

Colocation Mining Algorithm Optimization	
Problem 1	: Find all candidate colocation patterns of size k
Solution:	Use the anti-monotone property of the prevalence measure:
	$prev(C_k) \le prev(C_{k-1})$, w.r.t. subset operator
	In other words, if colocation {A, B, C} is prevalent, then colocation {A, B}, {A, C} and {B, C} which are subsets of {A, B, C} are also prevalent.
	Hence, we can use prevalent colocations of size k-1 to construct candidate colocations of size k.
Note:	We still have to check whether the candidates are really prevalent i.e. they meet the minimum prevalent threshold.

Colocation Mining Algorithm Optimization

Problem 2: Find all colocation instances (cliques) of candidate colocation P

More precisely, how to find cliques efficiently from the spatial data?

Solution: Use some kind of model representation to capture the neighbor relationship of the spatial data.

One possible choice is the star neighborhood partition model.

Star Neighborhood Partitioning

• Star neighborhood of a feature instance is:

- a set consisting of the instance itself plus any other feature instances within the predefined neighbor distance.
- the feature type of the neighbor instances must be greater than the feature type of the center instance in lexical order.

Star Neighborhood Partitioning

- Star neighborhood of a feature instance is:
 - a set consisting of the instance itself plus any other feature instances within the predefined neighbor distance.
 - the feature type of the neighbor instances must be greater than the feature type of the center instance in lexical order.

