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Abstract—In-network caching is a key component in
information-centric networking. In this paper we show that there
is a tradeoff between two common caching metrics, byte hit rate
and footprint reduction, and show that a cooperation policy can
adjust this tradeoff. We model the cooperation policy with only
two parameters – search radius r and number of copies in the
network K. These two parameters represent the range of coop-
eration and tolerance of duplicates. We show how cooperation
policy impacts content distribution, and further illustrate the
relation between content popularity and topological properties.
Our work leads many implications on how to take advantage of
topological properties in in-network caching strategy design.

I. INTRODUCTION

Caching is a key component in information-centric networks
(ICN) [1]–[4]. In-network caching not only reduces an ISP’s
outgoing traffic, but also reduces traffic within an ISP network.
Byte hit rate (BHR) is a common metric for evaluating savings
in inter-ISP traffic and footprint reduction (FPR) [5] measures
the amount of traffic eliminated by caching (as product of
traffic volume and distance it travels in the network) and is
the metric we use for intra-ISP traffic savings. We show that
BHR by itself is insufficient in capturing the performance of a
network of caches; this is often overlooked by existing work.
This paper shows that there is a subtle interplay between BHR
and FPR and that in some cases these two metrics oppose each
other. We argue that a cooperation policy among routers can
mediate this tradeoff between BHR and FPR and show that two
parameters can tune the desired operating region: maximum
number of duplicates for each content item (K) and the radius
for cooperation (r).

To improve BHR, a cooperation policy covering a large
radius enhances network storage utilization by reducing the
number of duplicates (cache diversity in [6]). However, large-
scale cooperation causes communication overheads and in-
creases intra-ISP traffic because requests may be redirected
many times. Despite efforts in designing a cooperation pol-
icy [7], [8], [10], a proper model for its impact on BHR and
FPR is still missing. We characterize cooperation policy by its
search strength (r) and capability of reducing duplicates (K).
We show how different r and K values lead to different trade-
offs between BHR and FPR, and discuss their implication.

There is considerable interest in exploiting topological prop-
erties in cache networks. Initial efforts [11], [12] indicate
centrality as a promising metric, but questions like how to
measure the topological impact on performance and mecha-
nism of the interplay between topology, and caching strategy
still remain open. We use a cache cooperation policy to couple

content with topology and show that this coupling explains
how topological properties impact caching performance; the
tightness of the coupling indicates degree of topology’s impact.

Our contributions in this paper are as follows:
1) We highlight the importance of FPR as a performance

metric for in-network caching, and show how BHR and
FPR conflict each other at the Pareto frontier.

2) We propose a cooperation policy model to show the
relationship between cooperation policy, content, and
topology. We also categorize different cooperation types.

3) We propose a novel way to measure the impact of
topology, and perform a thorough numerical analysis to
show how it influences system performance.

II. SYSTEM MODEL

Consider a network of M routers, L of which directly
receive user requests and are edge routers. A router denoted
by Ri is equipped with a storage capacity of Ci bytes. We
assume N distinct files, denoted by fi and being si bytes in
size. All files are stored permanently at the Content Provider
(CP) represented as the (M+1)th router (RM+1). Denote the
request probability of fi by this file’s popularity pi, and denote
the popularity vector by p = [pi]. When a request for fi arrives
to an edge router Rj (j = {1, ..., L}), Rj first searches fi in
its cache. If Rj possesses it, Rj transmits fi to the user; this
a hit. Otherwise, in case of a miss, Rj contacts routers in
its r-hop neighborhood to see if any of them has fi; this is
the cooperation policy. We call the set of all routers located
at most r-hops away from Rj as the searchable set of Rj ,
denoted by Sc

j . If fi is stored in Sc
j , it is retrieved to Rj

from the closest router (if multiple routers holding fi) and
forwarded to the user. Let Rj,CP be the set of all routers on
the path between a edge router Rj and the CP (excluding the
CP). If no router in Sc

j stores the item, the request is routed to
the next router in Rj,CP and searched there as well as in the
new searchable set; there may be overlap between searchable
sets of two neighboring routers, depending on r. We define
the reachable set of a router denoted by Sr

j as the set of all
routers in the searchable sets of routers in Rj,CP . If no router
in Sr

j has fi, it is downloaded from the CP and routed to the
user following the backward path.

III. OPTIMAL IN-NETWORK CACHING

A. Cooperation Policy Design

Performance of a cooperation policy is determined by
contents in the searchable set which is a function of r. The
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diversity of contents cached in this set increases caching
efficiency which then calls for a caching scheme avoiding
duplicate copies in the set [8], [9]. However, popular content
may better be cached in multiple routers to be more accessible
from all network edge routers. We model this tradeoff with
parameter K which is the maximum number of content
replicas in the network. In reality every file would have its own
maximum number of copies which emerges automatically if r
is fixed; we use a fixed K to illustrate system behavior across
the whole parameter range. Using these two parameters, we
name a cooperation policy with parameters K and r as (K,
r)-Cooperation Policy, classified into four as follows:

1) Type I, small r, small K: Weak cooperation due to
limited access to other caches and limited availability of
popular content; the system is not using all its resources.

2) Type II, small r, large K: This is en-route caching. The
most popular content is pushed to the network edge.

3) Type III, large r, small K: Network storage is effec-
tively a single cache. Popular content is in network core.

4) Type IV, large r, large K: Strong cooperation. BHR and
FPR cannot be improved at the same time since caching
system is fully-utilized and reaches its Pareto frontier.

The complexity of cooperation can be calculated via com-
munication and computation overhead [8]. Initially, all routers
exchange their set of stored contents with routers in their
searchable set. Assuming that each content is unit size and
dropping the router index, this initialization step requires
O(MC|Sc|) messages and results in O(M2C) message ex-
changes in the worst case. Upon a change in the cache of a
router, this router informs all its r-hop neighbours about the
evicted and admitted items. This per change announcement
requires O(|Sc|) message in the worst case. In terms of
computation, the cooperation does not involve any processing
rather than discovering which of the replicas is closest to a
specific router. Therefore, computation overhead is O(|Sc|).

B. Optimal Caching under (K, r)-Cooperation Policy

Assume a centralized entity knowing the content distribution
at time t, Xt = [xi,j ] where xi,j is 1 if fi is stored at Rj , and
zero otherwise. At time t a user issues a request to Rl for fu
which is stored at Rhit. Denote the set of intermediate routers
on the path between Rl and Rhit by S , and the extended
set S [ RM+1 by S+. An optimal caching strategy (COPT)
determines whether to cache fu in the routers in S , and if to be
cached which items to evict in case of full cache occupancy.

A requested item can be served from edge router Rj or
retrieved from another router Rk including the CP. Let cj,k
denote the cost of downloading one byte at Rj from Rk. The
cost function reflects the distance between the two entities and
can be calculated using shortest path algorithms. For a (K, r)-
Cooperation Policy, as the routers not in Sr

j are not reachable
from Rj , we set cj,k = 1 if Rk 62 Sr

j . Let our decision
variables Yt = [yi,j,k] 2 {0, 1} be 1 only if Rj downloads fi
from Rk. Note that if yi,j,j = 1, then fi is stored in Rj . COPT

aims to minimize the total cost of serving all user requests
arriving to all edge routers in the long run (first term in (1)) and
cost of serving fu for which user request is just received and

can be cached in one of the routers in S (second term). COPT

exploits its knowledge of current content distribution Xt, file
popularities (p), and file size (si) information as follows:

min
NX

i=1

LX

j=1

M+1X

k=1

sipicj,kyi,j,k+supu

LX

j=1

X

Rk2S+

cj,kyu,j,k

(1)
s.t. Cache capacity constraints:
NX

i=1

sixi,jyi,j,j+suyu,j,j(1�xu,j)Cj 8Rj 2 S (2)

NX

i=1

siyi,j,jCj 8Rj 62 S (3)

Maximum replica constraint:
MX

j=1

yi,j,j  K 8i (4)

Feasibility constraints: yi,j,k  yi,k,k 8i, 8j, 8k (5)
yi,j,j = xi,j 8i, 8Rj 62 S (6)

Service constraint: 1 
M+1X

k=1

yi,j,k 8i, 8j (7)

Availability constraint: yi,M+1,M+1 = 1 8i. (8)

Our objective (1) aims to minimize the serving cost by
favoring the most popular files. Cache capacity constraints
in (2) and (3) ensure the total size of items to be stored in
a router’s cache cannot exceed cache capacity. Only routers
in S can consider putting the requested item fu into their
caches. Maximum replica constraint in (4) ensures that an
item can have maximum K replicas in the network. Note that
by removing this constraint, system can figure out optimal
K for each neighborhood automatically. Feasibility constraint
in (5) reflects fi being retrievable from Rk only if Rk stores fi
whereas (6) states that contents cached by routers not in S do
not change. Service constraint (7) forces the requests received
at edge routers to be served from some location (i.e., local
cache, another router’s cache, or the CP), while availability
constraint in (8) ensures all items are available from the
CP. After COPT determines Yt, we update the new content
distribution as Xt+1 = Yt for the next decision instant. COPT

is an integer linear programming problem which can be solved
with optimization software for small instances of the problem
but requires low-complexity distributed schemes for large scale
networks. We leave distributed solutions for future work.

Let Fj = {uj,1, uj,2, uj,3...} be the list of user requests
arriving at edge router Rj where uj,i is the ith request for a
file with size suj,i . Rj can retrieve it only from its reachable
set Sr

j which is defined as follow:

Sr
j =

[

Rk2Rj,CP

Sc
k. (9)

A request will be counted as hit if at least one of the routers
in Sr

j stores it. More formally, we define hit function �j,i for
request uj,i (assuming uj,i is a request for fi) as follows:

�j,i =

(
1 if

P
Rk2Sr

j
yi,k,k � 1

0 o/w.
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Fig. 1: Conflicting BHR and FPR at the Pareto frontier. Type
of cooperation at different points shown on right.

Next, we calculate BHR as follows:

BHR =

PL
j=1

P
uj,i2Fj

suj,i�j,i
PL

j=1

P
uj,i2Fj

suj,i

. (10)

If request uj,i is served from a router that is hj,i hops away
from the user, and the path from Rj to the CP is Hj hops
long, we can compute the FPR as follows:

FPR = 1�
PL

j=1

P
uj,i2Fj

suj,ihj,i
PL

j=1 Hj
P

uj,i2Fj
suj,i

. (11)

IV. NUMERICAL ANALYSIS

A. Setup and Metrics

We performed numerical evaluation on realistic and syn-
thetic topologies. Realistic topologies are from [13], and
synthetic topologies are scale-free networks of 50 nodes. Each
node can store 25 objects. We present results on synthetic
networks; realistic topologies produce similar results. Content
popularity is modeled according to [14], and content set
contains 5000 objects. We calculate the betweenness centrality
(CB) of each router in order to analyze its impact on cached
content in a specific router under various (K, r) pairs. We
define coupling factor (CPF) as the Pearson correlation be-
tween CB and average popularity per bit in a node’s cache;
it measures topological impact on system performance. The
rationale is that optimal system performance is achieved by
placing content at specific locations in a network according to
its popularity and that CB is a good metric to characterize a
node’s position in a graph. Strong correlation between the two
indicates that content is tightly “coupled” with topology and
topological properties influence system performance.

In the simulations, 30% of the edge routers are randomly
selected and connected with client, and the server randomly
connects to one of the 5 core nodes with highest CB . Exper-
iments were repeated at least 50 times.

B. Pareto Frontier

Fig. 1 shows how K and r impact caching performance.
The solution to COPT provides the optimal cache profiles for
given K and r (e.g., point A in Fig. 1), but it does not indicate
the best values for these two parameters, i.e., we can improve
performance by tuning K and r, because the system may be

underutilized. However, our optimization model can be used
to find Pareto frontier of the performance (green arc BC in
Fig. 1). When we reach the Pareto frontier, we cannot improve
BHR or FPR without hurting the other. The fan-shaped area
defined by ABC is the area which a cooperation policy can
explore to find the best tradeoff between K and r. Point D
where we eventually reach the Pareto frontier depends on how
cooperation policy balances BHR and FPR. Lines AB and AC
are not parallel to the x- and y-axis, since changing either of
r or K affects both BHR and FPR, as we show below.

The upper graph in Fig. 2a shows how BHR and FPR vary
as we move along the segments AB, BC, and CA, by varying
r and K. Starting from A and moving clockwise (left to right
in the figure), we increase the search radius which improves
BHR, but decreases FPR due to additional search traffic or
letting content be cached at routers with higher hj,i in (11).
From B to C, along the Pareto frontier, we observe the tradeoff
between BHR and FPR, with FPR reaching its maximum at
C. From C to A, r is 0 so the system reduces to en-route
caching where larger number of copies (near C) is beneficial,
hence as we move towards A, both BHR and FPR decrease.
Fig. 2b shows heatmaps of CPF, BHR, and FPR as function
of K and r. Lighter values indicate higher values. It shows
how BHR and FPR conflict each other, i.e., one achieving the
highest performance while the other has the worst, in regions
corresponding to the Pareto frontier.

C. Coupling Content and Topology

The lower plot in Fig. 2a shows how CPF evolves along the
same path. Values close to -1 or 1 indicate strong dependence
between popularity and betweenness. A router with a high CB

is in or close to the core of the network whereas a router with
low CB is close to the network edge. At B, where CPF is
close to 1, popular content is in nodes with high CB , i.e., the
core, whereas at C, where CPF is close to -1, it is at the edge
where CB is low. Along the Pareto frontier BC, we observe a
“migration” of content from core to edge. At D where CPF is
0, both BHR and FPR are close to halfway point between their
respective minima and maxima at B and C. We have observed
this phenomenon across a wide range of experimental settings,
but its full investigation is left for further study.

Fig. 3 shows cooperation policy’s impact on content place-
ment along the Pareto frontier BC. Point B (Fig. 3a), repre-
senting Type III cooperation favors BHR and places content
in the core. Point D along BC (Fig. 3b) strikes a tradeoff
between BHR and FPR and the content is neither in the core
nor on the edge; this is Type IV cooperation. Finally, point C
(Fig. 3c) favors FPR and pushes popular content to the edge.

D. Implications

Our results have profound implications on relationship
between cooperation policies, content popularity, and network
topology. They also give us hints on when and how topological
properties should be taken into account in caching strategy
design. We summarize the main implications as follows:
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Fig. 2: Performance of (K, r)-Cooperation along the boundary defined by ABC (a), and for all (K, r) pairs (b).

(a) Point B in Fig. 1. (b) Point D in Fig. 1. (c) Point C in Fig. 1.

Fig. 3: Content placement at points B, D, and C. Red color (dark dots) marks the most popular content. Nodes are grouped
in circles according to CB . Content migrates from core to edge as we move from B to C.

1) Cooperation policy pushes performance to Pareto fron-
tier and couples content popularity and topological prop-
erties together. How and where it falls on the frontier
depends on how it balances BHR and FPR.

2) Content popularity and topology strongly correlate with
each other only close to the Pareto frontier. Whether the
correlation is positive or negative depends on how the
cooperation policy favors one of the two metrics.

3) The optimization model implies that CB has more
influence on performance when we get closer to points A
or B in Fig. 1; only Type II and III cooperation policies
can fully utilize CB to enhance performance.

4) We conjecture that tight coupling between content pop-
ularity and topology comes similar mathematical struc-
tures as both exhibit power-law properties. Were popu-
larity closer to uniform or topology closer to a random
network, this tight coupling might disappear.

V. CONCLUSION

We modeled cache cooperation by its search radius and
tolerance of duplicates. We performed a thorough numerical
analysis and showed that cooperation policy pushes system
performance to its Pareto frontier, and how it couples content
with topology. We proposed a way to measure impact of
topology on system performance. We show when and how
topological information should be taken into account in in-
network caching strategy design.

REFERENCES

[1] V. Jacobson, et al., “Networking named content,” in Proceedings of ACM
CoNEXT, 2009.

[2] T. Koponen, et al., “A data-oriented (and beyond) network architecture,”
Proceedings of ACM SIGCOMM, 2007.

[3] Publish/Subscribe Internet Routing Paradigm, “Conceptual architecture
of PSIRP including subcomponent descriptions. Deliverable d2.2, PSIRP
project,” , August 2008.

[4] C. Dannewitz, “Netinf: An information-centric design for the future
internet,” in GI/ITG KuVS Workshop on The Future Internet, 2009.

[5] A. Anand, V. Sekar, and A. Akella, “SmartRE: an architecture for
coordinated network-wide redundancy elimination,” in Proceedings of
ACM SIGCOMM, 2009.

[6] G. Rossini and D. Rossi, “Evaluating CCN multi-path interest forward-
ing strategies,” Computer Communications, v. 36, n. 7, pp. 771–778,
2013.

[7] Y. Li, H. Xie, Y. Wen, and Z.-L. Zhang, “Coordinating in-network
caching in content-centric networks: Model and analysis,”, in IEEE
ICDCS, 2013.

[8] V. Sourlas, L. Gkatzikis, P. Flegkas, and L. Tassiulas, “Distributed cache
management in information-centric networks,” IEEE Transactions on
Network and Service Management, v. 10, no. 3, pp. 286–299, 2013.

[9] J. M. Wang, J. Zhang , B. Bensaou, “Intra-AS cooperative caching
for content-centric networks,” in ACM SIGCOMM Workshop on
Information-Centric Networking, 2013.

[10] S. Saha, A. Lukyanenko, and A. Yla-Jaaski, “Cooperative caching
through routing control in information-centric networks,” in IEEE IN-
FOCOM, 2013.

[11] D. Rossi and G. Rossini, “On sizing CCN content stores by exploiting
topological information,” in Infocom Computer Communications Work-
shops, 2012.

[12] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache “less for more” in
information-centric networks,” in IFIP Networking Conference, 2012.

[13] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in Proceedings of ACM SIGCOMM, 2002.

[14] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube,
you tube, everybody tubes: analyzing the world’s largest user generated
content video system,” in Proceedings of ACM IMC, 2007.


