
Hard Things to Test and Refactor

Copyright © 2009 Esko Luontola 2

Legacy Code
● Using good development techniques is easy in greenfield

projects, but most projects carry some amount of legacy
code, even 100 or 1000 times more than new code.

● Legacy code is code without tests.

A few years ago, I asked a friend how his new client was
doing. He said "they're writing legacy code." [...] The age of
the code has nothing to do with it. People are writing legacy
code right now, maybe on your project.

Most of the fear involved in making changes to large code
bases is fear of introducing subtle bugs; fear of changing
things inadvertently. With tests, you can make things better
with impunity.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

„
„

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 3

Dealing With Legacy Code
● Create "test coverings" to introduce an

invariant over a small area of the
system.
● Know when we have changed the

behaviour of the system.
● Correct behaviour is defined by what

the system did yesterday.
● Start from the parts which need to be

changed first. Slowly expand the test
coverings to cover the whole system.

http://www.amazon.com/Working-Effectively-Legacy-Robert-Martin/dp/0131177052
http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

http://www.amazon.com/Working-Effectively-Legacy-Robert-Martin/dp/0131177052
http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 4

Dealing With Legacy Code
● In general, tests (1) seed the design, (2) record intentions

of its designers, (3) act as an invariant on the code.
● With legacy code we produce the most value by working

backwards: build the invariant first, then refactor to make the
code clean and add new behaviour.

● Systems that are in production need more diligent
covering, as users have come to depend upon the current
behaviour.

● Systems that have not yet been deployed can be
refactored with relative inpunity – no one knows anyways
whether it worked yet.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 5

General Legacy Management Strategy

1. Identify change points
2. Find an inflection point
3. Cover the inflection point

a) Break external dependencies
b) Break internal dependencies
c) Write tests

4. Make changes
5. Refactor the covered code

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 6

1. Identify Change Points
● First figure out where the changes will need to be made.
● If there are many ways to make the changes, and there

are not yet test coverings in place, choose the way that
requires the fewest changes.
● Saves time. Covering large areas of code with tests is slow.

● When there are more test coverings in place, the classes
can be refactored more to make the design right.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 7

2. Find an Inflection Point
● An inflection point is a narrow interface to a set of classes.

If anyone changes any of the classes behind an inflection
point, the change is either detectable at the inflection point,
or inconsequential in the application.

● Do not consider only physical dependencies, but also the
way that effects are propagated at runtime.

● When looking for inflection poitns, move outward from the
places you are going to change. Look for a narrow
interface. It could be one class or several.

● Do not trust existing UML diagrams. They rarely show all
users of a class, and they can be out of date.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 8

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Customer is the inflection point for Rental, Movie, Pricer
and their subclasses.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 9

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Customer is still the inflection point for Rental, but
changes to Movie and Pricer might propagate to the rest

of the system through Inventory.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 10

3. Cover the Inflection Point
● Covering an inflection point involves writing a tests for it.

The hard part of this is getting your legacy code to compile
in a test harness. You often have to break dependencies.

● Dependencies of a class can often be found by just trying
to create a new instance of the class.

● There are two types of dependencies:
● External dependencies are objects which we have to provide

to setup the object we are creating.
● Internal dependencies are objects which the class creates

by itself.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 11

3a. Breaking External Dependencies

● Objects talk to other objects. To test an object, we need to
sever the connection between it and other objects. This
can be done with the Dependency Inversion Principle:
A)High level modules should not depend upon low level

modules. Both should depend upon abstractions.
B)Abstractions should not depend upon details. Details should

depend upon abstractions.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 12

class CustomerView {
 private Customer _customer;
 public void setCustomer(Customer customer) {
 _customer = customer;
 }
 public void update() {
 nameWidget.setText(_customer.getName());
 }
 ...
}
class Customer {
 public Customer(CustomerView view) {
 _view = view;
 _view.setCustomer(this);
 }
 ...
}

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Depends on CustomerView
and everything that

it depends on.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 13

interface CustomerView {
 void setCustomer(Customer customer);
 void update();
}
class StandardCustomerView implements CustomerView {
 private Customer _customer;
 public void setCustomer(Customer customer) {
 _customer = customer;
 }
 public void update() {
 nameWidget.setText(_customer.getName());
 }
 ...
}
class Customer {
 public Customer(CustomerView view) {
 _view = view;
 _view.setCustomer(this);
 }
 ...
}

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Depends only on
an interface.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 14

Customer customer = new Customer(new CustomerView () {
 public void setCustomer(Customer customer) {}
 public void update() {}
});

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Empty methods, because our tests
do not care about what happens to the view.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 15

3b. Breaking Internal Dependencies

● When the class we want to cover creates its own objects
internally, sometimes the best thing that you can do is
subclass to override the creations.

● Global variables are also internal dependencies. In an OO
system they appear as Singletons or static data classes.
● You must provide them with a good known initial state. If you

forget something, the side-effects easily bleed from one test
to other tests.

● Singletons which do not affect the functional behavior of an
application (caches, factories), can behave well as internal
dependencies.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 16

class Customer {
 private Archiver _archiver;
 public Customer(CustomerView view) {
 ...
 archiver = new FileArchiver(customerPersistenceName);
 ...
 }
}

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

We don't want to use this in the tests.
It would make them too slow.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 17

class Customer {
 private Archiver archiver;
 public Customer(CustomerView view) {
 ...
 archiver = makeArchiver();
 ...
 }
 protected Archiver makeArchiver() {
 return new FileArchiver(customerPersistenceName);
 }
}

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Extract the creation to its own method,
so that the tests can override it.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 18

class TestingCustomer extends Customer {
 protected Archiver makeArchiver() {
 return new NullArchiver();
 }
}
Customer customer = new TestingCustomer(
 new CustomerView() {
 public void setCustomer(Customer customer) {}
 public void update() {}
 });

Customer customer =
 new TestingCustomer(new NullCustomerView());

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Null Object Pattern

Null Object Pattern

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 19

3c. Writing Tests

● Once the objects of an inflection point can be created in a
test, we need to place some sort of an invariant on the
code guarded by the inflection point.

● Goal: Code changes behind the inflection point can not
have effect in the system without passing through the
inflection point.
→ Write tests for the interfaces of the inflection point.
● Correctness is defined by what the system does currently.
● Try equivalence partitions and boundary values.
● Try changing the system and see if the tests notice it.
● Automated test generation may also be possible.

– JUnit Factory (http://www.agitar.com/)

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

http://www.agitar.com/
http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 20

4-5. Make Changes and Refactor
● Run tests often when making changes. Write more tests

for the changes you make, to improve the test suite.
● Clean up the code with refactorings:

● Extract method over and over again.
● Pay attention to groups of methods which use other methods

and data in the class. If there are any, there might be a good
place the split the class with the extract class refactoring.

● Remember to write more tests as you refactor. Even though
there are test coverings, they might not test what you think
they do.
– Refactoring into tests: In the case of extract method, you look

at a large method, imagine a portion you'd like to extract, write
a test for it, then you extract the method to make the test pass.

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Copyright © 2009 Esko Luontola 21

GUI Testing
● Test-driving user interfaces is challenging.

● Brittle tests: If the tests become coupled to the presentation
details, changing look and feel of the UI breaks tests.

● Slow tests: UI frameworks are generally complicated and
may slow down the tests much. Even a full web server and
browser might be needed to test a web UI.

● Nonformal specification: Writing a test which defines that the
UI looks and works right is practically impossible. Verification
by a human is the only possibility.

● The general solution is to minimize the UI code that can
not be tested automatically. Separate the UI logic from its
presentation.

http://martinfowler.com/eaaDev/ModelViewPresenter.html
http://blog.objectmentor.com/articles/2008/06/22/observations-on-test-driving-user-interfaces

http://martinfowler.com/eaaDev/ModelViewPresenter.html
http://blog.objectmentor.com/articles/2008/06/22/observations-on-test-driving-user-interfaces

Copyright © 2009 Esko Luontola 22

Declarative Data Rarely Breaks
● When test-driving UI’s it is important to decide what to test

and what not to test. The general rule for TDD is to test
anything that can break. The corollary, especially relevant
for UI’s, is don’t test anything when you don’t care if it
changes. It is usually the dynamic behavior of the UI that
can break and should be tested.

● In general, declarative data does not need to be tested:
● If a program reads a username and password from a config

file, test the dynamic behaviour of reading them. Do not test
the declarative data that are the username and password
values correct.
– Otherwise the tests would just duplicate the production code. If

you need to change one, you also have to change the other.
● See also: different Tetromino shapes.

http://blog.objectmentor.com/articles/2008/06/22/observations-on-test-driving-user-interfaces

http://blog.objectmentor.com/articles/2008/06/22/observations-on-test-driving-user-interfaces

Copyright © 2009 Esko Luontola 23

Presentation Model

Represent the state and behavior of the presentation
independently of the GUI controls used in the interface

● Presentation Model is of a fully self-contained class that
represents all the data and behavior of the UI window, but
without any of the controls used to render that UI on the
screen. A view then simply projects the state of the
presentation model onto the glass. Each view should
require only one Presentation Model.

● To do this the Presentation Model will have data fields for
all the dynamic information of the view. This won't just
include the contents of controls, but also things like
whether or not they are enabled.

● Testing the synchronization code can be hard.
http://martinfowler.com/eaaDev/PresentationModel.html

http://martinfowler.com/eaaDev/PresentationModel.html

Copyright © 2009 Esko Luontola 24

http://martinfowler.com/eaaDev/PresentationModel.html

V M D

View notifies the model
about changed state

View updates its state
from the model

View delegates to the model,
model updates the domain

http://martinfowler.com/eaaDev/PresentationModel.html

Copyright © 2009 Esko Luontola 25

Supervising Controller

Factor the UI into a view and controller where the view
handles simple mapping to the underlying model and the the

controller handles input response and complex view logic.

● Use a declarative data binding between the UI view and
model for simple view logic (assuming the UI framework
supports data bindings).

● Use a controller to handle input response and to
manipulate the view to handle more complex view logic.

● Responsibilities of the controller:
– Input response
– Partial view/model synchronization

http://martinfowler.com/eaaDev/SupervisingPresenter.html

http://martinfowler.com/eaaDev/SupervisingPresenter.html

Copyright © 2009 Esko Luontola 26

http://martinfowler.com/eaaDev/SupervisingPresenter.html

Simple logic done
by data bindings

Complex logic done
by the controller

V C M V

http://martinfowler.com/eaaDev/SupervisingPresenter.html

Copyright © 2009 Esko Luontola 27

Test double
for testing

Adapter for
the actual UI

http://martinfowler.com/eaaDev/SupervisingPresenter.html

http://martinfowler.com/eaaDev/SupervisingPresenter.html

Copyright © 2009 Esko Luontola 28

Passive View

A screen and components with all application specific
behavior extracted into a controller so that the widgets have

their state controlled entirely by the controller.

● Passive View is a very similar pattern to Supervising
Controller, but with the difference that Passive View puts
all the view update behavior in the controller, including
simple cases. This results in extra programming, but does
mean that all the presentation behavior is testable.

● Responsibilities of the controller:
– Input response
– Full view/model synchronization

● No dependencies between the view and model.

http://martinfowler.com/eaaDev/PassiveScreen.html

http://martinfowler.com/eaaDev/PassiveScreen.html

Copyright © 2009 Esko Luontola 29

http://martinfowler.com/eaaDev/PassiveScreen.html

Controller does all
view updating

Controller updates
the model

V C M V

http://martinfowler.com/eaaDev/PassiveScreen.html

Copyright © 2009 Esko Luontola 30

http://martinfowler.com/eaaDev/PassiveScreen.html

Test double
for testing

Adapter for
the actual UI

http://martinfowler.com/eaaDev/PassiveScreen.html

Copyright © 2009 Esko Luontola 31

Refactoring Databases
● Allowing the database design to

evolve as the application developes is
very important for agile methods.

● There are techniques for applying
continuous integration and automated
refactoring to databases. These
techniques work in both pre-production
and released systems.

http://www.amazon.com/Refactoring-Databases-Evolutionary-Database-Design/dp/0321293533
http://databaserefactoring.com/
http://www.martinfowler.com/articles/evodb.html

http://www.amazon.com/Refactoring-Databases-Evolutionary-Database-Design/dp/0321293533
http://databaserefactoring.com/
http://www.martinfowler.com/articles/evodb.html

Copyright © 2009 Esko Luontola 32

Refactoring Databases: Practices
● DBAs collaborate closely with developers

● The developer knows what new functionality is needed, and
the DBA has a global view of the data in the application.

● Everybody gets their own database instance
● Developers experiment with how to implement a certain

feature and may make a few attempts before settling down
to a preferred alternative. It's important for each developer to
have their own sandbox where they can experiment.

● Developers frequently integrate into a shared master
● It's much easier to do frequent small integrations rather than

infrequent large integrations. It seems that the pain of
integration increases exponentially with the size of the
integration.

http://www.martinfowler.com/articles/evodb.html

http://www.martinfowler.com/articles/evodb.html

Copyright © 2009 Esko Luontola 33

Refactoring Databases: Practices
● A database consists of schema and test data

● Tests can assume the test data is in place before they run.
● Having sample data forces to ensure that database schema

changes also migrate the sample data.
● All changes are database refactorings

● Compared to code refactorings, database refactorings
contain three changes that must be done together:
– Changing the database schema
– Migrating the data in the database
– Changing the database access code

● Individual refactorings are very small.
● Destructive and complex changes need more care. Big

changes might be postponed to the start of next iteration.

http://www.martinfowler.com/articles/evodb.html

http://www.martinfowler.com/articles/evodb.html

Copyright © 2009 Esko Luontola 34

Refactoring Databases: Practices
● Automate the refactorings

● Write the schema changes and data migration as scripts.
● A database can be updated to the latest version by running

all scripts which have been added since the last update.
● Will be simpler if the database can be taken offline, but

upgrading a 24/7 database should also be possible.
● Clearly separate all database access code

● When there is a database access layer which is clearly
separated from the rest of the code, it will be easier for the
DBAs to see how the database is used and then optimize
accordingly. Also developers will need less knowledge of the
SQL queries.

http://www.martinfowler.com/articles/evodb.html

http://www.martinfowler.com/articles/evodb.html

Copyright © 2009 Esko Luontola 35

Course Material
● http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf
● http://martinfowler.com/eaaDev/SupervisingPresenter.html
● http://martinfowler.com/eaaDev/PassiveScreen.html
● http://blog.objectmentor.com/articles/2008/06/22/observations-on-test-driving-user-interfaces
● http://www.martinfowler.com/articles/evodb.html

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf
http://martinfowler.com/eaaDev/SupervisingPresenter.html
http://martinfowler.com/eaaDev/PassiveScreen.html
http://blog.objectmentor.com/articles/2008/06/22/observations-on-test-driving-user-interfaces
http://www.martinfowler.com/articles/evodb.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

