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Abstract

Evaluation of large-scale network systems and applica-
tions is usually done in one of three ways: simulations,
real deployment on Internet, or on an emulated network
testbed such as a cluster. Simulations can study very
large systems but often abstract out many practical de-
tails, whereas real world tests are often quite small, on
the order of a few hundred nodes at most, but have
very realistic conditions. Clusters and other dedicated
testbeds offer a middle ground between the two: large
systems with real application code. They also typically
allow configuring the testbed to enable repeatable exper-
iments. In this paper we explore how to run large Bit-
Torrent experiments in a cluster setup. We have chosen
BitTorrent because the source code is available and it has
been a popular target for research. Our contribution is
two-fold. First, we show how to tweak and configure
the BitTorrent client to allow for a maximum number of
clients to be run on a single machine, without running
into any physical limits of the machine. Second, our re-
sults show that the behavior of BitTorrent can be very
sensitive to the configuration and we re-visit some exist-
ing BitTorrent research and consider the implications of
our findings on previously published results. As we show
in this paper, BitTorrent can change its behavior in subtle
ways which are sometimes ignored in published works.

1 Introduction

As networked systems and applications are getting larger
and larger in terms of number of nodes, efficient evalu-
ation methods are needed in their design. System de-
signers typically have three main methods for evaluating
the performance of their systems: simulations, real world
tests, or emulated tests on a testbed.

Simulations, and analytical modeling where applica-
ble, has the advantage that very large systems can be
evaluated. Modern simulators can easily reach into sys-
tem sizes of millions of nodes and analytical methods can

potentially push even further. However, in doing simula-
tions, the designer is often forced to make several sim-
plifying assumptions about how the system behaves and
thus abstract out many relevant practical details. Simu-
lators can of course be programmed to take more details
into account, but then their scalability becomes limited.

Real world tests, for example on systems like Planet-
Lab [1, 2] offer a realistic network environment for test-
ing. Although the connectivity and performance of the
nodes in a testbed does not match that of home users,
such tests still have the advantage that the traffic between
nodes has to flow over the real Internet and encounter real
network traffic conditions. The downside of such tests is
that they are often limited in size, with experiments of
only hundreds of nodes being often a practical limit.

Cluster-like testbeds, such as Emulab [3] or
Grid 5000 [4], attempt to strike a middle ground
between simulations and real world tests. They are
built as a cluster of computers, sometimes even geo-
graphically distributed, and connected by a high-speed
network. Clusters have the advantage that the actual
system being tested must be written for real, i.e., the
same code would be running on the real network as
well. The main issue with cluster experiments is that the
network between the nodes is the high-speed cluster net-
work, with minimal RTT and practically no packet loss.
However, these can be configured separately, according
to whatever model of a network is being called for. A
further advantage of cluster experiments is that they are
typically reproducible, since the load on the computers
and in the network is controllable [5, 6]. Conditions
of real world tests over the Internet are impossible to
reproduce exactly, although repeating the experiment
multiple times will give statistical confidence.

Our contribution in this paper revolves around how to
design experiments of network systems and applications
on a cluster-like testbed. As our results show, design-
ing large tests that push the limits of the cluster is very
tricky, with many unexpected effects cropping up at var-



ious places. We cannot stress enough that the designer
must be extremely familiar with both her own system
as well as the underlying operating system and network
when running large tests on a cluster.

As a practical example of a network application we
have chosen BitTorrent in our quest to get the most out
of a cluster. We chose BitTorrent because it is a widely
used and studied application and its source code is avail-
able, allowing us to verify some aspects of the observed
behavior from the source code.

Our starting point is to see how many instances of Bit-
Torrent can run in parallel on one physical node. We
show how to tune and tweak BitTorrent and present the
relationship between the number of clients per node and
other system parameters. Running hundreds of parallel
instances is easily feasible, opening the door to rather
large practical BitTorrent experiments.

We also present analytical means for calculating the
overall capacity (mainly number of clients per node) of
an experimental platform. A commonly used way of
looking only at average download rates and times or
aggregated bandwidth turns out to be insufficient. We
present a superior method for calculating the same pa-
rameters.

Although experiments on clusters are becoming more
common, e.g., [5], there is a lack of general understand-
ing on how such experiments should be performed and
where their limits are. Our work in this paper provides
a first set of answers to these questions through practical
experiments, and therefore provide a recipe for others to
follow when running similar experiments.

This paper is organized as follows. Section 2 gives
background on BitTorrent. Section 3 describes the ba-
sics of our evaluation methodology. Section 4 shows how
we had to tweak BitTorrent and the operating system to
get the most out of them. In Section 5 we present the
first set of our results. Section 6 presents the analytical
methods for calculating system capacity and Section 6.3
investigates how clients in BitTorrent cluster under dif-
ferent circumstances. Section 7 contrasts our results to
related work and discusses the implications of our find-
ings. Finally, Section 8 concludes the paper.

2 Background on BitTorrent

In this section, we give a brief background refresher on
BitTorrent. It is based on [7] and the source code of the
Mainline version 4 and version 5 clients.

In order to join a BitTorrent swarm, a peer first needs
to obtain the corresponding meta file, called a torrent file.
Then the peer contacts the tracker whose address is in
the torrent file. The tracker will create a peer list by ran-
domly selecting 40 peers in the swarm and return it to the
requesting peer. With the peer list, the peer can connect

to those already in the swarm and join the distribution
process. By default, a peer will keep connecting to oth-
ers until it has 40 connections or buddies. After that, it
will stop initiating new connections, but it still accepts
connections from others. When a peer has 80 buddies,
it stops accepting new buddies; any new incoming con-
nections will be dropped immediately. If the number of
buddies drops below a certain threshold, it will re-request
a new peer list from the tracker. So, during the life span
of a peer, it usually maintains 40 to 80 buddies.

The distributed file is cut into pieces. The usual size
of a piece can range from 256KB to IMB,' but it must
be a power of 2. Larger piece size can reduce the size
of a torrent file. When exchanging data, a piece will be
further divided into smaller units, which are called slices.
In such a way, the uploads can be pipelined to improve
the performance. Slice is the basic transmission unit.

As one of the core mechanisms, BitTorrent’s piece se-
lection strategy is widely known as rarest-first. More
precisely, it should be called local rarest-first since the
decision is made based on local information from the
peer list. By requesting those rare pieces, a peer can at-
tract more buddies to download from it. As a result of
tit-for-tat, it will be more likely to be served by others.

Another core mechanism is peer selection strategy.
Leechers (peers still downloading) and seeds (peers with
complete copy of file) have different peer selection strat-
egy. A leecher will upload to those who can provide it
better download rate, while a seed will upload to those
who can download from it fast. The leecher’s strategy
is rate-based tit-for-tat and the purpose is to guarantee
the fairness in the system. Seed’s strategy tries to make
sure the new replicas will be generated fast. Every 30
seconds, a peer selects the buddies to upload to based on
these strategies; others will be choked.

3 Methodology

In this section, we present the general methodology of
our experiments, including terminology and our experi-
mental environment.

3.1 Terms used in this paper

In this paper, we also use the following terms to simplify
the discussion. We refer two connected peers as buddies.
If a peer’s buddy is on the same physical node with this
peer?, we refer it as a native buddy; otherwise a foreign
buddy. Aggregated bandwidth represents the total traffic
generated by a group of peers in every second. It can
be further divided into aggregated download bandwidth

This applies to Version 4. Version 5 determines the piece size in a
manner described later.
2Recall that we run multiple instances per node



and aggregated upload bandwidth. In this paper, we only
consider the average value, not the instantaneous one,
so the aggregated download bandwidth is calculated as
the product of average download rate and the number of
peers and likewise for the aggregated upload bandwidth.

All the experiments we performed can be divided into
two categories. In one we set a limit on the leecher’s max
upload rate; we call this kind of experiments upload-
constrained experiment. In the other kind, we set a
limit on the leecher’s max download rate, and call them
download-constrained experiments. In all of our exper-
iments, two distinct nodes are used for deploying the
tracker the seed respectively. There is only one original
seed in every experiment and its upload rate is always
constrained. Every peer in the swarm will register itself
to the tracker. Our experiment scripts query the tracker
periodically to monitor the number of peers in the swarm.
Only peers that successfully register at the tracker are
counted.

3.2 Methods

Our main goal is to understand how far the experiments
can be pushed before hitting the physical limits of the
machine. When running multiple clients on a single
physical node, it is vital to know when the CPU, mem-
ory, network, or other factors start restricting the scale of
the experiment. We call the limit below which the ex-
periments still run without problems the system capac-
ity. Any experiment run above the system capacity limit
will yield biased results; thus it is vital to know that limit
when designing experiments.

CPU, memory, or local storage bottlenecks are easy
to observe, for example just by looking at the CPU uti-
lization or memory consumption statistics. Network bot-
tlenecks are slightly harder to analyze, especially when
multiple peers are running on the same node.

We use the average download rate as an indicator of
network saturation. However, our research shows the av-
erage download rate and the corresponding aggregated
bandwidth cannot reflect the system capacity correctly.
The average download rate still remains at a stable level
even though the network has already been saturated. One
key contribution of our work is in analyzing in detail how
the saturation of the network affects the experiments.

We control BitTorrent’s network usage by limiting ei-
ther its upload or download bandwidth. In most of pre-
vious research on BitTorrent, the researchers only con-
strain the upload bandwidth and set it to a low value
to model typical home connections, under the assump-
tion that upload bandwidth is the main constraint in the
system. This kind of a setting has a serious weak-
ness, because the standard BitTorrent version 4 client
has no enforced download rate limitation; it is limited

by the available physical bandwidth. In a heterogeneous
network, controlling only the upload bandwidths leaves
open the possibility of clients downloading at rates ex-
ceeding their physical bandwidth.

In our experiments we try different values for upload
bandwidth, but most of our experiments are run with a
high value of 40 Mbps (5 MB/s). Although such upload
bandwidths are still rare on the Internet, using a high
value allows for easier probing of the system capacity
limits. Using a high upload bandwidth, we can guarantee
that the network will become the first bottleneck. This
has the added benefit of allowing us to observe BitTor-
rent’s reactions to changes in network conditions more
easily. As a result, we are able to examine how BitTor-
rent’s piece and peer selection algorithms interact with
each other and get more insight on how peers cluster in a
BitTorrent swarm.

3.3 Experiment Environment

Our experiments are performed using nodes equipped
with a 8-core 2.8GHz CPU, 32GB memory and con-
nected to a Gigabit Ethernet. The underlying op-
erating system is Ubuntu SMP with Linux 2.6 ker-
nel. The TCP congestion control used in the net-
work between the nodes is CUBIC TCP. The pa-
rameters net . ipv4.tcp_wmem (controls the sending
buffer) and net.ipv4.tcp_rmem (controls the re-
ceive buffer) are set to 74096, 16384, 4194304” and
4096, 87380, 4194304 respectively (minimum, de-
fault, and maximum). We observed a slight performance
increase if the default sending buffer was increased to
64 KB, but kept it at 16 KB for our experiments.

The BitTorrent client we used is the BitTorrent
Mainline Version 4 client, with some local mod-
ifications as detailed below. The code for our
modifications and experiment setup are available at
http://www.cs.helsinki.fi/u/lxwang/p2p

4 Tweaking and Tuning

In this section we present our modifications to the Bit-
Torrent client and discuss how the operating system had
to be tuned to allow for the largest number of clients run-
ning in parallel. We will present the details of BitTorrent
parameter settings in Section 5.

4.1 Running Multiple Peers on One Node

The original design of BitTorrent only allows one in-
stance running on one node. We considered the possi-
bility of using virtual machines but decided against them
because of their relatively high resource usage which
hundreds of parallel VMs would engender.



The simpler solution was to modify the BitTorrent
client to allow multiple instances run in parallel on a sin-
gle machine. The resident memory for each instance is
10—14MB, so the memory will not be a bottleneck. We
also added some functions such as creating working and
configuration directories on the fly to avoid conflicts be-
tween the instances. BitTorrent also has a built-in limita-
tion to allow only one connection per IP address, which
we disabled. (The limitation is intended to prevent free-
riding clients from creating several peer IDs and pretend-
ing to be multiple peers; this is not an issue for us.)

4.2 The Logger Module

We implemented a Logger module in the client. The
Logger module is used to collect important information
during the lifespan of a peer in the system. It will record
the important events happening within the client, such as
the timestamps for starting the client, joining the swarm,
finishing downloads, leaving the system and so on. Be-
sides that, the Logger module also takes a snapshot of the
system every second. The snapshot includes information
such as, the current upload and download rate, share ra-
tio, transferred data size, and the connections maintained
by the client at the moment.

Since the Logger module records almost all the im-
portant information, it gives us a good way to study the
BitTorrent behavior in detail. Of particular benefit is the
ability to track connections, which is needed when inves-
tigating peer selection strategies.

4.3 Bypass I/O Operations to Hard Disk

Our first experiment was performed in a simple setting:
one seed and one leecher. Since we did not limit the
upload or download rates, the transfer rate should reach
somewhere close to the network bandwidth of 1 Gbps or
125 MB/s. However, the stable transfer rate in our exper-
iment was only 70MB/s, far below the value predicted.
The bottleneck turned out to be the I/O operations.
Writing the received file to hard disk cannot keep up with
the speed at which the client is receiving data from the
network and lot of CPU resources are wasted in I/O wait.
We considered two ways to bypass disk writes:

1. Simply throwing all received data away would elim-
inate all writes, but the client must be able to serve
other peers with the correct data, so the file has to
be available to it.

2. Storing the file in memory would help with I/O, but
we do not have enough memory for hundreds of
peers keeping a file of several GB in memory.

Our solution is a combination of the two methods.
We intercept read and write operations within BitTorrent.

I/0O bypass Transmission rate | CPU on I/O wait
NO 75MB/s 85%
YES 115MB/s almost 0%

Table 1: Average download rate with and without I/O to
hard disk

When writing, we simply discard all data and when read-
ing, we configured the client to read from a single, shared
file. Using a shared file also means that the OS is likely
caching the file in its buffers, since all clients regularly
access all parts of it, but we only have one cached copy as
opposed to each client having its own copy. We pre-load
the file before the experiment, to allow the OS to cache
it without affecting the beginning of the experiment.

As a result, we are able to eliminate I/O wait almost
completely. Table 1 shows the performance of the simple
scenario with and without I/O bypassing. It also turns out
that even when we run hundreds of clients per machine,
the CPU resources spent in I/O wait are close to zero.

4.4 Restrictions from the OS

Our next experiment was to test the maximum peers we
can start on a node. The goal was to identify possible
limits in OS or BitTorrent on starting multiple clients.
Since our goal was to find out the system capacity limits,
we simply started all clients at the same time.

One restriction is from BitTorrent itself. By default,
BitTorrent tries to listen on port 6881 for incoming con-
nections. If port 6881 is occupied, it will try the others
in the range 6881-6999 sequentially. This means we can
only start 119 peers, after which BitTorrent will report an
error. So we simply extended this range to 6881-9999 to
guarantee enough ports.

We also observed an unexplained limit on the number
of BitTorrent clients we were able to start (quasi) simul-
taneously. After starting 700 clients, the speed of starting
new processes slowed down and after 800 clients it prac-
tically stopped. We were not able to get more than 835
clients started in this manner. We investigated several
possibilities, but were not able to find a cause for this
behavior. It was not an OS limit on starting processes,
filehandles, available local ports, nor the tracker. The be-
havior is repeatable, but so far we have not been able to
find the cause.

In practical terms, this means that we have a hard limit
on the number of peers that can start “simultaneously”.
If an experiment tries to capture realistic arrival patterns,
this is not necessarily an issue, but it is something the
designer should keep in mind. In our experiment setting,
we were able to start 500 clients on a single node within
15 seconds.



Besides the above restrictions, there are also some oth-
ers from the kernel and TCP, such as the maximum pro-
cesses a user can start, maximum sockets, queue length
for loopback interface, t cp_-max_syn_backlogand so
on. All these parameters have influences on the experi-
ments and system performance. An experimenter should
be very careful when he decides running multiple peers
on one node, especially when the experiments are per-
formed near the system capacity. Most probably, the ex-
periment may be overwhelmed by tons of underlying de-
tails and parameters. However, knowing these restric-
tions enables us to control the experiment completely.
We did experiment with tuning the kernel and TCP and
did observe small potential performance gains, but none
were significant enough to merit the added trouble of
tweaking them.

4.5 Other Issues

When running multiple instances on one node, the piece
size also has an impact on the performance. In Mainline
Version 4, BitTorrent uses a dictionary to manage all the
pieces. The smaller the pieces are, the more items will be
in the dictionary, and more overhead will be introduced.
Version 5, on the other hand, decides the piece size as
a function of the file size and does not allow for more
than 2'2 pieces. We created the torrent files on Version 5
in order to get more clients per node because the torrent
files of Version 5 are smaller. However, we decided to
use Version 4 in our experiments because it is written in
a clearer way and much easier to adapt and it is able to
use the torrent files created by Version 5. Furthermore,
the basic structure and core mechanisms are the same in
both versions. We also experienced problems with unex-
plained, incomplete downloads with Version 5.

We observed also another interesting property of how
Version 4 manages the downloads. It keeps track of the
pieces in a hash table. When we tried to use an all-zero
file as the file to be distributed, we observed a hit in per-
formance, because all the pieces have the same hash and
the dictionary manager had to resolve all those hash col-
lisions. Hence, the important lesson to learn from this
is to use a “normal” file in experiments. We have not
seen clear evidence of previous research falling for this,
however it is good to note it.

S Setting BitTorrent Parameters

BitTorrent has several dozens of parameters that can be
tuned, some of which have great influence on the per-
formance. Many developers spend quite a lot of time on
tuning and testing those parameters to gain better perfor-
mance, and these parameters are set to different values

in different implementations. Even in the official im-
plementation, same parameters are changed in different
versions. These changes on the parameters reflect the
changes in the network environment, at least from the
implementer’s perspective.

Basically, BitTorrent is designed for low bandwidths
and some parameters which give BitTorrent good perfor-
mance on the Internet are not suitable in a high perfor-
mance cluster. Hence, we need to tune these parame-
ters carefully to obtain the maximum number of clients
per node. A cluster is somewhat of an artificial environ-
ment and we need to be careful when generalizing the
results to other scenarios. We believe the applicability
of the results obtained on a cluster depends on what are
the metrics of interest and how they behave. For measur-
ing the effects of “high level” behavior (e.g., piece selec-
tion, etc.), we believe the results obtained on a cluster can
be considered representative. On the other hand, appli-
cations with strict timing requirements, e.g., streaming,
would not get representative results on a cluster. The ex-
act extent to which experiment results from a cluster can
be generalized is part of our future work.

All in all, we investigated many different parameters
and below we explain the effects of the 3 main parame-
ters we discovered.

5.1 Sending buffer

The first parameter that can be tuned to improve the
performance is upload_-unit_size. It controls the
sending buffer in the application layer. When BitTor-
rent sends data, it writes 1380 bytes into TCP layer ev-
ery time by default, and as a result, it generates a large
amount of I/O operations in our experiment setting(high
transfer rate, multiple peers on one node, etc.). However,
when BitTorrent receives data, it will read up to 100KB
from the TCP buffer every time.

By increasing this upload_-unit_size, more data
can be passed to TCP layer in a single write operation
and the number of I/O operations can be reduced for a
given amount of data. In our experiments, we increased
this number to 64 KB, which we observed to give large
improvements.

5.2 Slice size

As mentioned in Section 2, slice is the basic trans-
mission unit. If a slice is corrupted, the whole slice
needs to be re-transmitted and thus a large slice size
can be inefficient. In the official version the parameter
download_slice_size controls this and is 16 KB in
Version 4 and 32 KB in Version 5.3 The reason for the

3Version 5 actually calls it download_chunk_size, butits effect
is the same.



increase in slice size between the versions is due to the
increased bandwidths on the Internet, since larger slices
are more efficient and faster network connections do not
penalize the use of larger slices.

We experimented with several slice sizes and found
out that increasing from 16 KB to 32 KB yields a sig-
nificant improvement and a further increase to 64 KB
resulted in a clear improvement over 32 KB. Further in-
creases beyond 64 KB did not yield much improvements,
so we decided to use the value 64 KB for the slice size.

5.3 Concurrent uploads

The number of concurrent uploads* plays an important
role in BitTorrent’s clustering behavior. The larger this
value, the more difficult it is to see clustering of peers. In
the extreme, when a peer uploads to all of its buddies, it
is practically impossible to see any clustering. In many
BitTorrent implementations, a user can set this value ex-
plicitly, but if this value is not specified, BitTorrent will
calculate it based on the maximum upload rate, as the
equation (1) shows. uploads denotes the number of con-
current uploads, rate denotes the maximum upload rate
in KB/s. When rate is set to negative, it means no limits
on the upload rate. We can see that when the max upload
rate is unlimited, 7 upload slots will be used, which is
quite a conservative number.

2 if0 < rate <9,
3 if9 < rate < 15,
uploads = 4 if 15 < rate < 42,
vrate x 0.6 if rate > 42,
7 ifrate < 0.
ey
Concurrent uploads also has strong influence on the
system capacity. The larger the number of concurrent
uploads, the smaller the overall system capacity, because
too many concurrent uploads also cause a large amount
of I/O operations.

5.4 Peer Set Cardinality

In many published works about BitTorrent, researchers
do not care much about how many peers they use. How-
ever, our results show that selecting a too small number
of peers can have a strong effect on the results.

We found that as the swarm size grows from O up-
wards, the average download rate keeps on decreasing
until there are 40 peers in the swarm. Then the average
download rate will remain roughly constant until we hit
the system capacity limit. The reason for this behavior is
that the peer list that a peer gets from the tracker contains

“4also referred as upload slots

40 peers. Hence, when the swarm has less than 40 peers
in total, every peer knows every other peer and the con-
nection graph between them is a full mesh. This means
that every peer has to maintain more buddies and thus the
overhead of maintaining the connections increases. In
large swarms, peers only maintain connections to about
40 peers, so the overhead remains stable after that point,
until we reach the system capacity.

The important lesson to learn from this is to make the
swarm size in any experiment larger than the peer list.

5.5 Effect of Tuning

Figure 1 shows how many peers we can deploy on a sin-
gle node with and without tuning the parameters as de-
scribed above. In these experiments we had one seed on a
different machine with a maximum upload rate of 5 MB/s
and all the leechers were on another machine and we con-
strained the leechers’ download rates to 5 MB/s. Upload
rate was unconstrained and the number of concurrent up-
loads for leechers was 7. File size was 2 GB. Figure 1(a)
shows the average download rate and Figure 1(b) shows
the aggregate download bandwidth in the system.

We can see that the average download rate in the un-
tuned case enters into the stable phase at 40 peers/node
(recall that the peer list has 40 peers, as discussed above),
and remains stable till it reaches 80 peers/node. After
80 peers/node, the average download rate drops sharply.
This change can also be observed clearly on the corre-
sponding aggregated bandwidth in Figure 1(b). Before
reaching the system capacity at 80 peers/node, the aggre-
gated bandwidth keeps increasing linearly to 350MB/s.
Without tuning the parameters, we can therefore deploy
a maximum of 80 peers on a node.

Looking at the curves for the funed case, we see that
the average download rate remains stable until we have
140 peers per node, almost double of that of the untuned
case. Likewise, the aggregated bandwidth can reach al-
most 600 MB/s. In other words, by properly tuning the
parameters we can deploy around 140 peers on a node at
maximum. The tuned case exhibits similar behavior to
the download-constrained case, with a limit of about 140
peers per node.

Figure 2 shows the results for upload-constrained ex-
periments, where every leecher had unlimited download
rate, but the upload rates were limited to 5 MB/s; seed’s
upload was also limited to 5 MB/s as in the previous
experiment. The results are similar to the ones from
the download-constrained experiment, with the differ-
ence that the average download rate for the untuned case
never enters a stable phase; instead, after the initial de-
crease in swarms under 40 peers, it continues to decline,
indicating that the system is already overloaded. Inter-
estingly, the aggregated bandwidth still keeps increasing
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Figure 1: Effects of tuning BitTorrent parameters on av-
erage download rate and aggregated bandwidth as a func-
tion of peers per node in download-constrained experi-
ments. The bars show 99% confidence intervals.

slightly after 40 peers, but as the average download rate
indicates, the system is overloaded and the experiment is
no longer correct.

Note that the tuned case uses a fixed number of 7 up-
load slots in both cases. In the upload-constrained case
we should actually let BitTorrent decide the number of
upload slots according to equation (1). We tried this as
well (results shown later in Figures 3(c) and 4) and ob-
served that the behavior is practically identical up to the
capacity limit. After the capacity limit has been reached,
7 upload slots means a more stable system performance
with a very small variation in average download rate and
aggregated bandwidth whereas the real value of 54 slots
results in highly variable behavior (Figures 3(c) and 4)

Figures 1(a) and 2(a) show that the average download
rate for the tuned case is slightly lower than untuned case
when the number of peers is very small. This is be-
cause the tuned case uses a larger slice size, hence a piece
will be divided into a smaller number of slices. Request
pipelining which allows efficient parallel downloads is
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Figure 2: Effects of tuning BitTorrent parameters on
average download rate and aggregated bandwidth as a
function of peers per node in upload-constrained experi-
ments.

not as efficient in this case, hence the average download
rate suffers slightly, but we have less I/O overhead.

6 Capacity Planning

After determining how the parameters are to be tuned for
the best performance, we now turn to the more general
issues related to capacity planning. Our goal is to deter-
mine general rules of thumb which a system designer can
use to evaluate the performance of the system.

First we show that the naive method of only looking at
the average download rate is not sufficient, and then we
turn to a more elaborate mechanism for estimating the
system capacity limit.

6.1 Naive Method For Capacity Planning

In the naive method, we only take average download rate
into account. If there is no significant drop in average



download rate, then the experiment is considered to be
reasonable.

First we experimented with placing all the leechers on
a single node. We increased the number of leechers un-
til the average download rate was no longer stable. All
leechers were upload-constrained and we used different
values for upload bandwidths: 10, 20, 40, and 100 Mbps.

First, we investigated whether we can use the simple
formula y = ¢ to roughly estimate how many peers we
can put on a single node. y is the maximum number of
peers we can put on a single node, x is the maximum up-
load or download rate we set, and « is a constant related
to the aggregated bandwidth. If the transmission rate and
maximum number of peers on a node exhibit this sim-
ple relation, then we need not redo the capacity probing
every time we change the experiment settings.

Figure 3 plots the average download rate against the
number of peers. Even though the maximum upload rates
are set to different values, the shapes of the curves are
similar. The average download rate decreases slightly
until it reaches 40 peers per node, then it enters into a
relatively stable stage. After reaching the system capac-
ity, the average download rate drops sharply.

Figure 4 plots the corresponding aggregated down-
load bandwidth based on the same experiment, with
the curves from the different cases combined. As the
two figures show, the aggregated download bandwidth
can increase to 500 MB/s, and the corresponding aver-
age download rates remain stable. Thus we can define
500 MB/s of aggregated download bandwidth as the sys-
tem capacity, and any value below that is considered safe.
Since the curves in the safe region are basically straight
lines, it is easy to fit a curve and we obtain the result that
relation between the number of peers per node, x, and
maximum upload rate per peer, y, is given by

=2 ®
T

Figure 5 shows this curve and our data points. This
curve can be used to set the values for upload bandwidth
and number of peers in an experiment when all peers
are placed on a single node. In download-constrained
experiments, we get similar results as in the upload-
constrained experiments.

6.2 Using More than One Node

We repeated the experiment above by placing the peers
on two nodes equally, starting with 20 peers per node
and increasing by 20 peers per node until we reached
200 peers per node. Upload rates were constrained to
5 MB/s and download rates were unconstrained. Results
for average download rate and aggregated bandwidth are
shown in Figure 6 and are at first sight similar to the

1300

12000 .

< qi00f Lo I/“ T

& 4 : I”}I \

S 1000

Z
900

800
0 100 200 300 400 500 600

Peers/Node

(a) Upload bandwidth 10 Mbps

2500

ul: 20Mbps
I\I\x
. }\I—[ s
@2
g 2000
2
[
T
$ 1500
<
1000
0 200
Peers/Node
(b) Upload bandwidth 20 Mbps
5000
ul: 40Mbps
4500 I\} ;
» [ e S
E T —
= 4000
2
[
S 3500
=
>
<
3000
2500
0
Peers/Node
(c) Upload bandwidth 40 Mbps
12000
ul: 100Mbps
11000 1
Q
g 10000
2
& 9000
S
S 8000
<
7000

6000
0 20 40

PeerslNode

(d) Upload bandwidth 100 Mbps

Figure 3: Average download rate as function of peers per
node for different upload bandwidths for case of 1 node
being used.

ones obtained for the single node case (Figure 3(c) and
40 Mbps line in Figure 4).

In a download-constrained experiment, we obtained
similar curves (not shown due to space reasons).

Using the naive method, we would be led to conclude
that 120 peers per node is still safe, but when we in-
spected the actual network traffic and connections made



Aggregated Bandwidth (KB/s)

—+=— ul: 10Mbps

—<— ul: 20Mbps
—4—ul: 40Mbps ]
—=&— ul: 100Mbps

300 400 500 600 700
Peers/Node
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Figure 5: Number of peers/node vs. per-peer upload rate.

by the peers, we noticed that already at 60 peers per node,
the network between the nodes had been saturated (see
details below). As a result of this saturation, BitTorrent
changed its behavior. This is not apparent in Figure 6,
hence the naive method is inadequate. Below we provide
details about our observations of the changes in behav-
ior and an analytical means for calculating when experi-
ments are still safe.

However, we consider the lack of observed change in
the average download rate in changing network condi-
tions as excellent evidence of BitTorrent’s ability to adapt
to varying conditions.

6.3 Clustering of the Nodes

We will substantiate our above claim that BitTorrent’s
behavior has changed and that the average download is
not an accurate indicator of a correct experiment in two
ways. First, we will experimentally investigate how the
connections between the peers are formed in the above
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Figure 6: Leechers deployed equally on two nodes;
upload-constrained experiment

experiment. Second, we derive simple analytical ex-
pressions for determining the bounds of when an experi-
ment can be considered correct, and demonstrate that the
above experiment with two nodes violates these intuitive
conditions.

We ran the experiment with two nodes as above, i.e.,
start with 20 peers per node, increasing it by 20 peers per
node until we reach 200 peers per node. Upload rates
were constrained to 5 MB/s and download rates were un-
limited. In every experiment we kept track of all the
connections maintained by all the peers and identified
which connections are native (to peers on same node)
and which are foreign (to peers on the other node). Ev-
ery experiment was repeated 3 times and we present the
averages and the standard deviations in the figures.

Figure 7 shows the fraction of native buddies in the
peer list given by the tracker. As we can see, the value
hovers around 50% which is to be expected since the
tracker picks the peers for the peer list uniformly at ran-
dom. Investigating the fraction of native buddies (and
consequently foreign buddies) allows us to determine
how BitTorrent is choosing where to download from.

Figure 8 shows the fraction of upload connections to
native buddies in an upload-constrained experiment. We
used two nodes, c1n008 and c1n018 and show the val-
ues for both of them, as a function of the number of peers
per node. As we can see, from 60 peers per node on-
wards, the peers tend to favor native buddies and the frac-
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Figure 8: Fraction of upload connections to native bud-
dies in an upload-constrained experiment with 2 nodes

tion of connections to native buddies keeps on increasing
throughout the experiment.

The explanation is quite simple. Because the peers
obtained in the peer list are evenly distributed, so are the
connections in the smaller tests. Because both the native
and foreign peers are able to serve data equally fast, a
peer has no reason to prefer one over the other. (Recall
that BitTorrent selects the peers to upload to or down-
load from based on the bandwidth it obtains to/from that
peer.) At around 60 peers per node, the amount of data
going between the nodes is enough to saturate the 1 Gbps
network link, whereas the local loopback still has a lot
of unused capacity. Hence, what we are seeing in Fig-
ure 8 is simply the normal BitTorrent’s peer selection al-
gorithm at work. In other words, the peers have clustered
themselves locally but this effect is not visible in the av-
erage download rates or aggregate bandwidth shown in
Figure 6.
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Figure 9: Fraction of upload connections to native bud-
dies in a download-constrained experiment with 2 nodes.

6.4 Clustering with Download Constraints

We repeated the above experiment, but this time con-
strained the download rate of every leecher to 5 MB/s
and left the upload rates unlimited. Seed’s maximum up-
load rate was 5 MB/s as in the other experiments.

Figure 9 shows the results from this experiment. As
with the upload-constrained case, the network is satu-
rated at around 60 peers per node, but the effects are dras-
tically different from the upload-constrained case. The
peers start favoring foreign buddies as opposed to native
buddies for a longer spell and return to favoring native
buddies only in very large experiments.

Interestingly, our analysis of the situation showed that
although most of the upload connections in the range of
60-80 peers per node were to foreign buddies, the peers
received most of the data from native buddies. For ex-
ample, with 20 peers per node, 54.4% of the traffic came
from native buddies, at 60 peers per node this was 60.1%
and at 100 peers per node 77.2%. Turns out that this be-
havior is a result of BitTorrent’s piece selection strategy.
Piece selection strategy in BitTorrent is based on a mech-
anism called rarest-first. The purpose is to make a peer
attractive to the others by requesting the rarest pieces first
in the swarm, and quickly turn a peer into a productive
member of the swarm.

Peers make the decision on which piece they con-
sider to be the rarest based on locally available informa-
tion from other peers. (This is why in some cases Bit-
Torrent’s piece selection algorithm is called local rarest
first.) Peers obtain information about the pieces other
peers possess through BitTorrent’s HAVE-control mes-
sages. A peer sends a HAVE-message to its buddies
when it has completed the download of a piece, in or-
der to let its buddies know that they can download the
piece from the peer. Peers keep track of the HAVE-



messages and use them to calculate which pieces are the
rarest among their buddies.

BitTorrent’s control messages (of which HAVE is one)
have to share the network with the actual data transfers.
When the network (or loopback device) becomes con-
gested, both the data and control messages are slowed
down. At the 60 peers per node point, the network be-
tween the nodes starts becoming congested, but the loop-
back is still far below its capacity. Hence, peers receive
a lot of HAVE-messages from the native buddies but the
HAVE-messages from foreign buddies slow down. As
a result of this, the peer (correctly) considers the pieces
from the foreign buddies to be rarer than native pieces
(which spread very fast within the node to many peers)
and wants to request the rarer pieces from the foreign
buddies first. As the network is only approaching the
saturation point and is not yet completely congested, the
peer is able to provide uploads to foreign buddies so that
they are willing to upload pieces to it (recall the use of
tit-for-tat).

From the results, we can conclude that BitTorrent’s
piece selection algorithm is very sensitive to changes in
network conditions in the download-constrained cases.
In fact, piece selection strategy overrules peer selection
strategy in the early part of the experiment. As the net-
work gets more and more congested, the peers are no
longer able to provide good enough upload rates to for-
eign buddies, so in accordance to the tit-for-tat policy,
they are choked. Hence they have to resort to the native
buddies for actually getting the data. Since there are no
limits on upload rate, the actual injection of new infor-
mation is limited by the seed’s upload rate (which was
limited), but the native buddies are enough to feed new
data within the node. Eventually, we see the same kind
of clustering between peers on a single node as we saw
in the upload-constrained case.

To verify our claim that the behavior above is due
to the piece selection algorithm, we repeated the ex-
periment with a random piece selection algorithm. Be-
cause peers exhibit no preference for pieces, peer selec-
tion algorithm should be the deciding factor. Results
are shown in Figure 10. The results are similar to the
upload-constrained case in Figure 8 where peer selection
is known to be the deciding factor.

As further evidence, we ran the download-constrained
experiment with leechers placed equally on three nodes
and the fraction of connections to other nodes is shown
in Figure 11. The three parallel bars represent the three
nodes. The lowest section of each bar shows native con-
nections and the two upper sections show connections to
the two other nodes. We see the same preference for for-
eign buddies in the beginning, with connections between
the other two nodes being rather uniformly split, as is
to be expected. After the network gets congested, we see
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Figure 10: Fraction of upload connections to native bud-
dies in a download-constrained experiment with 2 nodes
and random piece selection.
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Figure 11: Fraction of upload connections to native
buddies (lowest section of bars) and foreign buddies
(white and black sections) with 3 nodes in a download-
constrained experiment.

the same kind of clustering as in the case with two nodes.

6.5 Capacity Planning Formulas

We now present a simple analytical means of determin-
ing whether a planned experiment falls within the system
capacity limits or not. Table 2 lists the notation used in
the following. Let 4, j, k € {1,2,3...n}. Compared with
the traffic among the leechers, the traffic from the seed
is negligible and we have excluded it for reasons of sim-
plicity.

When we deploy multiple peers on one node, a peer
will not only try to connect and upload to the native
peers, but also to the foreign peers. P;; is the probability
that a peer on node ¢ will connect to peers on node 7, and



n number of nodes in an experiment

m; | number of peers on node %

U; aggregated upload bandwidth gener-
ated by the peers on node ¢

D, | aggregated download bandwidth gener-
ated by the peers on node ¢

L; physical capacity of loopback device
on node

C¥ | physical upload capacity of network
card on node %

Cd | physical download capacity of network
card on node %

P;; | probability that a peer on node ¢ will
connect to peers on node j

Table 2: variables used in the discussion

assume all the peers on node 7 have the same probability.
Then we have

i—1 e .
',':7:1 mp—1 if =D

P = ©)
m . . .
Som1 7T

When ¢ = j, P;; actually denotes the probability that
a peer will connect to the native peers.

U, and D; denote the aggregated upload and download
bandwidth on node 7 respectively. Obviously, U; equals
the sum of all peers’ upload bandwidth on node 7 and
D, equals the sum of all peers’ download bandwidth on
node 7. Then the traffic from node 7 to node j is’

Tij = Pij X mm(UZ, DJ) (@]

We can construct a matrix to show the traffic flows
between the nodes:

Ty, Tz Ti3 T,
To1 Toy Tos T,

T=| . ) ) . 5)
Tnl Tn2 Tn3 Tnn

In matrix 7', row ¢ represents the distribution of the
traffic flowing out of node ¢, and column 7 represents the
distribution of the traffic flowing into node ¢. The ele-
ments on the diagonal represent the traffic going through
the loopback interface of a node. This traffic in 7" must
be constrained by the physical capacity of a node. Then
for each ¢, 5 we have:

<o (6)
i=1,i#j

5We have made the assumption that all peers on a node have the
same limits on upload and download bandwidths.
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Jj=n

T;; < CM (7)
J=1,i#j
L;
Ti <5 (8)

Now, consider an extreme situation, when all the traf-
fic goes through loopback interface or the network card,
then we have the following constraints:

U; <M 9)
D; < ¢ (10)

. L;
min(U;, D;) < 5 (1D

To some extent, (6), (7) and (8) define the upper bound
of the experiment, while the (9), (10) and (11) define the
lower bound. The upper and lower bound will converge
at two points. The first is when only one node is used for
deploying leechers. Then there is only one element 77
in the matrix. The (8) and (11) will be the same, since all
the traffic will go through the loopback interface.

The second is when an infinite number of nodes is
used. Considering that we can only deploy a limited
number of peers on a node, the probability that a peer
will connect to native peers decreases to zero. As a re-
sult, all the traffic will go through network card. Then (6)
and (7) will be the same as (9) and (10). T};; will be zero
since no traffic will go through the loopback interface.

6.6 Example: Case of 2 Nodes

We revisit the case of using two nodes in an experi-
ment shown in Figure 6. In the experiment, we obtained
an average download rate of 4.25 MB/s and loopback
capacity L; = 500 MB/s. The network between the
nodes is a Gigabit Ethernet, so C = 125M B/s and
CH =125MB/s. (i € {1,2})

When there are 40 peers on each of the two nodes, we
get the traffic distribution matrix 70 as below:

740 _ {Tn T12}

83.9 86.1
= 12
Toy Too [ } (12)

86.1 83.9

We can see from the equation (12), for node 1,
Ts < C’lul, 151 < C’{” and 1777 < % The same
applies to node 2. We can see all the equations hold, the
experiments are designed within the system capacity.

When there are 60 peers on each of the two nodes, we
obtain the traffic distribution matrix 79 as below:

60 _ [Tn le}

_[126.4 128.6
Tor Too|

128.6 126.4} (13)



We can see from the equation (13), for node 1,
T2 > O and Ty; > Cf. Both equations (6) and (7) are
violated. Since equation (11) still holds, then in a upload-
constrained experiment, a peer will not treat native bud-
dies and foreign buddies equally. They start showing
preference in uploading to native buddies, and the clus-
tering happens. The same analysis can be applied to node
2. This analysis yields the same result as the investiga-
tion on the actual behavior of BitTorrent above.

7 Related Work

BitTorrent has been a popular target for research over the
past several years, including several papers, e.g., [8—12]
that use a real BitTorrent client in their experiments to
validate their models and conclusions. However, less
papers have concerned themselves with the accuracy of
their experiments and possible bias in their methodolo-
gies.

Legout et al. [12, 13] have made a thorough
measurement-based research on the two core mecha-
nisms of BitTorrent, piece and peer selection.. However,
the influences from these two mechanisms are discussed
separately. The authors showed that the rarest first algo-
rithm guarantees a close to ideal entropy, while the choke
algorithm guarantees the fairness in the system. None of
the results presented in the papers investigate the com-
bined effects of the two mechanisms, which as we have
shown, also occurs and can have significant effects on
BitTorrent’s behavior.

Antoniu et al. [6] discuss the difficulties in validat-
ing large-scale peer-to-peer systems. The authors also
proposed a framework for performing large-scale exper-
iments based on grid services. However, how the ex-
periments are affected by the underlying details and the
experiment settings are not touched.

However, only a few papers, e.g., [5, 14, 15] con-
cern the accuracy of experiments and the bias of mea-
surements. Work in [15] investigated the sampling bias
in BitTorrent experiments. Even though the discussion
merely focuses on the approach of using instrumented
client to obtain data from real-world swarm, the recom-
mendations proposed in this paper are simple heuristics
and guidelines. We have followed their recommenda-
tions and have designed our Logger module to follow
them. Our Logger module takes a snapshot for the peer
every second during its whole life span. This strategy
yields very reliable experiment data.

On the other hand, Rasti and Rejaie [14] claim that
the data obtained with this approach (injecting an instru-
mented client into real-world swarm) is not representa-
tive and has already been biased in the beginning. The
main reason for their claim is that BitTorrent clients tend
to cluster with other clients having similar upload band-
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widths. This observation is definitely valid for measur-
ing a real-world swarm on the Internet, but as our ex-
periments are performed on a cluster where all peers are
instrumented to provide logging information, such a bias
does not exist in our experimental setup.

A lot of analytical work has also studied the clustering
properties of BitTorrent. Based on the analysis of the
choking algorithm, [11] provides empirical evidence of
BitTorrent’s clustering and show that peers with similar
bandwidths tend to get clustered.

Meulpolder et al. [8] extend an earlier analytical model
from [16] and propose a new model for analytical in-
vestigation of BitTorrent’s clustering. Their model only
takes into account peer selection in BitTorrent and ig-
nores the effects of piece selection. They observe sim-
ilar clustering behavior as we have observed. However,
their model and measurements exhibit a small discrep-
ancy which they conjecture is the result of probabilistic
effects from too small experiments. Our results show that
clustering in BitTorrent is actually an interplay of both
peer and piece selection algorithms, and we believe that
their observed discrepancies are a result of their model
ignoring piece selection. Although the effects of piece
selection on clustering are small and hard to observe, our
work, in particular on the download-constrained exper-
iments, has shown that it cannot be ignored. Both [8]
and our work find the same effect of upload connections
going to foreign peers while the majority of data comes
from native peers.

The work by Rao et al. [5] is the closest work to ours.
The authors discuss the rationality of performing BitTor-
rent experiments on a cluster. However, the discussions
focus on the marginal influences on the average down-
load rate from various RTT and packet loss rates and
conclude that the effects from changing RTTs and packet
loss rates are so small that they can be discounted in the
evaluation. Our work focuses on how to design an ex-
periment on a cluster properly, i.e., what is the “safe re-
gion” for a correct experiment and how BitTorrent be-
haves when the experiments are performed around the
system capacity limit.

The experiment setup in [5] is very similar to the case
discussed in our paper. The authors used 3 nodes for
deploying leechers (100 leechers on each node) and per-
formed a homogeneous upload-constrained experiment.
The maximum upload rate was set to 100 KB/s. They
did not consider possible bottlenecks in their experiment
setup. Using our capacity planning method from Sec-
tion 6.5, we can see that their experiments require only
on the order of 3 MB/s of bandwidth between nodes and
on the loopback. Given that they were using modern
computers on the Grid 5000 testbed, they should be well
below the system capacity limit. Our work therefore val-
idates their experiment setting as being correct.



8 Conclusion

Experimental evaluation of large scale systems is an im-
portant topic in networking research. Currently no ideal
environment exists for such evaluations, with simula-
tions, real Internet, and cluster-based testbeds being the
commonly used solutions. We believe that cluster-based
testbeds offer the best of both worlds, realistic applica-
tions with a real (albeit not necessarily realistic) network
in between.

In this paper we have shown how to design BitTorrent
experiments on a cluster. Our focus has been on identify-
ing how the physical limits of the host machine affect the
tests and how many clients can be deployed on a node.
We have shown that the number of peers per node de-
pends on many factors, but up to 500 peers per node is
realistic for certain values of allocated per-client band-
width. We have shown that the simple metric of average
download rate is not sufficient for determining when an
experiment is “safe”, but that a more complex analysis is
needed. We provide a simple set of formulas, intended
to be used as rules of thumb for determining if an exper-
iment runs into the physical limits of the machine.

Our work has also extended previous work on BitTor-
rent, by showing that the previously observed clustering
behavior is actually a result of both the peer and piece
selection algorithms, and not simply the peer selection
algorithm as previously believed. Although the effect of
the piece selection algorithm is small, it cannot be ig-
nored in all cases.

In our future work, we plan to verify our results using
a 10 Gbps network between the nodes. This is likely
to change some of the details of our results, since in that
case the loopback will saturate before the network; hence
the clustering behavior will be different.
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