Safely filling gaps with partial solutions common to all solutions WABI 2016

Leena Salmela Alexandru I. Tomescu

University of Helsinki

August 23rd, 2016

Gap filling

- Gap filling is the last phase in genome assembly
- Input: Scaffolds (=linearly ordered contigs) and reads
- Output: Scaffolds where gaps between contigs have been filled

Gap filling

- Gap filling is the last phase in genome assembly
- Input: Scaffolds (=linearly ordered contigs) and reads
- Output: Scaffolds where gaps between contigs have been filled What if there are

multiple paths?

Safe and complete solutions

An algorithm is

- safe: it returns only partial solutions that are common to all solutions
- complete: it returns all safe solutions

We give a gap filling algorithm that is safe.

Previous work on safe solutions for gap filling

- Wetzel et al. 2011
 - Unique paths
 - Unique shortest paths
- Konnector (Vandervalk et al. 2014)
 - Exhaustive enumeration of all s-t paths (up to a threshold)
 - Fill a gap only when there are at most a given number of paths
 - Form multiple alignment
 - Use consensus sequence with IUPAC codes

Gap filling problem

Given

- an (overlap or de Bruijn) graph G = (V, E) of the whole read set
- a cost function $c : E \mapsto \mathbb{Z}_+$
- two vertices s and t representing the flanks of the contigs
- estimate of the gap length d

find an *s*-*t* path $P = v_1, v_2, \ldots, v_k$ such that

$$cost(P) = \sum_{i=1}^{k-1} c(v_i, v_{i+1}) = d.$$

Safe and complete gap filling problem

Given

- an (overlap or de Bruijn) graph G = (V, E) of the whole read set
- a cost function $c : E \mapsto \mathbb{Z}_+$
- two vertices s and t representing the flanks of the contigs
- estimate of the gap length d

find all maximal paths in *G* that are sub-paths of all solutions to the gap filling problem.

...GTTTACGtggGATCgacggggGAGCTACTAGACGGTA...

Safe (but not complete) algorithm for gap filling

- Determine the graph G_d made up of all edges and vertices on some s-t path in G of length d
- Compute the graph G_d^{SCC} of strongly connected components \implies DAG!
- ► Find all maximal paths that are sub-paths of all *s*-*t* paths in G^{SCC}_d ⇒ Find bridges and cut vertices
- ► The corresponding paths in G_d are also sub-paths of all s-t paths in G_d

Safe (but not complete) algorithm for gap filling

- Determine the graph G_d made up of all edges and vertices on some s-t path in G of length d: O(d|E|)
- ► Compute the graph G^{SCC}_d of strongly connected components ⇒ DAG!: O(|V| + |E|)
- Find all maximal paths that are sub-paths of all *s*-*t* paths in G^{SCC}_d → Find bridges and cut vertices: O(|E|)
- ► The corresponding paths in G_d are also sub-paths of all s-t paths in G_d

Salmela, Tomescu

Experimental setup

Algorithms considering the safety notion:

- Gap2Seq Safe (this work)
- Gap2Seq Unique (only unique paths are safe)
- Sealer (Paulino et al. 2015)

Other algorithms:

- Gap2Seq (Salmela et al. 2015)
- GapFiller with Bowtie (Boetzer and Pirovano 2012)
- GapFiller with BWA (Boetzer and Pirovano 2012)
- SOAPdenovo GapCloser (Luo et al. 2012)

Data sets:

All S. aureus and R. sphaeroides assemblies from GAGE

Runtime and memory usage

- Experiments run on all 8 GAGE assemblies.
- We show aggregates over all assemblies.

Align the filled scaffolds against the reference and compute for aligned filled sequences:

Precision:

#correct safe bases

#safe bases

Recall:

#correct safe bases

#total gap bases

For algorithms that do not differentiate between safe and nonsafe bases all bases were considered safe.

Precision and recall

- Experiments run on all 8 GAGE assemblies.
- We show aggregates over all assemblies.

Conclusions

- We introduced the safe and complete gap filling problem
- We gave an algorithm for gap filling which is safe
- Open problem:

Existence of an efficient safe and complete algorithm for gap filling

Thanks!

Questions?

http://www.cs.helsinki.fi/u/lmsalmel/Gap2Seq/

Salmela, Tomescu

Safely filling gaps

August 23rd, 2016 13 / 13