
May 24, 2010
1

Mining, Indexing &

Searching Graphs in

Large Data Sets

Jiawei Han

Department of Computer Science,
University of Illinois at Urbana-

Champaign

www.cs.uiuc.edu/~hanj

In collaboration with Xifeng Yan (IBM
Watson), Philip S. Yu (IBM Watson),
Feida Zhu (UIUC), Chen Chen (UIUC)

http://www.cs.uiuc.edu/~hanj

May 24, 2010
2

Graph, Graph, Everywhere

Aspirin Yeast protein interaction network

fr
o
m

 H
.
Je

o
n
g
 e

t
a
l
N

a
tu

re
 4

1
1
,
4
1
 (

2
0
0
1
)

An Internet Web
Co-author network

May 24, 2010
3

Why Graph Mining and Searching?

 Graphs are ubiquitous

 Chemical compounds (Cheminformatics)

 Protein structures, biological pathways/networks
(Bioinformactics)

 Program control flow, traffic flow, and workflow analysis

 XML databases, Web, and social network analysis

 Graph is a general model

 Trees, lattices, sequences, and items are degenerated
graphs

 Diversity of graphs

 Directed vs. undirected, labeled vs. unlabeled (edges &
vertices), weighted, with angles & geometry (topological
vs. 2-D/3-D)

 Complexity of algorithms: many problems are of high
complexity!

May 24, 2010
4

Outline

 Mining frequent graph patterns

 Constraint-based graph pattern mining

 Graph indexing methods

 Similairty search in graph databases

 Graph containment search and indexing

May 24, 2010
5

Research Papers Covered in this Talk

 X. Yan and J. Han, gSpan: Graph-Based Substructure Pattern

Mining, ICDM'02

 X. Yan and J. Han, CloseGraph: Mining Closed Frequent Graph

Patterns, KDD'03

 X. Yan, P. S. Yu, and J. Han, Graph Indexing: A Frequent

Structure-based Approach, SIGMOD'04 (also in TODS’05, Google

Scholar: ranked #1 out of 63,300 entries on “Graph Indexing”)

 X. Yan, P. S. Yu, and J. Han, “Substructure Similarity Search in

Graph Databases”, SIGMOD'05 (also in TODS’06)

 F. Zhu, X. Yan, J. Han, and P. S. Yu, ―gPrune: A Constraint Pushing

Framework for Graph Pattern Mining‖, PAKDD'07 (Best Student

Paper Award)

 C. Chen, X. Yan, P. S. Yu, J. Han, D. Zhang, and X. Gu, ―Towards

Graph Containment Search and Indexing‖, VLDB'07, Vienna,

Austria, Sept. 2007

May 24, 2010
6

Graph Search: Querying Graph Databases

 Querying graph databases:

 Given a graph database and a query graph,

find all graphs containing this query graph

query graph graph database

May 24, 2010
7

Scalability Issue

 Sequential scan

 Disk I/O

 Subgraph isomorphism

testing

 An indexing mechanism is

needed

 DayLight: Daylight.com

(commercial)

 GraphGrep: Dennis

Shasha, et al. PODS'02

 Grace: Srinath Srinivasa, et

al. ICDE'03

Sample database

(a) (b) (c)

Query graph

May 24, 2010
8

Indexing Strategy

Graph (G)

Substructure

Query graph (Q)

If graph G contains query

graph Q, G should contain

any substructure of Q

Remarks

 Index substructures of a query graph to

prune graphs that do not contain these

substructures

May 24, 2010
9

Framework

 Two steps in processing graph queries

Step 1. Index Construction

 Enumerate structures in the graph
database, build an inverted index
between structures and graphs

Step 2. Query Processing

 Enumerate structures in the query graph

 Calculate the candidate graphs containing
these structures

 Prune the false positive answers by
performing subgraph isomorphism test

May 24, 2010
10

Cost Analysis

Query Response Time

 
testingmisomorphisioqindex

TTCT
_



Graph index access time

Size of candidate answer set

Disk I/O time

Isomorphism testing time

Remark: make |Cq| as small as possible

May 24, 2010
11

Path-Based Approach

Sample database

Paths

0-length: C, O, N, S

1-length: C-C, C-O, C-N, C-S, N-N, S-O

2-length: C-C-C, C-O-C, C-N-C, ...

3-length: ...

(a) (b) (c)

Built an inverted index between paths and graphs

May 24, 2010
12

GraphGrep – Path-based Approach

 Enumerate in each graph Gi all the existing paths upto length

maxL.

 Build an inverted index based on the above paths. Note that as

maxL is increased, the size of index increases considerably

 Enumerate the paths in the query upto maxL.

 Search in the inverted index all Gi that contain all paths contained

in the query. Note that as maxL increases the number of sets in the

index that need to be searched (or intersected) increases as well.

 On the other hand, if maxL is too small it wont characterize the

query well!

May 24, 2010
13

Problems of Path-Based Approach

Sample database

(a) (b) (c)

Query graph

Only graph (c) contains this query

graph. However, if we only index

paths: C, C-C, C-C-C, C-C-C-C, we

cannot prune graph (a) and (b).

May 24, 2010
14

gIndex: Indexing Graphs by Data Mining

 Our methodology on graph index:

 Identify frequent structures in the database, the

frequent structures are subgraphs that appear quite

often in the graph database

 Prune redundant frequent structures to maintain a

small set of discriminative structures

 Create an inverted index between discriminative

frequent structures and graphs in the database

May 24, 2010
15

Why Discriminative Subgraphs?

 All graphs contain structures: C, C-C, C-C-C

 Why bother indexing these redundant frequent

structures?

 Only index structures that provide more

information than existing structures

Sample database

(a) (b) (c)

May 24, 2010
16

Discriminative Structures

 Pinpoint the most useful frequent structures

 Given a set of structures f1, f2, …, fn and a new

structure x, we measure the extra indexing power

provided by x,

P (x|f1, f2, …, fn), where fi is contained in x

 When P is small enough, x is a discriminative

structure and should be included in the index

 Index discriminative frequent structures only

 Reduce the index size by an order of magnitude

  .,,,
21

xffffxP
in


May 24, 2010
17

Comparing Index size

structure (>106)

frequent (~105)

discriminative (~103)

May 24, 2010
18

Determining the right Support Value

 The candidate set for a query Q is defined as

 Cq = the intersection of the sets Di where Di is the set of graphs

containing the frequent subgraph gi (features) for each gi which

appears in the query.

 Now, if there are many such features, then there will be many Di and the

intersection is likely to be small, which is good! However, index size will be

very large.

 On the other hand if min-support is high, there will be few Di thus Cq will be

large which is bad but index size will be smaller

 In other words: If minSup is set too high, the size of Cq may be too large. If minSup

is set too low, it is too difficult to generate all the frequent fragments because there

may exist an exponential number of frequent fragments under low support.

 The solution – Varying minSupport!

May 24, 2010
19

Determining the right Support Value
(Cont.)

 Let's examine a simple example: a completely connected graph with 10

vertices, each of which has a distinct label.

 There are 45 1-edge subgraphs, 360 2-edge ones, and more than 1,814,400

8-edge ones

 As one can see, in order to reduce the overall index size, it is appropriate for

the index scheme to have low minimum support on small Fragments and

high minimum support on large fragments (for compactness).

 This criterion on the selection of frequent fragments for effective indexing is

called size-increasing support constraint.

May 24, 2010
20

Why Frequent Structures?

 We cannot index (or even search) all of

substructures

 Large structures will likely be indexed well by their

substructures

 Size-increasing support threshold

size

s
u
p
p
o
rt

minimum
support threshold

May 24, 2010
21

Defining Discriminant features

 If two features appear in exactly (or approximately) the same set of graphs,

then one of this feature is redundant. Conclusion – never include a graph

and its sub-graph…

 A redundant feature is a feature f whose corresponding Df is very close to

the intersection of the sets Dfi where fi is a sub-graph of f.

 A discriminative feature is defined as:

 Fragment x is discriminative with respect to F if

Dx << ∩ Dfi

 Let us examine the query example . carbon chains, c - c, c - c - c, and c - c - c - c, are

redundant and should not be used as indexing features in this dataset. The carbon

ring is a discriminative fragment since only graph (c) in contains it while graphs (b)

and (c) in Figure 1 have all of its sub-graphs.
 The paper presents an algorithm to find the discriminative features using the

above definition and the size-increasing support function (Alg. 1)

May 24, 2010
22

Building the Gindex tree

 One uses again the Canonical labeling notation of gSpan

 The tree is built by levels where each level corresponds to the size of the

sub-graph. The nodes contain pointers to the sets Di containing the pattern

May 24, 2010
23

Searching using the index

 The search uses the algorithm below but applies also the Apriori principle

 If a fragment is not in the Gindex, we need not search its super-graphs

 On Cq we perform the subgraph isomorphism

May 24, 2010
24

Experimental Setting

 The AIDS antiviral screen compound dataset from

NCI/NIH, containing 43,905 chemical compounds

 Query graphs are randomly extracted from the dataset.

 GraphGrep: maximum length (edges) of paths is set at 10

 gIndex: maximum size (edges) of structures is set at 10

May 24, 2010
25

Experiments: Index Size

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1k 2k 4k 8k 16k

Path
Frequent Structure
Discriminative Frequent Structure

DATABASE SIZE

#
 O

F
 F

E
A

T
U

R
E

S

Note Gindex is very stable!

May 24, 2010
26

Experiments: Answer Set Size

0

20

40

60

80

100

120

140

4 8 12 16 20 24

GraphGrep

gIndex

Actual Match

QUERY SIZE

#
 O

F
 C

A
N

D
ID

A
T

E
S

May 24, 2010
27

Experiments: Incremental Maintenance

20

30

40

50

60

70

80

2K 4K 6k 8k 10k

From scratch Incremental

Frequent structures are stable to database updating

Index can be built based on a small portion of a graph

database, but be used for the whole database

May 24, 2010
28

Final conclusions

 The index size of gIndex is more than 10 times smaller

than that of GraphGrep

 gIndex outperforms GraphGrep by 3 to 10 times in

various query loads

 The index returned by the incremental maintenance

algorithm is effective: it performs as well as the index

computed from scratch provided the data distribution does

not change much.

May 24, 2010
29

Outline

 Mining frequent graph patterns

 Constraint-based graph pattern mining

 Graph indexing methods

 Similairty search in graph databases

 Graph containment search and indexing

May 24, 2010
30

Structure Similarity Search

(a) caffeine (b) diurobromine (c) viagra

• CHEMICAL COMPOUNDS

• QUERY GRAPH

May 24, 2010
31

Some “Straightforward” Methods

 Method1: Directly compute the similarity between the

graphs in the DB and the query graph

 Sequential scan

 Subgraph similarity computation

 Method 2: Form a set of subgraph queries from the

original query graph and use the exact subgraph

search

 Costly: If we allow 3 edges to be missed in a 20-

edge query graph, it may generate 1,140 subgraphs

May 24, 2010
32

Index: Precise vs. Approximate Search

 Precise Search

 Use frequent patterns as indexing features

 Select features in the database space based on their

selectivity

 Build the index

 Approximate Search

 Hard to build indices covering similar subgraphs—

explosive number of subgraphs in databases

 Idea: (1) keep the index structure

(2) select features in the query space

May 24, 2010
33

Substructure Similarity Measure

 Query relaxation measure

 Number of edges can be relabeled or missed;

but the positions of these edges are not fixed

QUERY GRAPH

…

May 24, 2010
34

Substructure Similarity Measure

 Feature-based similarity measure

 Each graph is represented as a feature vector

X = {x1, x2, …, xn}

 The similarity is defined by the distance of

their corresponding vectors

 Advantages

 Easy to index

 Fast

 Rough measure

May 24, 2010
35

Intuition: Feature-Based Similarity Search

Graph (G1)

Substructure

Query (Q)

 If graph G contains

the major part of a query

graph Q, G should share

a number of common

features with Q

 Given a relaxation ratio,

calculate the maximal

number of features that

can be missed !

At least one of them

should be contained

Graph (G2)

May 24, 2010
36

Feature-Graph Matrix

G1 G2 G3 G4 G5

f1 0 1 0 1 1

f2 0 1 0 0 1

f3 1 0 1 1 1

f4 1 0 0 0 1

f5 0 0 1 1 0

Assume a query graph has 5 features and at most 2 features to

miss due to the relaxation threshold

graphs in database
fe

a
tu

r
e
s

May 24, 2010
37

Edge Relaxation – Feature Misses

 If we allow k edges to be relaxed, J is the

maximum number of features to be hit by k

edges—it becomes the maximum coverage

problem

 NP-complete

 A greedy algorithm exists

 We design a heuristic to refine the bound of

feature misses

J
k

J

k


























1
11

greedy

May 24, 2010
38

Query Processing Framework

Step 1. Index Construction

 Select small structures as features in a graph database, and build

the feature-graph matrix between the features and the graphs in

the database

Step 2. Feature Miss Estimation

 Determine the indexed features belonging to the query graph

 Calculate the upper bound of the number of features that can be

missed for an approximate matching, denoted by J

 On the query graph, not the graph database

Step 3. Query Processing

 Use the feature-graph matrix to calculate the difference in the

number of features between graph G and query Q, FG – FQ

 If FG – FQ > J, discard G. The remaining graphs constitute a

candidate answer set

May 24, 2010
39

Approximate structures search

 Lets assume we found the ―best‖ candidate set. What do

we do now?

 Subgraph isomorphism is not good because we are

looking for approximate structures

 The paper mentions several algorithms for approximate

structure search

 The problem is in general NP-hard

May 24, 2010
40

Performance Study

 Database

 Chemical compounds of Anti-Aids Drug from NCI/NIH,

randomly select 10,000 compounds

 Query

 Randomly select 30 graphs with 16 and 20 edges as

query graphs

 Competitive algorithms

 Grafil: Graph Filter—our algorithm

 Edge: use edges only

 All: use all the features

May 24, 2010
41

Comparison of the Three Algorithms

edge relaxation

10

100

1000

10000

1 2 3 4

Grafil

Edge

All

#
 o

f
c

a
n

d
id

a
te

s

May 24, 2010
42

Outline

 Mining frequent graph patterns

 Constraint-based graph pattern mining

 Graph indexing methods

 Similairty search in graph databases

 Graph containment search and indexing

43

Towards Graph Containment
Search and Indexing

Chen Chen, Xifeng Yan, Philip S. Yu, Jiawei Han,

Dong-Qing Zhang, Xiaohui Gu

University of Illinois at Urbana-Champaign

IBM T.J. Watson Research Center

Thomson - Images & Beyond

Graph Search in Two Directions

Given a graph database D and a query graph q,

 (Traditional) graph search: Finds all graphs

containing q

 Graph containment search: Finds all graphs

contained by q

44

45

Example

• Query Graph

• Graph Database

ContainmentTraditional

46

Applications

 Chem-informatics: Searching for ―descriptor‖

structures by full molecules

 Pattern Recognition: Searching for model

objects by the captured scene

 Attributed Relational Graphs (ARGs)

 Cyber Security: Virus signature detection

 …

Solution 0

 The Naïve SCAN approach

 Load each database graph from the disk, and

compare it with the query

 Disadvantages

 For each entry in the database, one (NP-hard)

subgraph isomorphism test is needed

 I/O overheads

 We need Index!

47

May 24, 2010
48

Different Philosophies in Two Searches

 Graph search: Feature-based pruning strategy

 Each query graph is represented as a vector of features,

where features are subgraphs in the database

 If a graph in the database contains the query, it must

also contain all the features of the query

 Different logics: Given a data graph g and a query graph q,

 (Traditional) graph search: inclusion logic

 If feature f is in q then the graphs not having f are pruned

 Graph containment search: exclusion logic

 If feature f is not in q then the graphs having f are pruned

gqgfqf  ,

qggfqf  ,

May 24, 2010
49

Contrast Features for C-Search Pruning

 Contrast Features: Those contained by many database

graphs, but unlikely to be contained by query graphs

 Why contrast feature? ―because they can prune a lot in

containment search!

 Challenges: There are nearly infinite number of

subgraphs in the database that can be taken as features

 Contrast features should be those contained in many

database graphs; thus, we only focus on those frequent

subgraphs of the database

49

May 24, 2010
50

The Basic Framework

 Off-line index construction

 Generate and select a feature set F from the graph

database D

 For feature f in F, Df records the set of graphs containing

f, i.e., , which is stored as an

inverted list on the disk

 Online search

 For each indexed feature , test it against the query

q, pruning takes place iff. f is not contained in q

 Candidate answer set

 Verification

 Check each candidate in Cq by a graph isomorphism test

f F

,

q f

f q f F

C D D

 

 

{ | , }
f

D g f g g D  

May 24, 2010
51

Cost Analysis

 Given a query graph q and a set of features F, the search

time can be formulated as

 A simplistic model: Of course, it can be extended

Neglected because ID-list operations

are cheap compared to isomorphism

tests between graphs

May 24, 2010
52

Feature Selection

 Core problem for index construction

 Carefully choose the set of indexed features F to

maximize pruning capability,

i.e., minimize

for the query workload Q

(| | | |)
q

q Q

F C





May 24, 2010
53

Feature-Graph Matrix

 The (i, j)-entry tells whether the jth model graph has the ith
feature, i.e., if the ith feature is not contained in the query

graph, then the jth model graph can be pruned iff. the (i, j)-

entry is 1

May 24, 2010
54

Contrast Graph Matrix

 If the ith feature is contained in the query, then the

corresponding row of the feature-graph matrix is set to 0,

because the ith feature does not have any pruning power

now

May 24, 2010
55

Training by the Query Log

 Given a query log L = {q1, q2, . . . , qr}, we can

concatenate the contrast graph matrix of all queries to

form a contrast graph matrix for the whole query set

 What if there are no query logs?

 As the query graphs are usually not too different from

database graphs, we can start the system by setting L

= D, and then real queries will flow in

 Our experiments confirm the effectiveness of this

alternative

May 24, 2010
56

Maximum Coverage with Cost

 Including the ith feature

 Gain: the sum of the ith row, which is the number of (d-

graph, q-graph) pairs it can prune

 Cost: |L| = r, because for each query q, we need to

decide whether it contains the ith feature at first

 Select the optimal set of features that can maximize this

gain-cost difference

 Maximum Coverage with Cost

 It is NP-complete (already the set-cover problem

without cost…)

May 24, 2010
57

The Basic Containment Search Index

 Greedy algorithm

 As the cost (|L| = r) is equal among features, the 1st

feature is chosen as the one with greatest gain

 Update the contrast graph matrix, remove selected

rows and pruned columns

 Stop if there are no features with gain over r

 cIndex-Basic

 A redundancy-aware fashion

 It can approximate the optimal index within a ratio of 1

− 1/e

May 24, 2010
58

The Bottom-Up Hierarchical Index

 View indexed features as another database on which a

second-level index can be built

 Iterate from the bottom of the tree

 The cascading effect: If f1 is not contained in q, then the

whole tree rooted at f1 need not be examined

May 24, 2010
59

The Top-Down Hierarchical Index

 Strongest features are put on the top

 The 2nd test takes messages from the 1st test

 The differentiating effect: index different features for

different queries

May 24, 2010
60

Experiment Setting

 Chemical Descriptor Search

 NCI/NIH AIDS anti-viral drugs

 10,000 chemical compounds – queries

 Characteristic substructures - database

 Object Recognition Search

 TREC Video Retrieval Evaluation

 3,000 key frame images – queries

 About 2,500 model objects – database

 Compare with:

 Naïve SCAN

 FB (Feature-Based): gIndex, state-of-art index built for (traditional)

graph search

 OPT: corresp. to search database graphs really contained in the

query

May 24, 2010
61

Chemical Descriptor Search

In terms of iso. test # In terms of processing time

Trends are similar, meaning that our simplistic model is accurate enough

May 24, 2010
62

Hierarchical Indices

Space-time tradeoff

May 24, 2010
63

Object Recognition Search

64

Graph Containment Summary

 We study containment graph search, where

(traditional) graph index is not applicable

 We propose the contrast feature-based indexing

model, prove its usefulness in this new scenario,

both theoretically and empirically

 Our method is not only valuable for graph

search, but also useful for any data with

transitive relation

65

Connection subgraphs

 We define a connection subgraph as a small

subgraph of a large graph that best captures the

relationship between two or more query nodes.

 The primary motivation for this work is to provide

a paradigm for exploration and knowledge

discovery in large social networks graphs, but

also in biological and other domains

 The main problem is characterizing the

importance of the nodes in the connection

subgraph

66

Connection subgraphs

KDD'09 Faloutsos, Miller, Tsourakakis
P5-67

Center-Piece Subgraph(Ceps)

 Given Q query nodes

 Find Center-piece ()

 Input of Ceps
 Q Query nodes

 Budget b

 k softAnd number

 App.
 Social Network

 Law Inforcement

 Gene Network

 …

A C

B

A C

B

A C

B

b

KDD'09 Faloutsos, Miller, Tsourakakis
P5-68

Challenges in Ceps

 Q1: How to measure

importance?

 (Q2: How to extract connection subgraph?

 Q3: How to do it efficiently?)

KDD'09 Faloutsos, Miller, Tsourakakis
P5-69

Challenges in Ceps

 Q1: How to measure

importance?

 A: ―proximity‖ – but how to

combine scores?
 (Q2: How to extract connection subgraph?

 Q3: How to do it efficiently?)

Paper by Faloutsos et. al

May 24, 2010
70

Conclusions
 Graph mining has wide applications

 Frequent and closed subgraph mining methods

 gSpan and CloseGraph: pattern-growth depth-first search

approach

 gPrune: Pruning graph mining search space with constraints

 gIndex: Graph indexing

 Frequent and discirminative subgraphs are high-quality

indexing fatures

 Grafill: Similairty (subgraph) search in graph databases

 Graph indexing and feature-based approximate matching

 cIndex: Containment graph indexing

 A contrast feature-based indexing model

 Connection subgraphs

May 24, 2010
71

Research Papers Covered in this Talk

 X. Yan, P. S. Yu, and J. Han, Graph Indexing: A Frequent

Structure-based Approach, SIGMOD'04 (also in TODS’05, Google

Scholar: ranked #1 out of 63,300 entries on “Graph Indexing”)

 X. Yan, P. S. Yu, and J. Han, “Substructure Similarity Search in

Graph Databases”, SIGMOD'05 (also in TODS’06)

 C. Chen, X. Yan, P. S. Yu, J. Han, D. Zhang, and X. Gu, ―Towards

Graph Containment Search and Indexing‖, VLDB'07, Vienna,

Austria, Sept. 2007

 Christos Faloutsos, Kevin S. McCurley, Andrew Tomkins: Fast

discovery of connection subgraphs. KDD 2004: 118-127

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Faloutsos:Christos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/McCurley:Kevin_S=.html
http://www.informatik.uni-trier.de/~ley/db/conf/kdd/kdd2004.html

