
A Joinless Approach for Mining Spatial

Colocation Patterns

Presenter: Davin Wong

Spring 2007

Authors: J. Yoo, S. Shekhar

Spatial Dataset

Spatial Features:

A

B

C

Feature Instances:

A.1, A.2, A.3, A.4,

B.1, B.2, B.3, B.4, B.5,

C.1, C.2, C.3

Graph Representation

Given neighborhood distance d,

draw an edge between two

feature instances if their distance

is ≤ d

Neighors:

B.2 – B.5

B.1 – A.1

A.1 – C.1

C.1 – A.4

…

Not Neighors:

A.1 – A.4

A.4 – B.3

...

Graph Representation

Cliques:

A.2 – B.4 – C.2

A.2 – B.4

B.2 – B.5

A.3 – A.4 – C.1

...

Not Cliques:

B.1 – C.1

A.3 – A.4 – B.3 – C.1

...

Clique in an undirected graph G is a set of vertices V such that for every two vertices in V,

there exists an edge connecting the two.

Note: All spatial feature instances in a clique are neighbors (≤ d distance)

Colocation Patterns

Colocation {A, B} Instances / Cliques:

A.1, B.1

A.3, B.3

A.2, B.4

Colocation {B, C} Instances / Cliques:

B.3, C.1

B.3, C.3

B.4, C.2

Colocation {A, B, C} Instances / Cliques:

A.3, B.3, C.1

A.2, B.4, C.2

Colocation is a subset of spatial features, e.g. {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}

Note: Many colocation patterns are possible, we need a way to measure how

interesting a colocation pattern is.

Colocation Interestingness – Participation Ratio

Pr(fi,C) =
of feature instances of fi

of distinct instances of feature fi in instances of colocation C

Example: Pr(B, {B, C})

Colocation {B, C} Instances:

B.3, C.1

B.3, C.3

B.4, C.2

Feature B Instances:

{B.1, B.2, B.3, B.4, B.5,}

Hence, Pr(B, {B, C}) = 2/5

Note: Pr(A, {A}) = Pr(B, {B}) = Pr(C, {C}) = 1

Colocation Interestingness – Participation Index

Pi(C) = prevalence(C) = minfi {Pr(fi, C)}

Example: Pi({B, C})

Pr(B, {B, C}) = 2/5

Pr(C, {B, C}) = 3/3 = 1

Hence, Pi({B, C}) = 2/5

Example: Pi({A, B})

= min {Pr(A, {A, B}), Pr(B, {A, B})}

= min {3/4, 3/5}

= 3/5

Colocation Mining Algorithm

Input: F = set of spatial features, e.g. {A, B, C}

FI = set of spatial feature instances with coordinates, e.g. {A1, A.2, A3, A4, …}

r = maximum neighbor distance

minPrev = minimum prevalent threshold

Output: PC = set of prevalent colocation patterns

Mine (F, FI, r, minPrev)

for k = 2 to |F|

Ck = find all candidate colocation patterns of size k

for each candidate colocation pattern P in Ck

CI = find all colocation instances of P

prev(P) = min {pr(f1, P), pr(f2, P), …, pr(fk, P)}, where fi = a feature type in P

if prev(P) ≥ minPrev

PC = PC U {P}

these sets can be huge!

←

←

Colocation Mining Algorithm Optimization

Problem 1: Find all candidate colocation patterns of size k

Solution: Use the anti-monotone property of the prevalence measure:

prev(Ck) ≤ prev(Ck-1), w.r.t. subset operator

In other words, if colocation {A, B, C} is prevalent, then colocation {A, B},

{A, C} and {B, C} which are subsets of {A, B, C} are also prevalent.

Hence, we can use prevalent colocations of size k-1 to construct

candidate colocations of size k.

Note: We still have to check whether the candidates are really prevalent i.e.

they meet the minimum prevalent threshold.

Colocation Mining Algorithm Optimization

Problem 2: Find all colocation instances (cliques) of candidate colocation P

More precisely, how to find cliques efficiently from the spatial data?

Solution: Use some kind of model representation to capture the neighbor

relationship of the spatial data.

One possible choice is the star neighborhood partition model.

Star Neighborhood Partitioning

� Star neighborhood of a feature instance is:

� a set consisting of the instance itself plus any other feature instances within

the predefined neighbor distance.

� the feature type of the neighbor instances must be greater than the feature

type of the center instance in lexical order.

Star neighborhood area of

A.1, A.2, A.3 and A.4

(dashed circles)

►

Star Neighborhood Partitioning

� Star neighborhood of a feature instance is:

� a set consisting of the instance itself plus any other feature instances within

the predefined neighbor distance.

� the feature type of the neighbor instances must be greater than the feature

type of the center instance in lexical order.

→

Star neighborhood area of A.1, A.2,

A.3 and A.4 (dashed circles)

Star neighbors of A.1, A.2, A.3

and A.4 (edges)

Star Neighborhood Partitioning

=

Applying star neighborhood partitioning to our example...

Star Neighborhood – Advantage #1

� Candidate colocation instances (a.k.a. star instances) can be produced quickly.

Candidate instances for {A}, {A, B}, {A, C}, {A, B, C}

}

}

}

Candidate instances for {B}, {B, C}

Candidate instances for {C}

Star Neighborhood – Advantage #2

� Candidate colocation can be coarsely filtered from the participation index of the star

instances.

Example

Given candidate colocation {A, B, C}

◄ Participation Ratio Estimates

� In general, Pi(star instances of C) ≥ Pi(C)

If the estimated p.i. is less than minimum prevalent threshold, then discard the

candidate.

Star Neighborhood – Advantage #3

� Cliqueness of a star instance can be checked from the star neighborhoods.

Star neighborhood of A.2 Star neighborhood of B.4

Example

Given star instance {A.2, B.4, C.2}

We know A.2’s neighbors are B.4 and C.2. If {B.4, C.2} is also a star instance, then

{A.2, B.4, C.2} is a clique.

� In general, star instance {o1, o2, …, ok} is a clique if subinstance {o2, …, ok} is a clique.

Performance Comparison

� The joinless approach which utilizes star neighborhood partitioning is more scalable.

~ The End ~

