
Various Kinds of Testing

Copyright © 2009 Esko Luontola 2

Developer Testing is Overrated
● Developer testing (automated unit/integration/acceptance

tests) is not sufficient for revealing all application defects.
Also other techniques are needed, for example code
reviews, exploratory testing and usability testing.
● Different kinds of testing finds different kinds of problems.

● Presentation:
(22 min)

http://www.infoq.com/presentations/francl-testing-overrated
http://railspikes.com/2008/7/11/testing-is-overrated
http://railspikes.com/2008/12/2/testing-is-overrated-great-talk

http://www.infoq.com/presentations/francl-testing-overrated
http://railspikes.com/2008/7/11/testing-is-overrated
http://railspikes.com/2008/12/2/testing-is-overrated-great-talk
http://www.infoq.com/presentations/francl-testing-overrated

Copyright © 2009 Esko Luontola 3

Usability Testing
● Find a test user who has not yet used the system (preferably

someone from the system's end users) and give him some
realistic task that he should do with the system.

● Look from behind and write down everything that the user does
and says. The actions are more valuable information than what
the users says. (Recording the video and audio is also possible,
but they are slower to analyze than good handwritten notes.)

● Do not hint the user anything about how to accomplish the task
or how to use the system. Avoid putting pressure on the user.

● When the user has problems with the system, find out the
usability problem that caused it and fix it. Then iterate.

● A couple of users is enough to find most of the issues. Can be
done also with a paper prototype, before the system has been
implemented.

http://en.wikipedia.org/wiki/Usability_testing
http://www.useit.com/alertbox/20010805.html

http://en.wikipedia.org/wiki/Usability_testing
http://www.useit.com/alertbox/20010805.html

Copyright © 2009 Esko Luontola 4
GDC SF 2009,
Halo in the Laboratory,
Team Participation

Copyright © 2009 Esko Luontola 5

Exploratory Testing
● Automated tests are good for making sure known bugs do

not reappear. Manual tests are needed for finding new
unknown bugs.

● A skilled tester can bring much value to an agile team.
● Exploratory testing is simultaneous learning, test design,

and test execution. Some examples of test plans:
● "Define work flows through DecideRight and try each one. The flows should

represent realistic scenarios of use, and they should collectively encompass
each primary function of the product."

● "We need to understand the performance and reliability characteristics of
DecideRight as decision complexity increased. Start with a nominal scenario and
scale it up in terms of number of options and factors until the application appears
to hang, crash, or gracefully prevent user from enlarging any further."

● "Test all fields that allow data entry (you know the drill: function, stress, limits)"

http://www.satisfice.com/articles/et-article.pdf
http://testobsessed.com/2007/02/19/test-heuristics-cheat-sheet/
http://softwareeducation.wordpress.com/2009/09/17/36-testing-heuristics/
http://www.indicthreads.com/1324/agile-teams-miss-out-by-having-a-narrow-focus-on-testing/

http://www.satisfice.com/articles/et-article.pdf
http://testobsessed.com/2007/02/19/test-heuristics-cheat-sheet/
http://softwareeducation.wordpress.com/2009/09/17/36-testing-heuristics/
http://www.indicthreads.com/1324/agile-teams-miss-out-by-having-a-narrow-focus-on-testing/

Copyright © 2009 Esko Luontola 6

Integration Testing
● Integration test is any test whose result (pass or fail) depends

on the correctness of more than one interesting behavior.
● When an integration test fails, it's not clear where the failure

is. You waste time in finding it instead of fixing it.
● Integration tests tend to be slower than focused tests

→ more time executing them → run them less often
→ false sense of security about the system.

● When showing basic correctness (not performance, reliability,
security etc.), write only focused object tests. Test one thing at a
time. You should not need to write integration tests.

● Presentation:
(0:00-27:30 / 93 min)

http://www.infoq.com/presentations/integration-tests-scam
http://www.jbrains.ca/permalink/239

http://www.infoq.com/presentations/integration-tests-scam
http://www.jbrains.ca/permalink/239
http://www.infoq.com/presentations/integration-tests-scam

Copyright © 2009 Esko Luontola 7

Acceptance Testing
● When the customer wants some feature to be developed,

acceptance tests are written for it. They are used as:
● Communication tool: Promote discussion with the customer, to

make sure that we understand eachother and we are building the
right thing. (In contrast, unit tests make sure were are building it
right. Both are needed.)

● Acceptance criteria: Passing the acceptance tests is part of the
feature's "definition of done".

● Regression/integration tests: Acceptance tests are automated
black box tests. They are run as part of a continuous integration
build.

● Can make sense in medium to large programs, as maintaining
the acceptance tests has some overhead.

● There are various frameworks with different styles, but at the
moment they have rough edges.

http://fitnesse.org/FitNesse.UserGuide.AcceptanceTests
http://www.extremeprogramming.org/rules/functionaltests.html
http://www.objectmentor.com/resources/publishedArticles.html → Craftsman #24-#42

http://fitnesse.org/FitNesse.UserGuide.AcceptanceTests
http://www.extremeprogramming.org/rules/functionaltests.html
http://www.objectmentor.com/resources/publishedArticles.html

Copyright © 2009 Esko Luontola 8

Concurrency
● Given lastIdUsed is 93, when two threads call the

incrementValue() method, then what is the end state?

● Thread 1 gets 94, thread 2 gets 95, and lastIdUsed is 95.
● Thread 1 gets 95, thread 2 gets 94, and lastIdUsed is 95.
● Thread 1 gets 94, thread 2 gets 94, and lastIdUsed is 94.

public class IdGenerator {
 int lastIdUsed;
 public int incrementValue() {
 return ++lastIdUsed;
 }
}

Clean Code p321

Copyright © 2009 Esko Luontola 9

Example Concurrency Bug
(Guice 1.0)

http://dimdwarf.sourceforge.net/ commit 96b49611 and before (fixed on 2009-08-17)
http://groups.google.com/group/google-guice/browse_thread/thread/7cdff66a4b7acc9d

6.3.2009 19:01:18 net.orfjackal.dimdwarf.tasks.TransactionFilter filter
INFO: Task failed, rolling back its transaction
java.lang.NullPointerException

at com.google.inject.InjectorImpl.injectMembers(InjectorImpl.java:673)
at com.google.inject.InjectorImpl$8.call(InjectorImpl.java:682)
at com.google.inject.InjectorImpl$8.call(InjectorImpl.java:681)
at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:747)
at com.google.inject.InjectorImpl.injectMembers(InjectorImpl.java:680)
at net.orfjackal.dimdwarf.serial.InjectObjectsOnDeserialization.afterResolve(InjectObjectsOnDeserialization.java:51)
at net.orfjackal.dimdwarf.serial.ObjectSerializerImpl$MyObjectInputStream.resolveObject(ObjectSerializerImpl.java:135)
at java.io.ObjectInputStream.checkResolve(ObjectInputStream.java:1377)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1329)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:351)
at net.orfjackal.dimdwarf.serial.ObjectSerializerImpl.deserializeFromStream(ObjectSerializerImpl.java:82)
at net.orfjackal.dimdwarf.serial.ObjectSerializerImpl.deserialize(ObjectSerializerImpl.java:65)

...

http://dimdwarf.sourceforge.net/
http://groups.google.com/group/google-guice/browse_thread/thread/7cdff66a4b7acc9d

Copyright © 2009 Esko Luontola 10

Concurrency Testing
● Concurrency bugs are generally not repeatable – a bug

might show up once in a million times.
● Every unexplained stack trace must be investigated

thoroughly, until it has been explained and fixed, even if the
test passes on the next run! Concurrency bugs are real,
even if they show up rarely.

● Best advice regarding concurrency: Don't do it.
● Use design patterns and architectures which let you write

non-concurrent code, but which then execute it concurrently.
● Know your libraries: Which classes are not thread-safe?

What concurrency tools are there?
– java.util.Collections.synchronized*()
– java.util.concurrent.{*, atomic.*, locks.*}
– Java Language Specification, 3rd edition, chapter 17

Clean Code ch13 p182, p186
http://java.sun.com/docs/books/jls/third_edition/html/memory.html

http://java.sun.com/docs/books/jls/third_edition/html/memory.html

Copyright © 2009 Esko Luontola 11

Concurrency Testing
● Restrict concurrency to as few classes as possible.
● Make sure the code works single-threaded. Don't hunt

normal and concurrency bugs simultaneously.
● Run the tests with more threads than processors, to

encourage context switching.
● In IDEA, hold down Shift+F10 to launch tests until 20-50+

processes are running concurrently. After CPU load goes
down, look for failed tests and stack traces in log output.

● Instrument your code to try and force failures.
● Insert calls to Thread.yield() or sleep() into strategic

places to encourage context switching.
● Use a tool which does the same thing automatically, for

example ConTest (http://www.alphaworks.ibm.com/tech/contest).

Clean Code ch13 p187, p188

http://www.alphaworks.ibm.com/tech/contest

Copyright © 2009 Esko Luontola 12

Choosing a Testing Framework
● Some points to think about:

● How easy is it to add a new test?
● How easy is it to add a new fixtures?
● How readable is the test code?
● Can any characters be used in test names?
● Does it support my way of organizing test?
● Does it integrate well in my development environment?
● Does it integrate with my preferred mocking frameworks?
● When tests are run, are they completely isolated or are the

side-effects of different tests in the same class visible?
● Is it possible to run tests in parallel, on multiple CPU cores?
● Tests may be written in a different programming language.

Copyright © 2009 Esko Luontola 13

Some Unit Test Tools
● JUnit (Java) http://www.junit.org/
● TestNG (Java) http://testng.org/
● JDave (Java) http://www.jdave.org/
● JBehave (Java) http://jbehave.org/
● RSpec (Ruby) http://rspec.info/
● Specs (Scala) http://code.google.com/p/specs/
● ScalaTest (Scala) http://www.artima.com/scalatest/
● ScalaCheck (Scala) http://code.google.com/p/scalacheck/
● EasyB (Groovy) http://easyb.org/
● Some comparisons:

– http://www.codecommit.com/blog/java/the-brilliance-of-bdd
– http://www.artima.com/weblogs/viewpost.jsp?thread=251945

http://www.junit.org/
http://testng.org/
http://www.jdave.org/
http://jbehave.org/
http://rspec.info/
http://code.google.com/p/specs/
http://www.artima.com/scalatest/
http://code.google.com/p/scalacheck/
http://easyb.org/
http://www.codecommit.com/blog/java/the-brilliance-of-bdd
http://www.artima.com/weblogs/viewpost.jsp?thread=251945

Copyright © 2009 Esko Luontola 14

Some Mock Object Tools
● JMock (Java) http://www.jmock.org/
● EasyMock (Java) http://easymock.org/
● Mockito (Java) http://mockito.org/
● PowerMock (Java) http://code.google.com/p/powermock/
● RSpec (Ruby) http://rspec.info/documentation/mocks/

http://www.jmock.org/
http://easymock.org/
http://mockito.org/
http://code.google.com/p/powermock/
http://rspec.info/documentation/mocks/

Copyright © 2009 Esko Luontola 15

Some Acceptance Test Tools
● FitNesse (Java) http://fitnesse.org/
● Robot Framework (Python, Java, any)

http://code.google.com/p/robotframework/
● Cucumber (Ruby, any) http://cukes.info/

● http://blog.josephwilk.net/ruby/outside-in-development-with-cucumber-and-rspec.html

http://fitnesse.org/
http://code.google.com/p/robotframework/
http://cukes.info/
http://blog.josephwilk.net/ruby/outside-in-development-with-cucumber-and-rspec.html

Copyright © 2009 Esko Luontola 16

Some Continuous Integration Tools
● CruiseControl http://cruisecontrol.sourceforge.net/
● TeamCity http://www.jetbrains.com/teamcity/

"Continuous Integration is a software development practice where members
of a team integrate their work frequently, usually each person integrates at
least daily - leading to multiple integrations per day. Each integration is
verified by an automated build (including test) to detect integration errors as
quickly as possible. Many teams find that this approach leads to significantly
reduced integration problems and allows a team to develop cohesive
software more rapidly."

● http://www.martinfowler.com/articles/continuousIntegration.html

http://cruisecontrol.sourceforge.net/
http://www.jetbrains.com/teamcity/
http://www.martinfowler.com/articles/continuousIntegration.html

Copyright © 2009 Esko Luontola 17

Course Material
● http://www.infoq.com/presentations/francl-testing-overrated

http://railspikes.com/2008/7/11/testing-is-overrated
http://railspikes.com/2008/12/2/testing-is-overrated-great-talk

● http://www.satisfice.com/articles/et-article.pdf
● http://www.extremeprogramming.org/rules/functionaltests.html

http://www.infoq.com/presentations/francl-testing-overrated
http://railspikes.com/2008/7/11/testing-is-overrated
http://railspikes.com/2008/12/2/testing-is-overrated-great-talk
http://www.satisfice.com/articles/et-article.pdf
http://www.extremeprogramming.org/rules/functionaltests.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

