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Finding Sequential Patterns



Sequential Patterns Mining

 Given a set of sequences, find the 
complete set of frequent subsequences

The Fellowship 
of the Ring

The Two 
Towers

The Return of 
the King

2 weeks 5 days
Moby Dick



More Detailed Example

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Frequent 
Sequences

<a>

<(a)(a)>

<(a)(c)>

<(a)(bc)>

<(e)(a)(c)>

…
Min Support = 0.5



Motivation

 Business:

 Customer shopping patterns

 telephone calling patterns

 Stock market fluctuation

 Weblog click stream analysis

 Medical Domains:

 Symptoms of a diseases

 DNA sequence analysis



Definitions

 ItemsItems: a set of literals {i1,i2,…,im}

 ItemsetItemset (or event): a non-empty set of 
items.

 SequenceSequence: an ordered list of itemsets, 
denoted as <(abc)(aef)(b)>

 A sequence <a1…an> is a subsequencesubsequence
of sequence <b1…bm> if there exists 
integers i1<…<in such that a1 bi1,…, an bin



Definitions
The Fellowship 
of the Ring

The Two 
Towers

The Return of 
the King

2 weeks 5 days
Moby Dick

Items:

event
eventevent

subsequences: ,

The Two 
Towers

The 
Return of 
the King



Definitions

<a(bdbd)bcbcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bdbd)cbcb(ac)>10

SequenceSeq. ID

A sequence database sequence database 
A sequence sequence : <(bd)c b (ac)>

Events Events 

<ad(ae)> is a subsequence subsequence of 
<aa(bdd)bcb(aadee)>

Given support threshold support threshold min_sup =2, 
<(bd)cb> is a sequential patternsequential pattern



MuchMuch Harder than Frequent 
Itemsets!

2m*n possible candidates!

Where m is the number of items, and n in 
the number of transactions in the longest 
sequence.



More Definitions

 Support is the number of sequences
that contain the pattern. (as in frequent 
itemsets, the concept of confidence is 
not defined)



More Definitions

 Min/Max Gap: maximum and/or minimum time gaps 

between adjacent elements.

The Fellowship 
of the Ring

The Two 
Towers

3 years



More Definitions

 Sliding Windows: consider two transactions as one as 

long as they are in the same time-windows.

The Fellowship 
of the Ring

The Two 
Towers

1 day

The Return of 
the King

2 weeks

The Fellowship 
of the Ring

The Two 
Towers

The Return of 
the King

2 weeks



More Definitions

 Multilevel: patterns that include items across different 

levels of hierarchy.

All

Tolkien

The 
Fellowship of 

the Ring

The Two 
Towers

The Return 
of the King

Asimov

Foundation I, Robot



More Definitions

 Multilevel
Tolkien Tolkien

The Return of 
the King

Asimov



The GSP Algorithm

 Developed by Srikant and Agrawal in 
1996.

 Multiple-pass over the database.

 Uses generate-and-test approach.



The GSP Algorithm

 Phase 1: makes the first pass over database
 To yield all the 1-element frequent sequences. 

Denoted L1.

 Phase 2: the Kth pass:
 starts with seed set found in the (k-1)th pass    (Lk-1) 

to generate candidate sequences, which have one 
more item than a seed sequence; denoted Ck.

 A new pass over D to find the support for these 
candidate sequences

 Phase 3: Terminates when no more frequent 
sequences are found 



The GSP Algorithm
Candidate Generation

 Joining Lk-1 with Lk-1: a sequence s1 joins 
with s2 if dropping the first item from s1

and dropping the last item from s2 makes 
the same sequence.

 The added item becomes a separate event 
if it was a separate event in s2, and part of 
the last event in s1 otherwise.

 When joining L1 with L1 we need to add 
both ways.



Candidate Generation Example

<(1,2)(3)>

<(2)(3,4)>

<(2)(3)(5)>

<(1,2)(3,4)>

<(1,2)(3)(5)
>

L3 C4



Example
Min support =50%

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

SEQ Sup

<a> 4

<b> 4

<c> 3

<d> 3

<e> 3

<f> 3

<g> 1

DB

C1

SEQ

<a>

<b>

<c>

<d>

<e>

<f>

L1

SEQ Sup

<aa> 2

<ab> 4

…

<af> 2

<ba> 2

<bb> 1

…

<ff> 0

<(ab)> 2

<(ac)> 1

…

<(ef)> 0

C2

51
2

56
66 




L1 x L1



Same Example – Lattice Look

<a
>

<b
>

<c
>

<d
>

<e
>

<f
>

<g
>

<aa
>

<ab
>

<ac
>

<aab
>

<aac
>

<(bf)
>

<(ab)
>…

…
<abc

>…

<aaabc
>

…

<a(bc)
>

…



GSP Drawbacks

 A huge set of candidate sequences generated.
 Especially 2-item candidate sequence.

 Multiple Scans of database needed.
 The length of each candidate grows by one at 

each database scan.

 Inefficient for mining long sequential patterns.
 A long pattern grow up from short patterns.

 The number of short patterns is exponential to the 
length of mined patterns.



The SPADE Algorithm

 SPADESPADE (SSequential PAPAttern DDiscovery using 
EEquivalent Class) developed by Zaki 2001.

 A vertical format sequential pattern mining 
method.

 A sequence database is mapped to a large set 
of
 Item: <SID, EID>

 Sequential pattern mining is performed by 
 growing the subsequences (patterns) one item at 

a time by Apriori candidate generation



SPADE: How It Works

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Horizontal
itemsetEIDSID

a11

abc21

ac31

d41

cf51

ad12

c22

bc32

ae42

………

c64

Vertical



SPADE: How It Works

…ba

EI
D

SI
D

EI
D

SI
D

2111

3221

2331

5312

5442

23

34

ID Lists for some 1-sequence

…baab

EID(a
)

EID(b
)

SIDEID(b
)

EID(a
)

SID

321211

432312

523

534

ID Lists for some 2-sequence

…aba

EID(a
)

EID(
b)

EID(a
)

SID

3211

4312

ID Lists for some 3-sequence



SPADE: Equivalence Class

<a
>

<b
>

<c
>

<d
>

<e
>

<f
>

<g
>

<aa
>

<ab
>

<ac
>

<aab
>

<aac
>

<(bf)
>

<(ab)
>…

…
<abc

>…

<aaabc
>

…

<a(bc)
>

…



SPADE: Conclusion

 The ID Lists carry the information 
necessary to find support of candidates. 
Reduces scans of the sequence 
database.

 However, basic methodology is breadth-
first search and pruning, like GSP.



Pattern Growth: A Different 
Approach - PrefixSpan

 Does not require candidate generation.

 General Idea:

 Find frequent single items.

 Compress this information into a tree.

 Use tree to generate a set of projected 
databases.

 Each of these databases is mined 
separately.



Prefix and Suffix (Projection)

 Let s=<a(abc)(ac)d(cf)>

 <a>, <aa> and <a(ab)> are prefixes of s.

Prefix Suffix (Prefix-Based Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>



Mining Sequential Patterns by 
Prefix Projections

 Step 1: find length-1 sequential patterns

 <a>, <b>, <c>, <d>, <e>, <f>

 Step 2: divide search space. The complete set of seq. 
pat. can be partitioned into 6 subsets:

 The ones having prefix <a>;

 The ones having prefix <b>;

 …

 The ones having prefix <f>

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>



Finding Seq. Patterns with 
Prefix <a>

 Only need to consider projections w.r.t. <a>

 <a>-projected database: <(abc)(ac)d(cf)>, 
<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

 Find all the length-2 seq. pat. Having prefix <a>: 
<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>

 Further partition into 6 subsets

 Having prefix <aa>;

 …

 Having prefix <af>

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>



Efficiency of PrefixSpan

 No candidate sequence needs to be 
generated

 Projected databases keep shrinking

 Major cost of PrefixSpan: constructing 
projected databases

 Found to be more efficient than Spade



Constraint-Based Sequential  Pattern 
Mining

 Constraint-based sequential pattern mining
 Constraints: User-specified, for focused mining of desired 

patterns
 How to explore efficient mining with constraints? —

Optimization 

 Classification of constraints
 AntiAnti--monotonemonotone: E.g., sum(S) < 150 (If S doesn’t fulfill the 

constraint so will super_sequence of S )

 MonotoneMonotone: E.g., count (S) > 5 (If S does fulfill the constraint so 
will super_sequence of S )

 SuccinctSuccinct: E.g., length(S) ≥ 10, S ? (the set of sequences fullfilling
the constrained can be defined precisely )

 TimeTime--dependentdependent: E.g., min gap, max gap, total time.



Problems with Current approaches – Spade 
and PrefixSpan (and their variations)

 Fail (don’t terminate) on database with 
long sequences

 Do not handle efficiently the various 
constraints



Our ideas - SPADE Improvement + 
Constraints

 Use the vertical data format
 Two phase algorithm:

 Frequent itemset phase
 Use the well-knows Apriori Algorithm to mine frequent 

itemsets.
 Apply itemset constraints: max itemset length, items that 

cannot occur together.

 Sequence phase
 Apply sequence constraints: max gap, min gap, max/min 

sequence length.

Result: the CAMLS Algorithm 



Frequent Itemset Phase

 Use Apriori or FP-Growth to find frequent itemsets.

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

itemse
t

SI
D

a1

abc1

ac1

d1

cf1

ad2

c2

……

c4

itemse
t

a

…

f

ab

…

bc

…

Frequent Itemsets



Sequence Phase

 Similar to GSP’s and SPADE’s candidate generation 
phase – except using the frequent itemsets as seeds

1-seq

<a>

…

<f>

<(ab)>

…

<(bc)>

…

2-seq

<af>

<a(ab)
>

<a(bc)
>

<f(ab)
>

<f(bc)
>

…

3-seq

<af(ab)
>

<af(bc)
>

…



So What do We Get?

 The best of both worlds:

 Much less candidates are being generated.

 Support check is fast.

 Worst case: works like SPADE.

 Tradeoff: Uses a bit more memory (for 
storing the frequent item-sets).



CAMLS 

 CConstraint-based AApriori algorithm for MMining 
LLong SSequences

 Designed especially for efficient mining of 
long sequences

 Uses constraints to increase efficiency

 Outperforms both SPADE and Prefix Span on 
both synthetic and real data

 Appeared in DASFAA 2010



CAMLS

Makes a logical distinction between two types of 
constraints:

 Intra-Event: constraints that are not time 
related (such as items), e.g.: Singletons

 Inter-Event: temporal aspect of the data, i.e. 
values that can or cannot appear one after 
the other sequentially, e.g.: Maxgap

 Use an innovative pruning strategy



Tested Domain – predicting  
Machine failures



CAMLS

 Consists of two phases corresponding 
to the two types of constraints:

 Event-wise: finds all frequent events 
satisfying intra-events constraints.

 Sequence-wise: finds all frequent 
sequences satisfying inter-events 
constraints.



CAMLS

 Event-wise

 Iterative approach of candidate-generation-
and-test, based on the apriori property

 The intra-event constraints are integrated 
within the process, making it more efficient



CAMLS

 Sequence-wise
 Iterative approach of candidate-generation-and-

test, based on the apriori property

 The inter-events constraints are integrated within 
the process, making it more efficient

 Uses the occurrence index for efficient support 
calculation.

 A novel pruning strategy for redundant candidates



CAMLS Overview

Constraints 
(minSup, 
maxGap, …)

Input Event-
wise

Sequence-
wise

Output

Constrained radix-
ordered frequent events 
+ occurrence index



Event-wise

1. L1 = all frequent items

2. for k=2;Lk-1≠Φ;k++ do

1. generateCandidates(Lk-1)

2. Lk = pruneCandidates()

3. end for

Constraints such as 
Singletons or 
Maxitemsize are checked 
here

Prune, calculate support 
count and create occurrence 
index



Occurrence Index

 a compact representation of all 
occurrences of a sequence

 Structure: list of sids, each associated with 
a list of eids



Event-wise Example

even
t

ei
d

sid

(acd)01

(bcd)51

b101

a02

c42

(bd)82

(cde)03

e73

(acd)113

Input
minSup=2

All frequent items:
a:3, b:2, c:3, d:3

candidates:
(ab),(ac),(ad),
(bc),…

Support count:
(ac):2, (ad):2, 
(bd):2, (cd):2

candidates:
(abc), 
(abd),(acd),…

Support count:
(acd):2

No more candidates!

11

33

00

1111



Sequence-wise

1. L1 = all frequent 1-
sequences

2. for k=2;Lk-1≠Φ;k++ do

1. generateCandidates(Lk-1)

2. Lk = pruneAndSupCalc()

3. end for



Sequence-wise Candidate 
Generation

 If two frequent k-sequences s’ and s’’ share a common 
k-1 prefix and s1 is a generator, we form a new 
candidate

 Note that sequences grows not by one item but by all 
frequent events found in the first phase – i.e               

may be an event composed of a set of items

s‘ = <s’1s’2…s’k> s’’ = <s’’1s’’2…s’’k>

<s’1s’2…s’k-1> = <s’’1s’’2 …s’’k-1>

<s’1s’2…s’k s’’k>

s’’k



Sequence-wise Generator
 maxGap is a special kind of constraint in two ways:

 Highly data dependant

 Apriori property may not be applicable

 A frequent sequence that does not satisfy maxGap is flagged as 
non-generator.

 Example:

 Assume <ab> is frequent but may be  pruned because the 
distance between a and b > maxgap

 But there are  frequent sequences <ac> and <bc> and  in 
<acb> all maxgap constraints are ok!

 So <ab> becomes a non-Generator but is kept in order not to 
prune <acb>…!



Sequence-wise Pruning: How 
its done

1. Keep a radix-ordered list of pruned sequences in current 
iteration

2. In the same iteration, one generate k-sequences from events 
of different size. Its possible that a k-sequence will contain 
another k-sequence in the same iteration.

3. With a new candidate:

1. Check subsequence in pruned list

2. Test for frequency

3. Add to pruned list if needed

For example: if k-sequence <abc> was found infrequent and k-
sequence <a(bd)c> was generated because both b and bd 
are frequent, then <a(bd)c>  can be pruned – this type of 
pruning is special to CAMLS



Example
even

t
ei
d

sid

(acd)01

(bcd)51

b101

a02

c42

(bd)82

(cde)03

e73

(acd)113

Original DB

Event-wise

minSup=2
maxGap=5

g<(a)> : 3

g<(b)> : 2 

g<(c)> : 3

g<(d)> : 3

g<(ac)> : 
2

g<(ad)> : 
2

g<(bd)> : 
2

g<(cd)> : 
2

g<(acd)> : 
2

Candidate 
generation

<aa>

<ab>

…

<a(acd)>

<ba>

<bb>

…

<(acd) 
(acd)>

<aa> is added to pruned list.
<a(ac)> is a super-sequence 
of <aa>, therefore it is 
pruned.
<ab> does not pass maxGap, 
therefore it is not a generator.

<ab> : 2

g<ac> : 2

<ad> : 2

<a(bd)> : 
2

g<cb> : 2

g<cd> : 2

g<c(bd)> :
2

<dc> : 2

<dd> : 2

<d(cd)> : 

<acb>

<acd>

…

<acb>:2

No more candidates!



Evaluation - Tested Domains 

 Predicting machine failures –

 Syn-m stands for a synthetic database simulating 
the machine behavior with m meta-features

 Real Stocks data values

 Rn stands for stock data (10 different stocks) for  
n days

 Number above rectangles indicate number of 
patterns found

 Note, both domains require intelligent pre-processing 
and discretization 



CAMLS Compared with 
PrefixSpan



CAMLS Compared with Spade 
and PrefixSpan



Conclusions

 CAMLS outpeforms Spade and 
PrefixSpan when minSupp is low,     
i.e. when many sequences are 
generated



Thank You!


