Spatial Clustering in the Presence of Obstacles
Clustering in spatial data mining is to group similar objects based on their distance, connectivity, or their relative density in space.

Each of the clustering methods assume the existence of a distance measure between the objects.

A commonly used distance is the direct Euclidean distance.
The distance of two points is the length of the line connecting them.

\[d(a,b) = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2} \]
Problems with the Euclidean distance

- Sometimes the "real" distance differs largely from the direct Euclidean distance
- Many spatial applications have obstacles in presence
A bank planner wishes to locate 4 ATMs in an area to serve customers (represented by points in the figure). The task is to minimize the distance that customers have to travel to an ATM.

A common clustering method uses direct Euclidean distance, and can lead to distorted and useless results.

In this case, some of the clusters will be split by a large obstacle thus some customers will have to travel a long way.
The Clustering with Obstructed Distance (COD) Problem

- Given a set P of n points $\{p_1, p_2, ..., p_n\}$, and a set O of m non-intersecting obstacles $\{o_1, o_2, ..., o_m\}$ in a two-dimensional region, R
- Each obstacle is represented by a simple polygon
- Let $d(p_j, p_k)$ denote the direct Euclidean distance between two points p_j, p_k by ignoring the obstacles, and $d'(p_j, p_k)$ denote the length of the shortest Euclidean path from p_j to p_k without cutting through any obstacles
The problem of clustering with obstacle distance (COD) is to partition P into k clusters, $Cl_1, ..., Cl_k$, such that the following square-error function, E, is minimized:

$$E = \sum_{i=1}^{k} \sum_{p \in Cl_i} (d'(p, c_i))^2$$

where c_i is the center of cluster Cl_i that is determined by the clustering.
How to solve this problem?

- The basic idea is to simply change the distance function and thus the COD problem could be handled by common clustering algorithms.

- The article gives a partitioning-based algorithm, because it is a good choice to minimize overall travel distances to the cluster centers.

- It uses k-medoids instead of k-means since the mean of a set of points is not well defined when obstacles are involved. This choice also guarantees that the center of the cluster cannot be inside an obstacle.
The algorithm called COD-CLARANS is based on CLARANS and is designed for handling obstacles.

- It not only changes the distance function, but also uses several optimizations for faster computations.
The COD-CLARANS algorithm

- First it preprocesses the data and store certain information which will be needed later when calculating obstructed distances between objects and temporary cluster centers.

- The main algorithm is similar to CLARANS.

- Pruning function E' is a lower bound of the squared error E. It is used to avoid the computation of E in some cases or to speed it up by providing "focusing information".

Figure 3. Overview of COD-CLARANS.
A Binary-Space-Partition (BSP) tree is used to efficiently determine whether two points \(p \) and \(q \) are visible to each other within the region \(R \).

By definition a point \(p \) is visible from a point \(q \) if the straight line joining them does not intersect any obstacles.

With the usage of the BSP-tree, the set of all visible obstacle vertices from a point \(p \) (denoted by \(\text{vis}(p) \)) can be efficiently determined.
Preprocessing – The Visibility Graph

- From the BSP-tree we can generate a Visibility Graph VG
- This graph contains a node for each vertex of the obstacles and two nodes are joined by an edge if and only if the corresponding vertices they represent are visible to each other
- Lemma: Let p and q be two points in the region and VG=(V,E) be the visibility graph of R. Let VG'=(V',E') be a visibility graph created from VG by adding two additional nodes p' and q' in V' representing p and q. E' contains an edge joining two nodes in V' if the points represented by the two nodes are mutually visible. The shortest path between the two nodes p and q will be a sub-path of VG'.
Preprocessing – The Visibility Graph

• In other words, if two points p and q are not visible to each other, the shortest path between them is by travelling through obstacle vertices, starting with an obstacle vertex visible from p or q and ending with an obstacle vertex visible from q or p
Preprocessing - Micro-clustering

- We perform micro-clustering to compress points that are close to each other into groups.
- Instead of representing points individually, represent a micro-cluster as its center and number of points in the group.
- Micro-clusters are not split by obstacles.
- Obstacles avoided by triangulating the region.

Figure 5. Forming micro-clusters.
Preprocessing - Micro-clustering

- All points within a triangle are mutually visible
- Using micro-clusters just approximates the squared error function, to control this, a radius of each is below user specified threshold, \(max_{radius} \)

Figure 5. Forming micro-clusters.
Preprocessing – Spatial Join Index

- Each entry is a 3-tuple \((p,q,d'(p,q))\) where \(p\) and \(q\) are points and \(d'\) is the obstructed distance between \(p\) and \(q\).

- VV Index – Compute an index entry for any pair of obstacles vertices
 - All pairs shortest path in the visibility graph

- MV Index – Compute an index entry of any pair of micro-cluster and obstacle vertex
 - Can be done by using the VV Index and the BSP-tree, the idea is the same as in the lemma before

- MM Index – Compute index entry for any pair of micro-clusters
 - Can be done by using the MV Index and the BSP-tree
 - Since the number of micro-clusters are usually large, it can be extremely huge
The Main Function

- The algorithm first randomly selects k points as the centers of the clusters
- Iteratively tries to find better centers
- A random center c_{random} will replace a center c_j if squared-error E is minimized
- Variable `max_try` bounds the new center tries for each dropped center

```
Algorithm 3.1 Algorithm COD-CLARANS.
Input: A set of n objects, k and clustering parameters, maxTry.
Output: A partition of the n objects into k clusters with cluster centers, $c_1, ..., c_k$.
Method:
1. Function COD-CLARANS()
2. { randomly select k objects to be current;
3. compute square-error function $E$;
4. let current$E = E$;
5. do
6. { found.new = FALSE;
7. randomly reorder current into \{c_1,...,c_k\};
8. for (j=1; j<=k; j++)
9. { let remain = current - c_j;
   /* remain contain the remaining center */
10. compute obstructed distance of objects to nearest center in remain;
11. for (try=0; try < max_try; try++)
12. { replace $c_j$ with a randomly selected object $c_{random}$;
13. compute estimated square-error function $E'$;
14. if ($E' > currentE$)
15. continue; /* Not a good solution */
16. compute square-error function $E$;
17. if ($E < currentE$) /* Is the new solution better ? */
18. { found.new = TRUE; /* Found a better solution */
19. current = \{c_1,...,c_{random},...,c_k\}
/* replace $c_j$ with $c_{random}$ */
20. current$E = E$;
21. }
22. if (found.new)
23. break; /* Reorder cluster centers again */
24. }
25. } while (found.new)
26. output current;
27}
```
The Main Function

- Computing obstructed distance to Nearest Centers in remain (the centers by removing the selected center) has two phases
 - In phase 1 find shortest obstructed distance between all vertices of obstacles and nearest cluster center \(N(v) \) of vertex \(v \)

Algorithm 3.1 Algorithm COD-CLARANS
Input: A set of \(n \) objects, \(k \) and clustering parameters, \(\text{maxtry} \).
Output: A partition of the \(n \) objects into \(k \) clusters with cluster centers, \(c_1, \ldots, c_k \).
Method:

1. Function COD-CLARANS()
2. { randomly select \(k \) objects to be current;
3. compute square-error function \(E \);
4. let currentE = \(E \);
5. do
6. { found_new = FALSE;
7. randomly reorder current into \(\{c_1, \ldots, c_k\} \);
8. for \(j = 1 \) to \(k \) do
9. { let remain = current - \(c_j \);
10. /* remain contain the remaining center */
11. compute obstructed distance of objects to nearest center in remain;
12. for (try = 0; try < maxtry; try++)
13. { replace \(c_j \) with a randomly selected object \(c_{\text{random}} \);
14. compute estimated square-error function \(E' \);
15. if \((E' > \text{currentE}) \) continue; /* Not a good solution */
16. compute square-error function \(E \);
17. if \((E < \text{currentE}) \) /* Is the new solution better? */
18. { found_new = TRUE; /* Found a better solution */
19. current = \(\{c_1, \ldots, c_{\text{random}}, \ldots, c_k\} \)
20. /* replace \(c_j \) with \(c_{\text{random}} \) */
21. currentE = \(E \);
22. }
23. if (found_new)
24. break; /* Reorder cluster centers again */
25. }
26. } while (found_new)
27. output current ;
The Main Function

- Computing obstructed distance to Nearest Centers in remain (the centers by removing the selected center) has two phases
 - In phase 2, for each micro-cluster p, choose visible obstacle vertex v (use the BSP-tree for generating visible vertices) such that sum of distance between p and v and obstructed distance between v and $N(v)$ is minimized.

```plaintext
Algorithm 3.1 Algorithm COD-CLARANS.
Input: A set of n objects, k and clustering parameters, maxTry.
Output: A partition of the n objects into k clusters with cluster centers, $c_1, ..., c_k$.
Method:
1. Function COD-CLARANS()
2. { randomly select k objects to be current;
3. compute square-error function $E$;
4. let currentE = $E$;
5. do
6. { found.new = FALSE;
7. randomly reorder current into \{c_1, ..., c_k\};
8. for (j=1; j<k; j++)
9. { let remain = current - c_j ;
10. /* remain contain the remaining center */
11. compute obstructed distance of objects to nearest center in remain;
12. for (try=0; try < max_try; try++)
13. { replace c_j with a randomly selected object $c_{random}$;
14. compute estimated square-error function $E’$;
15. if ($E’ > currentE$)
16. continue; /* Not a good solution */
17. compute square-error function $E$;
18. if ($E < currentE$) /* Is the new solution better ? */
19. { found.new = TRUE; /* Found a better solution */
20. current = \{c_1, ..., c_{random}, ..., c_k\};
21. /* replace c_j with $c_{random}$ */
22. currentE = $E$;
23. }
24. if (found.new)
25. break; /* Reorder cluster centers again */
26. } while (found.new)
27. output current;
```
The Main Function

- Execution of phase 1 depends on whether
 - VV is materialized
 - Use visibility information (BSP-tree) and the index like before
 - MV is materialized
 - A simple minimum search in the index
 - No spatial join index is materialized
 - Use visibility graph and Dijkstra's algorithm
Dijkstra's algorithm

- It gives the shortest path and the distance between two given points in a graph
- The weights of the edges are nonnegative
- The computation time is proportional to the number of edges in the graph
- Apply this algorithm to the visibility graph:
 - First insert the k-1 cluster centers into the graph, connect them to the visible vertices
 - Add a virtual node s and connect it with zero weight to each of the centers
 - Run the algorithm with s as the source point and obstacle vertices as destination points – the cluster center in the path will be the closest to the obstacle vertex
Computing lower bound E'

- At this step we can use the previously computed Nearest Centers and their distances (using obstructed distance).
- For the new cluster center c_{random} we use the direct Euclidean distance, which is much faster.
- If direct Euclidean distance between a micro-cluster p and c_{random} is shorter than obstructed distance $d'(p,N(p))$, then p is assigned to c_{random} and Euclidean distance used to calculated estimated square error E'.
- It can be proved that E' is a lower bound of E.
- If E' is larger than the previously found best solution E, then we do not have to calculate the new E, because we have a worse solution.
- Otherwise we have to compute the new squared error.
Computing squared error E

- We can make use of the fact that if micro-cluster p is not assigned to c_{random} when computing E', it will never be assigned to c_{random} when computing E
 - This is because the obstructed distance is greater or equal than the direct Euclidean distance
- Thus the only thing we need to do is to calculate the obstructed distances between the new cluster center c_{random} and the micro-clusters that will be assigned to c_{random}
 - The obstructed distance of each micro-cluster to its nearest center in $remain$ is already computed
Performance Study - Main results

- Decrease in quality of clusters not significant compared to decrease in number of micro-clusters

- Processing time of COD-CLARAN-VV and COD-CLARANS-MV minorly affected by max-radius

<table>
<thead>
<tr>
<th>max_radius</th>
<th>No. of Micro-Clusters</th>
<th>Average E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>63350</td>
<td>1.48</td>
</tr>
<tr>
<td>0.01</td>
<td>8178</td>
<td>1.49</td>
</tr>
<tr>
<td>0.02</td>
<td>3133</td>
<td>1.51</td>
</tr>
<tr>
<td>0.03</td>
<td>1546</td>
<td>1.55</td>
</tr>
<tr>
<td>0.04</td>
<td>965</td>
<td>1.56</td>
</tr>
<tr>
<td>0.05</td>
<td>520</td>
<td>1.59</td>
</tr>
</tbody>
</table>

Figure 7. Pre-processing Time of DS1.
Performance Study - Main results

- Algorithms that do not use pruning have longer execution time
- Spatial join indexes are useful in reducing the execution time
- COD-CLARANS scales well for large number of points

Figure 8. Algorithms Running Time of DS1.
Performance Study - Main results

• Comparing clusters generated by COD-CLARANS to ones generated by CLARANS:
 – COD-CLARANS clusters better with obstacles
 – Performance gap decreases with larger values of k
 • Large k means that more other points are visible from the center, so the obstacled distance will be the same as the direct distance
Conclusion

- Obstacles are a fact of real spatial data sets
- Propose COD-CLARANS
- Various types of pre-processed information enhance efficiency of COD-CLARANS
- Pushing handling of obstacles into COD-CLARANS algorithm and using pruning function E' instead of handling them in distance function level makes it more efficient
- Experiments show usefulness and scalability
Thank you!