582670 Algorithms for Bioinformatics

Lecture 4: Dynamic Programming and Sequence Alignment

20.9.2012

Adapted from slides by Veli Mäkinen / Algorithms for Bioinformatics 2011
Sequence similarity

- Genome rearrangement problem assumed we know for each gene in species A its counterpart in species B (if exists).
 - Orthologous genes: same ancestor in evolution
 - Paralogous genes: gene duplication
 - Homolog = Ortholog or paralog
- Often sequence similarity is the only way to predict whether two genes are homologs
 - Very unlikely that same (long) sequences have evolved independently from different ancestors
 - ... except horizontal gene transfer
Sequence similarity vs. distance

- Let A and B be two strings (sequences) from alphabet Σ.
- Many different ways to define similarity or distance of A and B.
- Recall Hamming distance $d_H(A, B)$.
 - Only defined when $|A| = |B|$.
- What is the simplest measure to extend Hamming distance to different length strings?
 - For many purposes it is useful if the distance is a metric.
The most studied distance function extending Hamming distance is unit cost edit distance or Levenshtein distance.

\(d_L(A, B) \) is the minimum amount of single symbol insertions, deletions and substitutions required to convert \(A \) to \(B \).

For example, when \(A = "tukholma" \) and \(B = "stockholm" \) we have \(d_L(A, B) = 4 \):

- insert \(s \), substitute \(u \rightarrow o \), insert \(c \), delete \(a \)
- ... or insert \(s \), insert \(o \), substitute \(u \rightarrow c \), delete \(a \)
- ... or is there a better sequence of edits?

\[
\begin{align*}
- & t u - k h o l m a \\
- & s t o c k h o l m -
\end{align*}
\]
Dynamic Programming

- Some problems can be broken into smaller subproblems so that the solution to the problem can be constructed from the solutions of the subproblems.
- This often leads to several instances of the same subproblem.
- Dynamic programming is a technique to organize the computation and save the solutions of the subproblems so that they only need to be solved once.
- We will use dynamic programming to compute edit distance.
Example: Computing Fibonacci numbers

- Remember Fibonacci numbers:
 \[
 F(n) = \begin{cases}
 1 & \text{if } n = 1 \text{ or } n = 2 \\
 F(n - 2) + F(n - 1) & \text{otherwise}
 \end{cases}
 \]

- The recursion to compute \(F(n) \) contains many identical subproblems:

- We can avoid solving the same subproblem several times by saving the results in an array:
Example: Computing Fibonacci numbers

- Remember Fibonacci numbers:

\[
F(n) = \begin{cases}
1 & \text{if } n = 1 \text{ or } n = 2 \\
F(n - 2) + F(n - 1) & \text{otherwise}
\end{cases}
\]

- The recursion to compute \(F(n) \) contains many identical subproblems:

\[
\begin{align*}
F(n): \\
1: & \text{ if } n = 1 \text{ or } n = 2 \text{ then} \\
2: & \quad \text{return } 1 \\
3: & \text{ else} \\
4: & \quad \text{return } F(n - 2) + F(n - 1)
\end{align*}
\]

- We can avoid solving the same subproblem several times by saving the results in an array:

\[
\begin{align*}
F(n): \\
1: & \quad f_1 \leftarrow 1 \\
2: & \quad f_2 \leftarrow 1 \\
3: & \quad \text{for } i \leftarrow 3 \text{ to } n \text{ do} \\
4: & \quad f_i \leftarrow f_{i-2} + f_{i-1} \\
5: & \quad \text{return } f_n
\end{align*}
\]
Example: Lightest path in a DAG

DAG = directed acyclic graph

Lightest path from s to v?

1. Cost: $\text{cost} = \min(1) = 1$
2. Cost: $\text{cost} = \min(1 + 2, 2 + 2) = 3$
3. Cost: $\text{cost} = \min(5, 3 + 1) = 4$
4. Cost: $\text{cost} = \min(4 + 2, 3 + 4) = 6$
5. Cost: $\text{cost} = \min(2) = 2$
6. Cost: $\text{cost} = \min(2) = 2$

Topological sort: 1 2 3 4 5 6 7
Edit distance

- Consider an optimal listing of edits to convert the prefix $a_1a_2 \ldots a_i$ of A into prefix $b_1b_2 \ldots b_j$ of B
- Let the corresponding edit distance be $d_L(a_1a_2 \ldots a_i, b_1b_2 \ldots b_j)$
- If $a_i = b_j$, we know that
 $$d_L(a_1a_2 \ldots a_i, b_1b_2 \ldots b_j) = d_L(a_1a_2 \ldots a_{i-1}, b_1b_2 \ldots b_{j-1})$$
- Otherwise either a_i is substituted by b_j, or a_i is deleted, or b_j is inserted in the optimal list of edits
- Hence we have

\[
d_L(a_1a_2 \ldots a_i, b_1b_2 \ldots b_j) = \min \begin{cases}
 d_L(a_1a_2 \ldots a_{i-1}, b_1b_2 \ldots b_{j-1}) + \text{(if } a_i = b_j \text{ then } 0 \text{ else } 1) \\
 d_L(a_1a_2 \ldots a_{i-1}, b_1b_2 \ldots b_j) + 1 \\
 d_L(a_1a_2 \ldots a_i, b_1b_2 \ldots b_{j-1}) + 1
\end{cases}
\]
Edit distance matrix $D[i, j]$

- Let $D[i, j]$ denote $d_L(a_1a_2\ldots a_i, b_qb_2\ldots b_j)$.
- Obviously $D[0, j] = j$ and $D[i, 0] = i$ because the other prefix is of length 0.
- Induction from previous slide gives:

$$D[i, j] = \min \begin{cases} D[i - 1, j - 1] + (\text{if } a_i = b_j \text{ then } 0 \text{ else } 1) \\ D[i - 1, j] + 1 \\ D[i, j - 1] + 1 \end{cases}$$

- Matrix D can be computed in many evaluation orders:
 - $D[i - 1, j - 1], D[i - 1, j], \text{ and } D[i, j - 1]$ must be available when computing $D[i, j]$.
 - E.g. compute D row-by-row, column-by-column...
- Running time to compute $D[m, n]$ is $O(mn)$.
Edit distance: example

\[
\begin{array}{cccccccccccc}
& & & & & & & & & & & & \\
& s & t & o & c & k & h & o & l & m & & \\
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \\
t & 1 & 1 & 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
u & 2 & 2 & 2 & 2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
k & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 4 & 5 & 6 & 7 \\
h & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 3 & 4 & 5 & 6 \\
o & 5 & 5 & 5 & 4 & 5 & 5 & 5 & 4 & 3 & 4 & 5 \\
l & 6 & 6 & 6 & 5 & 5 & 5 & 5 & 4 & 3 & 4 & 4 \\
m & 7 & 7 & 7 & 6 & 6 & 6 & 6 & 5 & 4 & 3 & 3 \\
a & 8 & 8 & 8 & 7 & 7 & 7 & 7 & 6 & 5 & 4 & 4 \\
\end{array}
\]
Edit distance matrix as a DAG

\[
\begin{array}{cccccccccccc}
 & s & t & o & c & k & h & o & l & m \\
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
t & 1 & 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
u & 2 & 2 & 2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
k & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 4 & 5 & 6 & 7 \\
h & 4 & 4 & 4 & 4 & 4 & 4 & 3 & 4 & 5 & 6 \\
o & 5 & 5 & 5 & 4 & 5 & 5 & 4 & 3 & 4 & 5 \\
l & 6 & 6 & 6 & 5 & 5 & 6 & 5 & 4 & 3 & 4 \\
m & 7 & 7 & 7 & 6 & 6 & 6 & 6 & 5 & 4 & 3 \\
a & 8 & 8 & 8 & 7 & 7 & 7 & 6 & 5 & 4 \\
\end{array}
\]

\[\text{cost} = \min(3 + 0, 4 + 1, 4 + 1) = 3\]
Finding optimal alignments

One alignment:
- Store pointer to each cell telling from which cell the minimum was obtained.
- Follow the pointers from \((m, n)\) to \((0, 0)\).
- Reverse the list.

All alignments:
- Backtrack from \((m, n)\) to \((0, 0)\) by checking at each cell \((i, j)\) on the path whether the value \(D[i, j]\) could have been obtained from cell \((i, j - 1)\), \((i - 1, j - 1)\), or \((i - 1, j)\).
- Explore all directions.
 - All three directions possible.
 - Exponential number of optimal paths in the worst case.
Edit distance: example

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>t</th>
<th>o</th>
<th>c</th>
<th>k</th>
<th>h</th>
<th>o</th>
<th>l</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>u</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>k</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>h</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>o</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>l</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>m</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

- t - u k h o l m a

stockholm -

- t u - k h o l m a

stockholm -
Searching homologs with edit distance?

- Take DNA sequences A and B of two genes suspected to be homologs.
- Edit distance of A and B can be huge even if A and B are true homologs:
 - One reason is silent mutations that alter DNA sequence so that the codons still encode the same amino acids
 - In principle, A and B can differ in almost every third nucleotide.
- Better to compare protein sequences.
 - Some substitutions are more likely than the others...
 - Lot of tuning needed to use proper weight for operations

Better models \implies 582483 Biological Sequence Analysis (4cr), period III
High-throughput next-generation sequencing (NGS) has raised again the issue of using edit distance.

Short DNA reads (50-1000 bp) a.k.a. patterns are measured from e.g. cells of a patient.

The reads are aligned against the reference genome

- Typically only SNPs and measurement errors need to be taken into account.
- The occurrence of the reads in the reference genome can be determined by finding the substring of the genome whose edit distance (or Hamming distance) to the reads is minimum.
- Approximate string matching problem.
NGS-atlas: RNA-seq, ChIP-seq, (targeted) resequencing, \textit{de novo} sequencing, metagenomics...
Approximate string matching with Hamming distance d_H

- **k-mismatches problem**: Search all occurrences O of pattern $P[1, m]$ in text $T[1, n]$ such that P differs in at most k positions from the occurrence substring.
 - More formally: $j \in O$ is a k-mismatch occurrence position of P in T if $d_h(P, T[j, j + m - 1]) \leq k$

- **Naive algorithm**:
 - Compare P against each $T[j, j + m - 1]$ but skip as soon as $k + 1$ mismatches are encountered.
 - Expected linear time!
Approximate string matching with edit distance d_L

- **k-errors problem** is the approximate string matching problem with edit distance:
 - More formally: $j \in O$ is a k-errors occurrence (end)position of P in T if and only if $d_L(P, T[j', j]) \leq k$ for some j'.

- Can be solved with the “zero the first row trick”:
 - $D[0, j] = 0$ for all j.
 - Otherwise the computation is identical to edit distance computation using matrix D.
 - $D[i, j]$ then equals the minimum number of edits to convert $P[1, i]$ into some suffix of $T[1, j]$.
 - If $D[m, j] \leq k$ then P can be converted to some substring $T[j', j]$ with at most k edit operations.

Faster algorithms \implies 58093 String Processing Algorithms (4 cr), period II
Approximate string matching: example

<table>
<thead>
<tr>
<th>i</th>
<th>A</th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>T</th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

The alignment shows a path through the matrix, indicating possible matches and mismatches between the strings.
Aligning reads from ChIP-seq and targeted sequences works using basic approximate string matching.

Tens of millions of reads, speed is an issue.

Reference genome can be preprocessed to speed up search.

Suffix tree like techniques work but...

- Suffix tree of human genome takes 50-200 GB!
- More space-efficient index structures have been developed (e.g. based on Burrows-Wheeler transform) that drop the space to \sim 3 GB.
NGS atlas and approximate string matching 2/3

- Reads from RNA-seq need more advanced alignment:
 - Read can span two exons

```
ACGATCGATGCGT...       ...AGTTATCTATCTACA

ACGACCGATGC TTTATCTAACTCA

ACGATCGATGC TTTATCTAACTCA
ACGACCGATGC TTTATCTAACTCA
```

ACGATCGATGCTTTTATCTATCTACA
ACGACCGATGC TTTATCTAACTCA A C T - C A
NGS atlas and approximate string matching 3/3

- *de novo* sequencing and metagenomics are much harder since there is no reference genome.
- Shortest approximate superstring (exercise 2.5)
- How to modify edit distance computations for overlaps?
 - Next week’s exercise
Variations: Heaviest path in a DAG

Heaviest path from s to v?

$\text{cost} = \max(1) = 1$

$\text{cost} = \max(5, 4 + 1) = 5$

$\text{cost} = \max(1 + 2, 2 + 2) = 4$

$\text{cost} = \max(5 + 2, 4 + 4) = 8$

$\text{cost} = \max(2) = 2$

$\text{cost} = \max(2) = 2$

Topological sort

1 2 3 4 5 6 7
Heaviest paths in sequence alignment

- Consider the DAG of edit distance matrix.
- Turn minimization into maximization.
- Give score \(\delta(a_i, b_j) \) for diagonal edges.
- Give score \(\delta(a_i, -) \) for vertical edges.
- Give score \(\delta(-, b_j) \) for horizontal edges.
- Heaviest path in the DAG corresponds to the global alignment with highest score.
- Typically \(\delta(a_i, b_j) = 1 \) if \(a_i = b_j \) and otherwise \(\delta(a_i, b_j) = -\mu \).
- Typically \(\delta(a_i, -) = \delta(-, b_j) = -\sigma \).
Global alignment DAG and recurrence

\[\text{score} = \max(3 + 1, 4 - 1, 4 - 1) = 4 \]

\[S[i, j] = \max \begin{cases}
S[i-1, j-1] + \delta(a_i, b_j) \\
S[i-1, j] + \delta(a_i, -) \\
S[i, j-1] + \delta(-, b_j)
\end{cases} \]
Global alignment: Example

\[\delta(a_i, b_j) = 1, \text{ if } a_i = b_j \]
\[\delta(a_i, b_j) = -1, \text{ otherwise} \]

\[\delta(a_i, -) = \delta(-, b_j) = -1 \]

\[
\begin{array}{cccccccccccc}
 & A & A & C & T & T & A & C & T & T & G \\
 \hline
 & 0 & -1 & -2 & -3 & -4 & -5 & -6 & -7 & -8 & -9 & -10 \\
 C & -1 & -1 & -2 & -1 & -2 & -3 & -4 & -5 & -6 & -7 & -8 \\
 A & -2 & 0 & 0 & -1 & -2 & -3 & -2 & -3 & -4 & -5 & -6 \\
 T & -3 & -1 & -1 & -1 & 0 & -1 & -2 & -3 & -2 & -1 & -2 \\
 T & -4 & -2 & -2 & -2 & 0 & +1 & 0 & -1 & -2 & -1 & -2 \\
 A & -5 & -3 & -1 & -2 & -1 & 0 & +2 & +1 & 0 & -1 & -2 \\
 G & -6 & -4 & -2 & -2 & -2 & -1 & +1 & +1 & 0 & -1 & 0 \\
\end{array}
\]
Heaviest *local* paths in sequence alignment

- How to find heaviest subpaths (local path)?
- Define that the empty path has score 0.
- It is enough to search for subpaths (local paths) with weight greater than 0.
- No heaviest path can have a prefix with negative score.
- Add an edge with score 0 from the first node to all other nodes.
Local alignment DAG and recurrence

\[S[i, j] = \max \begin{cases}
0 \\
S[i-1, j-1] + \delta(a_i, b_j) \\
S[i-1, j] + \delta(a_i, -) \\
S[i, j-1] + \delta(-, b_j)
\end{cases} \]
Local alignment: Example

\[\delta(a_i, b_j) = 1, \text{ if } a_i = b_j \]
\[\delta(a_i, b_j) = -1, \text{ otherwise} \]

\[\delta(a_i, -) = \delta(-, b_j) = -1 \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>T</th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Longest common subsequence

- Global alignment with
 - $\delta(a_i, b_j) = 1$ when $a_i = b_j$ and otherwise $\delta(a_i, b_j) = -\infty$
 - $\delta(a_i, -) = \delta(-, b_j) = 0$

 gives the length of the longest common subsequence C of A and B:
 - Longest sequence C that can be obtained by deleting 0 or more symbols from A and also by deleting 0 or more symbols from B.

 $$\begin{align*}
 \text{AACGCATACG} & \quad \text{ACGACTGATCG} \\
 \text{ACGCTACG} & \quad \text{ACGCTACG}
 \end{align*}$$

- Connection: $d_{ID}(A, B) = m + n - 2 \cdot |\text{LCS}(A, B)|$,
 where $d_{ID}(A, B)$ is the edit distance with substitution cost ∞
Outline

Sequence similarity

Dynamic programming

Edit distance with dynamic programming

Sequence similarity problems

Sequence alignments

Study group assignments
Study Group 1: Firstnames A-I

- Read the following article before coming to the study group:

 http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html

 - RNA secondary structure prediction.
 - Basic dynamic programming formulation.

- At study group, give an example of RNA secondary structure, how the recurrence is derived for its computation, and how the recurrence is evaluated.
Study Group 2: Firstnames J-Ma

 - General gap penalty model
 - Affine gap penalty model
 - Copies distributed at the lecture (ask lecturer for a pdf if you were not present)
- In the study group
 - Explain the idea of each of the tables in the recurrence for the affine gap model: V, G, F, and E.
 - What is the best global alignment of CGAGAT and CAT using the affine gap model? Use cost +4 for a match, -2 for mismatch, -3 for gap opening, -1 for gap extension. What is the score of the alignment?
Read pages 203–207 from Jones and Pevzner.
 - Gene prediction by spliced alignment:
 - Application/extension of heaviest path on a DAG
 - At study group, explain the idea visually and explain how the reoccurrences are derived. What is the running time of the algorithm?