Graph and Web Mining -
Motivation, Applications and
Algorithms -

!'_ Chapter 2

Prof. Ehud Gudes
Department of Computer Science
Ben-Gurion University, Israel

i Outline

Basic concepts of Data mining and Association rules
= Apriori algorithm

= Motivation for Graph mining
= Applications of Graph Mining

= Mining Frequent Subgraphs - Transactions
= BFS/Apriori Approach (FSG and others)
= DFS Approach (gSpan and others)
= Diagonal Approach
= Greedy Approach
= Mining Frequent Subgraphs — Single graph 4
= The support issue
= The Path-based algorithm
=« Constraint-based mining
= Other algorithms

Single Graph Setting

+

Most existing algorithms use a Transaction setting

approach.
That Is, If a pattern appears in a transaction even

multiple times it is counted as 1! (FSGSPAN)

What If the entire database is a single graph?
This is called: theingle transaction setting

We need a different Support definition!

Problem Statement (single
i graph setting)

= Input: (D, minSup)
= A single graph D (e.g. the Web or DBLP or an XML file)
= Minimum support minSup

= Output: (All frequent subgraphs).

= A subgraph is frequent if the number of its
“occurrences” in D is above an admissible support
measure

a Definition of an admissible support measure?

single graph setting -
i Motivation

s Often the input is a single large graph

s Examples:
= The web or portions of it

= A social network (e.g. a network of users
communicating by email at BGU)

= A large XML database such as: DBLP or Movies
database

s Mining such large graph databases is very useful!

The Path Algorithm (VanetjKGudes, Shimony
i ICDM 2002 TKDE 2004

Goal: Find all frequent connected subgraphs of a datatpags.

Basic approach: Apriori or BFS

But the basic building block isRathnot an Edge!
This works since any graph can be decomposedabod s

disjoint paths

Result: faster convergence of the algorithm

Support issue (DAMI J. Sept 2006)

Definition a support measufeis admissiblef for any pattern
P and any sub-patte@@ L1 P => S(Q)=S(P).

Problem:thenumber of appearance$the graph pattern in the database
graph is not an admissible suppwéasure!

B Database graph

Fas

GraphA appears 3 times in the database graph, while dédpii
appears only once!.

The Instance graph
Definition

An instance graph(P) of patternP in database graph
IS a graph

G = (V,E)whereV ={g I G, g= P} and
E ={(g,h), g,h0V andE(g) n E(h) # O}.

That is: it's a graph where each node represedii$esient occurrence
of the pattern in the database graph, and an esige=bn two nodes

Indicates that there is at least one edge ovedapden the
corresponding occurences = Databse gaph

Fas

Support issue

Operations on instance graph:
e cligue contraction
replacing a cliqu€ by a single node such that only the nodes that
were adjacent to each nodeComay become adjacent ¢o
" node expansion
replacing an existing nodeby a new subgraph whose nodes may or
may not be adjacent to the nodes adjacent to
* node addition
adding a new node to the graph and arbitrargetgtween the
new node and the old ones
= edge removal

Example of operations on the instance graph

i clique contraction-

edge removal-

:

3

vertex addition-

% N~

O

vertex expansione

o o

O

The main result

+

Theorem

A support measurg is an admissible support measure
If and only If

It IS non-decreasing on the instance greph of

every patterri¥ under cligue contraction, node
expansion, node addition and edge removal.

See KDD journal (DAMI) Sept. 2006

Example of support measure - MIS

Admissiblesupport measure - Mi®&asy to show that’s its admissible

Maximum independent set sizenstance graph
MIS =

Number of edges in the databaaplyr

Motivation for MIS measure:
We are interestedtypical structure, I.e. structures created by
many users that are somewhat independent
A single complex structure that has miafgrences is
less interesting for us.

Most common support measures are covyreldis
definition, including the standard support meadare
transaction databases.

The MIS Measure - Example

Definition a support measufeis admissiblef for any pattern
P and any sub-patte@@ L1 P => S(Q)=S(P).

Instance graph for A is also a triangle, therefdi&(A) = 1
Instance graph for B is one node, therefore MIS{R)
MIS(B) < = MIS(A) Admissible!

i The MIS Measure

= The only measure found so far to be
admissible (challenge — find others!)

= Was also adopted by Kuramochi- Finding
Frequent Patterns in a Large Sparse Graph
[SDM2004)

= Since finding the MIS is an NP-complete
problem, Kuramochi suggests several
approximating measures which are easier to
compute.

Path-based mining algorithm
i (Vanetik, Gudes, Shimony)

= The algorithm uses paths (instead of edges)
as basic building blocks for pattern
construction. Larger building blocks may
make the search more efficient

= [t starts with one-path graphs and combines
them into 2-, 3- etc. path graphs.

= The combination technique does not use
graph operations and is easy to implement.

Path number

+

Definition. Path numbep(G) of a graph is the minimal number
of edge-disjoint paths that coakedges in the graph.
A collection gh(G) paths that cover all edges is called
aninimal path cover
A graph G i&ulerianif it can be covered by a single
cyclic path (i.e P(G) = 1), Otherwise:
vV(d(v) is odd

2
d*(v)—d"(v)

For an undirected gragb=(V,E), p(G)

2

For a directed grapB=(V,E), n(G) =&

2

Path Facts

Definition GraphG’=G\P whereP Is an edge-disjoint path
denotes the graph obtained by removing fiérall edges of
pathP

Claim 1:Let P be any path from minimal path cover of a
connected graph Thenp(G\P)=p(G)-1L

Claim 2:In any path cover of a connected grapthere are
at least two paths

P,,P, such thats\ P, andG\ P, are connected.

We also define anrder<; on paths in order to represent a path
decomposition of a graph in a uniqgue way.

We only store decompositions that ammimal with respect to this
Order (denoted bi-minimal).

Order on paths

Let P be a path in an undirected (or directed) gr@ph
Path degreepd(v) (path indegreepd*(v) andpath outdegreepd(v)) of a
nodev in P is a number of edges lhadjacent to/ (the number of ingoing

and outgoing edges forin P).

A representative tupleRT(v) of vertexv in pathP is a tuple
<label(v), pd(v)>(<label(v), pd (v), pd(v)> if Pis
directed).

These tuples can be compared lexicographically

Order on paths (cont.)

Path descriptor D(P) of pathP is the ordered s¢RT(v) | VNV(P)}
where representative tsgee arranged in non-decreasing

order with respect to tagural lexicographical order
on them

Definition. LetP,Qbe paths. TheR<,Q iff D(P)sD(Q).
This relation allows us to compare path coverohgs.

Let X andY be path covers ds, sorted in non-decreasing order
according tas, order. TherKspY if X is lexicographically smaller than or
equal toy.

Order on paths : example

¥

We havepathsP, = v1,v2,v3,v4,vandP, = v1,v5,v2

D (P,) =<A,0,1><A1,1><B,1,0>,<C,1,1>,<D,1,1>
D (P,) =<A,0,1>,<A,1,0>,<B,1,% (order is
|_exicographic not by vertex order)

Therefore P,<P;.

The Three phases of the mining algorithm

i Phase #1 finds all frequent graph patterns with
path number 1

Phase #2 finds all frequent graph patterns with
path number 2 by “joining” pairs of pattefosind
In phase #1

Phase #3 finds all frequent graph patterns with pat

number B3 by “joining” pairs of patterns with
path number (n-1) (and apply Apriori pruning).

The main problemhow candidates are “joined”?

How to store patterns: the composition relation

A composition relationC(P,,...,P,)) (or C) onpathsP,,...,P, of
graphG is a table with nodes @ as rows and paths as columns
such thaCli,j] # Z/iff I-th node ofG is also a node of pat).

C(PL,P,,Ps):

Restoring patterns: graph composition

By treating table rows as graph nodes and defiadoeqi,)) whenever

two nodes of a patR,, appearing in rows i and j, have an edge betwaesm t
we can construct a graph corresponding to composglationC(P,,...,P,).
A graph compositionof C(P,...,P,) is denoted byXC).

a2 b
E2
g,
P, P,

Q(C(P, P, Py)): ' -

v
il
vi @ Ve

The Uniqueness property

+

e By using the lexicographic order on Paths andsdi the
Composition Relation as representing the Minimdkeoiof
Paths we get a unique representation for everyhgrap

e This is similar to canonical labeling and neededliminate
duplicates and assure the completeness of the itkigor

How to remove a path: subtraction

Subtraction of a pathP; from a composition relatio@, C\ P;, consists of:
a) eliminating tha-th column from the table;
b) removal of all rows containing onhull values.

C(P,P,P3) \ P5:

Subtracting of (several) paths frdms also called arojection of C onto the

How to combine graphs

+

A bijective sumBS(C, C,,11,12) of composition relation€, and
C,, wherell,l2 are sets of indices a@ |,,=C,|,,,

IS a composition relation obtained by

adding all columns df, corresponding to paths that are

not inC,, to the table oC,.

Bijective sum: example

Bijective sum ofC, andC, on common pathB, andP,.

Bijective sum: an example

How to join more paths: splice

A splice[J;; of two composition relationG,(P,,...,R) andC,(P;,P),
Is a composition relation that turns every nodeimon td> andP; in
C,, into the node common # andP, in C, as well.

Ca= Cy(P1,P,,P5)
L5 4Co(P,, Py):
Note: splice does ng

Increase k, € stays
As 3-path

Splice: an example

22 b
Py P
v
il
Gl v
V7
v
4
v @
Y6

(]

4!

| Phases of the path-based mining algorithm

> Phase #1inds all frequent graph patterns with
path number 1

» Phase #2inds all frequent graph patterns with

path number 2 by “joining” pairs of pattefosind
In phase #1

» Phase #3inds all frequent graph patterns with path

number B3 by “joining” pairs of patterns with
path number (n-1).

Algorithm: Phase 1 — finding frequent 1-paths

1. Find all frequent edges and add them toSet k- 2.
2. SetG-0, L, 0.
3. Forevery path PL, , and every edge e=(v,U) L, do:
a. Let X be all nodes of P if P is cyclic and
all unbalanced nodes of P if P is non-cyclic.
b. Forevery X1 X such that x v
add Q=(V(P){u}, E(P) O{x,u)}) to C, if p(Q)=1.
c. Forevery XxJ X such that x u
add Q=(V(P){v}, E(P) L{(v, x)}) to C, if p(Q)=1.
d. Forevery x,\1 X such that xv, x=u
and (x,yHLE(P),
add Q=(V(P), E(PM{(x, y)}) to C, if p(Q)=1.
4. Compute frequency of all paths from &hd
add thefrequent ones to L
5. IfL, 0, stop. Otherwise, set« k+1 and go to step 2.

Phase #1 — overview

Definition A nodev in graphG is balancedf degree ofv is even
(for undirected graphs). A nodan®alancedf
It Is not balanced.

Phase #ZTonstructs candidate paths by adding one edgémae.

If the path isyclic (i.e is a (not necessarily simple) cycle,
we can add edge anywhere (provitiiegabels match):

1. between two existing nmde

2. between existing and made.

If the path isot cyclig we can add edge between pair of nodes
one of which isnbalanced
1. between two existing allaimced nodes,
2. between existing unba&hand existing balanced
node,
3. between existing unbathnode and a new node.
Now each candidate is checked for its support, tyfrequent ones
will be extended in next iteration

Phase #1 — Example

" (@
+I = 8 (b
" O & ©
@ (@)
©
(2)

®

» 1 '@ |\ @
&)

Phase #2 — 2-Path generation

Algorithm:

1. LetL, be the set of all frequent paths.
SetG-~0, L, ~[.
2. For every pair PP, [IL, and every possible label-preserving
composition relation C on,RAnd B do:
a. IfpQ(<P,P,C>))=2,add<RP, C>to0C.
3. Remove all tuples producing non P-minimal graphs
from C,.
4. For every t1 G, if Q(t) is frequent, add it to L

Phase #2 - Example

Join of two paths produced three graphs with pathber 2

Exercise: show the composition relations

Phase #3- overview

Phase #3 Input = frequent graphs with path numler
Output= frequent graphs with path numiggt1)

The main step
1. find a comm@1)-subgraph of twd-graphs,
[*Note, this is quite easy because only neededdsifin
(k-1) equal paths in the correspogadomposition relations
*/
2. If found, join theseaghs intak+1)-graph using
bijective sum operation,

Additional step:
3. for bijective sugof two graphs and two paths
P andQ in which these graphs diffefind all
frequent combinations &f andQ in L,, and join

them with G usingplice operation.
(Note the ‘Splice’ doesn’t increase the sizehef t
candidate graph, i.e. its still (k+1))

Phase #3 — Graphs with p(G)=3

Algorithm:
1. LetL, be the set of all frequent path pairs. SetX
2. SetCG-0, L, ~0.
3. Foreveryft, 0L, suchthati=<P,,...,.P;,P.,....R,...,B.C>
and t= <P,,...,P,....P;,P,;,....F,C,> do:
a. Let C=BS(GC,,(k)-i-},(K)-I-j).
b. Addt=<BR,...,R ,C>to G (if p(Q(t)) = k).
c. Forevery$<R,P,C>0L,,
add t=<R,...,R,ClJ;;C3> to G (if p(Q(t)) = k).
4. Remove all non P-minimal tuples from.C
5. Add every t1C,, whereQ(t) is frequent, to |
6. IfL, =10, stop. Otherwise, set« k+1 and go to step 2.

Main theorem: Algorithm is Sound and Complete
l.e. it finds all and only frequent sub-graphs!

Proof outline:

Theorem 1All frequent graphs with path number 1 are produce
by phase 1 of the algorithm

How to prove: For every pathand unbalanced vertexof P there exists
a vertaxsuch thatu,v)_E(P) andP\(u,v)is a path.

Theorem 2All frequent graphs with path number 2 are produce
by phase 2 of the algorithm

How to prove: Each grapBd with p(G)=2 can be expressed as a
label-preserving compogitrelation on two paths from its
ang, minimal path decomposition.

Proof outline (cont.)

Theorem 3 All frequent graphs witlp(G)>2 are produced
by phase 3 of the algorithm

Main steps: 1. There exists two patl’sQ in minimal path
decomposition of G such B&E? andG\Q are connected.
2.G\P andG\Q are also frequent and were found
(by induction)
3. If P an@ are disjoint inG, usingBS
operation on their compasitrelations will producé.
4. OtherwisBSand[l operations combined will producz

Complexity

Exponential — as theumber of frequent patterns can be exponential
on the size of the datali@ke any Apriori alg.)

Difficult tasks: (NP hard)
Support computation that consists of:
Finding all instances of a frequent pattern in
the database. (sub-graph isomorphism
Computing MIS (maximum independent set size)
of an instance graph.

Relatively easy tasks:
Candidate set generation:
polynomial on the size of frequset from
previous iteration,
Elimination of isomorphic candidate patterns:
graph isomorphism computationtig/arst
exponential on the size afatern not the database.

Complexity (cont.)

Why is mining in real-life databases eas:er

v real databases tend to be sparse rather thae,den

v real databases tend to have large number @frdift
labels.

Impact on algorithm’s complexity:

v the number of database subgraphs isomorphigicea
graph pattern is not exponential,

v the size of instance graph is not exponential,

v instance graphs tend to be very sparse, whidema
the task of finding MIS much easier.

Additional improvements:

v'approximate techniques can be used for MIS coatijon

as user usually does not care forakactsupport value.
([Kuramochi2004])

Experiment overview

Goals of our experiments are
v" To compare our algorithm with naive algorithms:
v" Naivel- produceall graphs and compute

their supporB. D. McKay “Isomorph-free exhaustive
generatioh) J. of Algorithms vol. 26, 1998)

v" Nalive2- at each iteration, adatigeto frequent
graphs from previous iteration
v FSG- without some optimizations
v" To study algorithris behavior on various graph topologies:
v cliques
v trees
v' sparse graphs vs dense graphs

v' To study the effect of following parameters on tinenber
of frequent patterns found:
v size of the database
v" number of different labels

v Test algorithm on both synthetic and real-life Bates

Maximal
independent
set client

Experiments setting

/

Apriori
algorithim

Java user interface

Socket connection

il

Naive #1
algorithm

Graph

generator

S

Naive #2
algorithm

Experimental results on synthetic ¢ tree:

Naive2

Naive2

Naive2

Naive2

Naive2

Naive2

40 7% 15
50 7% 16
50 3% 37
50 3% 27
60 5% 15
60 5% 44
60 5% 14

Naive2

100

110

470

306

100

728

103

Notation: S— supportj\ — nodesi. — labelsE — edges
FP— frequent patterns
C — candidate patternbk:- isomorphism checks;
SC- support calculationgsLG - algorithm in use.

24

41

82

62

24

203

18

92

102

458

290

92

716

87

Experimental results on synthetic data:
sparse graphs

40 50 4 7% 14 Naive2 60 33 52

40 50 6 5% 17 Naive2 84 48 76

50 60 6 5% 28 Naive2 355 74 343

60 80 4 4% 16 Naive2 101 31 93

60 80 6 3% 27 Naive2 265 86 253

70 90 8 3% 27 Naive2 252 77 236

80 100 8 3% 32 Naive2 403 74 387

Subsets of Movie database
used in experiments

Experimental results on subsets
of Movie database

Comparison

Our algorithm vs naive ones
v Naivel algorithm does not work on graphs wthO nodes
v Our algorithm produces less candidate patterdsterefore
performs less support computations than Naalg@rithm

Trees vs sparse graphs
v Support computation is easier for trees

v Less candidate patterns are generated for trees

Synthetic vs real-life data
v Synthetic graphs are not very regular. Whenegiasing number of

labels, the chance of finding non-trivial foeqt graph patterns
decreases drastically.

Large real-life graph databases are highlyleggand contain
complex frequent graph patterns.

Pattern examples in Movies database

+

G2 movie G7") movie Gl4
director O (J/;O

director movie actor movie director

Casl e filmedinset

movie movie

Further Evaluation

A full comparison with FSG (not so

simple because of the different support debnsi) —
appeared in TKDE Nov 2006

Path algorithm was better for single graph setéind
comparable for transaction setting

Conclusions

An Apriori-like algorithm for mining graph patterns
that uses edge-disjoint paths as building [dock
has been constructed.

A problem of defining support measure for senmukdnred
data was addressed.

An experimental analysis of the algorithm was aaned.

Papers in ICDM002 and ICDE2004 and journal papers
iIn TKDE2006 and DMKD2006

Future work

Usage of building blocks other than edge disjoathp, such as trees.
Using Apriori-TID technique at the advanced stagf the search.
Treat patterns that have high degree of resemoblauch as bisimilar
patterns, as representatives of their etpmea classes and generate
representatives of each class instead duthsearch.

Find additional examples of admissible supporasoees.

Take into account topological properties of eadase graph
while computing support.

Additional Approaches for
Single Graph Setting

= BFS Approach

- M. Kuramochi and G. Karypis
" hSIGram Finding Frequent Patterns in a
Large Sparse Graph
i DFS ApproaCh In Proc. Of SIAM 2004.
= VSiGram

= Both use approximations of the MIS
measure

Partially labeled patterns in
semi-structured data —
Vanetik et. Al. - ICDER2004

Partially labeled patterns

A graph pattern G=(V,E) is partially labeled if exists v//V
without a label (denoted by)-
Otherwise, a graph pattern is called fully labeled.

Pattern G is weaker than pattern H, denoted by , if

7. G is isomorphic to H,

2. all nodes that have a label in G have the same label in H,

3. there exist node(s) that have a label in H but do not have
a label in G.

Here, G;<,6G, <, G,

w2 —w

Partially labeled patterns

| The algorithm.

The algorithm adapts the Path algorithm to findydhe
strongest and maximal frequent partially labeled
graphs — see paper for details

i Outline

Basic concepts of Data mining and Association rules
= Apriori algorithm

= Motivation for Graph mining
= Applications of Graph Mining

= Mining Frequent Subgraphs - Transactions
= BFS/Apriori Approach (FSG and others)
= DFS Approach (gSpan and others)
= Diagonal Approach
= Greedy Approach
= Mining Frequent Subgraphs — Single graph
= The support issue
= The Path-based algorithm
= Constraint-based and other algorithms "

Graph Pattern Explosion Problem

= If a graph is frequent, all of its subgraphs are frequent —
the Apriori property

= An n-edge frequent graph may have 2" subgraphs

= Among 422 chemical compounds which are confirmed

to be active in an AIDS antiviral screen dataset, there
are 1,000,000 if the minimum support is 5%

59

‘_L Closed Frequent Graphs

Motivation: Handling graph pattern explosion problem
Closed frequent graph

=« A frequent graph G is closed if there exists no
supergraph of G that carries the same support as G

If some of G's subgraphs have the same support, it is
unnecessary to output these subgraphs (nonclosed

graphs)

Note close item-sets algorithms (e.g. GenMax and
MaxMiner)

60

CLOSEGRAPH (Yan & Han, KDD'03)

A Pattern-Growth Approach

(k+1)-edge N
At what condition, can we

@ stop searching their children

l.e., early termination?

N\ _J

If G and G’ are frequent, G is a subgraph of
G’. If in any part of the graph in the
dataset where G occurs, G’ also occuys
then we need not grow G, since none of G’s
children will be closed except those of G'.

(See figure 4 in paper) ot

Handling Tricky Exception

i Cases

o2e Pe

(pattern 1)

(pattern 2)

May 24, 2010 62

Number of Patterns: Frequent vs. Closed

Number of patterns

1.0E+06

1.0E+05

1.0E+04

1.0E+03

1.0E+02

May 24, 2010

-o-frequent graphs
—— closed frequent graphs

ﬁ>\<>
0.05 0.06 0.07 0.08 0.1

minimum support

63

Runtime: Frequent vs. Closed

10000
M
)

» 1000
)
E

c 100
3
(04

10

1

- FSG
= Gspan

- CloseGraph

0.05

0.06

0.07 0.08

Minimum support

0.1

64

Constraint-Based Graph Pattern Mining
F. Zhu, X. Yan, J. Han, and P. S. Yu, “gPrune: A Constraint
Pushing Framework for Graph Pattern Mining”, PAKDD'07
There are often various kinds of constraints specified for
mining graph pattern P, e.q.,
= max_degree(P) = 10
= diameter(P) 2 6

Most constraints can be pushed deeply into the mining
process, thus greatly reduces search space

Constraints can be classified into different categories
» Different categories require different pushing strategies

65

Pattern Pruning vs. Data Pruning

m Pattern Pruning _

_ Graph Dataset D
Pruning a pattern saves the AT T
mining associated with all the / h

/ % |l

patterns that grow out of this | = .
. . -""-. --"'"--- ..'.5*-/-,5;

pattern, which is Dp S o i

m Data Pruning Dy is the data search
: : space of a pattern P. S, ,
Data pruning considers both is the portion of D, that

the pattern P and a graph G = ©2n be pruned by data
. pruning.

€ D;, and data pruning

saves a portion of Dy

May 24, 2010 66

Pruning Properties Overview

+

= Pruning property: A property of the constraint that helps
prune either the pattern search space or the data search
space.

= Pruning Pattern Search Space
= Strong P-antimonotonicity
=« Weak P-antimonotoniciy
= Pruning Data Search Space
= Pattern-separable D-antimonotonicity

« Pattern-inseparable D-antimonotonicity

May 24, 2010 67
67

Pruning Pattern Search Space

= Strong P-antimonotonicity

= A constraint C is strong P-antimonotone if a pattern
violates C, all of its super-patterns do so too

=« E.g., C: "The pattern is acyclic”
= Weak P-antimonotoniciy

= A constraint C is weak P-antimonotone if a graph P
(with at least k vertices) satisfies C, there is at least
one subgraph of P with one vertex less that satisfies C

=« E.g., C: "The density ratio of pattern P = 0.1, i.e.,
[E(P)] 01
VP I(V(P)[-D)/2

A densely connected graph can always be grown from a smaller
densely connected graph with one vertex less

68

Pruning Data Space (I): Pattern-Separable
D-Antimonotonicity

+

= Pattern-separable D-antimonotonicity

A constraint C is pattern-separable D-antimonotone if
a graph G cannot make P satisfy C, then G cannot
make any of P’s super-patterns satisfy C

=« C: “"the number of edges = 10, or “the pattern
contains a benzol ring”.

= Use this property: recursive aata reduction

= A graph is pruned from the data search space for
pattern P if G cannot satisfy this C 69

The gprune algorithm

Algorithm 1 PatternGrowth

I: S —{PHF — F|JHP}1 8: — 0

2: while S = ()

3. () — pop(5.

4 for each graph & = D

3 Augment ¢} and save new patterns in S

Check pattern pruning on each F £ 5:;

for each augmented pattern {J' € 5,
Construct support data space Dy for Q'

| Check data pruning on g,
0. F— F| 5

11: 5 — 5[5

12: return F;

Graph Constraints: A General Picture

Constraint strong weak pattern-separable | pattern-inseparable

P-antimonotone | P-antimonotone | D-antimonotone | D-antimonotone
Min_-Degree(G) > ¢ No No No Yes
Min_-Degree(G) < § No Yes No Yes
Mazx_-Degree(G) > 6 No No Yes Yes
Maxz.Degree(G) < § Yes Yes No Yes
Density-Ratio(G) > 6 No Yes No Yes
Density. Raho(@) g No Yes No Yes
Density(G) > No No No Yes
Density(G) < 5 No Yes No Yes
Size(G) > 6 No Yes Yes Yes
Size(G) < § Yes Yes No Yes
Diameter(G) > § No Yes No Yes
Diameter(G) < § No No No Yes
EdgeConnectivity(G) > 6 No No No Yes
EdgeConnectivity(G) < § No Yes No Yes
G contains P (e.g., P 1s a benzol ring) No Yes Yes Yes
(= does not contain P (e.g., P isa benzol ring) Yes Yes No Yes

71

Important References

[1] X. Yan and J. Han, “gSpan. Graph-Based Substructure Pattern Mining’,
ICDM'02

[2] [5] M. Kuramochi, G. Karypis, "An Efficient Algorithm for Discovering
Frequent Subgraphs" 1IEEE TKDE, September 2004 (vol. 16 no. 9)

[3] N. Vanetik, E.Gudes, and S. E. Shimony, Computing Frequent Graph Patterns
from Semistructured Data, Proceedings of the 2002 IEEE ICDM'02 and TKDE
2006

[4] Kuramochi et. al- Finding Frequent Patterns in a Large Sparse Graph
[SDM2004])

[5] X. Yan and J. Han, “CloseGraph. Mining Closed Frequent Graph Patterns”,
KDD'03

[6] F. Zhu, X. Yan, J. Han, and P. S. Yu, “gPrune: A Constraint Pushing
Framework for Graph Pattern Mining”, PAKDD'07

[7] Wang et. Al. Scalable mining of large Disk-based graph databases, KDD
2004

