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Abstract. The naming of natural features, such as hills, lakes, springs,
meadows etc., provides a wealth of linguistic information; the study of the
names and naming systems is called onomastics. We consider a data set
containing all names and locations of about 58,000 lakes in Finland. Us-
ing computational techniques, we address two major onomastic themes.
First, we address the existence of local dependencies or repulsion between
occurrences of names. For this, we derive a simple form of spatial associ-
ation rules. The results partially validate and partially contradict results
obtained by traditional onomastic techniques. Second, we consider the ex-
istence of relatively homogeneous spatial regions with respect to the dis-
tributions of place names. Using mixture modeling, we conduct a global
analysis of the data set. The clusterings of regions are spatially connected,
and correspond quite well with the results obtained by other techniques;
there are, however, interesting differences with previous hypotheses.

1 Introduction

In spatial statistics, a point process is a random process that produces points
in the Euclidean plane. A realization of such a process, i.e., a set of points, is
called a point pattern, or spatial point data [1, 2]. A marked point process consists
of several point processes producing different types of points. The points are
often also called events.

Marked point processes arise in many applications, such as linguistics (in
the study of dialects or place names, each word, grammatical construct, name,
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etc. corresponds to a different type of event), biodiversity studies (different
types of events correspond to, e.g., different types of plants, and the locations
are the places in which the plant has been observed), business applications (lo-
cations of customers etc.). There are some fundamental differences in the point
data in these applications. The most relevant here is that in some of these cases
the point data represents an underlying phenomenon that is contionuous (e.g.
the occurrence area of a species, or the area in which a particular word is used),
while in others the underlying phenomenon is itself discrete. In the current
study we discuss the latter type of point processes.

The analysis of high-dimensional point processes can be quite demanding.
The data is often sparse, i.e., we have only fragmentary information of the un-
derlying phenomenon. When there are several different types of events, model-
ing their interaction can be complex. In many cases the observed quantities are
results of several unobserved processes. The granularity and accuracy of the
locations of the points can vary: sometimes the event can be localized perfectly,
sometimes not.

Spatial statistics (see, e.g., the books [1, 2]) has developed several strong
methods for analyzing a single point process. However, marked point processes
with a high number of different types of events have received less attention.

This paper is a case study in the use of pattern discovery and mixture mod-
eling for the analysis of a high-dimensional marked point processes.

Our application is in the area of linguistics, especially onomastics (the study
of names), particularly place names. The naming of natural features, such as
hills, lakes, springs, meadows etc., provides a wealth of information. Our exam-
ple data consists of full information about place names in Finland. The names
tend to be fairly old, and they provide information about the population history
and linguistic conditions at the time when the names where given.

Research in onomastics has traditionally been conducted by selecting a sin-
gle name, or a group or related names, drawing maps of their occurrences, and
doing qualitative analysis of the patterns of occurrences. Global analyses of the
spatial distributions of different names are non-existent.

Our case study concerns two major themes in onomastics. The first is depen-
dence between occurrences of names. It has long been assumed that the name
of a nearby location has an influence on the naming of a location. For exam-
ple, if a lake is called “Black Lake” (usually because the water is sufficiently
clear that one can see the dark bottom of the lake), then a nearby lake might be
named “White Lake”. No quantitative evidence for this phenomenon is known,
however. A special case of the local influence of names is repulsion: if a location
is called B, then it makes sense to assume that other similar locations near this
will not be called B: after all, the purpose of naming is to assign identifiers to
locations. Our first goal is to study the local interactions between names.

The second theme we want to verify is the existence of relatively homo-
geneous spatial regions with respect to the distribution of place names. It is
typically assumed that the naming conventions in nearby areas should be more
or less similar, i.e., that there are clear regional trends in the style of names. The
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occurrence maps of individual names support this hypothesis, but virtually no
global analyses exist.

In this paper we address both these themes. We first show how one can
modify the basic ideas of association rule techniques to obtain local descriptions
of the dependencies between the occurrences of names. The results show that
indeed there are statistically significant associations between the occurrences of
names. As for repulsion effects, we show that they are far less noticeable than
expected.

For the second theme, we demonstrate the use of mixture modeling for the
data at the granularity of municipalities, and show that the resulting clusters of
municipalities are spatially extremely coherent. Thus the results verify the basic
hypothesis that spatial homogeneity exists and provide new data for further
onomastic research into the naming processes that cause the phenomenon.

The rest of this paper is organized as follows. The data set is described in
Section 2. In Section 3 we show how the basic ideas of association rules can
be generalized to the case of spatial point patterns, and give a sample of the
results. Section 4 describes how mixture modeling applies to this data set, and
discusses the results briefly. Section 5 is a brief conclusion.

2 The data set

Our example data set is a subset of the Finnish names occurring in the National
Place Name Register, a part of the Geographic Names Register kept by the Na-
tional Land Survey of Finland. The register contains all place names that appear
on the 1:20 000 Basic Map and is maintained for the purposes of creating these
maps. The size of the register, as well as that of our subsets, can be found in
table 1, which shows the total number of Finnish names (or name instances),
the number of different names, and the number of different municipalities in
which these names are found.

Name Different Municipalities
instances names

Entire Register 717 747 303 626 447
Lakes 58 267 25 178 408
Common lake names 9 008 54 315
Name endings 55 538 45 407

Table 1. National Place Name Register data

The full data model of the register is explained in [3], but for the present
study it is sufficient to note that the register includes a language field, a fea-
ture type field and the spatial information in different formats, including two
co-ordinate systems and several administrative divisions. The feature type cate-
gorizes geographical features into such classes as lake or pond, or river, or stretch
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of river, or forest. For lakes, the location is fixed to be a selected point inside of
the lake.

For our study we selected first all lake names in Finnish. This selection we
pruned further along two different lines. For our primary data set we chose
the names that have at least 90 instances. While our aim was to concentrate on
the most common names, the limit of 90 instances is somewhat arbitrary. To
supplement the primary data set we selected for clustering purposes a second
data set, consisting not of complete place names but of derivational suffixes and
final parts of compound names.

The two different subsets were selected mainly for onomastic reasons. Our
working hypothesis was that spatial associations are in a large part related to
the phenomenon of contrastive names — that is, pairs of names that refer to
similar geographical features and differ only by the first part of the name in
some sort of contrastive manner. To study this we needed to search for spatial
associations for full names. Similarly, both intuition and onomastic consensus
would say that there is a repulsion effect between two instances of the same
name which is closely related to the use of place names to identify a place:
a name cannot normally be used by the same group of people to denote two
different places of the same type.5 Again, this means we have to study the full
names. In either case it seems appropriate to restrict ourselves to relatively com-
mon names, to make sure there are enough instances of each of them to get valid
results.

With clustering the situation is somewhat different. The obvious way to start
is to use full names, like we do with the association rules, and there is no reason
to doubt that this approach works. However, it is also reasonable to postulate
that by studying word endings — both derivative suffixes and end-parts of
compound names — we can get insight into differences in naming practices.
Using name endings is thus an attempt to do cluster analysis based on the dis-
tribution of various name types, not just names as such.

3 Spatial association rules

In this section we consider the first theme: finding local effects between the
occurrences of different names. As an example, consider Figures 1—3 showing
the occurrences of certain pairs of names. How do the occurrences of one name
affect the probability of occurrence of another name? It is fairly clear that the
maps alone cannot answer the question.

In spatial statistics questions such as this have been addressed by using, e.g.,
nearest neighbor distances or the K function and its derivatives [4, 2]. Here we
describe a similar approach, but using the terminology of association rules.

Given a set of observations over 0-1 attributes A1, . . . , An, an association rule
is an expression X ⇒ Y, where X, Y ⊆ {A1, . . . , An}. Given a set X of at-
tributes, the frequency f (X) of X is the fraction of observations that have a 1 in

5 It is, however, relatively common to name e.g. a farm after a nearby lake.
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all attributes of X. The frequency of the rule is defined to be f (X ∪ Y), and the
accuracy (confidence) of the rule is f (X ∪Y)/ f (X).

We consider spatial association rules of the form A ⇒r B. The interpretation
of such a rule is that given a location (x, y) in which event of type A occurs, one
is likely to see at least one event of type B within distance r from (x, y). This
definition is close to the ones used by [5–9]. From an onomastic point of view
it seems prudent to start with restricting ourselves to associations between two
names.

To test the significance of a rule A ⇒r B we start with a set of places named
A and another set of places named B. We want to evaluate whether the occur-
rence of a B is more likely in the context of a nearby A than in general. Note,
however, that a B can only occur if there is a suitable natural feature present: we
cannot observe a “Pike Lake” at position (x, y) unless there is a lake at (x, y).
To take this into account we consider as a set of reference points all points be-
longing to the the same type of feature as B; call this set CB. In our case we used
all Finnish lakes as CB.

The probability that a given place that belongs to CB is named B is P(B) =
N(B)

N(CB) , where N(B) is the total number of places named B and N(CB) is the total
number of all the places of the same type. We now select the places belonging
to set CB which are within the given radius r of a place named A. We denote
the size of this selection by n(CB) and the number of B places in it by n(B). As
null hypothesis we can now assume that the occurrences of A and B are inde-
pendent. Under this hypothesis our selection can be viewed as a random sam-
ple, which can be approximated by the Poisson distribution, X ∼ Poisson(λ),
where λ = n(CB) N(B)

N(CB) . To correct for multiple testing, we use the Bonferroni
correction.

Repulsion Repulsion is essentially a special case of a spatial association rule
A ⇒r B, where A = B. However, in this situation we select points based on
the spatial distribution of A; it is not immediately obvious that this can be con-
sidered a random sample with regard to A. We have therefore used another
method to confirm the results on repulsion.

In the general case we again start with two kinds of points, A and B, the
latter of which belong to set CB. The overall number of points B and CB is N(B)
and N(CB), respectively; the probability of a given CB point being a B point is
p = N(B)

N(CB) .

Within a given radius of the ith point with name A there are n(CBi ) points
of set CB. We use random variable Xi to denote the number of points named
B in this set. If the B points are distributed independently of each other, Xi ∼
Bin(n(CBi ), p), so E(Xi) = n(CBi ) and D2(Xi) = n(CBi )p(1− p). Summing, we
obtain a variable Sm = ∑m

i=1 Xi, and by assuming independence of the variables
Xi, we have E(Sm) = ∑m

i=1 E(Xi) and D2(Sm) = ∑m
i=1 D2(Xi). Applying the

central limit theorem we can obtain confidence estimates.
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Results Applying the method presented above to the common names data set
gave both expected and unexpected results. As expected, most of the pairs of
names had no significant associations either way. Also to be expected was that
there were pairs that had significant repulsion between the names: the spatial
distributions of these names just don’t overlap, for various reasons related to
such things as geography or variation in dialects.

One interesting sub-category of the association rules was what can be called
contrasting names. These have traditionally considered only for such pairs as
Mustalampi “Black Lake” — Valkealampi “White Lake” where the contrasting
element in at least one of the names refers to a notable property of the lake
and there is a clear antonymic relation between the two names. Our study in-
dicates that this kind of variation is used in the naming process more widely
and with far less strict semantic constraints for the elements than onomasti-
cians have thought. For instance, there was a group of three names, Ahven-
lampi “Perch Lake”, Haukilampi “Pike Lake” and Särkilampi “Roach Lake”, all of
which had significant associations with each other even over small distances.
Figure 1 shows the spatial distribution for Ahvenlampi and Haukilampi on a map
with main dialectal regions, along with Poisson-approximated probabilities be-
fore and after the Bonferroni correction.

Ahvenlampi => Haukilampi:
+ At 1 km found 20; p(n<20) = 1.0000 (corrected 1.00)
+ At 2 km found 40; p(n<40) = 1.0000 (corrected 1.00)
+ At 3 km found 51; p(n<51) = 1.0000 (corrected 0.99)
+ At 4 km found 75; p(n<75) = 1.0000 (corrected 1.00)
+ At 5 km found 92; p(n<92) = 1.0000 (corrected 0.97)
+ At 6 km found 116; p(n<116) = 1.0000 (corrected 0.98)
+ At 7 km found 137; p(n<137) = 1.0000 (corrected 0.95)
+ At 8 km found 170; p(n<170) = 1.0000 (corrected 1.00)
+ At 9 km found 181; p(n<181) = 1.0000 (corrected 0.96)
+ At 10 km found 204; p(n<204) = 1.0000 (corrected 0.98)

Haukilampi => Ahvenlampi:
+ At 1 km found 20; p(n<20) = 1.0000 (corrected 1.00)
+ At 2 km found 40; p(n<40) = 1.0000 (corrected 1.00)

At 3 km found 50; p(n<50) = 1.0000 (corrected 0.91)
+ At 4 km found 75; p(n<75) = 1.0000 (corrected 0.99)

At 5 km found 92; p(n<92) = 1.0000 (corrected 0.88)
At 6 km found 113; p(n<113) = 0.9999 (corrected 0.73)
At 7 km found 131; p(n<131) = 0.9996 (corrected 0.00)
At 8 km found 154; p(n<154) = 0.9998 (corrected 0.53)
At 9 km found 175; p(n<175) = 0.9999 (corrected 0.64)
At 10 km found 195; p(n<195) = 0.9999 (corrected 0.80)

Fig. 1. Spatial distribution of Haukilampi (x) and Ahvenlampi (+)

There were, however, other pairs that would at first glance appear to be
similarly contrasting, but whose associations are somewhat weaker and start
to show at significantly longer distances. In fact, the question arises whether
there is a connection in the naming process or whether the names just have a
similar distribution. One such case is the pair of Joutenlampi “Swan Lake” and
Hanhilampi “Goose Lake”, as shown in Figure 2. The reasons for the difference
between this pair and that of Ahvenlampi — Haukilampi are not very obvious,
and further onomastic study of these phenomena is needed.
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Hanhilampi => Joutenlampi:
At 1 km found 0; p(n<0) = 0.0000 (corrected 0.00)
At 2 km found 3; p(n<3) = 0.9259 (corrected 0.00)
At 3 km found 3; p(n<3) = 0.6418 (corrected 0.00)
At 4 km found 5; p(n<5) = 0.6983 (corrected 0.00)
At 5 km found 9; p(n<9) = 0.8927 (corrected 0.00)
At 6 km found 18; p(n<18) = 0.9990 (corrected 0.00)
At 7 km found 21; p(n<21) = 0.9985 (corrected 0.00)

+ At 8 km found 31; p(n<31) = 1.0000 (corrected 0.98)
At 9 km found 33; p(n<33) = 1.0000 (corrected 0.91)
At 10 km found 37; p(n<37) = 1.0000 (corrected 0.91)

Joutenlampi => Hanhilampi:
At 1 km found 0; p(n<0) = 0.0000 (corrected 0.00)
At 2 km found 3; p(n<3) = 0.8542 (corrected 0.00)
At 3 km found 3; p(n<3) = 0.4347 (corrected 0.00)
At 4 km found 5; p(n<5) = 0.4496 (corrected 0.00)
At 5 km found 9; p(n<9) = 0.6805 (corrected 0.00)
At 6 km found 20; p(n<20) = 0.9968 (corrected 0.00)
At 7 km found 25; p(n<25) = 0.9981 (corrected 0.00)
At 8 km found 33; p(n<33) = 0.9998 (corrected 0.49)
At 9 km found 35; p(n<35) = 0.9990 (corrected 0.00)
At 10 km found 40; p(n<40) = 0.9992 (corrected 0.00)

Fig. 2. Spatial distribution of Hanhilampi (x) and Joutenlampi (+)

Then there are pairs of names that have a significant association but are
not contrasting, like Lehmilampi “Cow Lake” and Likolampi “Retting Lake”,6 as
shown in Figure 3. In some cases another reason for the association can be seen;
here, for instance, both names have similar agricultural origins. Although one
can make such guesses about the reasons for the association, the phenomenon
itself is a new discovery, and again further study would be strongly indicated.

Lehmilampi => Likolampi:
At 1 km found 8; p(n<8) = 0.9998 (corrected 0.48)

+ At 2 km found 21; p(n<21) = 1.0000 (corrected 1.00)
+ At 3 km found 34; p(n<34) = 1.0000 (corrected 1.00)
+ At 4 km found 45; p(n<45) = 1.0000 (corrected 1.00)
+ At 5 km found 56; p(n<56) = 1.0000 (corrected 0.99)
+ At 6 km found 69; p(n<69) = 1.0000 (corrected 0.99)
+ At 7 km found 87; p(n<87) = 1.0000 (corrected 1.00)
+ At 8 km found 104; p(n<104) = 1.0000 (corrected 1.00)
+ At 9 km found 125; p(n<125) = 1.0000 (corrected 1.00)
+ At 10 km found 143; p(n<143) = 1.0000 (corrected 1.00)

Likolampi => Lehmilampi:
At 1 km found 8; p(n<8) = 0.9999 (corrected 0.72)

+ At 2 km found 19; p(n<19) = 1.0000 (corrected 1.00)
+ At 3 km found 30; p(n<30) = 1.0000 (corrected 1.00)
+ At 4 km found 37; p(n<37) = 1.0000 (corrected 0.98)

At 5 km found 44; p(n<44) = 1.0000 (corrected 0.88)
At 6 km found 48; p(n<48) = 0.9991 (corrected 0.00)
At 7 km found 61; p(n<61) = 0.9999 (corrected 0.71)
At 8 km found 72; p(n<72) = 1.0000 (corrected 0.93)

+ At 9 km found 85; p(n<85) = 1.0000 (corrected 1.00)
+ At 10 km found 93; p(n<93) = 1.0000 (corrected 1.00)

Fig. 3. Spatial distribution of Lehmilampi (x) and Likolampi (+)

The repulsion between different instances of the same name does not seem
to be a very common phenomenon. Onomastically, this is rather surprising. It is

6 The name refers to a step in the processing of flax into linen.
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true that our data set contains such names as Pahalampi “Evil Lake”7 (shown in
Figure 4) or Palolampi “Burnt Lake”,8 where there are no instances within 2 km
of each other. However, the area covered by such selections is rather small, and
most of these findings cannot be considered significant. The repulsion effects
are for the most part insignificant even without the Bonferroni correction. One
possible explanation for the scarcity of significant repulsion is that the body of
Finnish lake names is relatively large and the distance a name needs to retain its
usefulness as an identifier quite small: the name of a typical small lake is only
used within a single village. The latter of these two factors may be sufficient to
keep the repulsion small enough to disappear into the random variation caused
by the former.

Pahalampi => Pahalampi:
At 1 km found 0; p(n>0) = 0.7161 (corrected 0.00)
At 2 km found 0; p(n>0) = 0.9899 (corrected 0.00)
At 3 km found 8; p(n>8) = 0.6203 (corrected 0.00)
At 4 km found 16; p(n<16) = 0.5101 (corrected 0.00)
At 5 km found 41; p(n<41) = 0.9997 (corrected 0.17)

+ At 6 km found 63; p(n<63) = 1.0000 (corrected 1.00)
+ At 7 km found 76; p(n<76) = 1.0000 (corrected 1.00)
+ At 8 km found 87; p(n<87) = 1.0000 (corrected 1.00)
+ At 9 km found 103; p(n<103) = 1.0000 (corrected 1.00)
+ At 10 km found 119; p(n<119) = 1.0000 (corrected 1.00)

Fig. 4. Spatial distribution of Pahalampi

With all this in mind, it is still somewhat surprising to find that there are
cases like Umpilampi “Closed Lake”9 (shown in Figure 5) where there is a vis-
ible association even at distances of 1 km or less. Again, one can guess for the
reasons why this is possible — these are mostly small ponds, and in many cases
the need to refer to one of them exists only within one farmer family — but nev-
ertheless this would appear to contradict the onomastic consensus that the basic
unit for name use in rural areas is one village.

7 Some of these — possibly even a large amount — are euphemisms for a vulgar name
that the locals considered too offensive to tell outsiders they perceived as being of a
higher social standing, such as visiting onomasticians or geographers.

8 These names are related to the agricultural method of burn-beating, practiced in some
places in Finland until the early 20th century.

9 That is, a small lake overgrown with weeds.



9

Umpilampi => Umpilampi:
At 1 km found 9; p(n<9) = 0.9999 (corrected 0.66)

+ At 2 km found 32; p(n<32) = 1.0000 (corrected 1.00)
+ At 3 km found 66; p(n<66) = 1.0000 (corrected 1.00)
+ At 4 km found 82; p(n<82) = 1.0000 (corrected 1.00)
+ At 5 km found 103; p(n<103) = 1.0000 (corrected 1.00)
+ At 6 km found 126; p(n<126) = 1.0000 (corrected 1.00)
+ At 7 km found 136; p(n<136) = 1.0000 (corrected 1.00)
+ At 8 km found 154; p(n<154) = 1.0000 (corrected 1.00)
+ At 9 km found 164; p(n<164) = 1.0000 (corrected 1.00)
+ At 10 km found 171; p(n<171) = 1.0000 (corrected 1.00)

Fig. 5. Spatial distribution of Umpilampi

4 Probabilistic modeling

We now turn to the second onomastic theme, the existence or nonexistence of
homogeneous regions with respect to place names. We tested this hypothesis
by considering the municipalities as observations, and using mixture modeling
and the EM algorithm to obtain a clustering of the municipalities.

In more detail, we took the 315 municipalities, and created 54 variables,
one for each of the names in the common names data set. This gives us 54-
dimensional data set, where each column indicates the number of occurrences
of the name in the municipality. We then took the 407 municipalities and 45
name endings, and conducted a similar test on that set.

We use mixture modeling to this data set [10, 11]. A (finite) mixture model
assigns a probability P(x|Θ) to an observation x as weighted sum ∑ j P(x|θ j) of
component distributions P(x|θ j) for j = 1, . . . , K, where the weights (or mixing
proportions) π j satisfy π j ≥ 0 and ∑ π j = 1.

For each single component of the model for an observation x = (x1, . . . , xd)
we assume independence between variables and use the multinomial Bernoulli
distribution

P(x|θ) =
d

∏
i=1

θ
xi
i

with the constraint ∑d
i=1 θi = 1. A finite mixture of multivariate Bernoulli prob-

ability distributions is thus specified by the equation

P(x|Θ) =
K

∑
j=1

π jP(x|θ j) =
K

∑
j=1

π j

d

∏
i=1

θ
xi
ji

with the parameterization θ = {π1, . . . , πK , (θ ji)} containing K(d + 1) parame-
ters for data with d dimensions.

Given a data set R with d binary variables and the number K of mixture
components, the parameter values of the mixture model can be estimated using
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the Expectation Maximization (EM) algorithm [12–14]. The EM algorithm has
two steps which are applied alternately in an iterative fashion. Each step is
guaranteed to increase the likelihood of the observed data, and the algorithm
converges to a local maximum of the likelihood function [12, 15]. The method
gives for each component and each observation a probability of the observation
stemming from that component.

We applied mixture modeling to the data described above; for each munici-
pality x and component j we can compute the probability of the observation x
stemming from component j by

P(x| j) =
P(x|θ j)

∑i P(x|θi)
.

For most municipalities there is clearly one component j which gives the mu-
nicipality the highest probability. Example results are shown in Figures 6 and 7.
The different clusters are shown in shades of grey; white municipalities have
no lakes in the data set.10

2 clusters 3 clusters 4 clusters

Fig. 6. Clustering based on the most common lake names

Several features are of interest. First of all, the clusters of municipalities ob-
tained in this way are spatially very well connected. Note that the method in
itself has no information about the locations of the municipalities, and hence
the spatial connectedness of the clusters is interesting. Second, as the number

10 This is mostly because the common names data set contains only 15% of the lakes, but
also because Finland is a bilingual country, and there are some municipalities that are
uniformly Swedish.
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2 clusters 3 clusters 4 clusters

Fig. 7. Clustering based on the name ends

of clusters increases, the existing cluster boundaries tend not to change very
much, but rather existing clusters split. Third, the clusters obtained correspond
fairly well with the previous onomastic information about the distribution of
names.

Specifically, in roughly the southernmost third of the map the boundary
seen in the two-cluster maps corresponds rather well with the division between
the eastern and western dialectal groups of Finnish. There is a small but notice-
able deviation in Tavastland, and this is in line with our knowledge of the his-
tory of the settlement of Finland. Likewise, the western cluster continues north
along the coast, and this too is in line with what we know from history. How-
ever, the middle third looks rather interesting: large regions that were desig-
nated and used as hunting grounds for the dialectally western Tavastland com-
munities as late as the 16th century are not associated with the parent province
but instead with the eastern regions, from where they were to a large extent
populated in the 17th century. This would appear to imply that there is far less
old influence in the names of that region than has been commonly believed,
and this in turn opens up a variety of interesting onomastic questions.

5 Conclusions

We have described a case study in the area of high-dimensional spatial point
processes. We showed how one can use the basic principles of rule discovery
and mixture modeling to analyze an onomastic data set about place names.
The discovered rules of association and repulsion between names show fasci-
nating local effects between the occurrences. The global analysis of name distri-
bution by using mixture modeling demonstrated that homogeneous onomastic
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regions do exist. The methods lead to novel onomastic results. While the com-
putational techniques we used are fairly standard, their application was not
trivial. The global and local analysis of names has been shown to be very use-
ful, and the study is continuing in several directions.

The existing techniques can be used to answer many onomastic questions.
While computational methods of this type have not been applied to onomas-
tic data, the reactions of various researchers in that field have been promising.
However, there are also computational open problems. Finding more complex
local interactions between names is a particularly interesting one. If A and B
occur close to each other, then C is likely to occur close, too. While straightfor-
ward generalizations of association rules of the type AB ⇒r C are possible, it
might be more useful to investigate rules of the form Γ ⇒r C, where Γ is a
derived predicate of position, e.g., of the type “there are names of type α in the
neighborhood”.

A deeper issue is separating the different layers in the process leading to a
particular name occurring in a particular location. In order for a lake at loca-
tion (x, y) to be called “Black Pond”, there has to be a lake at that location, the
people who named it must use words “black” and “pond” in their dialect, their
naming conventions must allow for the combined name to occur, etc. Thus the
data actually is a produced by several interacting phenomena, and finding the
influence of each is not easy.
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