
  

   
 

 

       
Graph and Web Mining - 

Motivation, Applications and 
Algorithms  

Prof. Ehud Gudes 

Department of Computer Science 

Ben-Gurion University, Israel 

 

 



  
    

 
Course Outline  

� Basic concepts of Data Mining and Association rules 
� Apriori algorithm 
� Sequence mining 

� Motivation for Graph Mining 
� Applications of Graph Mining 
� Mining Frequent Subgraphs - Transactions 

� BFS/Apriori Approach (FSG and others) 
� DFS Approach (gSpan and others) 
� Diagonal and Greedy Approaches  
� Constraint-based mining and new algorithms 

�  Mining Frequent Subgraphs – Single graph 
� The support issue 
� The Path-based algorithm 
 



  
    

 
Cont.)  (Course Outline  

� Searching Graphs and Related algorithms 
� Sub-graph isomorphism (Sub-sea) 
� Indexing and Searching – graph indexing 
� A new sequence mining algorithm 

 
� Web mining and other applications 

� Document classification 
� Web mining 
� Short student presentation on their projects/papers 

 
� Conclusions 

 



  

   
 

 

Algorithm for sub-graph isomorphism  
  

 Three algorithms will be discussed: 

�   Ullman 

�   VF2 – Cordella et. Al. 

�   Subsea – Lipets, Vanetik, Gudes 

�The first two will be described very briefly 



  
    

 

introduction    
  

� Sub-graph isomorphism is an important and very general    
form of pattern matching that finds practical application in 
areas such as: 
� pattern recognition and computer vision,  
� computer-aided design, image processing,  
� graph grammars, graph transformation,  
� Bio-computing,  
� Search operations in chemical structural databases, and 

numerous others. 
� And of-course: Graph mining 

 

� The subgraph isomorphism problem is generally NP-
complete and therefore computationally difficult to solve. 

 



  
    

 

 Cont.) (Introduction    
  

� Graph mining algorithms often require finding not one but all 
subgraphs of the database graph isomorphic to a given small graph in 
order to compute the measure of statistical significance (also called 
’support’) of that small graph in the database. 

 

� The most common technique to establish a subgraph isomorphism is 
based on backtracking in a search tree. In order to prevent the search 
tree from growing unnecessarily large, different refinement procedures 
are used. 

 

Best past known are the algorithm by Ullman and the algorithm  by 
Cordella et al. Cordella is oriented towards finding a single 
isomorphism. Ullman and Subsea are oriented towards finding all 
isomorphic occurrences.  

 



  
    

 

Definitions and notations  
  

A graph G = (V, E) is called vertex-labeled (or simply labeled) if a mapping l : V →N is 
given. l(v) is called a label of a vertex v.  

 
 Two graphs which contain the same number of vertices with the same labels connected  

in the same way are said to be isomorphic  
 
Formally, two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, denoted by 
G1  =~ G2, if there is a (label-preserving) bijection ϕ : V1 −→ V2 such that, for every 
pair of vertices vi, vj ∈ V1, (vi, vj) ∈ E1 if and only if ϕ(vi), ϕ(vj) ∈ E2. Bijection 
ϕ is said to be an isomorphism between two graphs. 
 
A graph G’ is a subgraph of a given graph G if vertices and edges of G’ form 
subsets of the vertices and edges of G.  
 
A graph G1 = (V1, E1) is isomorphic to a subgraph of a graph G2 = (V2, E2) if 
there exists a subgraph of G2, say G2a, such that  G1  =~ G2a 



  
    

 

Subgraph isomorphism – a Naïve 
Algorithm  

 
� A graph G1 = (V1, E1) is isomorphic to a subgraph of a graph 

G2 = (V2, E2) if there exists a subgraph of G2, say G2a, such 
that  G1  =~ G2a 

� How can we find G2a? 

� Assume G1 has n nodes. Lets examine each subset of G2 that 
has n nodes, check if they have the same labels as nodes in G1, 
and if yes, check if the edge in G1 exists also in the selected 
set. 

� Obviously an exponential algorithm! 

 



  

   
 

 

An Algorithm for Subgraph 
Isomorphism  

J. R. ULLMANN, 1976 



  
    

 
The enumeration algorithm  
� To find isomorphism we need to find a correspondence between 

vertices such that the adjacency matrix will be identical. 

� Assume A and B are the adjacency matrices of G and G’ respectively. 
The problem is to find a subgraph in G’ isomorphic to G 

� A matrix M‘  (whose elements are 0 and 1)  can be used to 

 permute the rows and columns of B to produce a further matrix C. 
Specifically, we define 

 C = M'(M'B)T, where T denotes transposition. If it is true that 

 (ViVj) (a,j= 1) => (c,j = 1) and the labels are equal 

 Then M’ specifies an isomorphism between G, and a subgraph of G’. 

� The main problem is enumerating all the possible M’ matrices   



  
    

 

Algorithm Employing Refinement 
Procedure  

� We start with a matrix with many 1’s meaning that any node 
can map to any node. 

� To reduce the amount of computation required for finding 
subgraph isomorphism we employ a procedure, which we call 
the refinement procedure, that eliminates some of the 1's 
from the matrices M, thus eliminating successor nodes in the 
search tree. 

� Ullmann’s  algorithm attains efficiency by eliminating successor 
nodes in the search tree. 

� the original part of the algorithm consists of a procedure that is 
entered after each node in the search tree. The result of this 
procedure is generally a reduction in the number of successor 
nodes that must be searched, which yields a reduction in the 
total computer time required for determining isomorphism  



  
    

 

Algorithm Employing Refinement 
Procedure – cont(1)  

� We say that an isomorphism is an isomorphism under M if its 
terminal node in the search tree is a successor of the node with 
which M is associated. 

� The 0's in the matrix M merely preclude correspondences 
between nodes.  

� Our goal is to preclude as many nodes as possible, which means 
that we like to be able to change mij = 1 to mij = 0 without 
losing any of the isomorphism's under M: all such isomorphism's 
will still be found by the tree search. 



  
    

 

Algorithm Employing Refinement 
Procedure – cont(2)  

� Generally the result of the refinement procedure is to change 
some of the l's in M to O's. This corresponds to a non-match 
because of no corresponding edge. 

� The check whether a 1 is changed to zero is made by 
considering all the adjacent nodes to the current node. If they 
are not also 1, then the original ‘1’ is wrong 

� During the refinement procedure we continually check whether 
any row of M contains no 1.  

� If any row of M contains no 1 then the procedure jumps to its 
FAIL exit, because there is no advantage in continuing the 
procedure. Otherwise the procedure terminates at its SUCCEED 
exit. 



  

   
 

 

VF2 - A (Sub)Graph Isomorphism 
Algorithm for  
Matching Large Graphs  

Luigi P. Cordella, Pasquale Foggia, Carlo 
Sansone, 

and Mario Vento, 2004 



  
    

 
THE VF2 ALGORITHM   
� Assume the problem is to find a subgraph in G1 isomorphic to the graph G2. 
 
� The main idea is to construct a state S which contains a correct partial match 

between nodes of G1 and G2 
 
� M(s) identifies two sub graphs of G1 and G2, say G1(s) and G2(s), obtained by 

selecting from G1 and G2 only the nodes included in M(s), and the branches 
connecting them. Where s is a state of the matching process.  

 
� The main problem is extending M(s) with new branches.  
� An extension of S is adding a pair (n,m) where n belongs to G1 and m belongs to 

G2.  
 
� Feasibility rules is a set of rules that are able to verify the consistency conditions, 

making possible the generation of consistent states only. 



  
    

 
THE VF2 ALGORITHM (con.)  
� if  F(s,n,m) is consistent, being  p=(n,m), the successor state  

    s’ =s U p is computed and the whole process recursively applies to s’. 

 

� That is for each possible successor state the feasibility rules are 
checked and if found consistent the state is extended 

 

� The set P(s) of all the possible pairs candidate to be added to the 
current state is obtained by considering first the sets of the nodes 
directly connected to G1(s) and G2 (s). 

 



  
    

 
The match procedure   



  
    

 
THE VF2 ALGORITHM (con 3)  
� Five feasibility rules are defined: Rpred, Rsucc, Rin, Rout, and Rnew.  

� The first two rules check the consistency of the partial solution M(s’) 
obtained by adding the considered candidate pair (n,m) to the current 
partial solution M(s).  

� The remaining three rules are introduced for pruning the search tree; in 
particular, Rin and Rout perform a 1-look-ahead in the searching 
process, and Rnew a 2-lookahead. 

� For example, the first rule checks whether for each predecessor of n in 
G1 there is such predecessor of m in G2, and vice-versa. 



The Rules  



  
    

 
Cordella – Experimental results   

� Cordella compared their algorithm to two algorithms: Ullman and 
Nauty, where Nauty is an algorithm that uses some form of cannonical 
labeling 

 

� There was not a clear winner for all tested graphs 

 

� Citation: From the analysis of the table, it appears that Nauty is more 
convenient on randomly connected graphs that exhibit no regular 
structure, especially when the edge density becomes high. This kind of 
graph, anyway, does not adequately represent the graph structures 
found in many applications, where the graphs often show some form of 
regularity. On the other hand, graphs with a more regular structure, 
VF2 is more efficient, especially for large graph sizes 



  

   
 

 

Subsea  
  

An efficient heuristic algorithm for 

Subgraph isomorphism –  

Lipets, Vanetik, Gudes, 2008 

 



  
    

 

Definition and notations  
  

A graph G = (V,E) is called vertex-labeled if a        
mapping  l : V → L is given. 

 

Two graphs which contain the same number of vertices 
with the same labels connected in the same way are 
said to be isomorphic. 

 

 



  
    

 

Definitions (Cont.)  
  

� An induced subgraph is a subset of the vertices of a graph G together with all 
edges whose endpoints are both in this subset. Formally, let G be a graph and 
V ′ ⊂ V (G). We call the graph G′ = (V ′,E(G) ∩ {(u, v)|u, v ∈ V ′}) the 
subgraph of G induced by V ′ and we denote it by G(V ′). The relationship 
between G′ and G in this case we denote by ⊑. 

 

� an induced subgraph isomorphism is an isomorphism with an induced 
subgraph of a given graph, i.e.,  

    a graph G1 = (V1,E1) is isomorphic to an induced subgraph of a graph G2 = 
(V2,E2) if there exists an induced subgraph of G2, say G′2, such that G1 
∼=G′2.  

 

Subsea deals with both kinds of isomorphism 

 

 



  
    

 

Definitions (Cont.)  
  

� The neighborhood of a vertex v in graph G, denoted by NG(v), is the set of 
vertices in G that are adjacent to v, i.e., NG(v) = {u ∈ V |(u, v) ∈ E}. For any 
e ∈ E(G), we define G − e = (V (G),E(G) \ {e}).  

 

� The size of the cut (A,A¯ ), denoted by c(A,A¯ ), is the number of edges 
having exactly one vertex in A and the other in A¯ , namely |e(A,A¯ )|. 

 

� The minimum bisection is a cut (A,A¯ ) minimizing c(A,A¯ ) over all sets with 
A of size ⌈|V |/2⌉. For arbitrary graphs G, the problem of determining the 
minimum bisection is NP-hard. 

 

 



  
    

 

Outline of the Subsea algorithm  
  

1.  In a preprocessing step generate all the traverse histories of the pattern 
graph. (will be explained later) 

2.  Decompose the target graph by finding an approximate minimum 
bisection (heuristically). 

3.  Check all possible isomorphisms using edges belonging to the bisection. 
(e.g. (v,w) and (w,x) ) 

4.  Apply step 2 again recursively on the two parts of the bisected graph until 
the target graph becomes comparable or smaller in size to the “small” 
graph. 

x 



  
    

 
Bisection algorithms  

� two well-known approximation algorithms for finding a minimum 
bisection of a given graph G: 

  1. Black Holes Bisection algorithm. 

  2. Simple Greedy Bisection method. 

� Note that since the minimum bisection is only a tool to decompose the 
problem efficiently, we are not required to find the actual minimum 
bisection (which is a hard problem), but it is enough to provide an 
approximation for it. 



  
    

 
Black Holes Bisection algorithm  

� Given a graph G = (V,E), the algorithm runs as follows. Initialize B1 = B2 
= ∅. These are the black holes.  

� Choose uniformly at random an edge from V \ (B1 ∪B2) to B1, and add 
the new endpoint to B1. If no such edge exists, choose uniformly at random 
among all vertices in V \ (B1 ∪B2) for a vertex to add to B1. Do the same 
for B2. Repeat until |B1∪B2| = |V |. 

 



  
    

 
Black Holes Bisection 
Input: Graph G = (V,E)  
Output: Cut (B, ¯B) of V which approximates a minimal bisection  

1: B1 ← B2 ← ∅ 
2: B0 ← V \ (B1 ∪ B2) /* initially B0 is the whole set of nodes */ 
3: repeat 
4: Add2Hole(1) 
5: Add2Hole(2) 
6: until B0 = ∅ 

Procedure Add2Hole(i): 
   1: if B0 = ∅ return 
   2: E0 ← {(u, v) : u ∈ Bi, v ∈ B0} 

3: if E0 ≠ ∅ then 
4: chose randomly e = (u, v) ∈ E0 with v ∈ B0 
5: else 
6: chose randomly v ∈ B0 
7: end if 
8: Bi ← Bi ∪ {v} 
9: B0 ← B0 \ {v} 

Black Holes bisection (Cont.)   



  
    

 
Simple Greedy Bisection method  

� The obvious greedy algorithm for the graph bisection 
problem consists of starting with any bisection (B, B ¯ ) of V 
and computing a new bisection by swapping the pair of 
elements x ∈ B, y ∈ B¯  which maximizes the gain 
(number of edges in (B, B¯  ) before the swap minus the 
number after the swap – if this number is positive then we 
reduced the size of the cut… ).  

� This process is repeated until the maximum gain is less 
than zero or until the maximum gain is zero and another 
heuristic has determined that it is time to stop swapping 
“zero gain” pairs. 

� Assuming we have a good bisection lets look at how we 
search for isomorphism 



  
    

 

Traverse history  

� We will see two heuristic methods to represent a 
“small” pattern graph. 

    

� Each such representation enumerates the vertices of 
the pattern graph in a particular order. This order will 
determine the order in which the isomorphism check 
is done. 

� Somewhat similar to “canonical labeling” but not so 
complex… 



  
    

 

Traverse history (Cont.)  

� We will see two heuristic methods to represent a 
“small” pattern graph. 

    

� Each such representation enumerates the vertices of 
the pattern graph in a particular order. This order will 
determine the order in which the isomorphism check 
is done. 



  
    

 

 (Cont.) Traverse history  

Let d : V −→ N be a numbering of vertices of graph G. 

 

 Let li denote the label of the vertex that has number i in numbering d, i.e., 

li := l(v), d(v) = i; let Ni := {d(u) < i : u ∈ NG(v), d(v) = i}.  

 

The sequence (l1,N1), (l2,N2), . . . , (lV |,NV |) is called a traverse history of graph 
G induced by numbering d.  

Informally, Ni is the set of adjacent vertices to i with numbering smaller than i.  

 

Our goal is to traverse the graph in such an order that we always prefer nodes that  
have high connectivity to the already selected nodes 



  
    

 

 (Cont.) Traverse history  

1 

{3,4} will come next because 3 has a high degree  



  
    

 
Traverse History - The DFS approach  

Traverse History 

Input: Graph G = (V,E), starting vertices v1, v2 ∈ V , with (v1, v2) ∈ E 
Output: Traverse history H started on v1, v2 ∈ V . 
1: for all v ∈ V do 
2: d(v) ←− 0 
3: end for 
4: vtime ←− etime ←− 1 
5: V isit(v1) 
6: return H 
Procedure V isit(v) 

1: d(v) ←− vtime 
2: H[vtime + +] = (l(v), {0 < d(u1) ≤ ... ≤ d(um) : u1, ..., um ∈ NG(v)}) 
3: if v = v1 then V isit(v2) 
4: N0 ←− {u ∈ NG(v) : d(u) = 0} 
5: while N0 # ∅ do 
6: choose w ∈ N0 with lexicographically minimal 
   EstimateNext(w, v) /* choose the node with high proximity */ 
pair 
7: if d(w) = 0 then V isit(w) 
8: N0 ←− N0 \ {w} 
9: end while 



Search technique  
  

� The algorithm receives as an input “large” target graph GL = 
(VL,EL), starting vertices v1, v2 ∈ VL and the traverse history H of 
a “small” pattern graph GS. 

� It finds all subgraphs (of GL (v1 →v′1 , v2 → v′2)-isomorphic to GS, 
where v′1 , v′2 are the first two vertices of the traverse history H. 

� Note that by scanning high degree nodes first, we will fail to find 
edges often and exit the search early…. 

  
  

V1  

TH = <0 , {1}, {1,2}>  TH = < 0, {1}, {1,2},{1,2}>  

V2  V3  

V’1  V’3  

V’4  V’2  



  
    

 

Search Technique – main theorem  

� When a traverse history is found in the tested graph 
which is equal to the traverse history of the pattern 
graph – that means an isomorphism was found 

� A good traverse history will cause the search 
procedure to fail early which will minimize the search 
time – see details in paper 



  
    

 

Subsea: Subgraph 
Isomorphism Algorithm  

� Precomputation stage: 

 A pair of vertices (v1, v2) ∈ V 2 of graph G we will call redundant if 
there exists an (v1 → v′1, v2 → v′2)-automorphism of G. We look 
only for traverse histories that start with non-redundant nodes. 

 

�  Algorithm 6.1 finds a corresponding traverse history for each non-
redundant pair of adjacent vertices. Note that each edge of the pattern 
graph may derive 0, 1, or 2 traverse histories (depending on the 
numbering) 

� So for each pattern graph we derive several traverse histories, each starts with 
a different non-redundant edge. We store all these traverse histories in a ready 
data structure. 

  

 



  
    

 

Alg. 6.1: All Traverse Histories 
Input: Graph G = (V,E) 

Output: Set of traverse histories of G 

1: A ←− ∅ 

2: for each (v1, v2) ∈ V 2 such that (v1, v2) ∈ E do 

3: run Algorithm 4.1 on G, v1, v2 to obtain traverse history Hv1,v2 

4: if ! IsRedundant(v1, v2) then A ←− A ∪ {H v1,v2} 

5: end for 

6: return A 

Generating all traverse histories 
of the Pattern graph  

  



  
    

 
Finally - Main algorithm  

 Find the traverse history for each non-redundant pair of  adjacent  vertices of the 
pattern graph. 

 
 Divide vertices of a given “large” target graph into two parts using the bisection 

methods. 
 
For each edge with endpoints in distinct parts of the obtained bisection, find the 

set of all subgraphs (or induced subgraphs) containing this edge and 
isomorphic to a given pattern graph. (note the edge will start the respective 
traverse history) 

 
After performing these steps, we continue to apply, in recursive manner, the same 

approach on the two subgraphs of G induced by the two parts of bisection. 
We stop when we get a graph with fewer vertices than the pattern graph. 



Comparison of Subsea with Ullman’s 
algorithm  and Cordella’s   

� Subgraph with 15 nodes and 10 labels, uniform label distribution. 



Subgraph with 100 nodes and 10 labels, 
uniform label distribution 



Subgraph on 15 nodes and 5 labels, uniform 
label distribution. 



Subgraph of 50 nodes, normal label 
distribution. 



The database graph is an unlabeled line 
with 200 nodes. 



  
    

 
Conclusions  

� Subsea was much better than the other two algorithms, especially 
when multiple occurrences of isomorphism were searched for 

� The reason is that each part of the bisection is test independently, and 
the search is not repeated 

� For a single occurrence, the other two algorithms are sometimes better 

 

� Therefore,  for a single graph setting – choose Subsea! 



  
    

 
Cont.)  (Course Outline  

� Searching Graphs and Related algorithms 
� Sub-graph isomorphism (Sub-sea) 
� Indexing and Searching – graph indexing 
� A new sequence mining algorithm 

 
� Web mining and other applications 

� Document classification 
� Web mining 
� Short student presentation on their projects/papers 

 
� Conclusions 

 


