Graph and Web Mining -
Motivation, Applications and
Algorithms

o, S

Prof. Ehud Gudes
Department of Computer Science
Ben-Gurion University, Israel




!'_ Finding Sequential Patterns



Sequential Patterns Mining

= Given a set of sequences, find the
complete set of frequent subsequences

The Return of
the King i Dick

The Fellowship
of the Ring

2 weeks




More Detailed Example

SID sequence

10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

Min Support = 0.5

Sequences
<a>
<(a)(a)>
<(a)(c)>
<(a)(bc)>

<(e)(@)(c)>



i Motivation

= Business:
= Customer shopping pattel =
= telephone calling patterns
= Stock market fluctuation
= Weblog click stream analysis

= Medical Domains:
« Symptoms of a diseases
= DNA sequence analysis




i Definitions

= Items: a set of literals {7,/,...,/ .}

= Itemset (or event): a non-empty set of
items.

= Sequence: an ordered list of itemsets,
denoted as <(abc)(aef)(b)>

= A sequence <a,...a,> is a subsequence
of sequence <b;,...b,> if there exists
integers i;<...<i, such that a,1b.,..., a,[Ib;



Definitions

The Fellowship The Two The Return of
of the Ring owers the King by Dick
2 weeks

5 days
" -

event

The

The Two
Return of

9 King
subsequences: Q szp y ;'



Definitions

A sequence database

Seq. ID Sequence
10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

A seqguence : <(bd)c|b|(ac)>

Events

<ad(ae)> is a subseqguence of
<a(bd)bcb(ade)>

Given support threshold min_sup =2,
<(bd)cb> is a sequential pattern




Much Harder than Frequent

i [temsets! %

Where mis the number of items, and nin
the number of transactions in the longest
seguence.

21 possible candidates!



i More Definitions

= Supportis the number of sequences
that contain the pattern. (as in frequent
itemsets, the concept of confidence is
not defined)



‘_L More Definitions

= Min/Max Gap: maximum and/or minimum time gaps
between adjacent elements.

The Fellowship The Two
of the Ring Towers

3 years

Q —




i More Definitions

= Sliding Windows: consider two transactions as one as
long as they are in the same time-windows.

T?the:le)wship The Two The Return of
OT the Ring Towers -
1 day 2 weeks the King
Q []
The Fellowship The Two The Return of
of the Ring Towers the King

-~



* More Definitions

= Multilevel: patterns that include items across different
levels of hierarchy.

All

1
l Tolkien \ l Asimov \
|
The
. The Two The Return
Fellowship of l \ l \ l Foundation \ l I, Robot \
the Ring Towers of the King




‘_L More Definitions

= Multilevel

Tolkien Tolkien

& —

The Return of
the King

7 -




i The GSP Algorithm

= Developed by Srikant and Agrawal in
1996.

= Multiple-pass over the database.
= Uses generate-and-test approach.




The GSP Algorithm

= Phase 1: makes the first pass over database

= To yield all the 1-element frequent sequences.
Denoted L;.
= Phase 2: the Kth pass:

= starts with seed set found in the (k-1)th pass (L)
to generate candidate sequences, which have one
more item than a seed sequence; denoted C,.

= A new pass over Dto find the support for these
candidate sequences

= Phase 3: Terminates when no more frequent
sequences are found



The GSP Algorithm
i Candidate Generation

= Joining L,_; with L,_;: a sequence s, joins
with s, if dropping the first item from s,
and dropping the last item from s, makes
the same sequence.

= The added item becomes a separate event
if it was a separate event in s,, and part of
the last event in s, otherwise.

= When joining L, with L, we need to add
both ways.




i Candidate Generation Example

L C.
<(1,2)(3)>
<2)3.4)> <(1,2)(3,4)>

<(1,2)(3)(5)
<(2)(3)(5)> >




Example

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Cl Ll

SEQ | Sup SEQ
<a> 4 <a>
<b> 4 <b>
<c> 3 <c>
<d> 3 <d>
<e> 3 <e>
<f> 3 <f>
<g> 1

L, xL;

Min support =50%

G

SEQ

Sup

<aa>

<ab>

<af>

<ba>

<bb>

<ff>

<(ab)>

<(ac)>

<(ef)>

6
6x6+

5
= 51






i GSP Drawbacks

= A huge set of candidate sequences generated.
= Especially 2-item candidate sequence.
= Multiple Scans of database needed.

= The length of each candidate grows by one at
each database scan.

= Inefficient for mining long sequential patterns.
= A long pattern grow up from short patterns.

= The number of short patterns is exponential to the
length of mined patterns.



The SPADE Algorithm ¥

QQ,)‘

i
Ovﬁ

= SPADE (Sequential PAttern Discover\?é,ing
Equivalent Class) developed by Zaki 2001.

= A vertical format sequential pattern mining
method.

= A sequence database is mapped to a large set
of
= Item: <SID, EID>

= Sequential pattern mining is performed by

= growing the subsequences (patterns) one item at
a time by Apriori candidate generation



SPADE: How It Works

Vertical

abc

dC

Horizontal
SID sequence
1 <a(abc)(ac)d(cf)>
2 <(ad)c(bc)(ae)>
3 <(ef)(ab)(df)cb>
4 <eg(af)cbc>

cf

ad

bc

GIS

AENNNNHI—LHHHE
Q| -hwl\)n—sm.hwl\)n—sE




ID Lists for some 1-sequence

SPADE: How It Works

ID Lists for some 2-sequence

a b

SI | EI | SI | EI
D D D D
1 1 1 2
1|12 2|3
1 |3 ]| 3|2
2 |13 |5
2 | 4] 4|5
3|2

4 | 3

ab ba
SID | EID(a | EID(b | SID | EID(b | EID(a
) ) ) )
1 1 2 1 2 3
2 1 3 2 3 4
3 2 5
4 3 5
ID Lists for some 3-sequence
aba
SID | EID(a | EID( | EID(a
) b) )
1 1 2 3
2 1 3 4




SPADE: Equivalence Class

P

OO




i SPADE: Conclusion

= The ID Lists carry the information
necessary to find support of candidates.
Reduces scans of the sequence
database.

= However, basic methodology is breadth-
first search and pruning, like GSP.



Pattern Growth: A Different
i Approach - PrefixSpan

= Does not require candidate generation.

= General Idea:
= Find frequent single items.
= Compress this information into a tree.

= Use tree to generate a set of projected
databases.

= Each of these databases is mined
separately.



Prefix and Suffix (Projection)

+

= Let s=<a(abc)(ac)d(cf)>
s <a>, <aa> and <a(ab)> are prefixes of s.

Prefix Suffix (Prefix-Based Projection)
<a> <(abc)(ac)d(cf)>
<aa> <(_bc)(ac)d(cf)>
<ab> <(_c)(ac)d(cf)>




Mining Sequential Patterns by

i Prefix Projections

= Step 1: find length-1 sequential patterns
= <a>, <b>, <c>, <d>, <e>, <f>

= Step 2: divide search space. The complete set of seq.
pat. can be partitioned into 6 subsets:

=« The ones having prefix <a>;
= The ones having prefix <b>;

= The ones having prefix <f>

SID

sequence

1 <a(abc)(ac)d(cf)>
2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>
4

<eg(af)cbc>




Finding Seq. Patterns with

i Prefix <a>

= Only need to consider projections w.r.t. <a>
= <a>-projected database: <(abc)(ac)d(cf)>,
<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>
= Find all the length-2 seq. pat. Having prefix <a>:
<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>

= Further partition into 6 subsets

= Having prefix <aa>;

= Having prefix <af>

SID

sequence

1 <a(abc)(ac)d(cf)>
2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>
4

<eg(af)cbc>




i Efficiency of PrefixSpan

= No candidate sequence needs to be
generated

= Projected databases keep shrinking

= Major cost of PrefixSpan: constructing
projected databases

= Found to be more efficient than Spade




Constraint-Based Sequential Pattern
Mining

= Constraint-based sequential pattern mining

= Constraints: User-specified, for focused mining of desired
patterns

= How to explore efficient mining with constraints? —
Optimization

s Classification of constraints

= Anti-monotone: E.g., sum@S) < 150 (1f S doesn't fulfill the
constraint so will super_sequence of S)

= Monotone: E.g., count (S) > 5 (If S does fulfill the constraint so
will super_sequence of S )

= Succinct: E.g., length(S) = 10, S ? (the set of sequences fullfilling
the constrained can be defined precisely )

=« Time-dependent: E.g., min gap, max gap, total time.



Problems with Current approaches — Spade
iand PrefixSpan (and their variations)

= Fail (don't terminate) on database with
long sequences

= Do not handle efficiently the various
constraints



Our ideas - SPADE Improvement +
Constraints

s Use the vertical data format

= Two phase algorithm:

= Frequent itemset phase

= Use the well-knows Apriori Algorithm to mine frequent
itemsets.

= Apply itemset constraints: max itemset length, items that
cannot occur together.

= Sequence phase

= Apply sequence constraints: max gap, min gap, max/min
sequence length.

Result: the CAMLS Algorithm



Freqguent Itemset Phase

= Use Apriori or FP-Growth to find frequent itemsets.

[ 1P "
SI itemse Frequent Itemsets
») t - ,
t

1 a
SID sequence 1 abc N
1 <a(abc)(ac)d(cf)> 1 c
2 <(ad)c(bc)(ae)> —
3 | <(ef)(ab)(df)cb> 1 d f
4 <eg(af)cbc> 1 cf ab
2 ad
2 C bc
4 C




‘L Sequence Phase

= Similar to GSP’s and SPADE’s candidate generation
phase — except using the frequent itemsets as seeds

m <af>
o S
> <af(ab)
<f> <a(bc) S
<(ab)> > <af(bc)
<f(ab) >
<(bc)> >
<f(bc)
>




i So What do We Get?

= The best of both worlds:
= Much less candidates are being generated.
= Support check is fast.
« Worst case: works like SPADE.

= Tradeoff: Uses a bit more memory (for
storing the frequent item-sets).




i CAMLS ‘ﬂ

= Constraint-based Apriori algorithm for Mining
Long Sequences

= Designed especially for efficient mining of
long sequences

= Uses constraints to increase efficiency

= Outperforms both SPADE and Prefix Span on
both synthetic and real data

= Appeared in DASFAA 2010



i CAMLS

Makes a logical distinction between two types of
constraints:

s Intra-Event: constraints that are not time
related (such as items), e.q.: Singletons

= Inter-Event: temporal aspect of the data, i.e.
values that can or cannot appear one after
the other sequentially, e.q.: Maxgap

= Use an innovative pruning strategy




Tested Domain — predicting
Machine failures

Quartz-Tungsten-Halogen lamp - used in the semiconductors
industry for finding defects in a chip manufacturing process.

@ Long sequences
@ Restricted number of items in event

@ Relatively small number of frequent events



i CAMLS

= Consists of two phases corresponding
to the two types of constraints:

= Event-wise: finds all frequent events
satisfying intra-events constraints.

= Sequence-wise: finds all frequent
sequences satisfying inter-events
constraints.



i CAMLS

s Event-wise

» [terative approach of candidate-generation-
and-test, based on the apriori property

= The intra-event constraints are integrated
within the process, making it more efficient



i CAMLS

= Sequence-wise

» Iterative approach of candidate-generation-and-
test, based on the apriori property

= The inter-events constraints are integrated within
the process, making it more efficient

= Uses the occurrence index for efficient support
calculation.

= A novel pruning strategy for redundant candidates



CAMLS Overview

Input Event- Sequence- Output
wise wise

Constraints
(minSup,

maxGap .)
= I YoX @ fexes j‘>
i v ~ 7Y

Constrained radix- W

ordered frequent events
+ occurrence index




i Event-wise £

X,
“Mple
: >00p),
1. L, = all frequent items '
. for k=2:L,. ,#®k++ do
1. generateCandidates(.,.,)
2. Lk= pruneCandidateS() Constraints such as
Singletons or
3. end fOI‘ Maxitemsize are checked

here

Prune, calculate support
count and create occurrence
index



i Occurrence Index

= @ compact representation of all
occurrences of a sequence

» Structure: list of s/ds, each associated with
a list of e/ds



Event-wise Example

Input

minSup=2

HHES =-
All frequent items: h

1 0 (acd) a:3, b:2,c:3,d:3

1 5 (bcd)

1 10 b

2 0 a

2 4 c candidates: Support count:
2 8 (bd) » (ab),(ac),(ad), » (ad):2,
3 0

3 7

3

(cde) (bC), (bd)2, (cd)2
e
11 (acd)
candidates: Support count:
- (abc), - (acd):2
(abd),(acd),...

No more candidates!



i Sequence-wise

1. L, = all frequent 1-
sequences

2. for k=21, ,#2®;k++do
1. generateCandidates(.,.,)
2 L,= pruneAndSupCalc()

3. end for



Sequence-wise Candidate
Generation

= If two frequent A-sequences s’and s”share a common
k-1 prefix and s, is a generator, we form a new
candidate

4

( _ » 7 Y ) 22 1 ")
s’ =<5,5,..9,> s’ =<s".8",..8 >

’ 4 ’ — 7 7 ’)
<§:S5, Sy 1?=<S 4S5 ,..5 12

= Note that sequences grows not by one item but by all
frequent events found in the first phase —i.e s,

may be an event composed of a set of items



Sequence-wise Generator

maxGap is a special kind of constraint in two ways:
= Highly data dependant
= Apriori property may not be applicable

A frequent sequence that does not satisfy maxGap is flagged as
non-generator.

Example:

Assume <ab> is frequent but may be pruned because the
distance between a and b > maxgap

But there are frequent sequences <ac> and <bc> and in
<acb> all maxgap constraints are ok!

So <ab> becomes a non-Generator but is kept in order not to
prune <acb>...!



Sequence-wise Pruning: How
its done

1. Keep a radix-ordered list of pruned sequences in current
iteration

2. In the same iteration, one generate k-sequences from events
of different size. Its possible that a k-sequence will contain
another k-sequence in the same iteration.

3. With a new candidate:
1. Check subsequence in pruned list
>.  Test for frequency
3. Add to pruned list if needed

For example: if k-sequence <abc> was found infrequent and k-
sequence <a(bd)c> was generated because both b and bd
are frequent, then <a(bd)c> can be pruned — this type of
pruning is special to CAMLS



Original DB Exa m p | e

minSup=2
maxGap=5
Event-wise

1 0 (acd)

1 5 (bcd)

1 10 b E:;>

2 0 a

2 4 c

2 8 (bd)

3 0 (cae)

3 7 e

3 11  (acd)

<aa> is added to pruned list.
<a(ac)>is a super-sequence
of <aa>, therefore it is
pruned.

<ab> does not pass maxGap,
therefore it is not a generator.

4

<ab>:2

<ac>: 2
<ad>:?2
<a(bd)> :

<ch>:2
<cd>: 2
<c(bd)> :

<dc>:2
<dd>:?2

(e}

<(@)>:
<(b)>:

<(c)>

<(d)>:

3
2
1 3
3

<(ac)>:

2

<(ad)>:

2

<(bd)> :

2

<(cd)>:

2

<(acd)> :

2

=

(e}

(e}

(e}

(e}

<aa>
<ab>
Candidate
generation
<a(acd)>
I:> <ba>
<bb>
<(acd)
(acd)>
<acb>

<acd> [:;} <acb>:2

No more candidates!



Evaluation - Tested Domains

+

Predicting machine failures —

= Syn-m stands for a synthetic database simulating
the machine behavior with m meta-features

Real Stocks data values

= Rn stands for stock data (10 different stocks) for
n days

Number above rectangles indicate number of
patterns found

Note, both domains require intelligent pre-processing
and discretization



CAMLS Compared with
‘L PrefixSpan

SYN30—-3 SYMN30-5 R100
< - = -
— CAMLS -— h
[ — ] Prefix—growth — 001 S22
= _| T . &
. T2 o 7
=1 =1 _ =
 —  — | —
f=1 = S = -
8 o 8 2 %
@ 4642 a zZ02=21 a
S E B A E Q-
= 1961 S o =
— 1209
r o | oo x = = = ] 21957
=3 171 = _| 519 o
o off ol = 155
o - = - =] — - 1 =222
0.9 0.7 0.5 0.9 O.7 0.5 0.5 0.3

Minimum Support Minimum Support Minimum Support



CAMLS Compared with Spade

i and PrefixSpan

Runtime(saconds)

40 B0 B0 100 120 140
L 1 L

0 20

S5YN10-5

7 0 CAMLS

| = srape

B PrefixSpan

Tax
- 3835
em [
I ==_ [NIx
0.9 08 07 0.6

Minimum Support

0.5

Funtime{seconds)

0.05

0.m

500
1

0.50
1

B2
1 ]
| |:. |:I
0.5 0.4 0.3

R30

- @ SRADE

0.z

Minimum Support

Bereliuring Univeriry



i Conclusions

= CAMLS outpeforms Spade and
PrefixSpan when minSupp is low,

i.e. when many seguences are
generated



+

Thank You!



