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Graph, Graph, Everywhere

Aspirin Yeast protein interaction network
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Why Graph Mining and Searching?

 Graphs are ubiquitous

 Chemical compounds (Cheminformatics)

 Protein structures, biological pathways/networks 
(Bioinformactics)

 Program control flow, traffic flow, and workflow analysis 

 XML databases, Web, and social network analysis

 Graph is a general model

 Trees, lattices, sequences, and items are degenerated 
graphs

 Diversity of graphs

 Directed vs. undirected, labeled vs. unlabeled (edges & 
vertices), weighted, with angles & geometry (topological 
vs. 2-D/3-D) 

 Complexity of algorithms: many problems are of high 
complexity!
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Outline

 Mining frequent graph patterns

 Constraint-based graph pattern mining 

 Graph indexing methods

 Similairty search in graph databases

 Graph containment search and indexing
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Research Papers Covered in this Talk

 X. Yan and J. Han, gSpan: Graph-Based Substructure Pattern 

Mining, ICDM'02

 X. Yan and J. Han, CloseGraph: Mining Closed Frequent Graph 

Patterns, KDD'03 

 X. Yan, P. S. Yu, and J. Han, Graph Indexing: A Frequent 

Structure-based Approach, SIGMOD'04 (also in TODS’05, Google 

Scholar: ranked #1 out of 63,300 entries on “Graph Indexing”)

 X. Yan, P. S. Yu, and J. Han, “Substructure Similarity Search in 

Graph Databases”, SIGMOD'05 (also in TODS’06)

 F. Zhu, X. Yan, J. Han, and P. S. Yu, ―gPrune: A Constraint Pushing 

Framework for Graph Pattern Mining‖, PAKDD'07 (Best Student 

Paper Award) 

 C. Chen, X. Yan, P. S. Yu, J. Han, D. Zhang, and X. Gu, ―Towards 

Graph Containment Search and Indexing‖, VLDB'07, Vienna, 

Austria, Sept. 2007



May 24, 2010
6

Graph Search: Querying Graph Databases

 Querying graph databases: 

 Given a graph database and a query graph, 

find all graphs containing this query graph

query graph graph database
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Scalability Issue

 Sequential scan

 Disk I/O

 Subgraph isomorphism 

testing

 An indexing mechanism is 

needed

 DayLight:  Daylight.com 

(commercial)

 GraphGrep: Dennis 

Shasha, et al. PODS'02

 Grace: Srinath Srinivasa, et 

al. ICDE'03

Sample database

(a) (b) (c)

Query graph
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Indexing Strategy

Graph (G)

Substructure

Query graph (Q)

If graph G contains query 

graph Q, G should contain 

any substructure of Q

Remarks

 Index substructures of a query graph to 

prune graphs that do not contain these 

substructures
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Framework

 Two steps in processing graph queries

Step 1. Index Construction

 Enumerate structures in the graph 
database, build an inverted index 
between structures and graphs

Step 2. Query Processing

 Enumerate structures in the query graph 

 Calculate the candidate graphs containing 
these structures

 Prune the false positive answers by 
performing subgraph isomorphism test
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Cost Analysis

Query Response Time

 
testingmisomorphisioqindex

TTCT
_



Graph index access time

Size of candidate answer set

Disk I/O time

Isomorphism testing time

Remark: make |Cq| as small as possible
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Path-Based Approach

Sample database

Paths

0-length: C, O, N, S

1-length: C-C, C-O, C-N, C-S, N-N, S-O

2-length: C-C-C, C-O-C, C-N-C, ...

3-length: ...

(a) (b) (c)

Built an inverted index between paths and graphs
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GraphGrep – Path-based Approach

 Enumerate in each graph Gi all the existing paths upto length 

maxL.

 Build an inverted index based on the above paths. Note that as 

maxL is increased, the size of index increases considerably

 Enumerate the paths in the query upto maxL.

 Search in the inverted index all Gi that contain all paths contained 

in the query. Note that as maxL increases the number of sets in the 

index that need to be searched (or intersected) increases as well.

 On the other hand, if maxL is too small it wont characterize the 

query well!
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Problems of Path-Based Approach

Sample database

(a) (b) (c)

Query graph

Only graph (c) contains this query 

graph. However, if we only index 

paths: C, C-C, C-C-C, C-C-C-C, we 

cannot prune graph (a) and (b).
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gIndex: Indexing Graphs by Data Mining

 Our methodology on graph index:

 Identify frequent structures in the database, the 

frequent structures are subgraphs that appear quite 

often in the graph database

 Prune redundant frequent structures to maintain a 

small set of discriminative structures

 Create an inverted index between discriminative 

frequent structures and graphs in the database
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Why Discriminative Subgraphs?

 All graphs contain structures: C, C-C, C-C-C

 Why bother indexing these redundant frequent 

structures?

 Only index structures that provide more 

information than existing structures

Sample database

(a) (b) (c)
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Discriminative Structures

 Pinpoint the most useful frequent structures

 Given a set of structures f1, f2, …, fn and a new 

structure x, we measure the extra indexing power 

provided by x,

P (x|f1, f2, …, fn), where fi is contained in x

 When P is small enough, x is a discriminative 

structure and should be included in the index

 Index discriminative frequent structures only

 Reduce the index size by an order of magnitude

  .,,,
21

xffffxP
in

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Comparing Index size

structure (>106)

frequent (~105)

discriminative (~103)
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Determining the right Support Value

 The candidate set for a query Q is defined as

 Cq = the intersection of  the sets Di where Di is the set of graphs 

containing the frequent  subgraph gi (features) for each gi   which 

appears in the query.

 Now, if there are many such features, then there will be many Di and the 

intersection is likely to be small, which is good! However, index size will be 

very large.

 On the other hand if min-support is high, there will be few Di  thus Cq  will be 

large which is bad but index size will be smaller

 In other words: If minSup is set too high, the size of Cq may be too large. If minSup 

is set too low, it is too difficult to generate all the frequent fragments because there 

may exist an exponential number of frequent fragments under low support. 

 The solution – Varying minSupport!
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Determining the right Support Value   
(Cont. )

 Let's examine a simple example: a completely connected graph with 10 

vertices, each of which has a distinct label. 

 There are 45 1-edge subgraphs, 360 2-edge ones, and more than 1,814,400  

8-edge ones

 As one can see, in order to reduce the overall index size, it is appropriate for  

the index scheme to have low minimum support on small Fragments  and 

high minimum support on large fragments (for compactness). 

 This criterion on the selection of frequent fragments for effective indexing is 

called size-increasing support constraint.
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Why Frequent Structures?

 We cannot index (or even search) all of 

substructures

 Large structures will likely be indexed well by their 

substructures

 Size-increasing support threshold

size

s
u
p
p
o
rt

minimum
support threshold
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Defining Discriminant features

 If two features appear in exactly (or approximately) the same set of graphs, 

then one of this feature is redundant. Conclusion – never include a graph 

and its sub-graph…

 A redundant feature is a feature f whose corresponding Df is very close to 

the intersection of the sets Dfi where fi is a sub-graph of f.

 A discriminative feature is defined as:

 Fragment x is discriminative with respect to F if 

Dx <<   ∩ Dfi

 Let us examine the query example . carbon chains, c - c, c - c - c, and c - c - c - c, are 

redundant and should not be used as indexing features in this dataset. The carbon 

ring  is a discriminative fragment since only graph (c) in contains it while graphs (b) 

and (c) in Figure 1 have all of its sub-graphs.
 The paper presents an algorithm to find the discriminative features using the 

above definition and the size-increasing support function (Alg. 1)
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Building the Gindex tree

 One uses again the Canonical labeling notation of gSpan

 The tree is built by levels where each level corresponds to the size of the 

sub-graph. The nodes contain pointers to the sets Di containing the pattern
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Searching using the index

 The search uses the algorithm below but applies also the Apriori principle

 If a fragment is not in the Gindex, we need not search its super-graphs

 On Cq we perform the subgraph isomorphism
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Experimental Setting

 The AIDS antiviral screen compound dataset from 

NCI/NIH, containing 43,905 chemical compounds

 Query graphs are randomly extracted from the dataset.

 GraphGrep: maximum length (edges) of paths is set at 10

 gIndex: maximum size (edges) of structures is set at 10
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Experiments: Index Size
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Experiments: Answer Set Size
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Experiments: Incremental Maintenance

20
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From scratch Incremental

Frequent structures are stable to database updating

Index can be built based on a small portion of a graph 

database, but be used for the whole database
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Final conclusions

 The index size of gIndex is more than 10 times smaller 

than that of GraphGrep

 gIndex outperforms GraphGrep by 3 to 10 times in 

various query loads

 The index returned by the incremental maintenance 

algorithm is effective: it performs as well as the index 

computed from scratch provided the data distribution does 

not change much.
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Outline

 Mining frequent graph patterns

 Constraint-based graph pattern mining 

 Graph indexing methods

 Similairty search in graph databases

 Graph containment search and indexing
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Structure Similarity Search

(a) caffeine (b) diurobromine (c) viagra

• CHEMICAL COMPOUNDS

• QUERY GRAPH
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Some “Straightforward” Methods

 Method1: Directly compute the similarity between the 

graphs in the DB and the query graph

 Sequential scan

 Subgraph similarity computation

 Method 2: Form a set of subgraph queries from the 

original query graph and use the exact subgraph 

search 

 Costly: If we allow 3 edges to be missed in a 20-

edge query graph, it may generate 1,140 subgraphs
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Index: Precise vs. Approximate Search

 Precise Search

 Use frequent patterns as indexing features

 Select features in the database space based on their 

selectivity

 Build the index

 Approximate Search

 Hard to build indices covering similar subgraphs—

explosive number of subgraphs in databases

 Idea: (1) keep the index structure

(2) select features in the query space
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Substructure Similarity Measure

 Query relaxation measure

 Number  of edges can be relabeled or missed; 

but the positions of these edges are not fixed  

QUERY GRAPH

…
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Substructure Similarity Measure

 Feature-based similarity measure

 Each graph is represented as a feature vector 

X = {x1, x2, …, xn}

 The similarity is defined by the distance of 

their corresponding vectors

 Advantages

 Easy to index

 Fast

 Rough measure
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Intuition: Feature-Based Similarity Search

Graph (G1)

Substructure

Query (Q)

 If graph G contains 

the major part of a query 

graph Q, G should share 

a number of common 

features with Q

 Given a relaxation ratio, 

calculate the maximal 

number of features that 

can be missed !

At least one of them 

should be contained

Graph (G2)
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Feature-Graph Matrix

G1 G2 G3 G4 G5

f1 0 1 0 1 1

f2 0 1 0 0 1

f3 1 0 1 1 1

f4 1 0 0 0 1

f5 0 0 1 1 0

Assume a query graph has 5 features and at most 2 features to 

miss due to the relaxation threshold

graphs in database
fe

a
tu

r
e
s
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Edge Relaxation – Feature Misses

 If we allow k edges to be relaxed, J is the 

maximum number of features to be hit by k 

edges—it becomes the maximum coverage 

problem

 NP-complete 

 A greedy algorithm exists

 We design a heuristic to refine the bound of 

feature misses

J
k

J

k


























1
11

greedy
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Query Processing Framework

Step 1. Index Construction

 Select small structures as features in a graph database, and build 

the feature-graph matrix between the features and the graphs in 

the database

Step 2. Feature Miss Estimation

 Determine the indexed features belonging to the query graph

 Calculate the upper bound of the number of features that can be 

missed for an approximate matching, denoted by J

 On the query graph, not the graph database

Step 3. Query Processing

 Use the feature-graph matrix to calculate the difference in the 

number of features between graph G and query Q, FG – FQ

 If FG – FQ > J, discard G. The remaining graphs constitute a 

candidate answer set
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Approximate structures search

 Lets assume we found the ―best‖ candidate set. What do 

we do now?

 Subgraph isomorphism is not good because we are 

looking for approximate structures

 The paper mentions several algorithms for approximate 

structure search

 The problem is in general NP-hard



May 24, 2010
40

Performance Study

 Database

 Chemical compounds of Anti-Aids Drug from NCI/NIH, 

randomly select 10,000 compounds

 Query

 Randomly select 30 graphs with 16 and 20 edges as 

query graphs

 Competitive algorithms

 Grafil: Graph Filter—our algorithm

 Edge: use edges only

 All: use all the features
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Comparison of the Three Algorithms

edge relaxation
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Outline

 Mining frequent graph patterns

 Constraint-based graph pattern mining 

 Graph indexing methods

 Similairty search in graph databases

 Graph containment search and indexing
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Towards Graph Containment 
Search and Indexing

Chen Chen, Xifeng Yan, Philip S. Yu, Jiawei Han, 

Dong-Qing Zhang, Xiaohui Gu 

University of Illinois at Urbana-Champaign

IBM T.J. Watson Research Center

Thomson - Images & Beyond



Graph Search in Two Directions

Given a graph database D and a query graph q,

 (Traditional) graph search: Finds all graphs 

containing q

 Graph containment search: Finds all graphs 

contained by q

44
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Example

• Query Graph

• Graph Database

ContainmentTraditional
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Applications

 Chem-informatics: Searching for ―descriptor‖ 

structures by full molecules

 Pattern Recognition: Searching for model 

objects by the captured scene

 Attributed Relational Graphs (ARGs)

 Cyber Security: Virus signature detection

 …



Solution 0

 The Naïve SCAN approach

 Load each database graph from the disk, and 

compare it with the query

 Disadvantages

 For each entry in the database, one (NP-hard) 

subgraph isomorphism test is needed

 I/O overheads

 We need Index!

47
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Different Philosophies in Two Searches 

 Graph search: Feature-based pruning strategy

 Each query graph is represented as a vector of features, 

where features are subgraphs in the database

 If a graph in the database contains the query, it must 

also contain all the features of the query

 Different logics: Given a data graph g and a query graph q,

 (Traditional) graph search: inclusion logic 

 If feature f is in q then the graphs not having f are pruned 

 Graph containment search: exclusion logic

 If feature f is not in q then the graphs having f are pruned

gqgfqf  ,

qggfqf  ,
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Contrast Features for C-Search Pruning

 Contrast Features: Those contained by many database 

graphs, but unlikely to be contained by query graphs

 Why contrast feature? ―because they can prune a lot in 

containment search!

 Challenges: There are nearly infinite number of 

subgraphs in the database that can be taken as features

 Contrast features should be those contained in many 

database graphs; thus, we only focus on those frequent 

subgraphs of the database

49
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The Basic Framework

 Off-line index construction

 Generate and select a feature set F from the graph 

database D

 For feature f in F, Df records the set of graphs containing 

f, i.e.,                                   , which is stored as an 

inverted list on the disk

 Online search

 For each indexed feature , test it against the query 

q, pruning takes place iff. f is not contained in q

 Candidate answer set

 Verification

 Check each candidate in Cq by a graph isomorphism test

f F

,

q f

f q f F

C D D

 

 

{ | , }
f

D g f g g D  
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Cost Analysis

 Given a query graph q and a set of features F, the search 

time can be formulated as

 A simplistic model: Of course, it can be extended

Neglected because ID-list operations 

are cheap compared to isomorphism 

tests between graphs
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Feature Selection

 Core problem for index construction

 Carefully choose the set of indexed features F to 

maximize pruning capability, 

i.e., minimize

for the query workload Q

(| | | |)
q

q Q

F C




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Feature-Graph Matrix

 The (i, j)-entry tells whether the jth model graph has the ith
feature, i.e., if the ith feature is not contained in the query 

graph, then the jth model graph can be pruned iff. the (i, j)-

entry is 1
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Contrast Graph Matrix

 If the ith feature is contained in the query, then the 

corresponding row of the feature-graph matrix is set to 0, 

because the ith feature does not have any pruning power 

now
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Training by the Query Log

 Given a query log L = {q1, q2, . . . , qr}, we can 

concatenate the contrast graph matrix of all queries to 

form a contrast graph matrix for the whole query set

 What if there are no query logs?

 As the query graphs are usually not too different from 

database graphs, we can start the system by setting L 

= D, and then real queries will flow in

 Our experiments confirm the effectiveness of this 

alternative
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Maximum Coverage with Cost

 Including the ith feature

 Gain: the sum of the ith row, which is the number of (d-

graph, q-graph) pairs it can prune

 Cost: |L| = r, because for each query q, we need to 

decide whether it contains the ith feature at first

 Select the optimal set of features that can maximize this 

gain-cost difference

 Maximum Coverage with Cost

 It is NP-complete (already the set-cover problem 

without cost…)
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The Basic Containment Search Index

 Greedy algorithm

 As the cost (|L| = r) is equal among features, the 1st

feature is chosen as the one with greatest gain

 Update the contrast graph matrix, remove selected 

rows and pruned columns

 Stop if there are no features with gain over r

 cIndex-Basic

 A redundancy-aware fashion

 It can approximate the optimal index within a ratio of 1 

− 1/e
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The Bottom-Up Hierarchical Index

 View indexed features as another database on which a 

second-level index can be built

 Iterate from the bottom of the tree

 The cascading effect: If f1 is not contained in q, then the 

whole tree rooted at f1 need not be examined
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The Top-Down Hierarchical Index

 Strongest features are put on the top

 The 2nd test takes messages from the 1st test

 The differentiating effect: index different features for 

different queries
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Experiment Setting

 Chemical Descriptor Search

 NCI/NIH AIDS anti-viral drugs

 10,000 chemical compounds – queries

 Characteristic substructures - database

 Object Recognition Search

 TREC Video Retrieval Evaluation

 3,000 key frame images – queries

 About 2,500 model objects – database

 Compare with:

 Naïve SCAN

 FB (Feature-Based): gIndex, state-of-art index built for (traditional) 

graph search

 OPT: corresp. to search database graphs really contained in the 

query
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Chemical Descriptor Search

In terms of iso. test # In terms of processing time

Trends are similar, meaning that our simplistic model is accurate enough
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Hierarchical Indices

Space-time tradeoff
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Object Recognition Search
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Graph Containment Summary

 We study containment graph search, where 

(traditional) graph index is not applicable

 We propose the contrast feature-based indexing 

model, prove its usefulness in this new scenario, 

both theoretically and empirically

 Our method is not only valuable for graph 

search, but also useful for any data with 

transitive relation
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Connection subgraphs

 We define a connection subgraph as a small 

subgraph of a large graph that best captures the 

relationship between two or more query nodes. 

 The primary motivation for this work is to provide 

a paradigm for exploration and knowledge 

discovery in large social networks graphs, but 

also in biological and other domains

 The main problem is characterizing the 

importance of the nodes in the connection 

subgraph
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Connection subgraphs
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Center-Piece Subgraph(Ceps)

 Given Q query nodes

 Find Center-piece (       )

 Input of Ceps
 Q Query nodes

 Budget b

 k softAnd number

 App.
 Social Network

 Law Inforcement

 Gene Network

 …

A C

B

A C

B

A C

B

b
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Challenges in Ceps

 Q1: How to measure 

importance?

 (Q2: How to extract connection subgraph?

 Q3: How to do it efficiently?)
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Challenges in Ceps

 Q1: How to measure 

importance?

 A: ―proximity‖ – but how to 

combine scores?
 (Q2: How to extract connection subgraph?

 Q3: How to do it efficiently?)

Paper by Faloutsos et. al
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Conclusions
 Graph mining has wide applications

 Frequent and closed subgraph mining methods

 gSpan and CloseGraph: pattern-growth depth-first search 

approach

 gPrune: Pruning graph mining search space with constraints

 gIndex: Graph indexing 

 Frequent and discirminative subgraphs are high-quality 

indexing fatures

 Grafill: Similairty (subgraph) search in graph databases

 Graph indexing and feature-based approximate matching 

 cIndex: Containment graph indexing

 A contrast feature-based indexing model

 Connection subgraphs
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