Spatial Data Mining

Antti Leino -antti.leino@cs.helsinki.fi

Department of Computer Science

Overview

- Spatial Data Mining
 - Exploratory methods for analysing data
 - Spatial component
 - Emphasis on point data

- Main topics
 - Co-location rules
 - Spatial clustering
 - Spatial modelling

Administrivia

- Lectures / meetings
 - 12th March – 26th April 2007
 - Mon, Thu 10–12 am, C222
 - Introductory lecture for each main topic
 - Other times two articles / meeting
 - Presentation by a student, c. 20 min
 - Discussion

- Exam Thu, 3rd May, 4–7 pm

- Project work by Wed, 16th May
 - Exercise in spatial data mining
 - Essay on a related topic
 - Course diary

Schedule

12.3. Introduction

15.3. Co-location patterns

19.3. Huang & al., ‘Discovering Colocation Patterns from Spatial Data Sets: A General Approach’
 - Salmenkivi, ‘Efficient Mining of Correlation Patterns in Spatial Point Data’

22.3. Yoo & al., ‘A Joinless Approach for Mining Spatial Colocation Patterns’
 - Huang & al., ‘Can We Apply Projection Based Frequent Pattern Mining Paradigm to Spatial Colocation Mining?’

26.3. Xiong & al., ‘A Framework for Discovering Co-location Patterns in Data Sets with Extended Spatial Objects’
 - Yoo & al., ‘Discovery of Co-evolving Spatial Event Sets’

29.3. Spatial clustering

2.4. Tung & al., ‘Spatial Clustering in the Presence of Obstacles’
 - Wang & Hamilton, ‘DBRS: A Density-Based Spatial Clustering Method with Random Sampling’

-- Easter break

16.4. Spatial modelling

19.4. Kavouras, ‘Understanding and Modelling Spatial Change’
 - Kazar & al., ‘Comparing Exact and Approximate Spatial Auto-Regression Model Solutions for Spatial Data Analysis’

26.4. Summary
Spatial Data Mining
Introduction
Antti Leino <antti.leino@cs.helsinki.fi>

Rest of the story

- Snow 1849: theory that cholera is transmitted by polluted water
 - The data mining experiment a part of testing the theory
- London had two water companies
 - One took its water from the Thames upriver of town, the other downriver
 - The polluted pump belonged to the latter
- Follow-up studies to confirm that
 - The cholera victims had used the polluted pump
 - Those who did not use the pump did not fall ill
 - In other words, results were verified by other means

Nevertheless...

- Rather low impact
 - The episode involved only one district in London
 - The polluted pump was reopened some weeks later
 - Snow’s theory was finally accepted a couple of decades later
 - Snow became famous in 1936
- Hindsight is easy
- Classic examples often have mythical elements

Data Mining

- Extract new, interesting information from massive amounts of data
- New
 - Surprising
 - Not too strict prior expectations
- Interesting
 - Relevant, useful
 - Often requires some knowledge of the application
- Spatial data mining: add a spatial component

Different kinds of data
Point patterns

- Shape is not relevant
- Each phenomenon represented by a separate point pattern
- Example: Viking-age forts
 - Red dots: place names starting with Linna- ‘castle’
 - Green squares: Viking-age hill forts
Different kinds of data

Spatially continuous data
- Describes a spatially continuous phenomenon
- Not possible to measure across the space
 - Measurements at distinct points
- Measurement points not interesting as point patterns
- Goal: model the phenomenon in order to predict the values between the measurement points

Area data
- Spatial variation presented as regions
- Example 1: spatially continuous phenomenon
 - Breeding certainty of the great crested grebe
 - Finland divided into 10 x 10 km squares

Different kinds of data

Area data
- Example 2: Distinct area
 - Spatial distribution of a dialect word "Aahotti"
- Somewhat like a point pattern, but now the shape is meaningful

Co-location rules
- Typically for point patterns
 - Correlation between different point patterns
 - "Members of these point patterns often occur close to each other"
- Similar correlations can be established for area data
- Spatial association rules
 - "If phenomena A₁, ..., Aₙ are found near each other, phenomenon B is also likely to be found"
- Cf. frequent sets and association rules in transaction data

Spatial clustering
- Goal: find clusters in a point pattern
 - Areas with high point density
 - Separated by areas with low density
- Example: farms
 - Green dots: farm locations
 - Large-scale clustering: areas divided by lakes
 - Smaller-scale clustering: villages

Spatial modelling
- Generally: find a model that
 - describes the phenomenon
 - Underlying factors or variables
 - can be used for predictions
 - Areas that have not been surveyed
 - Effect of changes
- Two phases
 - Select a suitable model
 - Find the parameters for the model
- Example: dialect words
 - Principal component analysis