
Graph and Web Mining -
Motivation, Applications and

Algorithms

Prof. Ehud Gudes

Department of Computer Science

Ben-Gurion University, Israel

Finding Sequential Patterns

Sequential Patterns Mining

 Given a set of sequences, find the
complete set of frequent subsequences

The Fellowship
of the Ring

The Two
Towers

The Return of
the King

2 weeks 5 days
Moby Dick

More Detailed Example

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Frequent
Sequences

<a>

<(a)(a)>

<(a)(c)>

<(a)(bc)>

<(e)(a)(c)>

…
Min Support = 0.5

Motivation

 Business:

 Customer shopping patterns

 telephone calling patterns

 Stock market fluctuation

 Weblog click stream analysis

 Medical Domains:

 Symptoms of a diseases

 DNA sequence analysis

Definitions

 ItemsItems: a set of literals {i1,i2,…,im}

 ItemsetItemset (or event): a non-empty set of
items.

 SequenceSequence: an ordered list of itemsets,
denoted as <(abc)(aef)(b)>

 A sequence <a1…an> is a subsequencesubsequence
of sequence <b1…bm> if there exists
integers i1<…<in such that a1 bi1,…, an bin

Definitions
The Fellowship
of the Ring

The Two
Towers

The Return of
the King

2 weeks 5 days
Moby Dick

Items:

event
eventevent

subsequences: ,

The Two
Towers

The
Return of
the King

Definitions

<a(bdbd)bcbcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bdbd)cbcb(ac)>10

SequenceSeq. ID

A sequence database sequence database
A sequence sequence : <(bd)c b (ac)>

Events Events

<ad(ae)> is a subsequence subsequence of
<aa(bdd)bcb(aadee)>

Given support threshold support threshold min_sup =2,
<(bd)cb> is a sequential patternsequential pattern

MuchMuch Harder than Frequent
Itemsets!

2m*n possible candidates!

Where m is the number of items, and n in
the number of transactions in the longest
sequence.

More Definitions

 Support is the number of sequences
that contain the pattern. (as in frequent
itemsets, the concept of confidence is
not defined)

More Definitions

 Min/Max Gap: maximum and/or minimum time gaps

between adjacent elements.

The Fellowship
of the Ring

The Two
Towers

3 years

More Definitions

 Sliding Windows: consider two transactions as one as

long as they are in the same time-windows.

The Fellowship
of the Ring

The Two
Towers

1 day

The Return of
the King

2 weeks

The Fellowship
of the Ring

The Two
Towers

The Return of
the King

2 weeks

More Definitions

 Multilevel: patterns that include items across different

levels of hierarchy.

All

Tolkien

The
Fellowship of

the Ring

The Two
Towers

The Return
of the King

Asimov

Foundation I, Robot

More Definitions

 Multilevel
Tolkien Tolkien

The Return of
the King

Asimov

The GSP Algorithm

 Developed by Srikant and Agrawal in
1996.

 Multiple-pass over the database.

 Uses generate-and-test approach.

The GSP Algorithm

 Phase 1: makes the first pass over database
 To yield all the 1-element frequent sequences.

Denoted L1.

 Phase 2: the Kth pass:
 starts with seed set found in the (k-1)th pass (Lk-1)

to generate candidate sequences, which have one
more item than a seed sequence; denoted Ck.

 A new pass over D to find the support for these
candidate sequences

 Phase 3: Terminates when no more frequent
sequences are found

The GSP Algorithm
Candidate Generation

 Joining Lk-1 with Lk-1: a sequence s1 joins
with s2 if dropping the first item from s1

and dropping the last item from s2 makes
the same sequence.

 The added item becomes a separate event
if it was a separate event in s2, and part of
the last event in s1 otherwise.

 When joining L1 with L1 we need to add
both ways.

Candidate Generation Example

<(1,2)(3)>

<(2)(3,4)>

<(2)(3)(5)>

<(1,2)(3,4)>

<(1,2)(3)(5)
>

L3 C4

Example
Min support =50%

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

SEQ Sup

<a> 4

 4

<c> 3

<d> 3

<e> 3

<f> 3

<g> 1

DB

C1

SEQ

<a>

<c>

<d>

<e>

<f>

L1

SEQ Sup

<aa> 2

<ab> 4

…

<af> 2

<ba> 2

<bb> 1

…

<ff> 0

<(ab)> 2

<(ac)> 1

…

<(ef)> 0

C2

51
2

56
66

L1 x L1

Same Example – Lattice Look

<a
>

<c
>

<d
>

<e
>

<f
>

<g
>

<aa
>

<ab
>

<ac
>

<aab
>

<aac
>

<(bf)
>

<(ab)
>…

…
<abc

>…

<aaabc
>

…

<a(bc)
>

…

GSP Drawbacks

 A huge set of candidate sequences generated.
 Especially 2-item candidate sequence.

 Multiple Scans of database needed.
 The length of each candidate grows by one at

each database scan.

 Inefficient for mining long sequential patterns.
 A long pattern grow up from short patterns.

 The number of short patterns is exponential to the
length of mined patterns.

The SPADE Algorithm

 SPADESPADE (SSequential PAPAttern DDiscovery using
EEquivalent Class) developed by Zaki 2001.

 A vertical format sequential pattern mining
method.

 A sequence database is mapped to a large set
of
 Item: <SID, EID>

 Sequential pattern mining is performed by
 growing the subsequences (patterns) one item at

a time by Apriori candidate generation

SPADE: How It Works

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Horizontal
itemsetEIDSID

a11

abc21

ac31

d41

cf51

ad12

c22

bc32

ae42

………

c64

Vertical

SPADE: How It Works

…ba

EI
D

SI
D

EI
D

SI
D

2111

3221

2331

5312

5442

23

34

ID Lists for some 1-sequence

…baab

EID(a
)

EID(b
)

SIDEID(b
)

EID(a
)

SID

321211

432312

523

534

ID Lists for some 2-sequence

…aba

EID(a
)

EID(
b)

EID(a
)

SID

3211

4312

ID Lists for some 3-sequence

SPADE: Equivalence Class

<a
>

<c
>

<d
>

<e
>

<f
>

<g
>

<aa
>

<ab
>

<ac
>

<aab
>

<aac
>

<(bf)
>

<(ab)
>…

…
<abc

>…

<aaabc
>

…

<a(bc)
>

…

SPADE: Conclusion

 The ID Lists carry the information
necessary to find support of candidates.
Reduces scans of the sequence
database.

 However, basic methodology is breadth-
first search and pruning, like GSP.

Pattern Growth: A Different
Approach - PrefixSpan

 Does not require candidate generation.

 General Idea:

 Find frequent single items.

 Compress this information into a tree.

 Use tree to generate a set of projected
databases.

 Each of these databases is mined
separately.

Prefix and Suffix (Projection)

 Let s=<a(abc)(ac)d(cf)>

 <a>, <aa> and <a(ab)> are prefixes of s.

Prefix Suffix (Prefix-Based Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>

Mining Sequential Patterns by
Prefix Projections

 Step 1: find length-1 sequential patterns

 <a>, , <c>, <d>, <e>, <f>

 Step 2: divide search space. The complete set of seq.
pat. can be partitioned into 6 subsets:

 The ones having prefix <a>;

 The ones having prefix ;

 …

 The ones having prefix <f>

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Finding Seq. Patterns with
Prefix <a>

 Only need to consider projections w.r.t. <a>

 <a>-projected database: <(abc)(ac)d(cf)>,
<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

 Find all the length-2 seq. pat. Having prefix <a>:
<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>

 Further partition into 6 subsets

 Having prefix <aa>;

 …

 Having prefix <af>

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Efficiency of PrefixSpan

 No candidate sequence needs to be
generated

 Projected databases keep shrinking

 Major cost of PrefixSpan: constructing
projected databases

 Found to be more efficient than Spade

Constraint-Based Sequential Pattern
Mining

 Constraint-based sequential pattern mining
 Constraints: User-specified, for focused mining of desired

patterns
 How to explore efficient mining with constraints? —

Optimization

 Classification of constraints
 AntiAnti--monotonemonotone: E.g., sum(S) < 150 (If S doesn’t fulfill the

constraint so will super_sequence of S)

 MonotoneMonotone: E.g., count (S) > 5 (If S does fulfill the constraint so
will super_sequence of S)

 SuccinctSuccinct: E.g., length(S) ≥ 10, S ? (the set of sequences fullfilling
the constrained can be defined precisely)

 TimeTime--dependentdependent: E.g., min gap, max gap, total time.

Problems with Current approaches – Spade
and PrefixSpan (and their variations)

 Fail (don’t terminate) on database with
long sequences

 Do not handle efficiently the various
constraints

Our ideas - SPADE Improvement +
Constraints

 Use the vertical data format
 Two phase algorithm:

 Frequent itemset phase
 Use the well-knows Apriori Algorithm to mine frequent

itemsets.
 Apply itemset constraints: max itemset length, items that

cannot occur together.

 Sequence phase
 Apply sequence constraints: max gap, min gap, max/min

sequence length.

Result: the CAMLS Algorithm

Frequent Itemset Phase

 Use Apriori or FP-Growth to find frequent itemsets.

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

itemse
t

SI
D

a1

abc1

ac1

d1

cf1

ad2

c2

……

c4

itemse
t

a

…

f

ab

…

bc

…

Frequent Itemsets

Sequence Phase

 Similar to GSP’s and SPADE’s candidate generation
phase – except using the frequent itemsets as seeds

1-seq

<a>

…

<f>

<(ab)>

…

<(bc)>

…

2-seq

<af>

<a(ab)
>

<a(bc)
>

<f(ab)
>

<f(bc)
>

…

3-seq

<af(ab)
>

<af(bc)
>

…

So What do We Get?

 The best of both worlds:

 Much less candidates are being generated.

 Support check is fast.

 Worst case: works like SPADE.

 Tradeoff: Uses a bit more memory (for
storing the frequent item-sets).

CAMLS

 CConstraint-based AApriori algorithm for MMining
LLong SSequences

 Designed especially for efficient mining of
long sequences

 Uses constraints to increase efficiency

 Outperforms both SPADE and Prefix Span on
both synthetic and real data

 Appeared in DASFAA 2010

CAMLS

Makes a logical distinction between two types of
constraints:

 Intra-Event: constraints that are not time
related (such as items), e.g.: Singletons

 Inter-Event: temporal aspect of the data, i.e.
values that can or cannot appear one after
the other sequentially, e.g.: Maxgap

 Use an innovative pruning strategy

Tested Domain – predicting
Machine failures

CAMLS

 Consists of two phases corresponding
to the two types of constraints:

 Event-wise: finds all frequent events
satisfying intra-events constraints.

 Sequence-wise: finds all frequent
sequences satisfying inter-events
constraints.

CAMLS

 Event-wise

 Iterative approach of candidate-generation-
and-test, based on the apriori property

 The intra-event constraints are integrated
within the process, making it more efficient

CAMLS

 Sequence-wise
 Iterative approach of candidate-generation-and-

test, based on the apriori property

 The inter-events constraints are integrated within
the process, making it more efficient

 Uses the occurrence index for efficient support
calculation.

 A novel pruning strategy for redundant candidates

CAMLS Overview

Constraints
(minSup,
maxGap, …)

Input Event-
wise

Sequence-
wise

Output

Constrained radix-
ordered frequent events
+ occurrence index

Event-wise

1. L1 = all frequent items

2. for k=2;Lk-1≠Φ;k++ do

1. generateCandidates(Lk-1)

2. Lk = pruneCandidates()

3. end for

Constraints such as
Singletons or
Maxitemsize are checked
here

Prune, calculate support
count and create occurrence
index

Occurrence Index

 a compact representation of all
occurrences of a sequence

 Structure: list of sids, each associated with
a list of eids

Event-wise Example

even
t

ei
d

sid

(acd)01

(bcd)51

b101

a02

c42

(bd)82

(cde)03

e73

(acd)113

Input
minSup=2

All frequent items:
a:3, b:2, c:3, d:3

candidates:
(ab),(ac),(ad),
(bc),…

Support count:
(ac):2, (ad):2,
(bd):2, (cd):2

candidates:
(abc),
(abd),(acd),…

Support count:
(acd):2

No more candidates!

11

33

00

1111

Sequence-wise

1. L1 = all frequent 1-
sequences

2. for k=2;Lk-1≠Φ;k++ do

1. generateCandidates(Lk-1)

2. Lk = pruneAndSupCalc()

3. end for

Sequence-wise Candidate
Generation

 If two frequent k-sequences s’ and s’’ share a common
k-1 prefix and s1 is a generator, we form a new
candidate

 Note that sequences grows not by one item but by all
frequent events found in the first phase – i.e

may be an event composed of a set of items

s‘ = <s’1s’2…s’k> s’’ = <s’’1s’’2…s’’k>

<s’1s’2…s’k-1> = <s’’1s’’2 …s’’k-1>

<s’1s’2…s’k s’’k>

s’’k

Sequence-wise Generator
 maxGap is a special kind of constraint in two ways:

 Highly data dependant

 Apriori property may not be applicable

 A frequent sequence that does not satisfy maxGap is flagged as
non-generator.

 Example:

 Assume <ab> is frequent but may be pruned because the
distance between a and b > maxgap

 But there are frequent sequences <ac> and <bc> and in
<acb> all maxgap constraints are ok!

 So <ab> becomes a non-Generator but is kept in order not to
prune <acb>…!

Sequence-wise Pruning: How
its done

1. Keep a radix-ordered list of pruned sequences in current
iteration

2. In the same iteration, one generate k-sequences from events
of different size. Its possible that a k-sequence will contain
another k-sequence in the same iteration.

3. With a new candidate:

1. Check subsequence in pruned list

2. Test for frequency

3. Add to pruned list if needed

For example: if k-sequence <abc> was found infrequent and k-
sequence <a(bd)c> was generated because both b and bd
are frequent, then <a(bd)c> can be pruned – this type of
pruning is special to CAMLS

Example
even

t
ei
d

sid

(acd)01

(bcd)51

b101

a02

c42

(bd)82

(cde)03

e73

(acd)113

Original DB

Event-wise

minSup=2
maxGap=5

g<(a)> : 3

g<(b)> : 2

g<(c)> : 3

g<(d)> : 3

g<(ac)> :
2

g<(ad)> :
2

g<(bd)> :
2

g<(cd)> :
2

g<(acd)> :
2

Candidate
generation

<aa>

<ab>

…

<a(acd)>

<ba>

<bb>

…

<(acd)
(acd)>

<aa> is added to pruned list.
<a(ac)> is a super-sequence
of <aa>, therefore it is
pruned.
<ab> does not pass maxGap,
therefore it is not a generator.

<ab> : 2

g<ac> : 2

<ad> : 2

<a(bd)> :
2

g<cb> : 2

g<cd> : 2

g<c(bd)> :
2

<dc> : 2

<dd> : 2

<d(cd)> :

<acb>

<acd>

…

<acb>:2

No more candidates!

Evaluation - Tested Domains

 Predicting machine failures –

 Syn-m stands for a synthetic database simulating
the machine behavior with m meta-features

 Real Stocks data values

 Rn stands for stock data (10 different stocks) for
n days

 Number above rectangles indicate number of
patterns found

 Note, both domains require intelligent pre-processing
and discretization

CAMLS Compared with
PrefixSpan

CAMLS Compared with Spade
and PrefixSpan

Conclusions

 CAMLS outpeforms Spade and
PrefixSpan when minSupp is low,
i.e. when many sequences are
generated

Thank You!

