
Graph and Web Mining -
Motivation, Applications and 

Algorithms 

Prof. Ehud Gudes

Department of Computer Science

Ben-Gurion University, Israel



Finding Sequential Patterns



Sequential Patterns Mining

 Given a set of sequences, find the 
complete set of frequent subsequences

The Fellowship 
of the Ring

The Two 
Towers

The Return of 
the King

2 weeks 5 days
Moby Dick



More Detailed Example

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Frequent 
Sequences

<a>

<(a)(a)>

<(a)(c)>

<(a)(bc)>

<(e)(a)(c)>

…
Min Support = 0.5



Motivation

 Business:

 Customer shopping patterns

 telephone calling patterns

 Stock market fluctuation

 Weblog click stream analysis

 Medical Domains:

 Symptoms of a diseases

 DNA sequence analysis



Definitions

 ItemsItems: a set of literals {i1,i2,…,im}

 ItemsetItemset (or event): a non-empty set of 
items.

 SequenceSequence: an ordered list of itemsets, 
denoted as <(abc)(aef)(b)>

 A sequence <a1…an> is a subsequencesubsequence
of sequence <b1…bm> if there exists 
integers i1<…<in such that a1 bi1,…, an bin



Definitions
The Fellowship 
of the Ring

The Two 
Towers

The Return of 
the King

2 weeks 5 days
Moby Dick

Items:

event
eventevent

subsequences: ,

The Two 
Towers

The 
Return of 
the King



Definitions

<a(bdbd)bcbcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bdbd)cbcb(ac)>10

SequenceSeq. ID

A sequence database sequence database 
A sequence sequence : <(bd)c b (ac)>

Events Events 

<ad(ae)> is a subsequence subsequence of 
<aa(bdd)bcb(aadee)>

Given support threshold support threshold min_sup =2, 
<(bd)cb> is a sequential patternsequential pattern



MuchMuch Harder than Frequent 
Itemsets!

2m*n possible candidates!

Where m is the number of items, and n in 
the number of transactions in the longest 
sequence.



More Definitions

 Support is the number of sequences
that contain the pattern. (as in frequent 
itemsets, the concept of confidence is 
not defined)



More Definitions

 Min/Max Gap: maximum and/or minimum time gaps 

between adjacent elements.

The Fellowship 
of the Ring

The Two 
Towers

3 years



More Definitions

 Sliding Windows: consider two transactions as one as 

long as they are in the same time-windows.

The Fellowship 
of the Ring

The Two 
Towers

1 day

The Return of 
the King

2 weeks

The Fellowship 
of the Ring

The Two 
Towers

The Return of 
the King

2 weeks



More Definitions

 Multilevel: patterns that include items across different 

levels of hierarchy.

All

Tolkien

The 
Fellowship of 

the Ring

The Two 
Towers

The Return 
of the King

Asimov

Foundation I, Robot



More Definitions

 Multilevel
Tolkien Tolkien

The Return of 
the King

Asimov



The GSP Algorithm

 Developed by Srikant and Agrawal in 
1996.

 Multiple-pass over the database.

 Uses generate-and-test approach.



The GSP Algorithm

 Phase 1: makes the first pass over database
 To yield all the 1-element frequent sequences. 

Denoted L1.

 Phase 2: the Kth pass:
 starts with seed set found in the (k-1)th pass    (Lk-1) 

to generate candidate sequences, which have one 
more item than a seed sequence; denoted Ck.

 A new pass over D to find the support for these 
candidate sequences

 Phase 3: Terminates when no more frequent 
sequences are found 



The GSP Algorithm
Candidate Generation

 Joining Lk-1 with Lk-1: a sequence s1 joins 
with s2 if dropping the first item from s1

and dropping the last item from s2 makes 
the same sequence.

 The added item becomes a separate event 
if it was a separate event in s2, and part of 
the last event in s1 otherwise.

 When joining L1 with L1 we need to add 
both ways.



Candidate Generation Example

<(1,2)(3)>

<(2)(3,4)>

<(2)(3)(5)>

<(1,2)(3,4)>

<(1,2)(3)(5)
>

L3 C4



Example
Min support =50%

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

SEQ Sup

<a> 4

<b> 4

<c> 3

<d> 3

<e> 3

<f> 3

<g> 1

DB

C1

SEQ

<a>

<b>

<c>

<d>

<e>

<f>

L1

SEQ Sup

<aa> 2

<ab> 4

…

<af> 2

<ba> 2

<bb> 1

…

<ff> 0

<(ab)> 2

<(ac)> 1

…

<(ef)> 0

C2

51
2

56
66 




L1 x L1



Same Example – Lattice Look

<a
>

<b
>

<c
>

<d
>

<e
>

<f
>

<g
>

<aa
>

<ab
>

<ac
>

<aab
>

<aac
>

<(bf)
>

<(ab)
>…

…
<abc

>…

<aaabc
>

…

<a(bc)
>

…



GSP Drawbacks

 A huge set of candidate sequences generated.
 Especially 2-item candidate sequence.

 Multiple Scans of database needed.
 The length of each candidate grows by one at 

each database scan.

 Inefficient for mining long sequential patterns.
 A long pattern grow up from short patterns.

 The number of short patterns is exponential to the 
length of mined patterns.



The SPADE Algorithm

 SPADESPADE (SSequential PAPAttern DDiscovery using 
EEquivalent Class) developed by Zaki 2001.

 A vertical format sequential pattern mining 
method.

 A sequence database is mapped to a large set 
of
 Item: <SID, EID>

 Sequential pattern mining is performed by 
 growing the subsequences (patterns) one item at 

a time by Apriori candidate generation



SPADE: How It Works

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Horizontal
itemsetEIDSID

a11

abc21

ac31

d41

cf51

ad12

c22

bc32

ae42

………

c64

Vertical



SPADE: How It Works

…ba

EI
D

SI
D

EI
D

SI
D

2111

3221

2331

5312

5442

23

34

ID Lists for some 1-sequence

…baab

EID(a
)

EID(b
)

SIDEID(b
)

EID(a
)

SID

321211

432312

523

534

ID Lists for some 2-sequence

…aba

EID(a
)

EID(
b)

EID(a
)

SID

3211

4312

ID Lists for some 3-sequence



SPADE: Equivalence Class

<a
>

<b
>

<c
>

<d
>

<e
>

<f
>

<g
>

<aa
>

<ab
>

<ac
>

<aab
>

<aac
>

<(bf)
>

<(ab)
>…

…
<abc

>…

<aaabc
>

…

<a(bc)
>

…



SPADE: Conclusion

 The ID Lists carry the information 
necessary to find support of candidates. 
Reduces scans of the sequence 
database.

 However, basic methodology is breadth-
first search and pruning, like GSP.



Pattern Growth: A Different 
Approach - PrefixSpan

 Does not require candidate generation.

 General Idea:

 Find frequent single items.

 Compress this information into a tree.

 Use tree to generate a set of projected 
databases.

 Each of these databases is mined 
separately.



Prefix and Suffix (Projection)

 Let s=<a(abc)(ac)d(cf)>

 <a>, <aa> and <a(ab)> are prefixes of s.

Prefix Suffix (Prefix-Based Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>



Mining Sequential Patterns by 
Prefix Projections

 Step 1: find length-1 sequential patterns

 <a>, <b>, <c>, <d>, <e>, <f>

 Step 2: divide search space. The complete set of seq. 
pat. can be partitioned into 6 subsets:

 The ones having prefix <a>;

 The ones having prefix <b>;

 …

 The ones having prefix <f>

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>



Finding Seq. Patterns with 
Prefix <a>

 Only need to consider projections w.r.t. <a>

 <a>-projected database: <(abc)(ac)d(cf)>, 
<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

 Find all the length-2 seq. pat. Having prefix <a>: 
<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>

 Further partition into 6 subsets

 Having prefix <aa>;

 …

 Having prefix <af>

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>



Efficiency of PrefixSpan

 No candidate sequence needs to be 
generated

 Projected databases keep shrinking

 Major cost of PrefixSpan: constructing 
projected databases

 Found to be more efficient than Spade



Constraint-Based Sequential  Pattern 
Mining

 Constraint-based sequential pattern mining
 Constraints: User-specified, for focused mining of desired 

patterns
 How to explore efficient mining with constraints? —

Optimization 

 Classification of constraints
 AntiAnti--monotonemonotone: E.g., sum(S) < 150 (If S doesn’t fulfill the 

constraint so will super_sequence of S )

 MonotoneMonotone: E.g., count (S) > 5 (If S does fulfill the constraint so 
will super_sequence of S )

 SuccinctSuccinct: E.g., length(S) ≥ 10, S ? (the set of sequences fullfilling
the constrained can be defined precisely )

 TimeTime--dependentdependent: E.g., min gap, max gap, total time.



Problems with Current approaches – Spade 
and PrefixSpan (and their variations)

 Fail (don’t terminate) on database with 
long sequences

 Do not handle efficiently the various 
constraints



Our ideas - SPADE Improvement + 
Constraints

 Use the vertical data format
 Two phase algorithm:

 Frequent itemset phase
 Use the well-knows Apriori Algorithm to mine frequent 

itemsets.
 Apply itemset constraints: max itemset length, items that 

cannot occur together.

 Sequence phase
 Apply sequence constraints: max gap, min gap, max/min 

sequence length.

Result: the CAMLS Algorithm 



Frequent Itemset Phase

 Use Apriori or FP-Growth to find frequent itemsets.

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

itemse
t

SI
D

a1

abc1

ac1

d1

cf1

ad2

c2

……

c4

itemse
t

a

…

f

ab

…

bc

…

Frequent Itemsets



Sequence Phase

 Similar to GSP’s and SPADE’s candidate generation 
phase – except using the frequent itemsets as seeds

1-seq

<a>

…

<f>

<(ab)>

…

<(bc)>

…

2-seq

<af>

<a(ab)
>

<a(bc)
>

<f(ab)
>

<f(bc)
>

…

3-seq

<af(ab)
>

<af(bc)
>

…



So What do We Get?

 The best of both worlds:

 Much less candidates are being generated.

 Support check is fast.

 Worst case: works like SPADE.

 Tradeoff: Uses a bit more memory (for 
storing the frequent item-sets).



CAMLS 

 CConstraint-based AApriori algorithm for MMining 
LLong SSequences

 Designed especially for efficient mining of 
long sequences

 Uses constraints to increase efficiency

 Outperforms both SPADE and Prefix Span on 
both synthetic and real data

 Appeared in DASFAA 2010



CAMLS

Makes a logical distinction between two types of 
constraints:

 Intra-Event: constraints that are not time 
related (such as items), e.g.: Singletons

 Inter-Event: temporal aspect of the data, i.e. 
values that can or cannot appear one after 
the other sequentially, e.g.: Maxgap

 Use an innovative pruning strategy



Tested Domain – predicting  
Machine failures



CAMLS

 Consists of two phases corresponding 
to the two types of constraints:

 Event-wise: finds all frequent events 
satisfying intra-events constraints.

 Sequence-wise: finds all frequent 
sequences satisfying inter-events 
constraints.



CAMLS

 Event-wise

 Iterative approach of candidate-generation-
and-test, based on the apriori property

 The intra-event constraints are integrated 
within the process, making it more efficient



CAMLS

 Sequence-wise
 Iterative approach of candidate-generation-and-

test, based on the apriori property

 The inter-events constraints are integrated within 
the process, making it more efficient

 Uses the occurrence index for efficient support 
calculation.

 A novel pruning strategy for redundant candidates



CAMLS Overview

Constraints 
(minSup, 
maxGap, …)

Input Event-
wise

Sequence-
wise

Output

Constrained radix-
ordered frequent events 
+ occurrence index



Event-wise

1. L1 = all frequent items

2. for k=2;Lk-1≠Φ;k++ do

1. generateCandidates(Lk-1)

2. Lk = pruneCandidates()

3. end for

Constraints such as 
Singletons or 
Maxitemsize are checked 
here

Prune, calculate support 
count and create occurrence 
index



Occurrence Index

 a compact representation of all 
occurrences of a sequence

 Structure: list of sids, each associated with 
a list of eids



Event-wise Example

even
t

ei
d

sid

(acd)01

(bcd)51

b101

a02

c42

(bd)82

(cde)03

e73

(acd)113

Input
minSup=2

All frequent items:
a:3, b:2, c:3, d:3

candidates:
(ab),(ac),(ad),
(bc),…

Support count:
(ac):2, (ad):2, 
(bd):2, (cd):2

candidates:
(abc), 
(abd),(acd),…

Support count:
(acd):2

No more candidates!

11

33

00

1111



Sequence-wise

1. L1 = all frequent 1-
sequences

2. for k=2;Lk-1≠Φ;k++ do

1. generateCandidates(Lk-1)

2. Lk = pruneAndSupCalc()

3. end for



Sequence-wise Candidate 
Generation

 If two frequent k-sequences s’ and s’’ share a common 
k-1 prefix and s1 is a generator, we form a new 
candidate

 Note that sequences grows not by one item but by all 
frequent events found in the first phase – i.e               

may be an event composed of a set of items

s‘ = <s’1s’2…s’k> s’’ = <s’’1s’’2…s’’k>

<s’1s’2…s’k-1> = <s’’1s’’2 …s’’k-1>

<s’1s’2…s’k s’’k>

s’’k



Sequence-wise Generator
 maxGap is a special kind of constraint in two ways:

 Highly data dependant

 Apriori property may not be applicable

 A frequent sequence that does not satisfy maxGap is flagged as 
non-generator.

 Example:

 Assume <ab> is frequent but may be  pruned because the 
distance between a and b > maxgap

 But there are  frequent sequences <ac> and <bc> and  in 
<acb> all maxgap constraints are ok!

 So <ab> becomes a non-Generator but is kept in order not to 
prune <acb>…!



Sequence-wise Pruning: How 
its done

1. Keep a radix-ordered list of pruned sequences in current 
iteration

2. In the same iteration, one generate k-sequences from events 
of different size. Its possible that a k-sequence will contain 
another k-sequence in the same iteration.

3. With a new candidate:

1. Check subsequence in pruned list

2. Test for frequency

3. Add to pruned list if needed

For example: if k-sequence <abc> was found infrequent and k-
sequence <a(bd)c> was generated because both b and bd 
are frequent, then <a(bd)c>  can be pruned – this type of 
pruning is special to CAMLS



Example
even

t
ei
d

sid

(acd)01

(bcd)51

b101

a02

c42

(bd)82

(cde)03

e73

(acd)113

Original DB

Event-wise

minSup=2
maxGap=5

g<(a)> : 3

g<(b)> : 2 

g<(c)> : 3

g<(d)> : 3

g<(ac)> : 
2

g<(ad)> : 
2

g<(bd)> : 
2

g<(cd)> : 
2

g<(acd)> : 
2

Candidate 
generation

<aa>

<ab>

…

<a(acd)>

<ba>

<bb>

…

<(acd) 
(acd)>

<aa> is added to pruned list.
<a(ac)> is a super-sequence 
of <aa>, therefore it is 
pruned.
<ab> does not pass maxGap, 
therefore it is not a generator.

<ab> : 2

g<ac> : 2

<ad> : 2

<a(bd)> : 
2

g<cb> : 2

g<cd> : 2

g<c(bd)> :
2

<dc> : 2

<dd> : 2

<d(cd)> : 

<acb>

<acd>

…

<acb>:2

No more candidates!



Evaluation - Tested Domains 

 Predicting machine failures –

 Syn-m stands for a synthetic database simulating 
the machine behavior with m meta-features

 Real Stocks data values

 Rn stands for stock data (10 different stocks) for  
n days

 Number above rectangles indicate number of 
patterns found

 Note, both domains require intelligent pre-processing 
and discretization 



CAMLS Compared with 
PrefixSpan



CAMLS Compared with Spade 
and PrefixSpan



Conclusions

 CAMLS outpeforms Spade and 
PrefixSpan when minSupp is low,     
i.e. when many sequences are 
generated



Thank You!


