Apriori pruning).

The main problem: how candidates are “joined”?

How to store patterns: the composition relation

A composition relation C(P1,…,Pn) (or C) on paths P1,…,Pn of
graph G is a table with nodes of G as rows and paths as columns
such that C[i,j] ≠ ⊥⊥ iff i-th node of G is also a node of path Pj.

Node P1 P2 P3

v1 a1 ⊥ ⊥
v2 a2 b2 ⊥
v3 a3 ⊥ ⊥
v4 ⊥ b1 ⊥

v5 ⊥ b3 c3

v6 ⊥ ⊥ c1

v7 ⊥ ⊥ c2

C(P1,P2,P3):

Restoring patterns: graph composition

By treating table rows as graph nodes and defining edges (i,j) whenever
two nodes of a path Pk, appearing in rows i and j, have an edge between them,
we can construct a graph corresponding to composition relation C(P1,…,Pn).
A graph composition of C(P1,…,Pn) is denoted by Ω(C).

Ω(C(P1,P2,P3)):

The Uniqueness property

• By using the lexicographic order on Paths and defining the
Composition Relation as representing the Minimal order of
Paths we get a unique representation for every graph.

• This is similar to canonical labeling and needed to eliminate
duplicates and assure the completeness of the Algorithm

How to remove a path: subtraction

Subtraction of a path Pi from a composition relation C, C\ P3 , consists of:
a) eliminating the i-th column from the table;
b) removal of all rows containing only null values.

Node P1 P2

v1 a1 ⊥
v2 a2 b2

v3 a3 ⊥
v4 ⊥ b1

v5 ⊥ b3

C(P1,P2,P3) \ P3 :

Subtracting of (several) paths from C is also called a projection of C onto the

remaining paths P1,...,Pn, denoted by C|{1,...,n} .

How to combine graphs

A bijective sum BS(C1, C2,I1,I2) of composition relations C1 and
 C2, where I1,I2 are sets of indices and C1 |I1=C2|I2,
 is a composition relation obtained by
 adding all columns of C2 corresponding to paths that are
 not in C1, to the table of C1.

C1 C2 C3

 P1 P2 P3 P1 P2 P3 P1 P2 P3 P4

v1 a1 v1 a1 v1 a1

v2 a2 b2 v2 a2 b2 v2 a2 b2

v3 a3 v3 a3 v3 a3

v4 b1 v4 b1 d1 v4 b1 d1

v5 b3 c3 v5 b3 v4 b3 c3

v6 c1 v6 d2 v6 c1

v7 c2 v7 d3 v7 c2

 v8 d2

v9 d3

Bijective sum of C1 and C2 on common paths P1 and P2.

Bijective sum: example

Bijective sum: an example

How to join more paths: splice

 A splice ⊕i,j of two composition relations C1(P1,…,Pn) and C2(Pi,Pj),
 is a composition relation that turns every node common to Pi and Pj in
 C2, into the node common to Pi and Pj in C1 as well.

C3= C1(P1,P2,P3)
 ⊕2,3C2(P2,P3):
Note: splice does not
increase k, C3 stays
As 3-path

C1 C2 C3

 P1 P2 P3 P2 P3 P1 P2 P3

v1 a1 v2 b1 c1 v1 a1

v2 a2 b2 v4 b2 v2 a2 b2

v3 a3 v5 b3 c3 v3 a3

v4 b1 v7 c2 v4 b1 c1

v5 b3 c3 v5 b3 c3

v6 c1 v6 c2

v7 c2

Splice: an example

Phases of the path-based mining algorithm

� Phase #1 finds all frequent graph patterns with
 path number 1

� Phase #2 finds all frequent graph patterns with
 path number 2 by “joining” pairs of patterns found
 in phase #1

� Phase #3 finds all frequent graph patterns with path
 number n≥3 by “joining” pairs of patterns with
 path number (n-1).

Algorithm: Phase 1 – finding frequent 1-paths

1. Find all frequent edges and add them to L1. Set k←2.
2. Set Ck←∅, Lk ←∅.
3. For every path P∈Lk-1 and every edge e=(v,u) ∈ L1 do:

a. Let X be all nodes of P if P is cyclic and
all unbalanced nodes of P if P is non-cyclic.

b. For every x ∈ X such that x ≈ v
add Q=(V(P)∪{u}, E(P) ∪{x,u)}) to Ck if p(Q)=1.

c. For every x ∈ X such that x ≈ u
add Q=(V(P)∪{v}, E(P) ∪{(v, x)}) to Ck if p(Q)=1.

d. For every x,y ∈ X such that x ≈ v, x ≈ u
and (x,y)∉E(P),
add Q=(V(P), E(P) ∪{(x, y)}) to Ck if p(Q)=1.

4. Compute frequency of all paths from Ck and
add the frequent ones to Lk.

5. If Lk ←∅, stop. Otherwise, set k ← k+1 and go to step 2.

Phase #1 – overview

Phase #1 constructs candidate paths by adding one edge at a time.

 If the path is cyclic (i.e is a (not necessarily simple) cycle,
 we can add edge anywhere (providing the labels match):
 1. between two existing nodes,
 2. between existing and new node.

 If the path is not cyclic, we can add edge between pair of nodes
 one of which is unbalanced:
 1. between two existing unbalanced nodes,
 2. between existing unbalanced and existing balanced
 node,
 3. between existing unbalanced node and a new node.
Now each candidate is checked for its support, only the frequent ones
will be extended in next iteration

Definition A node v in graph G is balanced if degree of v is even
 (for undirected graphs). A node is unbalanced if
 it is not balanced.

Phase #1 – Example

Phase #2 – 2-Path generation

Algorithm: Phase #2

1. Let L1 be the set of all frequent paths.
Set C2←∅, L2 ←∅.

2. For every pair P1,P2 ∈L1 and every possible label-preserving
composition relation C on P1 and P2 do:
a. If p(Ω(< P1, P2, C>))=2, add < P1, P2, C> to C2.

3. Remove all tuples producing non P-minimal graphs
from C2.

4. For every t ∈ C2 if Ω(t) is frequent, add it to L2.

Phase #2 - Example

Join of two paths produced three graphs with path number 2

Exercise: show the composition relations

Phase #3 – overview

Phase #3: Input = frequent graphs with path number k
 Output = frequent graphs with path number (k+1)

The main step:
 1. find a common (k-1)-subgraph of two k-graphs,
 /* Note, this is quite easy because only needed is finding
 (k-1) equal paths in the corresponding composition relations
*/
 2. if found, join these graphs into (k+1)-graph using
 bijective sum operation,

Additional step:
 3. for bijective sum G of two graphs and two paths
 P and Q in which these graphs differ, find all
 frequent combinations of P and Q in L2, and join
 them with G using splice operation.
 (Note the ‘Splice’ doesn’t increase the size of the
 candidate graph, i.e. its still (k+1))

Phase #3 – Graphs with p(G)≥3

Algorithm: Phase #3

1. Let L2 be the set of all frequent path pairs. Set k←3.
2. Set Ck←∅, Lk ←∅.
3. For every t1,t2 ∈ Lk-1 such that t1=<P1,…,Pi-1,Pi+1,…,Pj,…,Pk,C1>

and t2= <P1,…,Pj,…,Pj-1,Pj+1,…,Pk ,C2> do:
a. Let C = BS(C1,C2,(k)-i-j,(k)-i-j).
b. Add t=< P1,…,Pk ,C > to Ck (if p(Ω(t)) = k).
c. For every t3=< Pi,Pj,C3 > ∈ L2,

add t=< P1,…,Pk ,C⊕i,jC3 > to Ck (if p(Ω(t)) = k).
4. Remove all non P-minimal tuples from Ck.
5. Add every t ∈ Ck, where Ω(t) is frequent, to Lk.
6. If Lk = ∅, stop. Otherwise, set k ← k+1 and go to step 2.

Main theorem: Algorithm is Sound and Complete
 i.e. it finds all and only frequent sub-graphs!

Proof outline:

Theorem 1 All frequent graphs with path number 1 are produced
 by phase 1 of the algorithm.

How to prove: For every path P and unbalanced vertex v of P there exists
 a vertex u such that (u,v)∈E(P) and P\(u,v) is a path.

Theorem 2 All frequent graphs with path number 2 are produced
 by phase 2 of the algorithm.

How to prove: Each graph G with p(G)=2 can be expressed as a
 label-preserving composition relation on two paths from its
 any ≤P minimal path decomposition.

Proof outline (cont.)

Theorem 3 All frequent graphs with p(G)>2 are produced
by phase 3 of the algorithm.

Main steps: 1. There exists two paths P,Q in minimal path
 decomposition of G such that G\P and G\Q are connected.
 2. G\P and G\Q are also frequent and were found
 (by induction)
 3. If P and Q are disjoint in G, using BS
 operation on their composition relations will produce G.
 4. Otherwise, BS and ⊕ operations combined will produce G.

Complexity
Exponential – as the number of frequent patterns can be exponential
 on the size of the database (like any Apriori alg.)

Difficult tasks: (NP hard)
1. Support computation that consists of:

a. Finding all instances of a frequent pattern in
 the database. (sub-graph isomorphism)
b. Computing MIS (maximum independent set size)
 of an instance graph.

Relatively easy tasks:
1. Candidate set generation:
 polynomial on the size of frequent set from
 previous iteration,
2. Elimination of isomorphic candidate patterns:
 graph isomorphism computation is at worst
 exponential on the size of a pattern, not the database.

Complexity (cont.)

Why is mining in real-life databases easier ?

� real databases tend to be sparse rather than dense,
� real databases tend to have large number of different
 labels.

Impact on algorithm’s complexity:

� the number of database subgraphs isomorphic to a given
 graph pattern is not exponential,
� the size of instance graph is not exponential,
� instance graphs tend to be very sparse, which makes
 the task of finding MIS much easier.

Additional improvements:
� approximate techniques can be used for MIS computation
 as user usually does not care for the exact support value.
 ([Kuramochi2004])

Experiment overview

Goals of our experiments are:
� To compare our algorithm with naïve algorithms:

� Naive1 – produce all graphs and compute
 their support (B. D. McKay “Isomorph-free exhaustive
 generation”, J. of Algorithms vol. 26, 1998)

� Naive2 – at each iteration, add edge to frequent
 graphs from previous iteration

� FSG – without some optimizations
� To study algorithm’s behavior on various graph topologies:

� cliques
� trees
� sparse graphs vs dense graphs

� To study the effect of following parameters on the number
 of frequent patterns found:

� size of the database
� number of different labels

� Test algorithm on both synthetic and real-life databases

Experiments setting

Experimental results on synthetic data: trees

Notation: S – support; N – nodes; L – labels; E – edges
 FP – frequent patterns
 C – candidate patterns; I – isomorphism checks;
 SC – support calculations; ALG - algorithm in use.

N L S FP ALG C I SC

1 40 4 7% 15 Naive2 100 24 92

Path 52 47 52

2 50 4 7% 16 Naive2 110 41 102

Path 45 45 42

3 50 6 3% 37 2Naive 470 82 458

Path 202 239 205

4 50 8 3% 27 Naive2 306 62 290

Path 119 91 111

5 60 4 5% 15 2Naive 100 24 92

Path 52 47 52

6 60 6 5% 44 Naive2 728 203 716

Path 175 868 276

7 60 8 5% 14 2Naive 103 18 87

Path 41 29 26

Experimental results on synthetic data:
sparse graphs

N E L S FP ALG C I SC

1 40 50 4 7% 14 Naive2 60 33 52

Path 49 55 42

2 40 50 6 5% 17 Naive2 84 48 76

Path 59 70 54

3 50 60 6 5% 28 Naive2 355 74 343

Path 117 185 143

4 60 80 4 4% 16 Naive2 101 31 93

Path 56 58 56

5 60 80 6 3% 27 Naive2 265 86 253

Pathi 120 102 110

6 70 90 8 3% 27 Naive2 252 77 236

Path 126 98 110

7 80 100 8 3% 32 Naive2 403 74 387

Path 149 127 141

Data set # Nodes Edges Labels

1 12656 13878 112

2 8337 9416 25

3 7027 7851 22

4 4730 4813 90

5 2757 2794 76

6 1293 1292 91

Subsets of Movie database
used in experiments

Experimental results on subsets
of Movie database

Dat
a

set

#1 #2 #3 #4 #5 #6 Dat
a

set

#1 #2 #3 #4 #5 #6

Sup
port

Number of frequent patterns Sup
port

Number of frequent patterns

90
%

3 3 3 3 2 4 20
%

8 6 5 9 6 46

80
%

3 3 3 3 2 5 10
%

15 12 10 11 7 79

70
%

4 3 3 4 2 5 9% 16 12 10 11 7 79

60
%

4 3 3 4 2 9 8% 16 12 10 12 8 84

50
%

5 3 3 5 2 21 7% 18 12 10 12 9 84

40
%

6 4 4 5 2 32 6% 21 13 11 12 10 86

30
%

7 5 4 8 5 34 5% 22 14 11 16 11 86

Comparison

 Our algorithm vs naive ones
� Naive1 algorithm does not work on graphs with ≥ 10 nodes
� Our algorithm produces less candidate patterns and therefore
 performs less support computations than Naive2 algorithm.

 Trees vs sparse graphs
� Support computation is easier for trees
� Less candidate patterns are generated for trees

 Synthetic vs real-life data
� Synthetic graphs are not very regular. When increasing number of
 labels, the chance of finding non-trivial frequent graph patterns
 decreases drastically.
 Large real-life graph databases are highly regular and contain
 complex frequent graph patterns.

Pattern examples in Movies database

Further Evaluation

�A full comparison with FSG (not so
 simple because of the different support definitions) –
 appeared in TKDE Nov 2006

�Path algorithm was better for single graph setting and
�comparable for transaction setting

Conclusions

� An Apriori-like algorithm for mining graph patterns
 that uses edge-disjoint paths as building blocks
 has been constructed.

� A problem of defining support measure for semi-structured
 data was addressed.

� An experimental analysis of the algorithm was conducted.

Papers in ICDM2002 and ICDE2004 and journal papers
 in TKDE2006 and DMKD2006

Future work

� Usage of building blocks other than edge disjoint paths, such as trees.

� Using Apriori-TID technique at the advanced stages of the search.

� Treat patterns that have high degree of resemblance, such as bisimilar
 patterns, as representatives of their equivalence classes and generate
 representatives of each class instead of the full search.

� Find additional examples of admissible support measures.

� Take into account topological properties of a database graph
• while computing support.

Additional Approaches for
Single Graph Setting

� BFS Approach
� hSiGram

� DFS Approach
� vSiGram

� Both use approximations of the MIS
measure

M. Kuramochi and G. Karypis

Finding Frequent Patterns in a

Large Sparse Graph

In Proc. Of SIAM 2004.

Partially labeled patterns in
semi-structured data –
Vanetik et. Al. - ICDE2004

Partially labeled patterns

 A graph pattern G=(V,E) is partially labeled if exists v∈V
 without a label (denoted by label(v)=?).
 Otherwise, a graph pattern is called fully labeled.

Pattern G is weaker than pattern H, denoted by G ≤w H, if

1. G is isomorphic to H,
2. all nodes that have a label in G have the same label in H,
3. there exist node(s) that have a label in H but do not have
 a label in G.

Example. Here, G3 ≤w G2 ≤w G1

Partially labeled patterns

 The algorithm.

The algorithm adapts the Path algorithm to find only the
strongest and maximal frequent partially labeled
graphs – see paper for details

Outline

� Basic concepts of Data mining and Association rules
� Apriori algorithm

� Motivation for Graph mining
� Applications of Graph Mining
� Mining Frequent Subgraphs - Transactions

� BFS/Apriori Approach (FSG and others)
� DFS Approach (gSpan and others)
� Diagonal Approach
� Greedy Approach

� Mining Frequent Subgraphs – Single graph
� The support issue
� The Path-based algorithm
� Constraint-based and other algorithms

59

Graph Pattern Explosion Problem

� If a graph is frequent, all of its subgraphs are frequent ─

the Apriori property

� An n-edge frequent graph may have 2n subgraphs

� Among 422 chemical compounds which are confirmed

to be active in an AIDS antiviral screen dataset, there

are 1,000,000 if the minimum support is 5%

60

Closed Frequent Graphs

� Motivation: Handling graph pattern explosion problem
� Closed frequent graph

� A frequent graph G is closed if there exists no
supergraph of G that carries the same support as G

� If some of G’s subgraphs have the same support, it is
unnecessary to output these subgraphs (nonclosed
graphs)

� Note close item-sets algorithms (e.g. GenMax and
MaxMiner)

61

CLOSEGRAPH (Yan & Han, KDD’03)

…

A Pattern-Growth Approach

G

G
1

G
2

G
n

k-edge

(k+1)-edge
At what condition, can we

stop searching their children
i.e., early termination?

If G and G’ are frequent, G is a subgraph of
G’. If in any part of the graph in the

dataset where G occurs, G’ also occurs,
then we need not grow G, since none of G’s

children will be closed except those of G’.

(See figure 4 in paper)

May 24, 2010 62

Handling Tricky Exception
Cases

(graph 1)

 a

c

b

d

(pattern 2)

(pattern 1)

(graph 2)

 a

c

b

d

a b

a

c d

May 24, 2010 63

Number of Patterns: Frequent vs. Closed

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

0.05 0.06 0.07 0.08 0.1

frequent graphs
closed frequent graphs

minimum support

N
u

m
b

e
r
 o

f
p

a
tt

e
r
n

s

64

Runtime: Frequent vs. Closed
CA

1

10

100

1000

10000

0.05 0.06 0.07 0.08 0.1

FSG

Gspan

CloseGraph

Minimum support

R
u

n
 t

im
e
 (

s
e
c
)

 65

 Constraint-Based Graph Pattern Mining

� F. Zhu, X. Yan, J. Han, and P. S. Yu, “gPrune: A Constraint
Pushing Framework for Graph Pattern Mining”, PAKDD'07

� There are often various kinds of constraints specified for

mining graph pattern P, e.g.,

� max_degree(P) ≥ 10

� diameter(P) ≥δδδδ

� Most constraints can be pushed deeply into the mining

process, thus greatly reduces search space

� Constraints can be classified into different categories

� Different categories require different pushing strategies

May 24, 2010 66

Pattern Pruning vs. Data Pruning
� Pattern Pruning

Pruning a pattern saves the

mining associated with all the

patterns that grow out of this

pattern, which is DP

� Data Pruning
Data pruning considers both

the pattern P and a graph G

∈ DP, and data pruning

saves a portion of DP

DP is the data search
space of a pattern P. ST,P
is the portion of DP that
can be pruned by data

pruning.

May 24, 2010 67
67

Pruning Properties Overview

� Pruning property: A property of the constraint that helps

prune either the pattern search space or the data search

space.

� Pruning Pattern Search Space

� Strong P-antimonotonicity

� Weak P-antimonotoniciy

� Pruning Data Search Space

� Pattern-separable D-antimonotonicity

� Pattern-inseparable D-antimonotonicity

68

Pruning Pattern Search Space

� Strong P-antimonotonicity
� A constraint C is strong P-antimonotone if a pattern
violates C, all of its super-patterns do so too

� E.g., C: “The pattern is acyclic”
� Weak P-antimonotoniciy

� A constraint C is weak P-antimonotone if a graph P
(with at least k vertices) satisfies C, there is at least
one subgraph of P with one vertex less that satisfies C

� E.g., C: “The density ratio of pattern P ≥ 0.1”, i.e.,

A densely connected graph can always be grown from a smaller
densely connected graph with one vertex less

1.0
2/)1|)((||)(|

|)(| ≥
−PVPV

PE

69

Pruning Data Space (I): Pattern-Separable
D-Antimonotonicity

� Pattern-separable D-antimonotonicity

 A constraint C is pattern-separable D-antimonotone if

a graph G cannot make P satisfy C, then G cannot

make any of P’s super-patterns satisfy C

� C: “the number of edges ≥ 10”, or “the pattern

contains a benzol ring”.

� Use this property: recursive data reduction

� A graph is pruned from the data search space for

pattern P if G cannot satisfy this C

70

The gprune algorithm

May 24, 2010 71
71

Graph Constraints: A General Picture

Important References

[1] X. Yan and J. Han, “gSpan: Graph-Based Substructure Pattern Mining”,
ICDM'02

[2] [5] M. Kuramochi, G. Karypis, "An Efficient Algorithm for Discovering
Frequent Subgraphs" IEEE TKDE, September 2004 (vol. 16 no. 9)

[3] N. Vanetik, E.Gudes, and S. E. Shimony, Computing Frequent Graph Patterns
from Semistructured Data, Proceedings of the 2002 IEEE ICDM'02 and TKDE
2006

[4] Kuramochi et. al- Finding Frequent Patterns in a Large Sparse Graph
[SDM2004])

[5] X. Yan and J. Han, “CloseGraph: Mining Closed Frequent Graph Patterns”,
KDD'03

[6] F. Zhu, X. Yan, J. Han, and P. S. Yu, “gPrune: A Constraint Pushing
Framework for Graph Pattern Mining”, PAKDD'07

 [7] Wang et. Al. Scalable mining of large Disk-based graph databases, KDD
2004

