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Outline  

� Basic concepts of Data mining and Association rules 
� Apriori algorithm 

� Motivation for Graph mining 
� Applications of Graph Mining 
� Mining Frequent Subgraphs - Transactions 

� BFS/Apriori Approach (FSG and others) 
� DFS Approach (gSpan and others) 
� Diagonal Approach  
� Greedy Approach 

�  Mining Frequent Subgraphs – Single graph 
� The support issue 
� The Path-based algorithm 
� Constraint-based mining 
� Other algorithms 
 



  
    

 

 Single Graph Setting 

Most existing algorithms use a Transaction setting 
approach. 
That is, if a pattern appears in a transaction even 
multiple times it is counted  as 1! (FSG, gSPAN ) 
 
What if the entire database is a single graph? 
This is called: the single transaction setting 
 
We need a different Support definition! 



  
    

 

Problem Statement (single 
graph setting) 

� Input: (D, minSup) 
� A single graph D (e.g. the Web or DBLP or an XML file) 
� Minimum support minSup 
 

� Output: (All frequent subgraphs). 
� A subgraph is frequent if the number of its 
“occurrences”  in D is above an admissible support 
measure 

 

� Definition of an admissible support measure? 



  
    

 

single graph setting - 
Motivation 

� Often the input is a single large graph 
 

� Examples: 
� The web or portions of it 
� A social network (e.g. a network of users 
communicating by email at BGU) 

� A large XML database such as: DBLP or Movies 
database 

 

� Mining such large graph databases is very useful! 



  
    

 

The Path Algorithm (Vanetik, Gudes, Shimony 
ICDM 2002, TKDE 2006) 

Goal: Find all frequent connected subgraphs of a database graph. 

Basic approach: Apriori or BFS 
 
But the basic building block is a Path not an Edge! 
This works since any graph can be decomposed to a set of  
disjoint  paths 
 
Result: faster convergence of the algorithm 



Support issue (DAMI J. Sept 2006)  

Definition a support measure S is admissible if for any pattern 
                 P and any sub-pattern Q ⊂⊂⊂⊂ P  =>     S(Q)≥≥≥≥S(P).  

Problem: the number of appearances of the graph pattern in the database 
                graph is not an admissible support measure! 

Graph A appears 3 times in the database graph, while graph B ⊂⊂⊂⊂ A 
appears only once!. 



The Instance graph 
Definition 

 An instance graph I(P) of pattern P in database graph G 
 is a  graph 
 
                 G = (V,E) where V = {g ⊂⊂⊂⊂ G, g ≈≈≈≈ P} and  
                 E = {(g,h), g,h ∈∈∈∈V and E(g) ∩∩∩∩ E(h) ≠≠≠≠ ∅∅∅∅}. 

That is: it’s a graph where each node represents a different occurrence 
of the pattern in the database graph, and an edge between two nodes 
indicates that there is at least one edge overlap between the 
corresponding occurences 

  

  



Support issue 

Operations on instance graph: 
• clique contraction 
   replacing a clique C by a single node c such that only the nodes that 
   were adjacent to each node of C may become adjacent to c 
� node expansion 
   replacing an existing node v by a new subgraph whose nodes may or    
may not be adjacent to the nodes adjacent to v 
� node addition  
   adding a new node to the graph and arbitrary edges between the 
   new node and the old ones 
� edge removal  



  
    

 

Example of operations on the instance graph  

 • clique contraction   • vertex addition  

 • vertex expansion   • edge removal  



  
    

 

The main result  

Theorem  
 
A support measure S is an admissible support measure 
if and only if 
 it is non-decreasing on the instance graph I(P) of 
every   pattern P under clique contraction, node 
expansion, node addition  and edge removal. 

See KDD journal (DAMI) Sept. 2006 



Example of support measure - MIS 

Admissible support measure - MIS: easy to show that’s its admissible 
 

                  Maximum independent set size of instance graph 
MIS     =    _____________________________________ 

                 Number of edges in the database graph 

Motivation for MIS measure: 
          We are interested in typical structure, i.e. structures created by  
           many users that are somewhat independent.  
          A single complex structure that has many references is 
          less interesting for us. 
 
          Most common support measures are covered by this 
 definition, including the standard support measure for 
 transaction   databases.  



  
    

 

The MIS Measure - Example  

Definition a support measure S is admissible if for any pattern 
                 P and any sub-pattern Q ⊂⊂⊂⊂ P  =>     S(Q)≥≥≥≥S(P).  

Instance graph for  A is also a triangle, therefore MIS(A) = 1 
Instance graph for B is one node, therefore MIS(B) = 1 
MIS(B) < = MIS(A)  Admissible! 



  
    

 
The MIS Measure  

� The only measure found so far to be 
admissible (challenge – find others!) 

� Was also adopted by Kuramochi-  Finding 
Frequent Patterns in a Large Sparse Graph 
[SDM2004]) 

�  Since finding the MIS is an NP-complete 
problem, Kuramochi suggests several 
approximating measures which are easier to 
compute. 



  
    

 

Path-based mining algorithm  
(Vanetik, Gudes, Shimony)  

� The algorithm uses paths (instead of edges) 
as basic building blocks for pattern 
construction. Larger building blocks may 
make the search more efficient 

� It starts with one-path graphs and combines 
them into 2-, 3- etc. path graphs. 

� The combination technique does not use 
   graph operations and is easy to implement.  



  
    

 

Path number  

Definition.  Path number p(G) of a graph is the minimal number  
                  of edge-disjoint paths that cover all edges in the graph.  
                  A collection of p(G) paths that cover all edges is called  
                  a minimal path cover.  
       A graph G is Eulerian if it can be covered by a single 
       cyclic path ( i.e P(G) = 1), Otherwise: 

For an undirected graph G=(V,E),  
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Path Facts  

Definition Graph G’=G\P where P is an edge-disjoint path  
denotes the graph obtained by removing from G all edges of   
path P 

Claim 1: Let P be any path from minimal path cover of a 
               connected graph G. Then p(G\P)=p(G)-1.  

Claim 2: In any path cover of a connected graph G there are 
               at least two paths 
               P1,P2 such that G\ P1 and G\ P2 are connected. 

We also define an order ≤P on paths in order to represent a path  
decomposition of a graph in a unique way.  
We only store decompositions that are minimal with respect to this  
Order (denoted by P-minimal).  



  
    

 

Order on paths 

Let P be a path in an undirected (or directed) graph G. 
Path degree pd(v) (path indegree pd+(v) and path outdegree pd-(v) ) of a 
node v in P is a number of edges in P adjacent to v (the number of ingoing 
and outgoing edges for v in P). 

A representative tuple RT(v) of vertex v in path P is a tuple  
                 <label(v), pd(v)> (<label(v), pd+(v), pd-(v)> if P is 
                 directed). 
 
These tuples can be compared lexicographically. 
                



  
    

 

Order on paths (cont.) 

Path descriptor D(P) of path P is the ordered set {RT(v) | v∈V(P)}  
                         where representative tuples are arranged in non-decreasing 
                         order with respect to the natural lexicographical order  
                         on them. 

Definition. Let P,Q be paths. Then P≤pQ iff D(P)≤D(Q). 
 
This relation allows us to compare path covers as follows. 
 
Let X and Y be path covers of G, sorted in non-decreasing order 
according to ≤p order. Then X≤PY if X is lexicographically smaller than or 
equal to Y. 



  
    

 

Order on paths : example 

We have paths P1 = v1,v2,v3,v4,v5 and P2 = v1,v5,v2 

D (P1) = <A,0,1>,<A,1,1>,<B,1,0>,<C,1,1>,<D,1,1> 
D (P2) = <A,0,1>,<A,1,0>,<B,1,1> (order is  
Lexicographic not by vertex order) 
Therefore, P2≤PP1. 



  
    

 

The Three phases of the mining algorithm  

�  Phase #1 finds all frequent graph patterns with  
     path number 1 
 
�  Phase #2 finds all frequent graph patterns with  
     path number 2 by  “joining” pairs of patterns found  
     in phase #1 
 
�  Phase #3 finds all frequent graph patterns with path 
     number n≥3 by “joining” pairs of patterns with 
     path number (n-1) (and apply Apriori pruning). 

The main problem: how candidates are “joined”?  



  
    

 

How to store patterns: the composition relation 

A composition relation C(P1,…,Pn) (or C) on paths P1,…,Pn of 
graph G is a table with nodes of G as rows and paths as columns 
such that C[i,j] ≠ ⊥⊥ iff i-th node of G is also a node of path Pj. 
                  

Node  P1  P2  P3  

v1  a1  ⊥  ⊥  
v2  a2  b2  ⊥  
v3  a3  ⊥  ⊥  
v4  ⊥  b1  ⊥  

v5  ⊥  b3  c3  

v6  ⊥  ⊥  c1  

v7  ⊥  ⊥  c2  

C(P1,P2,P3): 



  
    

 

Restoring patterns: graph composition 

By treating table rows as graph nodes and defining edges (i,j) whenever  
two nodes of a path Pk, appearing in rows i and j, have an edge between them, 
we can construct a graph corresponding  to composition relation C(P1,…,Pn). 
A graph composition of C(P1,…,Pn) is denoted by Ω(C). 

Ω(C(P1,P2,P3)): 



  
    

 

The Uniqueness property 

• By using the lexicographic order on Paths and defining the 
Composition Relation as representing the Minimal order of 
Paths we get a unique representation for every graph. 
 
• This is similar to canonical labeling and needed to eliminate 
duplicates and assure the completeness of the Algorithm 



  
    

 

How to remove a path: subtraction  

Subtraction of a path Pi from a composition relation C, C\ P3 , consists of: 
a) eliminating the i-th column from the table; 
b) removal of all rows containing only null values. 

Node  P1  P2  

v1  a1  ⊥  
v2  a2  b2  

v3  a3  ⊥  
v4  ⊥  b1  

v5  ⊥  b3  

C(P1,P2,P3) \ P3 : 

Subtracting of (several) paths from C is also called a projection of C onto the 

remaining paths P1,...,Pn, denoted by C|{1,...,n} . 



  
    

 

How to combine graphs 

A bijective sum BS(C1, C2,I1,I2) of composition relations C1 and 
 C2, where I1,I2 are sets of indices and C1 |I1=C2|I2, 
 is a composition relation obtained by  
 adding all columns of C2 corresponding to paths that are  
 not in C1, to the table of C1. 



  
    

 

C1  C2  C3  

  P1  P2  P3    P1  P2  P3    P1  P2  P3  P4  

v1  a1      v1  a1      v1  a1        

v2  a2  b2    v2  a2  b2    v2  a2  b2      

v3  a3      v3  a3      v3  a3        

v4    b1    v4    b1  d1  v4    b1    d1  

v5    b3  c3  v5    b3    v4    b3  c3    

v6      c1  v6      d2  v6      c1    

v7      c2  v7      d3  v7      c2    

  v8        d2  

v9        d3  

Bijective sum of C1 and C2 on common paths P1 and P2. 

Bijective sum: example 



  
    

 

Bijective sum: an example 



  
    

 

How to join more paths: splice 

    A splice ⊕i,j of two composition relations C1(P1,…,Pn) and C2(Pi,Pj), 
    is a composition relation that turns every node common to Pi and Pj in  
    C2, into the node common to Pi and Pj in C1 as well. 

C3= C1(P1,P2,P3) 
       ⊕2,3C2(P2,P3): 
Note: splice does not 
increase k, C3  stays  
As 3-path 

C1  C2  C3  

  P1  P2  P3    P2  P3    P1  P2  P3  

v1  a1      v2  b1  c1  v1  a1      

v2  a2  b2    v4  b2    v2  a2  b2    

v3  a3      v5  b3  c3  v3  a3      

v4    b1    v7    c2  v4    b1  c1  

v5    b3  c3    v5    b3  c3  

v6      c1  v6      c2  

v7      c2    



  
    

 

Splice: an example 



  
    

 

Phases of the path-based mining algorithm 

�   Phase #1 finds all frequent graph patterns with  
     path number 1 
 
�  Phase #2 finds all frequent graph patterns with  
     path number 2 by  “joining” pairs of patterns found  
     in phase #1 
 
�  Phase #3 finds all frequent graph patterns with path 
     number n≥3 by “joining” pairs of patterns with 
     path number (n-1). 



Algorithm: Phase 1 – finding frequent 1-paths 

1. Find all frequent edges and add them to L1. Set k←2. 
2. Set Ck←∅, Lk ←∅. 
3. For every path P∈Lk-1 and every edge e=(v,u) ∈ L1 do: 

a. Let X be all nodes of P if P is cyclic and  
all unbalanced nodes of P if P is non-cyclic. 

b. For every x ∈ X such that x ≈ v  
add Q=(V(P)∪{u}, E(P) ∪{x,u)}) to Ck if p(Q)=1. 

c. For every x ∈ X such that x ≈ u  
add Q=(V(P)∪{v}, E(P) ∪{(v, x)}) to Ck if p(Q)=1. 

d. For every x,y ∈ X such that x ≈ v, x ≈ u  
and (x,y)∉E(P),  
add Q=(V(P), E(P) ∪{(x, y)}) to Ck if p(Q)=1. 

4. Compute frequency of all paths from Ck and  
add the frequent ones to Lk. 

5. If Lk ←∅, stop. Otherwise, set k ← k+1 and go to step 2. 



  
    

 

Phase #1 – overview 

Phase #1 constructs candidate  paths by adding one edge at a time. 
 
               If the path is cyclic (i.e is a (not necessarily simple) cycle, 
               we can add edge anywhere (providing the labels match): 
                       1. between two existing nodes, 
                       2. between existing and new node. 
 
               If the path is not cyclic, we can add edge between pair of nodes 
               one of which is unbalanced: 
                        1. between two existing unbalanced nodes, 
                        2. between existing unbalanced and existing balanced  
  node, 
                        3. between existing unbalanced node and a new node. 
Now each candidate is checked for its support, only the frequent ones 
will be extended in next iteration 

Definition A node v in graph G is balanced if degree of v is even 
                 (for undirected graphs). A node is unbalanced if  
                 it is not balanced. 
 



  
    

 

Phase #1 – Example  



  
    

 

Phase #2 – 2-Path generation  

Algorithm: Phase #2 
 

1. Let L1 be the set of all frequent paths. 
Set C2←∅, L2 ←∅. 

2. For every pair P1,P2 ∈L1 and every possible label-preserving 
composition relation C on P1 and P2 do: 
a. If p(Ω(< P1, P2, C> ))=2, add < P1, P2, C> to C2. 

3. Remove all tuples producing non P-minimal graphs   
from C2. 

4. For every t ∈ C2 if Ω(t) is frequent, add it to L2. 



  
    

 

Phase #2 - Example  

Join of two paths produced three graphs with path number 2 

Exercise: show the composition relations 



Phase #3 – overview 

Phase #3:  Input  = frequent graphs with path number k 
                 Output = frequent graphs with path number (k+1) 
 
The main step:  
                         1. find a common (k-1)-subgraph of two k-graphs, 
                /* Note, this is quite easy because only needed is finding  
                (k-1) equal paths in the corresponding composition relations 
*/ 
                         2. if found, join these graphs into (k+1)-graph using  
                             bijective sum operation, 
 
Additional step: 
                         3. for bijective sum G of two graphs and two paths  
                             P and Q in which these graphs differ, find all 
  frequent combinations of P and Q in L2, and join 
  them with  G using splice operation.  
  (Note the ‘Splice’ doesn’t increase the size of the 
  candidate graph, i.e. its still (k+1) ) 
  



  
    

 

Phase #3 – Graphs with p(G)≥3  

Algorithm: Phase #3 
 

1. Let L2 be the set of all frequent path pairs. Set k←3. 
2. Set Ck←∅, Lk ←∅. 
3. For every t1,t2 ∈ Lk-1 such that t1=<P1,…,Pi-1,Pi+1,…,Pj,…,Pk,C1> 

and t2= <P1,…,Pj,…,Pj-1,Pj+1,…,Pk ,C2> do: 
a. Let C = BS(C1,C2,(k)-i-j,(k)-i-j). 
b. Add t=< P1,…,Pk ,C > to Ck (if p(Ω(t)) = k). 
c. For every t3=< Pi,Pj,C3 > ∈ L2, 

add t=< P1,…,Pk ,C⊕i,jC3 > to Ck (if p(Ω(t)) = k). 
4. Remove all non P-minimal tuples from Ck. 
5. Add every t ∈ Ck, where Ω(t) is frequent, to Lk. 
6. If Lk = ∅, stop. Otherwise, set k ← k+1 and go to step 2. 
 

Main theorem: Algorithm is Sound and Complete 
 i.e. it finds all and only frequent sub-graphs! 



  
    

 

Proof outline: 

Theorem 1 All frequent graphs with path number 1 are produced  
                   by phase 1 of the algorithm. 
 
How to prove:  For every path P and unbalanced vertex v of P there exists 
                         a vertex u such that (u,v)∈E(P) and P\(u,v) is a path. 

Theorem 2 All frequent graphs with path number 2 are produced 
                  by phase 2 of the algorithm. 
 
How to prove: Each graph G with p(G)=2 can be expressed as a  
                        label-preserving composition relation on two paths from its  
                        any ≤P minimal path decomposition. 



  
    

 

Proof outline (cont.) 

Theorem 3  All frequent graphs with p(G)>2 are produced 
by phase 3 of the algorithm. 
 
Main steps: 1. There exists two paths P,Q in minimal path  
                       decomposition of G such that G\P and G\Q are connected. 
                   2.  G\P and G\Q are also frequent and were found 
                       (by induction) 
                   3.  If P and Q are disjoint in G, using BS  
                       operation on their composition relations will produce G. 
                   4. Otherwise, BS and ⊕ operations combined will produce G. 



  
    

 

Complexity 
Exponential – as the number of frequent patterns can be exponential 
                       on the size of the database (like any Apriori alg.) 

Difficult tasks: (NP hard) 
1. Support computation that consists of: 

a. Finding all instances of a frequent pattern in  
       the database. (sub-graph isomorphism) 
b. Computing MIS (maximum independent set size)  
       of an instance graph. 

Relatively easy tasks: 
1. Candidate set generation: 
                 polynomial on the size of frequent set from 
                 previous iteration, 
2. Elimination of isomorphic candidate patterns: 
                 graph isomorphism computation is at worst 
                 exponential on the size of a pattern, not the database. 
 



  
    

 

Complexity (cont.) 

Why is mining in real-life databases easier ? 
 

�   real databases tend to be sparse rather than dense, 
�   real databases tend to have large number of different 
      labels. 

Impact on algorithm’s complexity: 
 

�   the number of database subgraphs isomorphic to a given 
      graph pattern is not exponential, 
�   the size of instance graph is not exponential, 
�   instance graphs tend to be very sparse, which makes 
      the task of finding MIS much easier. 

Additional improvements: 
�   approximate techniques  can be used for MIS computation 
      as user usually does not care for the exact support value. 
      ([Kuramochi2004]) 



Experiment overview 

Goals of our experiments are: 
� To compare our algorithm with naïve algorithms: 

� Naive1 – produce all graphs and compute 
       their support (B. D. McKay “Isomorph-free exhaustive 
         generation”, J. of Algorithms vol. 26, 1998) 

� Naive2 – at each iteration, add edge to frequent 
       graphs from previous iteration 

� FSG – without some optimizations 
� To study algorithm’s behavior on various graph topologies: 

� cliques 
� trees 
� sparse graphs vs dense graphs 
 

� To study the effect of following parameters on the number 
        of frequent patterns found: 

� size of the database 
� number of different labels 
 

� Test algorithm on both synthetic and real-life databases 



Experiments setting  



Experimental results on synthetic data: trees 
 

Notation: S – support; N – nodes; L – labels; E – edges 
                FP – frequent patterns 
                C – candidate patterns; I – isomorphism checks;  
                SC – support calculations; ALG  - algorithm in use. 

#  N  L  S  FP  ALG  C  I  SC  

1  40  4  7%  15  Naive2  100  24  92  

Path  52  47  52  

2  50  4  7%  16  Naive2  110  41  102  

Path  45  45  42  

3  50  6  3%  37  2Naive  470  82  458  

Path  202  239  205  

4  50  8  3%  27  Naive2  306  62  290  

Path  119  91  111  

5  60  4  5%  15  2Naive  100  24  92  

Path  52  47  52  

6  60  6  5%  44  Naive2  728  203  716  

Path  175  868  276  

7  60  8  5%  14  2Naive  103  18  87  

Path  41  29  26  



Experimental results on synthetic data: 
sparse graphs 

#  N  E  L  S  FP  ALG  C  I  SC  

1  40  50  4  7%  14  Naive2  60  33  52  

Path  49  55  42  

2  40  50  6  5%  17  Naive2  84  48  76  

Path  59  70  54  

3  50  60  6  5%  28  Naive2  355  74  343  

Path  117  185  143  

4  60  80  4  4%  16  Naive2  101  31  93  

Path  56  58  56  

5  60  80  6  3%  27  Naive2  265  86  253  

Pathi  120  102  110  

6  70  90  8  3%  27  Naive2  252  77  236  

Path  126  98  110  

7  80  100  8  3%  32  Naive2  403  74  387  

Path  149  127  141  



Data set #  Nodes  Edges  Labels  

1  12656  13878  112  

2  8337  9416  25  

3  7027  7851  22  

4  4730  4813  90  

5  2757  2794  76  

6  1293  1292  91  

Subsets of Movie database 
used in experiments 



Experimental results on subsets 
of Movie database  

Dat
a  

set  

#1  #2  #3  #4  #5  #6  Dat
a  

set  

#1  #2  #3  #4  #5  #6  

Sup
port  

Number of frequent patterns  Sup
port  

Number of frequent patterns  

90
%  

3  3  3  3  2  4  20
%  

8  6  5  9  6  46  

80
%  

3  3  3  3  2  5  10
%  

15  12  10  11  7  79  

70
%  

4  3  3  4  2  5  9%  16  12  10  11  7  79  

60
%  

4  3  3  4  2  9  8%  16  12  10  12  8  84  

50
%  

5  3  3  5  2  21  7%  18  12  10  12  9  84  

40
%  

6  4  4  5  2  32  6%  21  13  11  12  10  86  

30
%  

7  5  4  8  5  34  5%  22  14  11  16  11  86  



Comparison 

                              Our algorithm vs naive ones 
�  Naive1 algorithm does not work on graphs with ≥ 10 nodes 
�  Our algorithm produces less candidate patterns and therefore 
     performs less support computations than Naive2 algorithm. 

                                    Trees vs sparse graphs  
�   Support computation is easier for trees 
�   Less candidate patterns are generated for trees 

                              Synthetic vs real-life data 
�  Synthetic  graphs are not very regular. When increasing number of  
     labels, the chance of finding non-trivial frequent graph patterns 
     decreases drastically. 
     Large real-life graph databases are highly regular and contain 
     complex frequent graph patterns. 



  
    

 

Pattern examples in Movies database 



  
    

 

Further Evaluation  

 
�A full comparison with FSG (not so  
   simple because of the different support definitions ) –  
   appeared in TKDE Nov 2006 
 
�Path algorithm was better for single graph setting and  
�comparable for transaction setting 
 
 
 



  
    

 

Conclusions  

� An Apriori-like algorithm for mining graph patterns 
    that uses edge-disjoint paths as building blocks  
    has been constructed. 
 
� A problem of defining support measure for semi-structured  
    data was addressed. 
 
� An experimental analysis of the algorithm was conducted. 
 
Papers in ICDM2002 and ICDE2004 and journal papers 
 in TKDE2006 and DMKD2006 
 
 
 



  
    

 

Future work   

�  Usage of building blocks other than edge disjoint paths, such as trees.  
 
�   Using Apriori-TID technique at the advanced stages of the search. 
 
�   Treat patterns that have high degree of resemblance, such as bisimilar  
       patterns, as representatives of their equivalence classes and generate     
       representatives of each class instead of the full search. 
 
�  Find additional examples of admissible support measures. 
 
�   Take into account topological properties of a database graph   
•     while computing support. 



  
    

 

Additional Approaches for 
Single Graph Setting  

� BFS Approach 
� hSiGram 

� DFS Approach 
� vSiGram 

� Both use approximations of the MIS 
measure 

 

M. Kuramochi and G. Karypis 

Finding Frequent Patterns in a 

Large Sparse Graph  

In Proc. Of SIAM 2004. 



    
Partially labeled patterns in  
semi-structured data –   
Vanetik et. Al. - ICDE2004  



Partially labeled patterns  

 A graph pattern G=(V,E) is partially labeled if exists v∈V  
                  without a label (denoted by label(v)=?).  
                  Otherwise, a graph pattern is called fully labeled. 

Pattern G is weaker than pattern H, denoted by G ≤w H, if   

1. G is isomorphic to H, 
2. all nodes that have a label in G have the same label in H, 
3. there exist node(s) that have a label in H but do not have 
       a label in G. 

Example. Here, G3 ≤w G2 ≤w G1  



  
    

 

Partially labeled patterns  

 The algorithm.  

The algorithm adapts the Path algorithm to find only the 
strongest and maximal frequent partially labeled 
graphs – see paper for details  



  
    

 
Outline  

� Basic concepts of Data mining and Association rules 
� Apriori algorithm 

� Motivation for Graph mining 
� Applications of Graph Mining 
� Mining Frequent Subgraphs - Transactions 

� BFS/Apriori Approach (FSG and others) 
� DFS Approach (gSpan and others) 
� Diagonal Approach  
� Greedy Approach 

�  Mining Frequent Subgraphs – Single graph 
� The support issue 
� The Path-based algorithm 
� Constraint-based and  other algorithms 
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Graph Pattern Explosion Problem  

� If a graph is frequent, all of its subgraphs are frequent ─ 

the Apriori property  

� An n-edge frequent graph may have 2n subgraphs 

� Among 422 chemical compounds which are confirmed 

to be active in an AIDS antiviral screen dataset, there 

are 1,000,000 if the minimum support is 5% 
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Closed Frequent Graphs  

� Motivation:  Handling graph pattern explosion problem 
� Closed frequent graph 

� A frequent graph G is closed if there exists no 
supergraph of G that carries the same support as G 

� If some of G’s subgraphs have the same support, it is 
unnecessary to output these subgraphs (nonclosed 
graphs) 

 

� Note close item-sets algorithms (e.g. GenMax and 
MaxMiner) 
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CLOSEGRAPH (Yan & Han, KDD’03)  

…  

A Pattern-Growth Approach  

G  

G
1  

G
2  

G
n  

k-edge  

(k+1)-edge    
At what condition, can we  

stop searching their children  
i.e., early termination?  

  

If G and G’ are frequent, G is a subgraph of 
G’.  If in any part of the graph in the 

dataset where G occurs, G’ also occurs, 
then we need not grow G, since none of G’s 

children will be closed except those of G’.  

(See figure 4 in paper )  
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Handling Tricky Exception 
Cases  

 

(graph 1)  

 

 a  

c  

b  

d  

 
(pattern 2)  

 
(pattern 1)  

 

  

(graph 2)  
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May 24, 2010 63 

Number of Patterns: Frequent vs. Closed  
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Runtime: Frequent vs. Closed  
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          Constraint-Based Graph Pattern Mining  

� F. Zhu, X. Yan, J. Han, and P. S. Yu, “gPrune: A Constraint 
Pushing Framework for Graph Pattern Mining”, PAKDD'07  

� There are often various kinds of constraints specified for 

mining graph pattern P, e.g., 

� max_degree(P) ≥ 10 

� diameter(P) ≥δδδδ 

� Most constraints can be pushed deeply into the mining 

process, thus greatly reduces search space  

� Constraints can be classified into different categories 

� Different categories require different pushing strategies 
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Pattern Pruning vs. Data Pruning  
� Pattern Pruning  

Pruning a pattern saves the 

mining associated with all the 

patterns that grow out of this 

pattern, which is DP 
 

� Data Pruning 
Data pruning considers both 

the pattern P and a graph G 

∈ DP, and data pruning 

saves a portion of DP 

DP is the data search 
space of a pattern P. ST,P 
is the portion of DP that 
can be pruned by data 

pruning.  
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67  

Pruning Properties Overview  

� Pruning property: A property of the constraint that helps 

prune either the pattern search space or the data search 

space. 

� Pruning Pattern Search Space 

� Strong P-antimonotonicity 

� Weak P-antimonotoniciy 

� Pruning Data Search Space 

� Pattern-separable D-antimonotonicity 

� Pattern-inseparable D-antimonotonicity 
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Pruning Pattern Search Space  

� Strong P-antimonotonicity 
� A constraint C is strong P-antimonotone if a pattern 
violates C, all of its super-patterns do so too  

� E.g., C: “The pattern is acyclic” 
� Weak P-antimonotoniciy 

� A constraint C is weak P-antimonotone if a graph P 
(with at least k vertices) satisfies C, there is at least 
one subgraph of P with one vertex less that satisfies C 

� E.g., C: “The density ratio of pattern P ≥ 0.1”, i.e.,  
 
 

A densely connected graph can always be grown from a smaller 
densely connected graph with one vertex less 

1.0
2/)1|)((||)(|

|)(| ≥
−PVPV

PE
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Pruning Data Space (I): Pattern-Separable 
D-Antimonotonicity  

� Pattern-separable D-antimonotonicity 

    A constraint C is pattern-separable D-antimonotone if 

a graph G cannot make P satisfy C, then G cannot 

make any of P’s super-patterns satisfy C 

� C: “the number of edges ≥ 10”, or “the pattern 

contains a benzol ring”.  

� Use this property: recursive data reduction 

� A graph is pruned from the data search space for 

pattern P if G cannot satisfy this C 
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The gprune algorithm  
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Graph Constraints: A General Picture
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