
Unit Tests

Copyright © 2009 Esko Luontola 2

Tests Enable the -ilities,
Because Tests Enable Change

● Fear is the path to the dark side. Tests remove the fear.
● When you have tests, you are not afraid of changing and

improving the system. Architecture is a second order effect.
● The three most important things about clean tests: readability,

readability and readability. Test are as important as production code.
● In a project using TDD, typically 40-50% of all code is test code.
● If the tests are not easy to change as the system evolves

→ bad tests slow you down → you throw the tests away
→ you are afraid of changing the code → the code begins to rot
→ the project fails.

● "If you don't keep your tests clean, you will lose them. And without
them, you lose the very thing that keeps your production code
flexible. Yes, you read that correctly. It is unit tests that keep your
code flexible, maintainable, and reusable. The reason is simple. If you
have tests, you do not fear making changes to the code."

Clean Code ch9 p123
http://blog.objectmentor.com/articles/2007/10/20/architecture-is-a-second-order-effect

http://blog.objectmentor.com/articles/2007/10/20/architecture-is-a-second-order-effect

Copyright © 2009 Esko Luontola 3

Tests Are a Specification of the
System's Behaviour

● Test names should be sentences that provide the reason
why some code/test was written.

● When a test fails, there are three options:
1. Production code is broken → the test must not be changed.
2. The test does not reflect recent changes in the production

code → the test needs to be changed.
3. The test is obsolete → the test needs to be removed.

● Unless the intent of the test is clear, you will not know what
is wrong and what you should do when the test fails.

● The tests should be decoupled from the implementation.
There should be no 1:1 relation between the tests and the
implementation methods and classes.

http://dannorth.net/introducing-bdd
http://techblog.daveastels.com/2005/07/05/a-new-look-at-test-driven-development/
http://techblog.daveastels.com/files/BDD_Intro.pdf

http://dannorth.net/introducing-bdd
http://techblog.daveastels.com/2005/07/05/a-new-look-at-test-driven-development/
http://techblog.daveastels.com/files/BDD_Intro.pdf

Copyright © 2009 Esko Luontola 4

void testNull() {
 shouldFail(RuntimeException) {
 stack.push(null)
 }
 assertTrue stack.empty
}

scenario "null is pushed onto empty stack", {
 given "an empty stack",{
 stack = new Stack()
 }

 when "null is pushed", {
 pushnull = {
 stack.push(null)
 }
 }

 then "an exception should be thrown", {
 ensureThrows(RuntimeException){
 pushnull()
 }
 }

 and "then the stack should still be empty", {
 stack.empty.shouldBe true
 }
}

"xUnit Style" "BDD Style"

http://enfranchisedmind.com/blog/posts/behavior-driven-development/

http://enfranchisedmind.com/blog/posts/behavior-driven-development/

Copyright © 2009 Esko Luontola 5

http://enfranchisedmind.com/blog/posts/behavior-driven-development/

33 specifications (including 2 pending) executed successfully

 Story: empty stack

 scenario null is pushed onto empty stack
 given an empty stack
 when null is pushed
 then an exception should be thrown
 then the stack should still be empty

 scenario pop is called on empty stack
 given an empty stack
 when pop is called
 then an exception should be thrown
 then the stack should still be empty

 Story: single value stack

 scenario pop is called on stack with one value
 given an empty stack with one pushed value
 when pop is called
 then that object should be returned
 then the stack should be empty

 scenario stack with one value is not empty
 given an empty stack with one pushed value
 then the stack should not be empty

 scenario peek is called
 given a stack containing an item
 when peek is called
 then it should provide the value of the most \
 recent pushed value
 then the stack should not be empty
 then calling pop should also return the peeked \
 value which is the same as the original \
 pushed value
 then the stack should be empty
 then an example pending [PENDING]
...

http://enfranchisedmind.com/blog/posts/behavior-driven-development/

Copyright © 2009 Esko Luontola 6

"One Assert per Test"
● Each test should test only one concept/behaviour.

● Makes it possible to give intention-revealing names for each
test, so that the reason why that test failed will be obvious.

● Arrange-Act-Assert
● Not: Arrange-Act-Assert-Assert-Act-Assert-Assert...

(which some are tempted to do in slow integration tests)
– Don't do many things in one test. When there are many things

that can cause a test to fail, you will not know quickly that what
caused the test to fail. Keep tests without side-effects.

Clean Code ch9 p130
http://blog.astrumfutura.com/archives/388-Unit-Testing-One-Test,-One-Assertion-Why-It-Works.html
http://www.jbrains.ca/permalink/239
http://www.infoq.com/presentations/integration-tests-scam

http://blog.astrumfutura.com/archives/388-Unit-Testing-One-Test,-One-Assertion-Why-It-Works.html
http://www.jbrains.ca/permalink/239
http://www.infoq.com/presentations/integration-tests-scam

Copyright © 2009 Esko Luontola 7

Good Unit Tests Are FIRST
● Fast – If you hesitate to run the tests after a simple one-liner

change, your tests are far too slow. We need to be able to
run hundreds or thousands of tests per second.

● Isolated – Tests isolate failures. Each test class name and test
method name, together with the text of the assertion,
should state exactly what is wrong and where.

● Repeatable – Test must have no side-effects. Repeatable tests
do not depend on external services or resources.

● Self-validating – Tests either pass or fail. You should not need
to read a log file to decide whether a test passed or failed.

● Timely – Tests are written at the right time, immediately before
the code that makes the tests pass.

http://agileinaflash.blogspot.com/2009/02/first.html
http://blog.objectmentor.com/articles/2007/08/02/which-came-first
Clean Code ch9 p132

http://agileinaflash.blogspot.com/2009/02/first.html
http://blog.objectmentor.com/articles/2007/08/02/which-came-first

Copyright © 2009 Esko Luontola 8

The Way of Testivus
● If you write code, write tests.
● Don’t get stuck on unit testing dogma.
● Embrace unit testing karma.
● Think of code and test as one.
● The test is more important than the unit.
● The best time to test is when the code is fresh.
● Tests not run waste away.
● An imperfect test today is better than a perfect test someday.
● An ugly test is better than no test.
● Sometimes, the test justifies the means.
● Only fools use no tools.
● Good tests fail.

http://www.agitar.com/downloads/TheWayOfTestivus.pdf
http://www.artima.com/weblogs/viewpost.jsp?thread=203994

http://www.agitar.com/downloads/TheWayOfTestivus.pdf
http://www.artima.com/weblogs/viewpost.jsp?thread=203994
http://www.agitar.com/downloads/TheWayOfTestivus.pdf

Copyright © 2009 Esko Luontola 9

Code Coverage
● Code coverage tells you when something is not tested.

It will not tell when something is tested enough.
● Go for 100% coverage.

● If you start with the first line of code you write, it's possible
when using TDD. It's "easy" to get 90-95%.

● Don't go for 100% coverage.
● Use your head.

● How many code paths are there in the following method?
public static String foo(Object obj) {
 return obj.toString();
}

http://www.artima.com/weblogs/viewpost.jsp?thread=204677
http://homepage.mac.com/hey.you/lessons.html
http://www.ibm.com/developerworks/java/library/j-cq01316/

http://www.artima.com/weblogs/viewpost.jsp?thread=204677
http://homepage.mac.com/hey.you/lessons.html
http://www.ibm.com/developerworks/java/library/j-cq01316/

Copyright © 2009 Esko Luontola 10

Test Doubles
● When you want to test code that depends on something

that is too difficult or slow to use in a test environment, or
you need to verify the interaction with the component,
swap in a test double for the dependency.
● Different test doubles: Dummy, Stub, Mock, Spy, Fake.

● Mocks: state verification vs. behavior verification
● Mock roles, not objects.
● Dependency injection is useful for inserting test doubles

into the system-under-test.
http://martinfowler.com/articles/mocksArentStubs.html
http://www.mockobjects.com/files/mockrolesnotobjects.pdf
http://www.infoq.com/news/2008/08/Mock-Roles-Pryce-and-Freeman
http://code.google.com/testing/TotT-2008-06-12.pdf
http://googletesting.blogspot.com/2008/06/tott-friends-you-can-depend-on.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://hamletdarcy.blogspot.com/2007/10/mocks-and-stubs-arent-spies.html

http://martinfowler.com/articles/mocksArentStubs.html
http://www.mockobjects.com/files/mockrolesnotobjects.pdf
http://www.infoq.com/news/2008/08/Mock-Roles-Pryce-and-Freeman
http://code.google.com/testing/TotT-2008-06-12.pdf
http://googletesting.blogspot.com/2008/06/tott-friends-you-can-depend-on.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://hamletdarcy.blogspot.com/2007/10/mocks-and-stubs-arent-spies.html

Copyright © 2009 Esko Luontola 11

A Dummy passes bogus input values around to satisfy an API.

Item item = new Item(ITEM_NAME);
ShoppingCart cart = new ShoppingCart();
cart.add(item, QUANTITY);
assertEquals(QUANTITY, cart.getItem(ITEM_NAME));

A Stub overrides the real object and returns hard-coded values.
Testing with stubs only is state-based testing; you exercise the
system and then assert that the system is in an expected state.

ItemPricer pricer = new ItemPricer(){
 public BigDecimal getPrice(String name){
 return PRICE;
 }
};
ShoppingCart cart = new ShoppingCart(pricer);
cart.add(dummyItem, QUANTITY);
assertEquals(QUANTITY*PRICE, cart.getCost(ITEM_NAME));

http://code.google.com/testing/TotT-2008-06-12.pdf

http://code.google.com/testing/TotT-2008-06-12.pdf

Copyright © 2009 Esko Luontola 12

A Mock can return values, but it also cares about the way its
methods are called (“strict mocks” care about the
order of method calls, whereas “lenient mocks” do not.) Testing
with mocks is interaction-based testing; you set
expectations on the mock, and the mock verifies the
expectations as it is exercised. This example uses JMock to
generate the mock (EasyMock is similar):

Mockery ctx = new Mockery();
final ItemPricer pricer = ctx.mock(ItemPricer.class);
ctx.checking(new Expectations() {{
 one (pricer).getPrice(ITEM_NAME);
 will(returnValue(PRICE));
}});
ShoppingCart cart = new ShoppingCart(pricer);
cart.add(dummyItem, QUANTITY);
cart.getCost(ITEM_NAME);
ctx.assertIsSatisfied();

http://code.google.com/testing/TotT-2008-06-12.pdf

http://code.google.com/testing/TotT-2008-06-12.pdf

Copyright © 2009 Esko Luontola 13

A Spy serves the same purpose as a mock: returning values and
recording calls to its methods. However, tests with
spies are state-based rather than interaction-based, so the tests
look more like stub style tests.

TransactionLog log = new TransactionLogSpy();
ShoppingCart cart = new ShoppingCart(log);
cart.add(dummyItem, QUANTITY);
assertEquals(1, logSpy.getNumberOfTransactionsLogged());
assertEquals(QUANTITY*PRICE, log.getTransactionSubTotal(1));

A Fake swaps out a real implementation with a simpler, fake
implementation. The classic example is implementing an
in-memory database, or using a fake BigTable.

Repository repo = new InMemoryRepository();
ShoppingCart cart = new ShoppingCart(repo);
cart.add(dummyItem, QUANTITY);
assertEquals(1, repo.getTransactions(cart).count());
assertEquals(QUANTITY,
 repo.getById(cart.id()).getQuantity(ITEM_NAME));

http://code.google.com/testing/TotT-2008-06-12.pdf

http://code.google.com/testing/TotT-2008-06-12.pdf

Copyright © 2009 Esko Luontola 14

http://hamletdarcy.blogspot.com/2007/10/mocks-and-stubs-arent-spies.html

http://hamletdarcy.blogspot.com/2007/10/mocks-and-stubs-arent-spies.html

Copyright © 2009 Esko Luontola 15

Mock Frameworks for Java

JMock (http://www.jmock.org/)
● Set expectations declaratively before the test.

Uses a non-conventional, formatter-unfriendly syntax.
EasyMock (http://easymock.org/)
● Record expectations before the test, then replay them.

Mockito (http://code.google.com/p/mockito/)
● Does not really have mocks, but spies.
● Verify interactions after the test. No before-test expectations,

but only stubbed return values.
PowerMock (http://code.google.com/p/powermock/)
● Enables mocking of static methods, constructors, final

classes and methods, private methods etc.

http://www.jmock.org/
http://easymock.org/
http://code.google.com/p/mockito/
http://code.google.com/p/powermock/

Copyright © 2009 Esko Luontola 16

Course Material
● Clean Code chapter 9: Unit Tests
● http://blog.objectmentor.com/articles/2007/10/20/architecture-is-a-second-order-effect
● http://dannorth.net/introducing-bdd
● http://techblog.daveastels.com/files/BDD_Intro.pdf
● http://agileinaflash.blogspot.com/2009/02/first.html
● The Way of Testivus

http://www.artima.com/weblogs/viewpost.jsp?thread=203994
● Testivus on Test Coverage

http://www.artima.com/weblogs/viewpost.jsp?thread=204677
● http://martinfowler.com/articles/mocksArentStubs.html
● http://www.infoq.com/presentations/Mock-Objects-Nat-Pryce-Steve-Freeman

http://www.infoq.com/news/2008/08/Mock-Roles-Pryce-and-Freeman
● http://code.google.com/testing/TotT-2008-06-12.pdf

http://googletesting.blogspot.com/2008/06/tott-friends-you-can-depend-on.html
● http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html

http://blog.objectmentor.com/articles/2007/10/20/architecture-is-a-second-order-effect
http://dannorth.net/introducing-bdd
http://techblog.daveastels.com/files/BDD_Intro.pdf
http://agileinaflash.blogspot.com/2009/02/first.html
http://www.artima.com/weblogs/viewpost.jsp?thread=203994
http://www.artima.com/weblogs/viewpost.jsp?thread=204677
http://martinfowler.com/articles/mocksArentStubs.html
http://www.infoq.com/presentations/Mock-Objects-Nat-Pryce-Steve-Freeman
http://www.infoq.com/news/2008/08/Mock-Roles-Pryce-and-Freeman
http://code.google.com/testing/TotT-2008-06-12.pdf
http://googletesting.blogspot.com/2008/06/tott-friends-you-can-depend-on.html
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

