Gap Filling as Exact Path Length Problem
RECOMB 2015

Leena Salmela1 Kristoffer Sahlin2
Veli Mäkinen1 Alexandru I. Tomescu1

1University of Helsinki
2KTH Royal Institute of Technology

April 12th, 2015
Gap filling

- Gap filling is the last phase in genome assembly
- Input: Scaffolds (=linearly ordered contigs) and reads
- Output: Scaffolds where gaps between contigs have been filled
Previous work

- Gap filling module in many popular assemblers:
 - Allpaths-LG
 - ABYSS
 - EULER
 - ...

- Standalone gap filling tools:
 - SOAPdenovo’s GapCloser
 - GapFiller (Boetzer & Pirovano 2012)

- General idea:
 - Identify reads potentially filling the gap
 - Local assembly
Our contribution

- Problem formulation as \textit{Exact Path Length problem}
- Gap Filling is \textit{NP-complete}
- \textit{Pseudopolynomial algorithm} for Gap Filling
- Implementation of the algorithm in a tool called \textit{Gap2Seq}
Gap filling: Problem definition

Given

- an (overlap or de Bruijn) graph $G = (V, E)$ of the whole read set
- a cost function $c : E \mapsto \mathbb{Z}_+$
- two vertices s and t representing the flanks of the contigs
- estimate of the gap length $[d', d]$

find for all $x \in [d', d]$ the number of paths $P = v_1, v_2, \ldots, v_k$ such that

$$cost(P) = \sum_{i=1}^{k-1} c(v_i, v_{i+1}) = x.$$
Gap filling: Problem definition

Given

- an (overlap or de Bruijn) graph $G = (V, E)$ of the whole read set
- a cost function $c : E \mapsto \mathbb{Z}_+$
- two vertices s and t representing the flanks of the contigs
- estimate of the gap length $[d', d]$

find for all $x \in [d', d]$ the number of paths $P = v_1, v_2, \ldots, v_k$ such that

$$\text{cost}(P) = \sum_{i=1}^{k-1} c(v_i, v_{i+1}) = x.$$

NP-complete
Dynamic programming algorithm

- For each $v \in V(G)$ and $\ell \in [0, d]$ define:

$$a(v, \ell) = \text{number of } s \rightarrow v \text{ paths of cost } \ell$$
Dynamic programming algorithm

- For each $v \in V(G)$ and $\ell \in [0, d]$ define:
 \[
a(v, \ell) = \text{number of } s - v \text{ paths of cost } \ell
 \]

Initialize: $a(s, 0) = 1$
Dynamic programming algorithm

- For each $v \in V(G)$ and $\ell \in [0, d]$ define:

 $$a(v, \ell) = \text{number of } s - v \text{ paths of cost } \ell$$

- Recurrence: $a(v, \ell) = \sum_{u \in N^-(v)} a(u, \ell - c(u, v))$

 where $N^-(v)$ is the set of in-neighbors of v

- Initial conditions:

 $$a(s, 0) = 1$$
 $$a(v, 1) = \sum_{u \in N^-(v)} a(u, 0) = 1$$
Dynamic programming algorithm

- For each \(v \in V(G) \) and \(\ell \in [0, d] \) define:

\[
a(v, \ell) = \text{number of } s - v \text{ paths of cost } \ell
\]

- Recurrence: \(a(v, \ell) = \sum_{u \in N^{-}(v)} a(u, \ell - c(u, v)) \)

where \(N^{-}(v) \) is the set of in-neighbors of \(v \)

\[
a(s, 0) = 1, \quad a(v, 1) = 1, \quad a(v, 1) = 1, \quad a(v, 2) = \sum_{u \in N^{-}(v)} a(u, 1) = 2
\]
For each $v \in V(G)$ and $\ell \in [0, d]$ define:

$$a(v, \ell) = \text{number of } s - v \text{ paths of cost } \ell$$

Recurrence: $a(v, \ell) = \sum_{u \in N^-(v)} a(u, \ell - c(u, v))$

where $N^-(v)$ is the set of in-neighbors of v
Dynamic programming algorithm

- For each $v \in V(G)$ and $\ell \in [0, d]$ define:

 $$a(v, \ell) = \text{number of } s - v \text{ paths of cost } \ell$$

- Recurrence:
 $$a(v, \ell) = \sum_{u \in N^-(v)} a(u, \ell - c(u, v))$$
 where $N^-(v)$ is the set of in-neighbors of v}

Pseudopolynomial algorithm running in $O(dm)$ time

(d: length of gap, m: number of arcs)
Choosing the path

- If there are several paths:
 1. Choose the one closest to \((d' + d)/2\)
 2. If several such paths, choose one at random.

- Backtracing in the DP matrix gives the path
Implementation: Gap2Seq

- Build a de Bruijn graph of the reads
 - We use GATB for efficient implementation of the DBG
- Use a hash table to link reachable vertices to their DP table rows
- DP table rows are sparse
 - List only non-zero entries
- k-mers flanking gaps can have errors
 - Allow paths to start/end at up to e flanking k-mers
- Parallelisation on the scaffold level
- Limit the memory usage of the DP table
 - Abandon search on a gap if limit exceeded
Experimental results: S. aureus GAGE data

Experiments run on all 8 GAGE assemblies.

We show aggregates over all assemblies.
Experimental results: *S. aureus* GAGE data

- Experiments run on all 8 GAGE assemblies.
- We show aggregates over all assemblies.
Further work

- Scaling to larger genomes
- Improving runtime and memory usage
 - *Meet-in-the-middle*: start the search from both flanks of the gap
Thanks!
Questions?

http://www.cs.helsinki.fi/u/lmsalmel/Gap2Seq/