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ABSTRACT: Propositional satisfiability (SAT) solving procedures (or SAT
solvers) are used as efficient back-end search engines in solving industrial-
scale problems such as automated planning and verification. Typical SAT
solvers are based on the Davis–Putnam–Logemann–Loveland (DPLL) pro-
cedure, which performs an intelligent depth-first search over the solution
space of a propositional logic formula. A key technique in SAT solvers is
clause learning, which has been shown to make DPLL more efficient both
theoretically and in practice. Branching heuristics, that is, deciding on which
variable to next set a value during search, also plays an important role in the
efficiency of search.

This report investigates the effect of structure-based branching restrictions
on the efficiency of modern DPLL based SAT solvers with clause learning.
Branching restrictions force the solver to restrict its decision making to a sub-
set of the problem variables. Ideally, if the branching restriction consists of
structurally important variables, the solver is guided to making relevant deci-
sions, decreasing the time needed for solving the problem instance.

The contributions of the report are two-fold. On one hand, a theoretical
investigation of the effect of so called input restricted branching on the proof
complexity theoretic efficiency of the proof system underlying DPLL based
SAT solvers with clause learning is presented. It is shown that with input
restricted branching, clause learning DPLL is polynomially incomparable
with the standard DPLL. This implies that all implementations of clause
learning DPLL, even with optimal heuristics, have the potential of suffering
a notable efficiency decrease when input restricted branching is applied.

On the other hand, an extensive experimental evaluation of the effect of
different structure-based branching restrictions on the practical efficiency of
a state-of-the-art clause learning DPLL implementation is provided. Com-
pared to experimental evaluations found in the literature, the treatment is
both deeper and wider: it is not limited to comparing running times and it
provides more detailed experimental evidence for the reasons why input re-
stricted branching has the potential of reducing search efficiency. The work
also investigates the effect of restricting branching in a controlled way based
on structural properties other than the plain input restriction.

KEYWORDS: Boolean circuits, branching heuristics, clause learning, con-
straint solving, DPLL, experimentation, problem structure, proof complex-
ity, propositional satisfiability
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1 INTRODUCTION

Considerable advances in fundamentals and implementational techniques
for constraint-based declarative problem solving have established constraint-
based methods as competitive and even dominant compared to more specific
algorithmic approaches for solving computationally difficult problems in a
wide range of applications. Propositional satisfiability (SAT) solving proce-
dures (or SAT solvers, see, e.g., [96] for a recent review, and [22] for a com-
parison with more general constraint satisfaction techniques, CSP), in partic-
ular, have been found to be extremely efficient as back-end search engines
in solving large industrial-scale combinatorial problems. Typical examples of
such real-world application domains of SAT solvers include automated plan-
ning [73, 74, 107, 72, 27], bounded model checking (BMC) of hardware
and software [19, 20, 78, 12], and electronic design automation applications
such as automated test pattern generation (ATPG) [80, 125, 128] and sym-
bolic trajectory evaluation (STE) [109]. Most recently, we have witnessed
applications of SAT solving techniques in new exciting fields such as bioin-
formatics [87, 130] and logical cryptanalysis [92, 94, 37] and model checking
of security protocols [11].

When solving problems with tools provided by propositional satisfiability,
the problem at hand is typically encoded as a conjunction of disjunctions of
Boolean variables and their negations, or, in other words, as a propositional
logic formula in conjunctive normal norm (CNF, or clausal form) [123].
This is due to the fact that typically SAT solvers take CNF as input (al-
though non-clausal solvers have also been suggested and implemented, see
e.g. [69, 79, 43, 64, 88, 129]). However, due to difficulty of modeling prob-
lems as CNF formulas, direct CNF encodings are rarely used. The problem
at hand is typically encoded as a general propositional formula φ, which is
then translated into a logically equivalent CNF formula by introducing ad-
ditional variables for the subformulas of φ. This is often referred to as the
“Tseitin” translation [131].

SAT solving procedures can be divided into stochastic local search based
and complete (or systematic) solvers. Local seach procedures (see, e.g., [121,
120, 119, 93, 59, 58, 118, 56, 24]) are based on iterating over a current solu-
tion candidate by flipping value assignments in the candidate, typically based
on a neighborhood function. Such procedures are characterized by their in-
ability to show (generate a proof for) the non-existence of solutions, although
recently also local search for unsatisfiability has also been considered [105].
While local search SAT solvers have proven very successful in solving ran-
dom satisfiability problem instances (see, e.g., [117]), the breakthroughs in
applying SAT solvers in relevant structural real-world problem domains are
due to complete SAT solving procedures, on which we will also concentrate
in this report.

Although some investigations into applying local search solvers in struc-
tural problem domains have been made [114, 71, 124, 103], the most suc-
cessful SAT solvers aimed at solving structured problems are based on the
complete Davis–Putnam–Logemann–Loveland procedure (DPLL) [36, 35],
which works on CNF input. Such solvers perform an intelligent search over
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the whole assignment space (or search space), and can provide unsatisfiabil-
ity proofs in case there are no solutions to the problem instance at hand. The
relevance of DPLL solvers is nowadays further highlighted by their applica-
tion as the core solver engine in the Satisfiability Modulo Theories approach
(SMT) [115, 98, 23], where the input language is enriched with more expres-
sive constraint types, such as linear equations, to allow Boolean combinations
of such constraints.

As SAT solvers have become a standard tool for solving various increas-
ingly difficult industrial problems, there is a demand for more and more
robust and efficient solvers. Research on boosting the efficiency of DPLL
solvers has concentrated on incorporating techniques such as intelligent bran-
ching heuristics (e.g., [57, 84, 97]), novel propagation mechanisms (e.g.,
binary clause reasoning [14] and equivalence reasoning [83, 55]), efficient
propagator implementations (watched literals [97]), randomization and re-
starts [68, 49], and clause learning [90] into DPLL. Out of these concepts,
clause learning can be regarded as the most important progressive step, as
witnessed by a sequence of further improved solvers [68, 90, 97, 48, 41], and
also by proof complexity theoretic efficiency analysis [18]. While new prop-
agation mechanisms, such as equivalence reasoning, have been successfully
implemented into DPLL, most clause learning solvers still rely on standard
unit propagation as the sole propagator. The integration of more sophisti-
cated propagators with clause learning is not trivial, and typically DPLL based
solvers with equivalence reasoning do not incorporate clause learning. As for
intelligent decision (or branching) heuristics, while solvers without clause
learning incorporate heuristics based on literal counting [57] and/or one-step
lookahead [84, 54, 9], branching in clause learning solvers is also driven by
learning. Most clause learning solvers implement variations of—or build on
top of, see e.g. [41, 48, 112]—the variable state independent decaying sum
(VSIDS) heuristic [97], which values the variables that have played an active
role in reaching recent conflicts. Moreover, clause learning enables non-
chronological backtracking (or backjumping). In fact, as noted, e.g., in [60],
since search space traversal is guided tightly by clause learning in modern
solvers with the help of unit propagation and restarts, clause learning solvers
can be seen as performing a process quite unlike the search performed by
implementations of the basic DPLL.

Nevertheless, branching heuristics, i.e., deciding on which variable to next
set a value during search, plays an important role in the efficiency of search.
Due to an increasing need for solving large structural problems, techniques
for making efficiency-improving decisions are vital. Intuitively, the inherent
structure of the problem domain is reflected in the importance of individual
variables. Irrelevant decisions may have an exponential effect on the running
times of SAT solvers.

In addition to developing more effective (dynamic) branching heuristics,
another complementary view on branching is provided by the concept of
(static) branching restrictions. In SAT based approaches to structured prob-
lems such as bounded model checking (of both hardware and software) and
automated planning, the CNF encoding is often derived from a transition re-
lation, where the behaviour of the underlying system is dependent on the in-
put—initial state, nondeterministic choices, et cetera—of the system. Exper-
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imental case studies in specific problem domains [46, 126, 45] have shown
that, in some cases, SAT solvers benefit from restricting the variables the
solver is allowed to branch on to so called input variables (sometimes re-
ferred to as independent variables), corresponding to the input of the under-
lying system, by letting the solver then apply its own dynamic heuristics to
this set of variables. We will refer to this restriction as the input-restriction, or
input-restricted branching. Since the system behaviour is determined by its
input, input-restricted branching DPLL remains complete. Intuitively, this
changes the worst-case behaviour of DPLL from the order of 2N to 2I with
I << N , where I and N are the number of input variables and all variables
in the CNF encoding, respectively.

From another point of view, one can investigate the best-case performance
of SAT algorithms through proof complexity [32], by studying the relative
power of their underlying inference systems (or proof systems) in terms of
the shortest existing proofs in the systems. For two propositional proof sys-
tems S,S ′, we say that S ′ (polynomially) simulates S if, for all infinite fami-
lies {Fn} of unsatisfiable formulas, there is a polynomial that bounds for all
Fn the length of the shortest proofs in S ′ with respect to the length of the
shortest proofs in S. If S ′ simulates S and vice versa, then S and S ′ are poly-
nomially equivalent. If S ′ cannot simulate S and vice versa, then S and S ′

are incomparable. From the practical point of view, if S ′ cannot simulate
S, we know that any implementation of S ′ can suffer a notable decrease in
efficiency compared to implementations of S.

Any implementation of the basic DPLL procedure can be seen as a deter-
minization of a DPLL proof system. Recently clause learning DPLL has also
been characterized as a proof system called CL [18]. Through this charac-
terization, Beame et al. [18] show that CL can provide exponentially shorter
proofs than DPLL, and thus DPLL cannot simulate CL.

Considering restricting branching in DPLL algorithms to input variables,
a natural question to ask is whether the power of the underlying inference
systems of DPLL based solvers is affected by the input-restriction. For DPLL
without clause learning, this question is answered in [67]: input-restricted
branching DPLL cannot simulate DPLL. The question for DPLL with clause
learning is left open.

Considering the experimental side of branching restrictions, the case stud-
ies on restricted branching that we are aware of, including [46, 126, 45, 122],
consider mainly input-restricted branching as the only structural way of re-
stricting the decision making in SAT solvers, and concentrate usually only on
running times of solvers. The existing literature sheds little light on the effect
of the restriction to the inner workings of SAT solvers, and, in many cases,
current state-of-the-art solver techniques are not used. This is important to
notice due to the fundamental difference between non-clause learning and
clause learning solvers.

1.1 CONTRIBUTIONS

In this report we study the effect of structurally restricting branching on the
efficiency of clause learning DPLL SAT solving from a theoretical as well as
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practical point-of-view. As detailed below, the main contributions are:

• We extend the result in [67], stating that input-restricted branching
DPLL cannot simulate DPLL, to the case of clause learning DPLL:
we show that input-restricted branching CL and the basic DPLL with-
out clause learning are polynomially incomparable. Hence, input-
restricted branching CL cannot simulate CL.

• We provide an experimental evaluation of the effect of structure-based
branching restrictions on the efficiency of a state-of-the-art clause learn-
ing SAT solver.

1.1.1 Relative Efficiency of Branching Restricted Clause Learning

We investigate the proof complexity theoretic efficiency of input-restricted
branching CL: it turns out that input-restricted CL cannot simulate CL. This
implies that all implementations of clause learning DPLL, even with opti-
mal heuristics, have the potential of suffering a notable efficiency decrease
if branching is restricted to input variables. In fact, we show that even with
unlimited restarts and the ability to create conflicts at will, input-restricted
CL cannot simulate the basic DPLL (whichdoes not apply clause learning).
This is surprising, since the unrestricted version of this variant of CL can effi-
ciently simulate general resolution [18], being thus very powerful compared
to DPLL.

1.1.2 Experimental Evaluation of Restricted Branching

We present an extensive experimental evaluation of the effect of structure-
based branching restrictions on the efficiency of solving structural SAT in-
stances. The emphasis is on the interplay between structure-based branching
restrictions and typical clause learning based search techniques in modern
complete SAT solvers:

(i) We perform an in-depth investigation into the effect of input-restricted
branching on the effectiveness of clause learning SAT solver techniques,
including the often applied VSIDS heuristic and the effectiveness of
learned conflict clauses.

(ii) In order to study whether the robustness of input-restricted branching
can be improved, we devise and apply controlled schemes for allowing
branching additionally on CNF variables other than inputs based on
structural properties of non-clausal formulas, such as the number of
occurrences of sub-formulas.

The results show that by restricting the set of branchable variables to in-
put variables, the effectiveness of the clause learning bound VSIDS heuris-
tic and conflict clauses weakens. However, by selectively allowing branch-
ing on additional variables based on structural properties, branching can be
restricted rather heavily without losing the efficiency of the original unre-
stricted branching solver. However, it seems unlikely that branching restric-
tions can make modern clause learning solvers more efficient in general with-
out coupling them more tightly with clause learning techniques.
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This study complements known experimental studies on comparing SAT
solver techniques, such as clause learning schemes [137], restarts [60], and
comparisons of branching heuristics (e.g., [57, 89]). Our aim is to provide
a more coherent picture of the effect of branching restrictions on the inner
workings of modern clause learning solvers, and to understand how impor-
tant underlying structural properties of variables are in making decisions in
clause learning SAT solvers.

1.2 RELATED WORK

1.2.1 Experiments on Branching Restrictions

In the context of SAT based scheduling, the possibility of restricting branch-
ing to inputs (or control variables) is suggested in [33], without empirical
evaluation, however. For SAT based planning, input-restricted branching (or
branching on action variables) is considered in [46], showing that the DPLL
solver Tableau (having no clause learning) benefits from this restriction on
the considered instances. Considering SAT based bounded model checking
(BMC), in [126] input-restricted branching (or branching on model vari-
ables) is applied with the clause learning solver Grasp, in which the decision
heuristic is not coupled with clause learning. Additionally, the work concen-
trates on comparing the efficiency of SAT and BDD based BMC. In [45],
the authors investigate the effect of restricting branching to inputs (or inde-
pendent variables, calling this the independent variables set (IVS) heuristic)
on planning, BMC, and crafted SAT instances using the SAT solver Sim.
The presented results deal partly with clause learning. However, the empha-
sis of the work in [45] is on comparing different decision heuristics that are
not coupled with clause learning, as opposed to the popular VSIDS heuristic
today. Most recently, in the context of SAT based automated test pattern gen-
eration (ATPG), in [122] the authors investigate the effect of input-restricted
branching on the efficiency of a variety of modern clause learning solvers.
In addition, the authors also consider fanout-restricted branching, in which
branching is allowed additionally on variables which are associated with sub-
formulas occurring multiple times in the original non-clausal problem.

However, the case studies on restricted branching that we are aware of,
including [46, 126, 45, 122], consider mainly input-restricted branching as
the only structural way of restricting the decision making in SAT solvers.
Moreover, the evaluations are based only on the running times of the solver;
a more in-depth investigation into the real cause of the differences in run-
ning times with respect to the applied solver techniques is somewhat lacking.
Additionally, in many cases, current state-of-the-art solver techniques are not
used. This is important to notice due to the fundamental difference between
non-clause learning and clause learning solvers.

Additionally, branching variable orderings for DPLL based on structural
information have also been studied [61, 8]. In these works, the solver is
forced to follow an order derived from structural properties of the formula, as
opposed to the branching restrictions studied in this work where the solver is
allowed to apply its own dynamic heuristic for branching on variables in the
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restriction.
Finally, [50] develops techniques for automatic extraction of functional

dependencies from CNF formulas, in order to exploit input-restricted branch-
ing. The extraction of functional dependencies is additionally investigated
in [110, 42].

1.2.2 Related Theoretical Results

There are also theoretical results on the effect of restricted branching on the
efficiency of the underlying inference system of DPLL. In [45] it is noted
that restricting to independent variables can result in exponential loss of effi-
ciency for DPLL without clause learning. Using the notion of proof complex-
ity, again considering DPLL without clause learning, [67] studies the effect
of input-restriction and, additionally, a variety of other static and dynamic
restrictions, such as top-down branching, which is closely related to the jus-
tification frontier heuristic (see e.g. [88]) used often in DPLL style Boolean
circuit satisfiability solvers applied in electronic design automation (EDA).
The result is a relative efficiency hierarchy for the considered restrictions,
showing that, for example, input-restricted branching DPLL cannot simulate
top-down branching DPLL, which in turn cannot simulate the standard (un-
restricted branching) DPLL.

The complexity of making the optimal branching decision during search
in DPLL is studied in [85], with the results that, while the problem for the
standard DPLL is not on the first level of the polynomial hierarchy1 (it is
∆P

2 [log n]–hard), it may be even harder for branching restricted DPLL (that
is, NPPP–hard, i.e., spanning the whole polynomial hierarchy, under a cer-
tain assumption, see [85]). Moreover, the problem of determining the size
of the optimal proofs in DPLL is coNP–hard [85].

Finally, the work in [95, 62] gives a proof complexity theoretic study of typ-
ical branching schemes (so called 2-way and d-way branching) in the context
of CSP solving.

1.2.3 Backdoor Sets

The concept of a (strong) backdoor set [136, 111] of variables is closely re-
lated to restricting branching so that the resulting solving method is still com-
plete. A unit propagation backdoor set for DPLL is a set of variables such that,
once all of these variables have values, all the other variables are set values by
unit propagation. Thus one intuitive backdoor set is the set of input variables.

While deciding whether a backdoor set of a given size exists is intractable
in general, algorithms for finding small backdoor sets for CNF formulas have
been developed in [75, 63], for example.

The parameterized complexity [39] of finding minimal backdoor sets has
also received attention. In [127], the parameterized complexity of determin-
ing whether there is a (strong and weak) backdoor set of a given size is shown
to be W[P]-complete for unit propagation and pure literal elimination. Ad-
ditionally, [100] studies the parameterized complexity of detecting backdoor

1For background in complexity classes and the polynomial hierarchy, see, e.g., [102].
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sets with respect to the polynomially solvable SAT instance classes HORN
and 2-SAT.

1.3 OUTLINE OF THE REPORT

As preliminaries, in Chapter 2 we define propositional satisfiability, and con-
strained Boolean circuits, which we use for representing structural formulas,
and discuss the close relationship between circuits and CNF formulas. We
then review the Resolution proof system and characterisations of DPLL and
CL, and discuss known results concerning their relative efficiency (Chap-
ter 3). The main theoretical and experimental results of the report are pre-
sented in Chapters 4 and 5, respectively.
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2 PROPOSITIONAL SATISFIABILITY AND
CONSTRAINED BOOLEAN CIRCUITS

In this chapter we review basic concepts related to propositional satisfiabil-
ity and define constrained Boolean circuits which we use as the representa-
tion form for structural formulas. We also discuss the relationship between
constrained Boolean circuits and clausal propositional (CNF) formulas, and
present the translation from constrained Boolean circuits to CNF which is
applied in this work.

2.1 PROPOSITIONAL SATISFIABILITY

Given a Boolean variable x, there are two literals, the positive literal, denoted
by x, and the negative literal, denoted by ¬x (or by x̄ when convenient),
where ¬ is the negation (not). As usual, we identify ¯̄x with x. A clause is a
disjunction (∨, or) of distinct literals and a CNF formula is a conjunction (∧,
and) of clauses. When convenient, we view a clause as a finite set of literals
and a CNF formula as a finite set of clauses. The sets of variables appearing
as positive and negative literals in a CNF formula F are denoted by vars+(F )
and vars−(F ), respectively, and the set of variables by vars(F ); for a clause
C, vars+(C), vars−(C), and vars(C) are defined similarly.

Given a CNF formula F , a (partial) assignment for F is a (partial) func-
tion τ : vars(F ) → {t, f}, where t and f stand for true and false, respectively.
With slight abuse of notation, if τ(x) = v, then τ(x̄) = ¬v, where ¬t = f
and ¬f = t. A clause is satisfied by τ if it contains at least one literal l such
that τ(l) = t. If τ(l) = f for every literal l in a clause, the clause is falsified
by τ . An assignment τ satisfies F if it satisfies every clause in it. A formula
is satisfiable if there is an assignment that satisfies it, and unsatisfiable other-
wise.

2.2 CONSTRAINED BOOLEAN CIRCUITS

The correspondence between system input of a real-world problem and propo-
sitional variables in a CNF encoding is not evident. However, in SAT based
approaches, direct CNF encodings of a problem domain are rarely used: the
problem at hand is typically encoded with a general propositional formula
φ, which is then translated into a logically equivalent CNF formula by intro-
ducing additional variables for the subformulas of φ. Boolean circuits (see
e.g. [102]) offer a natural way of presenting propositional formulas in a com-
pact DAG-like structure with subformula sharing, which helps in lowering
the number of additional variables needed. Additionally, the system input of
the original problem is presented by input gates in Boolean circuits.

A Boolean circuit over a finite set G of gates is a set C of equations of
form g := f(g1, . . . , gn), where g, g1, . . . , gn ∈ G and f : {f, t}n → {f, t}
is a Boolean function, with the additional requirements that (i) each g ∈ G
appears at most once as the left hand side in the equations in C, and (ii) the

8 2. PROPOSITIONAL SATISFIABILITY AND

CONSTRAINED BOOLEAN CIRCUITS



underlying directed graph

〈G,E(C) = {〈g′, g〉 ∈ G×G | g := f(. . . , g′, . . .) ∈ C}〉

is acyclic. If 〈g′, g〉 ∈ E(C), then g′ is a child of g and g is a parent of g′. If
g := f(g1, . . . , gn) is in C, then g is an f -gate (or of type f ), otherwise it is an
input gate. A gate with no parents is an output gate. A (partial) assignment
for C is a (partial) function τ : G → {f, t}. An assignment τ is consistent with
C if τ(g) = f(τ(g1), . . . , τ(gn)) for each g := f(g1, . . . , gn) in C.

A constrained Boolean circuit Cτ is a pair 〈C, τ〉, where C is a Boolean
circuit and τ is a partial assignment for C. With respect to a 〈C, τ〉, each
〈g, v〉 ∈ τ is a constraint, and g is constrained to v if 〈g, v〉 ∈ τ . An assign-
ment τ ′ satisfies Cτ if (i) τ ′ is consistent with C, and (ii) τ ′ ⊇ τ . If some
assignment satisfies Cτ then Cτ is satisfiable and otherwise unsatisfiable.

Typical Boolean functions for gate types in Boolean circuits are:

• NOT(g) evaluates to t if and only if g evaluates to f.

• OR(g1, . . . , gn) evaluates to t if and only if at least one of g1, . . . , gn

evaluates to t.

• AND(g1, . . . , gn) evaluates to t if and only if all g1, . . . , gn evaluate to t.

• IMPLY(g1, g2) evaluates to t if and only if (i) g1 evaluates to f, or (ii) g2

evaluates to t.

• EQUIV(g1, g2) evaluates to t if and only if (i) both g1, g2 evaluate to f,
or (ii) both g1, g2 evaluate to t.

• ITE(g1, g2, g3) evaluates to t if and only if (i) g1 and g2 evaluate to t, or
(ii) g1 evaluates to f and g3 evaluates to t.

• EVEN(g1, g2) evaluates to t if and only if (i) both g1, g2 evaluate to t, or
(ii) neither of g1, g2 evaluates to t.

• ODD(g1, g2) evaluates to t if and only if exactly one of g1, g2 evaluates
to t.

When convenient, we will identify a constrained circuit Cτ = 〈C, τ〉 with
its underlying directed graph 〈G,E(C)〉, where the non-input gates are la-
beled with the corresponding gate types, and gates constrained by τ addition-
ally with the corresponding constraint. With this intuition, we may write
〈〈G,E(C)〉, τ〉 instead of 〈C, τ〉.

Example 2.1 Figure 2.1 shows a Boolean circuit for a full-adder with the
constraint that the carry-out bit c1 is t. One satisfying truth assignment for
the circuit is

{〈c1, t〉, 〈t1, t〉, 〈o0, f〉, 〈t2, f〉, 〈t3, t〉, 〈a0, t〉, 〈b0, f〉, 〈c0, t〉}.
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a0 b0 c0

and odd

or

and oddt3t2

t1 o0

c1 t C = {c1 := OR(t1, t2)

t1 := AND(t3, c0)

o0 := ODD(t3, c0)

t2 := AND(a0, b0)

t3 := ODD(a0, b0)}

τ = {〈c1, t〉}
Figure 2.1: A constrained Boolean circuit 〈C, τ〉.

For notational convenience, when well-defined, the join of constrained
circuits Aτ = 〈A, τ〉 and Bθ = 〈B, θ〉 is Aτ ∪ Bθ := 〈A ∪ B, τ ∪ θ〉. When
applying the join, we will always make sure that the result is a well-defined
constrained Boolean circuit. This means that the requirements (i) on unique
definition and (ii) on acyclicity above are met, and that τ ∪ θ is a (possibly
partial) function. Additionally, for a constrained circuit 〈〈G, E〉, τ〉, the sub-
circuit 〈〈G′, E ′〉, τ ′〉 induced by a G′ ⊆ G is defined by E ′ = {〈g, g′〉 ∈
E ∩ (G′ ×G′)} and τ ′ = {〈g, ε〉 ∈ τ | g ∈ G′}.

2.2.1 Note on Representation Forms for Structural Formulas

Many graph-based representation forms for propositional formulas can be
found in the literature. Some of these, [79, 1, 135] for example, can be seen
as special cases of our definition for Boolean circuits. AND-inverter graphs
(AIGs) [79] are basically Boolean circuits in which only the gate types AND
and NOT are used. It should be noted that typically work on such graph pre-
sentation forms (e.g., [44, 79, 1, 10, 21]) deals with techniques for reducing
the size of circuits in order to enable storing very large formulas. This is also
the case with reduced Boolean circuits (RBCs), as defined in [1]. Recently,
Boolean circuits have also been called propositional DAGs [135], although
the underlying formalism coincides with Boolean circuits. However, in this
report we concentrate on investigating the relative efficiency of solver tech-
niques for CNF formulas, and apply graph-based representation of proposi-
tional formulas only for representing structure in the formulas. Hence we
use our rather standard definition of Boolean circuits.

Another often applied representation form for propositional formulas is of-
fered by binary decision diagrams (BDDs) [82, 4]. As opposed to Boolean cir-
cuits, BDDs explicitly represent the decision tree (or truth table) of a proposi-
tional formula as a DAG using only the if-then-else structure (ITE function).
BDDs are build recursively by applying the so called Shannon expansion,
which does a case analysis by expanding on a selected variable. In ordered
BDDs (OBDDs, for a detailed discussion, see [26, 40]), the expansion is
done using a fixed ordering on the variables. Reduced OBDDs (ROBDDs)
provide a canonical OBDD presentation of any propositional formula, i.e.,
there is exactly one ROBDD for any formula. After building the ROBDD
of a propositional formula, the satisfiability of the formula can be checked in
constant time. Generally, however, the biggest disadvantage of BDDs is in

10 2. PROPOSITIONAL SATISFIABILITY AND

CONSTRAINED BOOLEAN CIRCUITS



the building process of an ROBDD; most notably, the space consumption in
the process can grow exponentially in the size of the propositional formula.
In fact, the algorithms for building (reduced) OBDDs can be seen as an infer-
ence system, which is rather different to the DPLL based methods on which
we concentrate in this report. For studies on OBDDs as a proof system from
the view point of proof complexity, see [51, 13, 77, 116].

As a final remark, Boolean expression diagrams (BEDs) [10] aim at ex-
tending BDDs with Boolean circuit style gate types. For a short overview of
BDDs, BEDs, RBCs, and AIGs, we refer the reader to [21]. Since the DPLL
based reasoning methods of interest here deal with CNF formulas, we will
next define the translation from Boolean circuits to CNF formulas.

2.3 TRANSLATING BOOLEAN CIRCUITS TO CNF

In order to exploit clausal SAT solvers in solving instances of Boolean circuit
satisfiability, the circuit has to be translated to CNF.

In this report we apply the following variation of the standard “Tseitin-
style” [131] translation. A variable g̃ is introduced for each gate g. For encod-
ing the functionalities of gates, the idea is to represent the logical equivalence
g ⇔ f(g1, . . . , gn) as clauses; hence for each g := f(g1, . . . , gn) the corre-
sponding introduced clauses are as shown in Table 2.1. Given a constrained
Boolean circuit Cτ , we will denote its CNF translation by cnf(Cτ ).

Table 2.1: CNF translation for constrained Boolean circuits
gate g clauses for g ⇒ f(g1, . . . gn) clauses for f(g1, . . . gn) ⇒ g
g := IMPLY(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ g̃2) (g̃ ∨ g̃1), (g̃ ∨ ¬g̃2)
g := EQUIV(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ g̃2), (¬g̃ ∨ g̃1 ∨ ¬g̃2) (g̃ ∨ ¬g̃1 ∨ ¬g̃2), (g̃ ∨ g̃1 ∨ g̃2)
g := EVEN(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ g̃2), (¬g̃ ∨ g̃1 ∨ ¬g̃2) (g̃ ∨ ¬g̃1 ∨ ¬g̃2), (g̃ ∨ g̃1 ∨ g̃2)
g := ODD(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ ¬g̃2), (¬g̃ ∨ g̃1 ∨ g̃2) (g̃ ∨ ¬g̃1 ∨ g̃2), (g̃ ∨ g̃1 ∨ ¬g̃2)
g := OR(g1, . . . , gn) (¬g̃ ∨ g̃1 ∨ · · · ∨ g̃n) (g̃ ∨ ¬g̃1),. . . ,(g̃ ∨ ¬g̃n)
g := AND(g1, . . . , gn) (¬g̃ ∨ g̃1),. . . ,(¬g̃ ∨ g̃n) (g̃ ∨ ¬g̃1 ∨ · · · ∨ ¬g̃n)
g := NOT(g1) (¬g̃ ∨ ¬g̃1) (g̃ ∨ g̃1)
g := ITE(g1, g2, g3) (¬g̃ ∨ ¬g̃1 ∨ g̃2), (¬g̃ ∨ g̃1 ∨ g̃3) (g̃ ∨ ¬g̃1 ∨ ¬g̃2), (g̃ ∨ g̃1 ∨ ¬g̃3)

〈g, t〉 ∈ τ (g̃)
〈g, f〉 ∈ τ (¬g̃)

2.3.1 Note on Circuit-to-CNF Encodings

The “standard translation” from constrained Boolean circuits to CNF for-
mulas presented in Table 2.1 is often (depending on context) referred to as
“Tseitin translation”, as it follows the encoding of arbitrary propositional for-
mulas as CNF formulas presented in [131]. Similarly, it could also be re-
garded as “Cook translation”, as the same idea is used in [30] in proving the
NP–completeness of SAT. A well–known refinement of this standard encod-
ing is the Plaisted–Greenbaum polarity exploiting translation [104]. Com-
pact CNF encodings of Boolean circuits (or non-clausal formulas) are also
developed in [38, 101, 65], for example. However, within the scope of this
report, we will apply the standard translation, as our main interests lie in

2. PROPOSITIONAL SATISFIABILITY AND

CONSTRAINED BOOLEAN CIRCUITS

11



studying the effect of restricted branching, rather than comparing different
translations.

2.4 CNF FORMULAS AS CONSTRAINED CIRCUITS

Any CNF formula F = {C1, . . . , Ck} can naturally be seen as a Boolean
circuit. Basically, F is a Boolean circuit with an AND of ORs which represent
the clauses. Formally, circuit(F ) := 〈C, τ〉 is defined by associating an input
gate gx with each x ∈ vars(F ), a NOT-gate gx̄ with each x ∈ vars−(F ), an
OR-gate gCi

with each clause Ci ∈ F , an AND-gate gF with F , and by setting
τ = {〈gF , t〉} and

C := {gF := AND(gC1 , . . . , gCk
)} ∪ {gx̄ := NOT(gx) | x ∈ vars−(F )} ∪

{gCi
:= OR(gli,1 , . . . , gli,ni

) | Ci = {li,1, . . . , li,ni
} ∈ F}.

Example 2.2 circuit({{a, b}, {a, b̄}, {ā, b}, {ā, b̄}}) is shown in Figure 2.2.

a

t
AND

b

OR OR OR OR

NOT NOT

Figure 2.2: The Boolean circuit circuit({{a, b}, {a, b̄}, {ā, b}, {ā, b̄}})
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3 CNF PROOF SYSTEMS AND SAT SOLVING

In this chapter we discuss the propositional proof systems of interest in the
context of this work, with known results on their relative efficiency. First,
we formally define propositional proof systems and the needed proof com-
plexity theoretic notions. We then review the well–known Resolution proof
system and some of its refinements. After this, we concentrate on the Davis–
Putnam–Logemann–Loveland (or DPLL) procedure [36, 35] and the addi-
tional techniques applied in typical DPLL based SAT solvers today—most
importantly, clause learning. In doing so, we go through characterizations
of DPLL (with and without clause learning) as proof systems, which we will
apply in the theoretical part of the report.

3.1 PROPOSITIONAL PROOF SYSTEMS AND COMPLEXITY

Formally, a propositional proof system [32] is a polynomial-time computable
predicate S such that a propositional formula F is unsatisfiable if and only if
there is a proof p for which S(F, p). Thus a proof p of F is a certificate of
the unsatisfiability of F , and a proof system is a polynomial-time procedure
for checking the validity of proofs in a certain format.

While proof checking is efficient, finding short proofs may be difficult,
or, generally, impossible since short proofs may not exist for a too weak proof
system. As a measure of hardness of proving unsatisfiability of a CNF formula
F in a proof system S, the (proof) complexity of F in S is the length of the
shortest proof of F in S. For a family {Fn} of unsatisfiable CNF formulas
over increasing number of variables, the (asymptotic) complexity of {Fn} is
measured with respect to the number of clauses in Fn.

For two proof systems S,S ′, we say that S ′ (polynomially) simulates S if for
all families {Fn} there is a polynomial p such that CS′(Fn) ≤ p(CS(Fn)) for
all Fn, where CS and CS′ are the complexities of Fn in S and S ′, respectively.
If S simulates S ′ and vice versa, then S and S ′ are polynomially equivalent.
If there is a family {Fn} for which S ′ does not polynomially simulate S, we
say that {Fn} separates S from S ′. If S can be separated from S ′ and vice
versa, then S and S ′ are incomparable. Notice that polynomial simulation
gives a partial order for proof systems based on their relative power.

With these definitions, in order to show that a proof system S cannot
simulate another system S ′, it suffices to exhibit an infinite family {Fn} of
unsatisfiable formulas over an increasing number of variables, such that the
minimal length proofs in S for {Fn} are asymptotically superpolynomially
longer that the minimal length proofs in S ′ with respect to the number of
clauses in Fn. It is worth noticing that, from this basic proof complexity
theoretic point of view only unsatisfiable formulas (and hence proofs of un-
satisfiability) are of interest. Although exponential lower bounds for DPLL
on families of satisfiable formulas have been shown in restricted probabilistic
contexts [99, 3, 2, 6], a satisfying truth assignment always acts as a polynomial
length witness for the satisfiability of an arbitrary satisfiable formula F .
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3.2 RESOLUTION

The well-known Resolution proof system [108] (RES) is based on the resolu-
tion rule. Let C, D be clauses, and x a Boolean variable. The resolution rule
is

{x} ∪ C {x̄} ∪D
C ∪D

or, in other words, we can directly derive C ∪D from {x} ∪ C and {x̄} ∪D
by resolving on x. For a given CNF formula F , a RES derivation of a clause
C from F is a sequence of clauses π = (C1, C2, . . . , Cm = C), where each
Ci, 1 ≤ i ≤ m, is either (i) a clause in F (an initial clause), or (ii) directly
derived with the resolution rule from two clauses Cj, Ck where j, k < i (a
derived clause). The length of π is m, the number of clauses occurring in
it. A RES proof (for the unsatisfiability) of a CNF formula F is any RES
derivation of the empty clause ∅ from F .

Any RES derivation π = (C1, C2, . . . , Cm) can be presented as a directed
acyclic graph, in which the leafs are initial clauses, inner nodes are derived
clauses, and the root is the clause Cm. The edge relation is defined so that
there are edges from Ci and Cj to Ck, if and only if Ck has been directly de-
rived from Ci and Cj using the resolution rule. Many refinements of Reso-
lution, in which the structure of RES proofs is restricted, have been proposed
and studied. Here of particular interest is Tree-like Resolution (T-RES),
with the requirement that proofs are representable as trees. This implies
that a derived clause, if subsequently used multiple times in the proof, must
be derived anew each time starting from initial clauses. Other well-known
refinements include regular resolution [131] (any variable can be resolved
upon at most once along any path in the proof from an initial clause to ∅),
Davis–Putnam (or ordered) resolution [36] (a refinement of regular resolu-
tion where every sequence of variables resolved on in a path from an initial
clause to ∅ respects the same ordering on the variables), and linear reso-
lution [28] (each clause Ci must be either an initial clause or be directly
derived from Ci−1 and Cj , where j < i− 1).

3.2.1 Lower Bounds in RES and its Refinements

Super-polynomial (and even exponential) lower bounds on proof lengths in
RES have been shown for various families of CNF formulas, see [29, 53, 131,
132, 34, 5, 15, 16] for examples. Among the most studied such families is
the pigeon-hole principle, which states that there is no injective mapping
from an m-element set into an n-element set if m > n (that is, m pigeons
cannot sit in less than m holes so that every pigeon has its own hole). We will
consider the case m = n + 1 encoded as the CNF formula

PHPn+1
n :=

n+1∧

i=1

( n∨

j=1

pi,j

)
∧

n∧

j=1

n∧

i=1

n+1∧

i′=i+1

(p̄i,j ∨ p̄i′,j),

where each pi,j is a Boolean variable with the interpretation “pi,j is t if and
only if the ith pigeon sits in the jth hole”.
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Theorem 3.1 (Haken [53]) There is no polynomial length RES proof of the
formula PHPn+1

n .

It is also known that T-RES is a proper refinement of RES. This originates
from the facts that regular resolution cannot simulate RES [47, 7], and T-RES
in turn cannot simulate regular resolution [133].

Corollary 3.1 ([47, 133]) T-RES cannot polynomially simulate RES.

3.3 THE DAVIS–PUTNAM–LOGEMANN–LOVELAND PROCEDURE

Most modern complete SAT solvers are based on the Davis–Putnam–Loge-
mann–Loveland (or DPLL) procedure [36, 35]. Given a CNF formula F as
input, DPLL is a depth-first search procedure building a partial assignment τ
for the variables in F through (i) branching and (ii) unit propagation (UP).
In branching, the current assignment τ is extended with the assignment (de-
cision) 〈x, v〉, where v is either f of t, for some unassigned variable x. Unit
propagation refers to applying the unit clause rule. The unit clause rules
states that if there is a clause (l1 ∨ · · · ∨ lk ∨ l) ∈ F such that τ(li) = f for
each 1 ≤ i ≤ k, the current partial assignment τ can be extended with 〈l, t〉.

An assignment is extended until (i) some variable x would be assigned
both f and t (a conflict is reached, with x as the conflict variable) or (ii) τ
satisfies F (in which case DPLL terminates). In case (i), non-clause learning
DPLL solvers backtrack to the last branching decision which has not been
backtracked upon, undoing all assignments made by UP after the particular
decision, and flip the decision. DPLL terminates on an unsatisfiable CNF
formula when there are no untried branches left.

Example 3.1 Consider the CNF formula

φ := {{ā, c}, {ā, b̄, c̄}, {ā, b, c̄}, {a, b, d}, {a, b, d̄}, {a, b̄, d}, {a, b̄, d̄}}.

A DPLL search for this unsatisfiable formula is presented in Figure 3.1. As-
suming that DPLL has traversed the tree in prefix order, the assignment 〈a, f〉
and 〈d, t〉 have led to a conflict in variable b by unit propagation. Thus DPLL
backtracks by assigning 〈d, f〉, and after the resulting conflict by assigning
〈a, t〉.

〈a, f〉 〈a, t〉

〈d, t〉 〈c, t〉

〈b, f〉
〈b, t〉

〈b, t〉
〈b, f〉

〈d, f〉
〈b, t〉
〈b, f〉

Figure 3.1: A DPLL search tree for the CNF formula φ
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3.3.1 DPLL and T-RES

Consider an arbitrary CNF formula F . From the proof theoretic point of
view, DPLL can be seen as a tableau proof system [91] with two rules: the
branching rule

x ∈ vars(F )
x | x̄

and the unit clause rule

(l ∨ l1 ∨ l2 ∨ · · · ∨ k) ∈ F
l̄1
...
l̄k
l

The branching rule, corresponding to branching on a variable x, extends the
branch into two branches, one of which is extended with the entry x and
the other with x̄. The unit clause rule, defined above, is similarly applied
by extending the branch with l. As typical, a branch is (fully) extended un-
til we have both of the entries x and x̄ for some variable, or no new entries
can be generated with the branching and unit clause rules. From an algo-
rithmic point of view, the choice of in which order branches are extended
is part of the solver strategy, and based on a decision heuristic. The other
branch resulting from the particular application of the branching rule is han-
dled through backtracking. With this intuition, it is clear that a search tree
traversed by a DPLL algorithm corresponds to a binary tableau proof, hav-
ing the form of a binary tree, with all branches fully extended. Hence, a
DPLL proof will here be such a tableau proof. The length of a DPLL proof is
defined as the number of applications of the branching rule in the proof.

Example 3.2 Recall the CNF formula φ in Example 3.1. The DPLL search
shown in Figure 3.1 seen as a tableau proof is shown in Figure 3.2.

b

c

aā

d d̄
b̄

b
b̄

b̄
b

Figure 3.2: A DPLL (tableau) proof of the CNF formula φ in Example 3.1

One-step lookahead (see, e.g., [84]) is an often implemented technique
in (non-clause learning) DPLL algorithms. In one-step lookahead, if there is
an assignment v to a currently unassigned variable x such that the current
assignment τ with the addition of 〈x, v〉 leads to a conflict using unit prop-
agation, then x is immediately assigned v̄. This technique does not add to
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the strength of DPLL, since the same effect can obviously be accomplished
by branching on x. Notice that one-step lookahead has also been used for
updating the decision heuristic values of variables [84, 55], for example, so
that heuristic values as based on the number of new assignments deduced by
unit propagation when adding 〈x, v〉 to τ .

It is well-known that DPLL and T-RES can polynomially simulate each
other (see [17] for example). One can show that for any unsatisfiable CNF
formula, a DPLL proof, with applications of the unit clause rule “simulated
by branching”, always corresponds one-to-one with a T-RES proof, and vice
versa.

Fact 3.1 DPLL and T-RES are polynomially equivalent.

In more detail, any DPLL proof can be seen as a T-RES proof with the intu-
ition that the strength of DPLL does not really depend on whether the unit
clause rule is applied. Any application of the unit clause rule on a clause
C can be seen as branching on the remaining unassigned literal l ∈ C in
the sense that, by assigning f to l by branching, C is falsified by the current
assignment.

Example 3.3 Recall the CNF formula φ in Example 3.1. The DPLL proof
shown in Figure 3.2, with applications of the unit clause rule seen as branch-
ing, is shown in Figure 3.3. The leafs of the tree are labeled with the respec-
tive unsatisfiable clauses in φ under each branch.

ā a

b̄ bb bb̄ b̄

d̄ cd c̄

{a, b, d̄} {a, b̄, d̄} {a, b, d} {ā, b, c̄}{a, b̄, d} {ā, b̄, c̄}

{ā, c}

Figure 3.3: The DPLL proof in Figure 3.2 with applications of the unit clause
rule seen as branching

The next example shows how such DPLL proofs can be seen as T-RES proofs.

Example 3.4 Figure 3.4 shows the T-RES proof corresponding to the DPLL
proof in Figure 3.3, where at each step the resolution rule is applied by re-
solving on the branching variable.

3.3.2 Implication Graphs

Implication graphs capture the ways of deriving values for variables with the
unit clause rule from assignments made by branching. We will apply this
concept in the following for defining clause learning. However, first we need
some additional terminology.
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∅

{a} {ā}

{a, d̄} {a, d}

{a, b, d̄} {a, b̄, d̄} {a, b̄, d} {a, b, d} {ā, b, c̄} {ā, b̄, c̄}

{ā, c}{ā, c̄}

Figure 3.4: The T-RES proof corresponding to the DPLL proof in Figure 3.3

A stage of DPLL on a CNF formula F is characterized by the decision lit-
erals in the branch. Considering an arbitrary branch, the variables assigned
by branching are called decision variables and those assigned values by UP
are implied variables, with analogous definitions for decision literals and im-
plied literals. The decision level of a decision variable x is one more than
the number of decision variables in the branch before branching on x. The
decision level of an implied variable x is the number of decision variables in
the branch when x is assigned a value. The decision level of DPLL at any
stage is the number of decision variables in the branch.

Example 3.5 Recall the DPLL proof in Figure 3.2. In the branch with
(a, c, b̄, b) all literals are on decision level 1, the variable a is the sole de-
cision variable in the branch, and c, b̄, b are implied literals. In the branch
with (ā, d, b, b̄), the literal ā is on decision level 1 and the other literals are
on decision level 2.

For a given CNF formula F and a set of literals L, we denote by F,L `UP l
the fact that l can be deduced from F and L by deducing additional literals
to L with the unit clause rule alone.

Definition 3.1 For a CNF formula F , the implication graph G = 〈V,E〉 at
a given stage of DPLL with the set of decision literals D is a directed graph.
The set of nodes is defined as

V = {Λ} ∪D ∪ {l | F,D `UP l},

where Λ is a special conflict node, and the edge relation is

E = {〈li, l〉 | {l̄1, . . . , l̄k, l} ∈ F and l1, . . . , lk ∈ V } ∪
{〈x, Λ〉, 〈x̄, Λ〉 | x, x̄ ∈ V }.

For a given implication graph, any variable x with x, x̄ ∈ V is called a con-
flict variable, and x, x̄ are conflict literals. An implication graph contains a
conflict if it contains a conflict variable; DPLL has a conflict at a given stage
if the implication graph at the stage contains a conflict.
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3.4 DPLL WITH CLAUSE LEARNING AND MODERN SAT SOLVERS

Clause learning DPLL algorithms differ from non-clause learning algorithms
in what happens when reaching a conflict. If a conflict is reached without any
branching, DPLL (with or without clause learning) determines the formula
F unsatisfiable. In other cases, non-clause learning DPLL algorithm perform
simple backtracking as previously explained. In clause learning DPLL algo-
rithms, however, the conflict is analyzed, and a learned clause (or conflict
clause), which describes the “cause” of the conflict, is added to F . After
this search is continued typically by applying non-chronological backtrack-
ing (or conflict-driven backjumping) for backtracking to an earlier decision
level that “caused” the conflict. Conflict-driven backjumping results in the
fact that, as opposed to the basic backtracking in DPLL, the other branch
(opposite value) of decision variables is not necessary forced systematically
when backtracking. In other words, branching in CL is seen simply as assign-
ing values to unassigned variables, rather than as a branching rule in which
by branching on a variable x the current branch is always extended into two
branches, one with x and the other with x̄.

3.4.1 Conflict Graphs and Conflict Analysis

Similarly as with DPLL, the stage of a clause learning DPLL algorithm is
characterized by the set of decision literals. At a given stage of a clause learn-
ing DPLL algorithm, a clause is called known if it either appears in the orig-
inal CNF formula F or has been learned earlier during the search. Conflict
analysis is based on a conflict graph, which captures one way of reaching the
conflict at hand from the decision variables by using the unit clause rule on
known clauses.

Definition 3.2 Given an implication graph G, a conflict graph H = (V, E)
based on G is any acyclic subgraph of G having the following properties.

1. H contains Λ and exactly one conflict literal pair x, x̄.

2. All nodes in H have a path to Λ.

3. Every node l ∈ V \ {Λ} either corresponds to a decision literal or has
precisely the nodes l̄1, l̄2, . . . , l̄k as predecessors where {l1, l2, . . . , lk, l}
is a known clause.

A conflict graph describes a single conflict and contains only decision and
implied literals that can be used in reaching the conflict when applying the
unit clause rule in some order. Hence the way of implementing unit propa-
gation in a solver has an effect on the choice of the conflict graph.

Conflict clauses are associated with cuts in a conflict graph. Fix a conflict
graph contained in an implication graph with a conflict. A conflict cut is
any cut in the conflict graph with all the decision variables on one side (the
reason side) and at least one conflict literal on the other side (the conflict
side). Those nodes on the reason side with at least one edge going to the
conflict side in a conflict cut form a cause of the conflict. With the associated
literals set to t, UP can arrive at the conflict at hand. The disjunction of the

3. CNF PROOF SYSTEMS AND SAT SOLVING 19



negations of these literals form the conflict clause associated with the conflict
cut. The strategy for fixing a conflict cut is called the learning scheme. A
learning scheme which always learns a currently unknown clause is called
non-redundant.

Example 3.6 A hypothetical conflict graph is illustrated in Figure 3.5. De-
cision literals are represented with filled circles, and implied literals with
hollow circles. The decision level d of each literal l is presented with the la-
bel l@d. For example, the conflict variable x13 is at decision level 5. Notice
that since the literals at decision level 4 are missing from this conflict graph,
they are not part of the reason for the particular conflict. In the figure three

x̄13@5

x4@5

x̄7@5

x2@5

x5@5

x3@1

x̄9@2

Λ

decision cut

2-UIP/last UIP cut

1-UIP cut

{x̄5, x8, x̄3, x9}

{x̄5, x8, x̄3, x12}
{x̄4, x8, x12}

x̄12@2

x̄8@3

x13@5

Figure 3.5: Example of a conflict graph, and three possible conflict cuts

possible conflict cuts are shown with the associated conflict clauses.

3.4.2 Unique Implication Points, Conflict-Driven Backjumping, and CL Proofs

Typically implemented clause learning schemes are based on unique im-
plication points (UIPs) [90]. A UIP in a conflict graph is a node u on the
maximal decision level d such that all paths from the decision variable x at
level d to Λ go through u. Such a u always exists, since x satisfies this condi-
tion. Intuitively u is a single reason for the conflict at level d. Thus one can
always choose a conflict cut that results in a conflict clause with a UIP as the
only variable from the maximal decision level. Such a conflict clause has the
property that the UIP variable can be immediately set to the value opposite
to the current assignment using the unit clause rule when backtracking (the
phrase “the UIP is asserted” is sometimes used). Furthermore, UIP learn-
ing schemes enable conflict-driven backtracking (or backjumping), in which
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DPLL backtracks to the maximal decision level of the variables other than
the UIP in a conflict clause. A popular version of UIP learning is the 1-UIP
scheme, where a conflict cut is chosen so that the UIP closest to Λ will be
in the associated conflict clause. Different learning schemes are evaluated
in [137], showing the robustness of the 1-UIP scheme in practice.

Example 3.7 Recall the conflict graph in Figure 3.5. The 1-UIP in this
graph is the literal x4. One conflict cut corresponding to the 1-UIP learn-
ing scheme is the cut labeled “1-UIP cut”. The cut labeled “2-UIP cut/last
UIP cut” can result from applying the second UIP scheme in which a con-
flict clause with the UIP second closest to Λ is chosen. In this example, the
“2-UIP cut” is at the same time a cut that can result from applying the last
UIP scheme in which a cut with the decision literal on the maximal decision
level as the UIP is chosen.

For investigating the efficiency of clause learning DPLL in proof complex-
ity theoretic terms, we need to have a proof system characterization of clause
learning DPLL algorithms. We will use the following characterization, re-
ferred to as the CL proof system. Here we aim to follow [18], while trying
to make the definition as precise as possible. A clause learning proof (or CL
proof) induced by a learning scheme S is constructed by applying branching
and the unit clause rule, using S to learn conflict clauses when conflicts are
reached, so that in the end, a conflict can be reached at decision level zero.
When a conflict cut with a UIP is selected, it is possible to apply conflict-
driven backjumping based on the conflict clause. Otherwise, simple back-
tracking is applied. Notice that this definition allows even the most general
nondeterministic learning scheme [18], in which the conflict cut is selected
nondeterministically from the set of all possible conflict cuts related to the
conflict graph at hand.

Hence, a CL proof can be seen as a tree in which the traversal order is
marked in the nodes, with leaf nodes labeled with the conflict graph, the
conflict cut associated with the particular conflict, and the decision level onto
which to backjump. Now, the proof system CL consists of CL proofs under
any learning scheme. The length of a CL proof is the number of branching
decisions.

Any CL proof can be easily checked in polynomial time. The label at an
arbitrary leaf node describes the generated conflict clause (by the cut in the
graph). From the backjump level and the conflict graph it is easy to check
that backjumping has been done correctly, i.e., by checking that either (i)
the backjump level is one less than the maximal decision level (simple back-
tracking is used, or (ii) the conflict cut contains a UIP and that the maximal
decision level of the other literals in the cut is equal to the backjump level.
Finally, when the whole tree has been checked, it is easy to verify that the
proof has been completed by applying UP on the known clauses.

It is worth noticing that, although simple backtracking and conflict-driven
backjumping are quite different, CL can simulate DPLL even when restrict-
ing to UIP learning and conflict-driven backjumping. Intuitively, this is
based on the fact that we can define a learning scheme (the decision scheme)
which always learns a clause consisting exactly of the negations of all the de-
cision literals in the conflict graph (see Figure 3.5 for an example of a deci-
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sion cut). However, the opposite is not true. While the practical efficiency
gains of implementing clause learning into DPLL based algorithms are well-
established, the first formal study on the power of clause learning is [18]: CL
can provide exponentially shorter proofs than T-RES even if no restarts are
allowed. Thus we have the following corollary.

Corollary 3.2 (of Theorem 1 in [18]) DPLL cannot polynomially simulate
CL.

3.4.3 Restarts and the CL- - Proof System

Restarting is an additional technique often implemented in modern solvers.
When a restart occurs, the decisions and unit propagations made so far are
undone, and the search continues from decision level zero. The clauses
learned so far remain known after the restart. Intuitively, restarts help in
escaping from getting stuck in hard-to-prove subformulas. In practice, the
choice of when and how often to restart is part of the strategy of a solver.
When any number of restarts are allowed during search, we say that CL has
unlimited restarts. For a recent investigation into the effect of restarts on the
efficiency of clause learning DPLL algorithms, see [60].

Beame et al. [18] define CL- - as CL with branching allowed also on al-
ready assigned values. Although being non-typical in practice, this enables
creating immediate conflicts at will. Although it is not known whether CL
can simulate RES, it has been shown that this is true for CL- - using unlimited
restarts.

Theorem 3.2 ([18]) RES and CL- - with unlimited restarts and any non-redun-
dant learning scheme are polynomially equivalent.

We note that the proof of this theorem in [18] relies on the fact that unit
propagation is seen as applications of the unit clause rule, and hence the
rule can also be left unapplied when convenient. This is non-typical for
clause learning DPLL implementations, in which unit propagation is applied
immediately whenever possible.

3.5 CORRESPONDENCE BETWEEN A CIRCUIT AND ITS CNF TRANSLATION

A key element in this work is the tight correspondence between a constrained
Boolean circuit Cτ and its CNF translation cnf(Cτ ). In more detail, when
considering structural properties of variables in the CNF formula cnf(Cτ )
resulting from the translation cnf of a constrained Boolean circuit Cτ , the
properties are determined by Cτ in which gates reflect one-to-one with the
CNF variables of cnf(Cτ ). For example, an input variable is a variable that
corresponds to an input gate the original Boolean circuit, and we will take
the liberty of using the terms “gate” and “variable” synonymously. Further-
more, since the CNF translation in Table 2.1 encodes in a natural way the
semantics of the gates, unit propagation in the CNF formula can be seen as
working on the level of the circuit. A further discussion on this can be found
e.g. in [67], using a unit propagation equivalent characterization of Boolean
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constraint propagation as deduction rules for circuits [69]. Basically, such cir-
cuit level Boolean constraint propagation can set a value on a gate if and only
if unit propagation can set a value on the corresponding Boolean variable in
the CNF translation. For example, consider the gate g := AND(g1, g2) and its
CNF translation {{ḡ, g1}, {ḡ, g2}, {g, ḡ1, ḡ2}}. Now, for example, g can be
assigned f if we have either 〈g1, f〉 or 〈g2, f〉 by the semantics of AND. On the
CNF level, we can equivalently derive 〈g, f〉 from 〈gi, f〉 by the clause {ḡ, gi}
using the unit clause rule. Hence we will also take the liberty of saying that
unit propagation sets a value on a gate when referring to unit propagation
setting a value on the corresponding Boolean variable in the CNF transla-
tion. Similarly, we branch on a gate when referring to branching on the
corresponding Boolean variable. Correspondingly, a DPLL or CL proof of a
constrained circuit Cτ means a proof of the translation cnf(Cτ ).

Since unit propagation can be also seen as Boolean constraint propagation
on the level of constrained circuits, DPLL can also be implemented as a cir-
cuit level procedure, see, e.g., [88, 69, 79, 43, 86, 129]. Since conflict graphs
are based on how the unit clause rule is applied, clause learning can also be
incorporated in such circuit level DPLL-based solvers. Note that circuit level
solvers can also exploit additional propagation based on the concept of don’t
cares (for more, see [113, 52, 129]). In this work, however, we concentrate
on applying unit propagation as the sole propagation mechanism, as typical
especially in clause learning CNF level SAT solvers.

3.6 RESTRICTING BRANCHING IN DPLL TO INPUTS

In SAT based approaches to structured problems such as bounded model
checking (of both hardware and software) and automated planning, the CNF
encoding is often derived from a transition relation, where the behaviour of
the underlying system is dependent on the input—initial state, nondetermin-
istic choices, et cetera—of the system. Experimental case studies in specific
problem domains [46, 126, 45] have shown that in some cases, SAT solvers
benefit from restricting the variables the solver is allowed to branch on so
called input variables, corresponding to the input of the underlying system.
In the Boolean circuit encoding 〈C, τ〉 of such a structural problem, the in-
put is represented by the set of input gates of the circuit, inputs(C). Since the
circuit can be evaluated when all gates in inputs(C) have values, branching in
DPLL with unit propagation can be restricted to the variables associated with
inputs(C) without losing completeness. Intuitively, the idea is that since the
number of input gates |inputs(C)| is often much less than the total amount
|G| of gates in C, the search space size is reduced from 2|G| to 2|inputs(C)|, where
|inputs(C)| << |G|.

By allowing branching in the DPLL and CL proof systems on input gates
only, we arrive at the proof systems DPLLinputs and CLinputs, respectively.
From the view of proof complexity, however, in [67] a formal study on the
effect of restricting branching in DPLL (without clause learning) to inputs(C)
reveals that this weakens the proof system considerably.

Theorem 3.3 ([67]) DPLLinputs cannot polynomially simulate DPLL.
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In the following section, we investigate the proof complexity theoretic ef-
fect of input-restricted branching in the context of clause learning DPLL-
based SAT solving, which is posed as an open question in [67]. In Section 5
we complement this theoretical study by providing an experimental evalu-
ation of the effect of structure-based branching restrictions. In addition to
investigating the effect of input-restricted branching—which is solely investi-
gated often in the literature [46, 126, 45]—here the idea is to also study the
effect of allowing branching in a controlled way on non–input gates based on
properties imposed by the structure of the Boolean circuit at hand.
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4 RESTRICTED BRANCHING AND PROOF COMPLEXITY

We will now consider the relative proo complexity theoretic power of input-
restricted and unrestricted branching CL and DPLL. This will result in the
refined relative efficiency hierarchy of DPLL and CL shown in Figure 4.1.
An arrow without a slash from system S to S ′ means that S can polynomially
simulate S ′, and with a slash that S cannot simulate S ′. Arrows labeled with ∗
are due to trivial subsumption. The new results, detailed in the following, are
represented by dashed arrows. Disregarding transitivity of the results, missing
arrows represent questions which are open to the best of our knowledge.

CL- -

RES

DPLLinputs

CLinputs CL- -inputs

T-RES

DPLL CL

[67] [18]
[18]

Fact 3.1

corollary of [47, 133]

*

*

*

*

**

*

Figure 4.1: A refined relative efficiency hierarchy for the proof systems con-
sidered in this report.

The main result is characterized by the following theorem.

Theorem 4.1 DPLL and CL- -inputs (with or without restarts) are incompara-
ble.

This is a direct corollary of the forthcoming Lemmas 4.1 and 4.3. Thus we
get the following as a direct corollary.

Corollary 4.1 CL- -inputs with unlimited restarts cannot polynomially simu-
late CL.

We now proceed by proving Theorem 4.1 in two parts. First we show
by a simple argument why DPLL cannot simulate CLinputs. We then discuss
further the difference between CLinputs and DPLLinputs by exhibiting an ex-
ample of a family of Boolean circuits on which CLinputs can simulate CL,
while DPLLinputs cannot simulate DPLL. The motivation here is two-fold.
On one hand, this shows the power of clause learning even when branching
is restricted to inputs. On the other hand, the example gives an intuitive ex-
planation of why the result in [67] on the power of DPLLinputs with respect to
DPLL cannot be directly adopted for proving the analogous result for CLinputs.

Although CLinputs can simulate CL on this particular family of circuits, this
is not the case in general for other families. After the example, we proceed
by showing that in fact, CL- -inputs, even with conflict-driven backjumping and
unlimited restarts, cannot even simulate DPLL. The proof relies on so called
redundant gates, and applies known results on the very powerful Extended
Resolution proof system [131].
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4.1 DPLL CANNOT SIMULATE CLinputs

We now prove that DPLL cannot simulate CLinputs.

Lemma 4.1 There is an infinite family {Cτ
n} of constrained Boolean circuits

for which DPLL has exponentially longer minimal proofs than CLinputs.

Proof. Take any infinite family {Fn} of CNF formulas that is a witness
of Corollary 3.2 stating that DPLL cannot simulate CL. Define the fam-
ily of Boolean circuits {circuit(F ) | F ∈ {Fn}}. Unit propagation on
cnf(circuit(F )) without branching corresponds to the result of unit propaga-
tion on F without branching. Thus DPLL will only branch on the variables
in cnf(circuit(F )) that are associated with the input gates of circuit(F ) or
their negations. Thus CLinputs can simulate CL on cnf(circuit(F )), and the
claim follows by Corollary 3.2. 2

As a direct corollary, we have

Corollary 4.2 Neither DPLL nor DPLLinputs can polynomially simulate CLinputs.

4.2 A FURTHER MOTIVATING EXAMPLE

To highlight the strength of clause learning even when branching is restricted
to input gates, we now give an example of a family {XOR-UNSATn} of
Boolean circuits on which CLinputs can simulate CL applying the 1-UIP learn-
ing scheme, although DPLLinputs cannot simulate DPLL on the family. The
circuit XOR-UNSATn := UNSAT ∪ 〈XORa

n ∪ XORb
n, ∅〉 consists of two

parts:

(i) the constant size circuit

UNSAT := circuit({{a, b}, {a, b̄}, {ā, b}, {ā, b̄}}), and

(ii) two copies (for a and b, ρ ∈ {a, b}) of the circuit structure

XORρ
n := {ρ := ODD(xρ

1,1, x
ρ
1,2)}∪

n−1⋃

i=1

i+1⋃

j=1

{xρ
i,j := ODD(xρ

i+1,j, x
ρ
i+1,i+2)}.

The circuit XOR-UNSAT2 is shown in Figure 4.2. Now, since UP will re-
sult in a conflict in the UNSAT subcircuit for any value of gate a, XOR-UNSATn

yields a trivial (constant length) proof in DPLL. It is also easy to see that min-
imal length proofs of XOR-UNSATn are exponential with respect to n in
DPLLinputs. Due to the structure of XORn, in order to propagate a value for
the gate a or b, DPLLinputs has to branch on all of the inputs in the correspond-
ing XORρ

n. With the backtracking process of DPLL this implies that minimal
length DPLLinputs proofs of XOR-UNSATn are exponential with respect to n.

However, CLinputs can produce linear length proofs by simulating CL on
the family. In the following we will say that CL (or DPLL) branches according
to a sequence of assignments (x1 = v, . . .), if it always branches by assign-
ing the value to the variable given by the next assignment in the sequence,
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i.e., we would first branch by assigning x1 the value v, and so forth. Now, let
CLinputs branch according to the sequence (xa

n,1 = f, . . . , xa
n,n = f). After this,

UP cannot still propagate any values. Then branch with xa
n,n+1 = f. Now UP

sets values for all xa
i,j , without a conflict. The values for xa

1,1 and xa
1,2 propa-

gate a value for a, which then propagates a conflict at a gate in UNSAT. No-
tice that xa

1,1 and xa
1,2 are the only reasons for the value of a. In any conflict

graph associated with the branching sequence (xa
n,1 = f, . . . , xa

n,n+1 = f),
a is an 1-UIP, and, furthermore, constitutes a reason for the conflict on its
own. Hence CLinputs can learn as a unit clause the opposite value of a, and
backjump to decision level zero. This opposite value will then propagate a
contradiction without branching, and CLinputs terminates.

It is interesting to notice how CLinputs can branch on (xa
n,1 = f, . . . , xa

n,n+1 =
f) and still avoid backtracking on these decisions since there is the bottleneck
at gate a due to the construction of XOR-UNSATn. This shows the power of
clause learning with conflict-driven backjumping—even with input-restricted
branching—due to its ability to backjump over an exponential size search
space by detecting small locally inconsistent subformulas. With this intu-
ition, it is evident that the results in [67] on the power of DPLLinputs with
respect to DPLL cannot be directly adopted for proving the analogous result
for CLinputs.

4.3 CL- -inputs CANNOT SIMULATE DPLL

Although CLinputs can simulate CL on the {XOR-UNSATn} family, this is
generally not the case for other families. In fact, it turns out that CL- -inputs

cannot even simulate DPLL, as detailed next.

4.3.1 Redundant Gates

We will apply the concept of redundant gates in constrained Boolean circuits.
For the following, a gate g in a constrained Boolean circuit 〈〈G,E〉, τ〉 is a

ODDODD xb
1,2xb

1,1

xb
2,1 xb

2,2 xb
2,3

a

xa
2,1xa

2,2

xa
1,1

ODD ODDxa
1,2

xa
2,3

t
AND

b ODDODD

OR OR OR OR

NOT NOT

Figure 4.2: XOR-UNSATn for n = 2
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descendant of another gate g′, if there is a path from g to g′ in 〈G,E〉.

Definition 4.1 A gate g in a constrained Boolean circuit 〈〈G,E〉, τ〉 is re-
dundant if

(i) g is unconstrained, and

(ii) g is not a descendant of any constrained gate g′ in 〈G,E〉.

We will assume that circuits do not contain redundant input gates; such in-
puts can always be assigned an arbitrary truth value without affecting satisfia-
bility.

Lemma 4.2 Let Cτ = 〈〈G,E〉, τ〉 be an arbitrary constrained Boolean cir-
cuit. Considering CL- -inputs on input cnf(Cτ ), redundant gates do not occur
in any conflict graph at any stage of CL- -inputs whether or not restarts are al-
lowed.

Proof. Pick an arbitrary constrained Boolean circuit Cτ . The cases in which
CL- -inputs does not have a conflict are trivial. Now assume that the lemma
holds at a stage where CL- -inputs has made m conflicts on the input Cτ . Con-
sider the (m + 1)th conflict. We prove by induction on the structure of Cτ

that no redundant gates occur in the conflict graph at the (m+1)th conflict.
The base case, considering a subcircuit with n = 1 gates, is trivial. Assume
that the claim holds for all subcircuits with at most n gates. Let Cτ

n+1 be any
subcircuit of Cτ induced by a set Gn+1 of n + 1 gates. Remove an arbitrary
output gate g := f(g1, . . . , gk) from Cτ

n+1 to obtain a subcircuit induced by
Gn+1\{g} with n gates. Such a g cannot be an input gate, since else it would
not be connected to the rest of the circuit Cτ . Thus g is not branchable.

The case that g is not redundant is trivial. Now assume that g is redundant.
Since there are no known learned clauses containing redundant gates before
the (m + 1)th conflict, the only way to set a value for g is by UP from values
set on (a subset of) {g1, . . . , gk}. Any value for each gi can be the result of
UP on values for Gn+1 \ {g}, or of branching in the case gi is an input gate.
For example, consider the case g := OR(g1, g2). If g1 has the value t, g is
propagated the value t. After this, the value of g cannot propagate a value for
g2, nor can any value of g2 propagate f for g. Other cases are similar. Thus
the value of g cannot be used in propagating a value for any gate in Cτ

n+1, and
therefore g cannot occur in any conflict graph for CL- -inputs. 2

From the proof of Lemma 4.2 it also follows that redundant gates can
be removed from any constrained Boolean circuit, since such gates cannot
contribute to any conflict, and thus cannot either have an effect on the satis-
fiability of any circuit.

4.3.2 Cook’s Extension for a Polynomial Length Proof of PHPn+1
n

Although redundant gates can be removed from any constrained Boolean cir-
cuit without affecting its satisfiability, they may have an effect on the length of
minimal proofs. Cook [31] gives a way of introducing a polynomial number
of clauses which can be interpreted as redundant gates to circuit(PHPn+1

n )
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so that, contrarily to circuit(PHPn+1
n ), the extended circuit yields polyno-

mial length proofs in RES. As a circuit structure, this extension is defined as
EXTn :=

⋃n+1
l=3 EXTl, where

EXTl :=
l−1⋃

i=1

l−2⋃

j=1

{el−1
i,j := OR(el

i,j, o
l−1
i,j ), ol−1

i,j := AND(el
i,l−1, e

l
l,j)},

and each en+1
i,j is associated with the variable pi,j in PHPn+1

n . A part of EXTn

is illustrated in Figure 4.3. The output gates of EXTn are e2
1,1 and e2

2,1.

en−1
i,j

pn+1,j

on
i,j

pi,n

en
n,j en

i,j

on−1
i,j

en
i,n−1

AND

pi,j

OR

OR OR OR

AND

Figure 4.3: Part of Cook’s extension EXTn to PHPn+1
n as a circuit

Due to the result in [31] we immediately have a polynomial length RES
proof π = (C1, . . . , Cm = ∅) of cnf(circuit(PHPn+1

n ) ∪ 〈EXTn, ∅〉). Intu-
itively, EXTl allows reducing PHPl+1

l to PHPl
l−1 with a polynomial number

of resolution steps. However, in [31] such a proof is not given explicitly, so
we present one here.

The RES proof consists of four components, out of which the three first
will be applied iteratively in a level-wise fashion from l = n+1 to l = 3. The
intuitive idea is that at level l we will derive PHPl−1

l−2 from PHPl
l−1 and EXTl

in a polynomial number of resolution steps.

1. Resolve on the gates ol−1
i,j , where i = 1, . . . , l + 1 and j = 1, . . . , l,

using the clauses in the CNF translation of el−1
i,j := OR(el

i,j, o
l−1
i,j ) and

ol−1
i,j := AND(el

i,l−1, e
l
l,j).

2. Derive the long clause {el−1
i,1 , . . . , el−1

i,l−2} from {el
i,1, . . . , e

l
i,l−1} for each

i = 1, . . . , l − 1.

3. Derive the short clauses of the form {¬el−1
i,k ,¬el−1

j,k } for 1 ≤ i, j ≤ l−1
and 1 ≤ k ≤ l − 2.
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4. After iterating steps 1-3 from l = n+1 down to l = 3, derive the empty
clause in two step from the clauses in PHP2

1.

We will describe these steps now in more detail.

1. For each el−1
i,j := OR(el

i,j, o
l−1
i,j ) we have the clauses

{¬el−1
i,j , el

i,j, o
l−1
i,j }, {el−1

i,j ,¬el
i,j}, {el−1

i,j ,¬ol−1
i,j },

and for each ol−1
i,j := AND(el

i,l−1, e
l
l,j) the clauses

{ol−1
i,j ,¬el

i,l−1,¬el
l,j}, {¬ol−1

i,j , el
i,l−1}, {¬ol−1

i,j , el
l,j}.

In particular, when resolving on the gate ol−1
i,j , we obtain from these

clauses the clauses

{¬el−1
i,j , el

i,j, e
l
i,l−1}, {¬el−1

i,j , el
i,j, e

l
l,j}, {el−1

i,j ,¬el
i,l−1,¬el

l,j}.

2. The derivation is described in Figure 4.4. Notice that, at each step, the
variable resolved upon is underlined. Recall that {en+1

i,1 , . . . , en+1
i,n } is

the clause {pi,1, . . . , pi,n} in PHPn+1
n .

3. Figure 4.5 shows how to derive the clauses of the form {¬el−1
i,k ,¬el−1

j,k }.

4. By recursively applying the derivations in Figures 4.4 and 4.5 from
l = n + 1 to l = 3, one can thus derive the clauses {e2

1,1}, {e2
2,1}, and

{¬e2
1,1,¬e2

2,1}, using which it is trivial to derive the empty clause in two
resolution steps.

However, one can see that derived clauses in each PHPl
l−1 are used multiple

times in the RES proof. For example, for each l, the clause {el
l,1, . . . , e

l
l,l−1}

is used in the order of l times in the derivation shown in Figure 4.4. Hence
the end result is not a T-RES proof.
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(repeat for j = 2, . . . , l − 2)

(repeat for j = 1, . . . , l − 2)

{el−1
i,1 , . . . , el−1

i,l−2}

{el−1
i,1 , . . . , el−1

i,l−2, e
l
i,1, . . . , e

l
i,j , . . . , e

l
i,l−2}

{el−1
i,1 , . . . , el−1

i,l−2, e
l
i,1, . . . , e

l
i,l−2,¬el

i,l−1}

{el−1
i,1 , . . . , el−1

i,l−2, e
l
i,1, . . . , e

l
i,l−2, e

l
l,l−1,¬el

i,l−1}

{el−1
i,1 , el

i,1, . . . , e
l
i,l−2, e

l
l,2, . . . , e

l
l,j , . . . , e

l
l,l−1}

{el
i,1, . . . , e

l
i,l−1}

{el−1
i,1 , el

i,1, . . . , e
l
i,l−2,¬el

l,1}
{el

l,1, . . . , e
l
l,l−1} (in PHPl

l−1)

{el−1
i,1 ,¬el

i,l−1,¬el
l,1} (from step 1.)

{el−1
i,j ,¬el

i,l−1,¬el
l,j} (from step 1.)

{el
i,1, . . . , e

l
i,l−1} (in PHPl

l−1)

{¬el
i,l−1,¬el

l,l−1} (in PHPl
l−1)

(in PHPl
l−1)

{el−1
i,j ,¬el

i,j} (in PHPl
l−1)

Figure 4.4: How to derive {el−1
i,1 , . . . , el−1

i,l−2} in a polynomial number of reso-
lution steps using Cook’s extension for PHPn+1

n

4. RESTRICTED BRANCHING AND PROOF COMPLEXITY 31



{¬
el i,

k
,¬

el l,
k
}

{¬
el−

1
j,

k
,e

l j,
k
,¬

el i,
k
}

{¬
el i,

k
,¬

el j,
k
}

{¬
el−

1
i,
k

,e
l i,
k
,e

l l,
k
}

{¬
el−

1
i,
k

,e
l i,
k
,¬

el j,
k
}

{¬
el−

1
j,

k
,¬

el i,
k
}

{¬
el−

1
j,

k
,e

l j,
k
,e

l j,
l−

1
}{
¬e

l−
1

i,
k

,e
l i,
k
,¬

el j,
l−

1
}

{¬
el−

1
i,
k

,¬
el−

1
j,

k
,e

l i,
k
}

{¬
el−

1
i,
k

,¬
el−

1
j,

k
}

{¬
el i,

l−
1
,¬

el j,
l−

1
}

{¬
el−

1
i,
k

,e
l i,
k
,e

l i,
l−

1
}

{¬
el−

1
i,
k

,¬
el−

1
j,

k
,e

l i,
k
,e

l j,
k
}

{¬
el j,

k
,¬

el l,
k
}

{¬
el−

1
j,

k
,e

l j,
k
,e

l l,
k
}

(i
n

P
H

P
l l−

1
)

(f
ro

m
ste

p
1.

)

(i
n

P
H

P
l l−

1
)

(f
ro

m
ste

p
1.

)
(f

ro
m

ste
p

1.
)

(f
ro

m
ste

p
1.

)

(i
n

P
H

P
l l−

1
)

(i
n

P
H

P
l l−

1
)

Figure 4.5: How to derive {¬el−1
i,k ,¬el−1

j,k } in a polynomial number of steps
using Cook’s extension for PHPn+1

n
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4.3.3 The Separation

Using the above-described polynomial length RES proof π = (C1, C2, . . . ,
Cm = ∅) for the extended PHPn+1

n , we define the circuit construct

E(π) :=
m−1⋃

i=2

{hi := AND(gCi
, hi−1)} ∪

m−1⋃

i=1

{gCi
:= OR(gli,1 , . . . , gli,ki

) | Ci = {li,1, . . . , li,ki
}} ∪

m−1⋃

i=1

{gx̄ := NOT(gx) | x ∈ vars−(Ci)},

where h1 is the gate gC1 . The construct E(π) is illustrated in Figure 4.6. In
the figure the triangular shapes Ci stand for the circuit representation of the
clause Ci in π.

gC1
gC2 gC3

h3

(up to m− 1)

(up to m− 1)
C2 C3C1

OR OR OR

h2 AND

AND

Figure 4.6: The construct E(π) based on a polynomial length RES proof
π = (C1, C2, . . . , Cm = ∅) of the extended PHPn+1

n

This allows a simple polynomial length DPLL proof of cnf(EPHPn+1
n ),

where
EPHPn+1

n := circuit(PHPn+1
n ) ∪ 〈EXTn ∪ E(π), ∅〉,

while there is no polynomial length proof of cnf(EPHPn+1
n ) in CL- -inputs.

Intuitively this is because E(π) allows DPLL to “verify” the resolution proof
of PHPn+1

n extended with EXTn step-by-step, while CL- -inputs cannot make
use of the redundant gates of EXTn and E(π).

Lemma 4.3 For the infinite family {EPHPn+1
n } of constrained Boolean cir-

cuits, CL- -inputs with unlimited restarts has superpolynomially longer minimal
proofs than DPLL.

Proof. A polynomial length DPLL proof of EPHPn+1
n is witnessed by the

branching sequence (h1 = f, h2 = f, . . . , hm−1 = f), as detailed next. By
induction on i, we will show that, if h1 = t, . . . , hi−1 = t, then branching
with hi = f results in a conflict by UP, and hence immediately setting hi = t.
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The base case. The gate h1 = gC1 represents the first clause C1 in π,
and C1 must belong to cnf(circuit(PHPn+1

n ) ∪ 〈EXTn, ∅〉). As C1 is a result
of applying the cnf translation to a gate g in circuit(PHPn+1

n ) ∪ 〈EXTn, ∅〉
(which is part of EPHPn+1

n ), setting h1 = f will result in a conflict after UP
because the functional definition or the constraint of the gate g is violated.
For example, if g := OR(g1, g2) and C1 = {xg, x̄g1}, then h1 = gC1 :=
OR(g, ĝ1), ĝ1 := NOT(g1), and the assignment h1 = f will propagate g = f
and g1 = t, violating the definition of g and thus resulting in a conflict.

Now assume as the induction hypothesis that we have hi′ = t for all 1 ≤
i′ < i. Recall that hi := AND(gCi

, hi−1). By branching with hi = f, UP
sets gCi

= f by the induction hypothesis. If the ith clause Ci in π belongs
to cnf(circuit(PHPn+1

n ) ∪ 〈EXTn, ∅〉), branching on gCi
= f will result in a

conflict after UP as in the base case. Otherwise Ci has been derived from
two clauses, Cj = C ′

j ∪ {xg} and Ck = C ′
k ∪ {x̄g}, in π for 1 ≤ j, k < i,

by resolving on a variable xg. By the induction hypothesis we have hj = t
and hk = t, and thus gCj

= t and gCk
= t by UP. On the other hand, as

gCi
= f, all the gates corresponding to the literals in C ′

j ∪C ′
k are assigned to f

by UP, implying that UP will assign both g = t and g = f as gCj
= gCk

= t.
Thus a conflict is reached, closing the branch hi = f, and hi = t is set by
backtracking.

Finally, since Cm = ∅ ∈ π, there are unit clauses Cj = {xg} and Ck =
{x̄g} in π, where 1 ≤ j, k < m. W.l.o.g., assume j < k. By induction, at
latest after branching with hk = f and setting hk = t by backtracking, we will
have gCj

= gCk
= t in the branch, and thus both g = t and g = f, a conflict.

The result is a linear DPLL proof.
Now consider proofs of EPHPn+1

n in CL- -inputs. The non-input gates in
〈EXTn, ∅〉 ∪ 〈E(π), ∅〉 are all redundant in EPHPn+1

n , and they cannot be
part of a reason for any conflict in CL- -inputs (Lemma 4.2). Thus any CL- -inputs

proof of EPHPn+1
n contains a CL- -inputs proof of PHPn+1

n , which cannot be
of polynomial length (Theorems 3.1 and 3.2). 2

Now Theorem 4.1 follows directly from Lemmas 4.1 and 4.3.

4.4 ADDITIONAL REMARKS

Closely related to Lemma 4.3 and the applied construction EPHPn+1
n , we

make the following additional remarks.

• Due to the fact that redundant gates do not occur in any conflict graph
of CL- -inputs, Lemma 4.3 covers all clause learning schemes based on
conflict cuts, including, for example, schemes which learn multiple
clauses at each conflict [90].

• We use redundant gates in the EPHPn+1
n construction for simplicity of

the proof of Lemma 4.3; by a simple modification of EPHPn+1
n one

can construct as a witness for Lemma 4.3 a constrained circuit with no
redundant gates and a single output as the only constrained gate. The
basic idea, illustrated in Figure 4.7, is to make a small local change to
the EPHPn+1

n circuit. In more detail, introduce the OR of the output
gates e2

1,1 and e2
2,1 in EXTn. Now, introduce the OR of this gate and
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the output gate hm−1 of E(π). Then, introduce the OR of this gate
and the gate NOT(hm−1). Finally, constrain the AND of this gate and
the output gate of circuit(PHPn+1

n ) to t. The resulting circuit witnesses
Lemma 4.3, since conflicting assignment cannot still be propagated to
the gates in E(π) or E(π) precisely because the added structure is a
tautology of the form h̄m−1 ∨ (hm−1 ∨ φ), that is, evaluates always to t.

OR

AND

AND

AND

NOT

OR

OR OR

EXT

e2
2,1e2

1,1

OR

t

AND

circuit(PHPn+1
n )

hm−2

hm−1

E(π)

Figure 4.7: Local change to the EPHPn+1
n circuit for removing redundancy

of gates in E(π) and EXTn

• Since redundant gates can be removed from constrained Boolean cir-
cuits without affecting the sets of satisfying assignments, such gates are
typically removed in practice before the CNF translation by so called
cone-of-influence reduction [69]. However, as witnessed by EPHPn+1

n

in Lemma 4.3, applying cone-of-influence can have a drastic negative
effect on the minimal length proofs, since this will reduce EPHPn+1

n

to PHPn+1
n .

• It is interesting to notice that DPLL solvers with full one-step lookahead
can detect the small proofs of EPHPn+1

n witnessed by the branching
sequence (h1 = f, h2 = f, . . . , hn−1 = f). In particular, for each i,
lookahead on hi = f when having hj = t for all j < i in the branch
will result in an immediate conflict using unit propagation, as detailed
in the proof of Lemma 4.3.

• The Cook’s extension (a variant of EXTn) presented in [31] is moti-
vated by investigations into the power of the Extended Resolution proof
system defined by Tseitin [131]. Extended Resolution is the result of
adding an extension rule to RES, which allows for adding definitions of
the form x ⇔ l1∧l2 (or, as a set of clauses, {{x, l̄1, l̄2}, {x̄, l1}, {x̄, l2}})
to the original CNF formula, where x is a new variable and l1, l2 are
literals in the current formula. This is equivalent to adding a redundant
binary AND gate of the literals l1, l2 to a constrained Boolean circuit.
Notably, it is known that Extended Resolution is among the most pow-
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erful proof systems, and can simulate, e.g., Frege systems (see [76] for
more details).

• The additional extension E(π) applied above is motivated by a similar
construction which can be used for simulating Frege proofs with their
tree-like variants (see [76, Chapter 4]).
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5 EXPERIMENTS

Complementing the theoretical results of the previous chapter, we evalu-
ate the effect of structural branching restrictions on the behaviour of mod-
ern clause learning solver techniques. Before detailed discussion of the re-
sults, we describe the used Boolean circuit satisfiability benchmarks and the
Boolean circuit front-end BCMinisat1 applied in solving the instances.

5.1 BENCHMARKS

The benchmark set used in the experiments consists of instances from a num-
ber of real-life application domains, for which Boolean circuits offer a natu-
ral representation form. In selecting the benchmarks, the aim is to obtain
a set of instances from multiple problem domains with varying structural
properties. The selected benchmark set includes instances from verifica-
tion of super-scalar processors [134], integer factorisation based on hardware
multiplier designs [106], equivalence checking of hardware multipliers [66],
bounded model checking (BMC) for deadlocks in asynchronous parallel sys-
tems modeled as labeled transition systems (LTSs) [70], and linear temporal
logic (LTL) BMC of finite state systems with a linear encoding [81].

Verification of superscalar processors Boolean circuits encoding the prob-
lem of formally verifying the correctness of pipelined superscalar pro-
cessors. The circuits are result of the translation from the logic of
equality with uninterpreted functions to propositional logic presented
in [134].

Bounded model checking for deadlocks in LTSs These circuits result from
a translation scheme (using so called interleaving and process seman-
tics) for BMC for deadlocks in a variety of asynchronous systems mod-
eled as labeled transition systems [70].

Linear temporal logic BMC of finite state systems Linear size Boolean cir-
cuits encodings of BMC for finding bugs in finite state system designs
violating properties specified in linear temporal logic (LTL) [81].

Integer factorization based on hardware multiplier designs These circuits
encode the problem of finding factors of (both divisible and prime)
numbers. The problem encodings are based on two hardware binary
multiplier designs, the adder tree and Braun multipliers [25]. For a
fixed n, both multipliers take as input two integers a = (a1, . . . , an)
and b = (b1, . . . , bn) as binary vectors, and output the product o =
(o1, . . . , o2n). Both designs consist of O(n2) gates. However, the mul-
tipliers are structurally very unsimilar. The propagation delays (maxi-
mum of path lengths from inputs to outputs) are O(n) for Braun, and
O(log(n log n)) for adder tree. While Braun consists of a grid of full-
adders, adder tree applies adders in a tree-like fashion, summing up

1Part of the BCTools package, http://www.tcs.hut.fi/~tjunttil/bcsat/.
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partial products. The circuits are obtained using the genfacbm bench-
mark generator [106].

Equivalence checking of hardware multipliers These circuits encode the
problem of equivalence checking the results of the correct adder tree
and Braun multipliers, as described in [66]. A Boolean circuit describ-
ing an instance of the equivalence checking problem for given n-bit
adder tree (output bits oa = (oa

1, . . . , o
a
2n)) and Braun multipliers (out-

put bits ob = (ob
1, . . . , o

b
2n)) is constructed as follows:

• The inputs of the multipliers are made equivalent by sharing the
input gates a1, . . . , an, b1, . . . , bn.

• Bit-wise equivalence of the outputs oa and ob is enforced by in-
troducing gates oeq

i := EQUIV(oa
i , o

b
i ) for i = 1 . . . 2n.

• As a single output gate introduce out := AND(oeq
1 , . . . , oeq

2n).

• Constrain out to 0 (false).

Since the multiplier designs produce equivalent results for any two
multiplicands, we arrive at unsatisfiable equivalence checking instances.

The set of Boolean circuit satisfiability benchmarks (a total of 38 instances,
as detailed in Table 5.1) is available at

http://www.tcs.hut.fi/~mjj/benchmarks/.

For the experiments, we obtain a total of 570 CNF instances from these
circuits as explained next.

5.2 SOLVING THE INSTANCES

For solving the Boolean circuit instances, we apply BCMinisat, which is a
Boolean circuit front-end for the successful clause learning SAT solver Min-
isat2 [41] (version 1.14). We use a farm of standard PCs with 2-GHz AMD
3200+ processors and 2 GBs of memory running Debian GNU Linux, with
a timeout of 1 hour and a memory limit of 1 GB.

5.2.1 Simplification and CNF Translation in BCMinisat

BCMinisat accepts as input Boolean circuits with, in addition to the func-
tions listed in Section 2.2, the following Boolean functions as gate types.

• EQUIV(g1, . . . , gn) evaluates to t if and only if (i) all g1, . . . , gn evaluate
to f, or (ii) all g1, . . . , gn evaluate to t.

• EVEN(g1, . . . , gn) evaluates to t if and only if even number of g1, . . . , gn

evaluate to t.

• ODD(g1, . . . , gn) evaluates to t if and only if odd number of g1, . . . , gn

evaluate to t.
2http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
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• CARDu
l (g1, . . . , gn) evaluates to t if and only if at least l and at most u

of g1, . . . , gn evaluate to t.

For handling these types, the BCMinisat front-end normalizes the circuit:
these functions are decomposed by representing them with the gate types
listed in Section 2.2 using auxiliary gates. The front-end also applies circuit-
level preprocessing, including circuit-level Boolean propagation, substruc-
ture sharing, a circuit-level variant of the CNF-level pure literal rule, and
cone–of–influence reduction [69] (redundant gates are removed) to the cir-
cuit. The resulting normalized and simplified circuit is translated into CNF
applying the translation in Section 2.3. The only exception is that gates
of form g := NOT(g1) are not translated; instead, ¬g̃1 is substituted for g̃.
BCMinisat feeds the resulting CNF formula and the input-restriction to Min-
isat for solving the instance. For each Boolean circuit satisfiability instance,
we obtain 15 CNF instances by randomly permuting the CNF variable num-
bering with the -permute_cnf option of BCMinisat, making the total num-
ber of CNF formulas 570.

5.2.2 The Clause Learning CNF Solver Minisat

Minisat implements 1-UIP clause learning and a variation of the VSIDS
heuristic [97]. After each conflict the heuristic values of each variable on the
conflict side and in the conflict clause is incremented by one, and the values
of all variables are decremented by 5%. In the beginning, all heuristic values
are set to zero. To avoid hindering efficiency by learning massive amounts of
clauses, the solver also uses a scheme for forgetting learned clauses that have
not occurred on the conflict side in recent conflicts. Additionally, a restart
strategy is applied.

We implemented the considered structural branching restrictions to BC-
Minisat, and modified Minisat so that its branching and heuristic can be
restricted to a given set of variables. For insuring that restricting branching
does not make decision making more time-consuming, we do not increment
heuristic values for unbranchable variables, and additionally set the heuristic
values of all branchable variables to one to make sure that time is not wasted
on finding branchable variables even in the beginning of the search.

5.3 EXPERIMENT 1: EFFECT OF INPUT-RESTRICTED BRANCHING

Table 5.1 gives the minimum, median, and maximum number of decisions
for BCMinisat and input-restricted BCMinisat (BCMinisatinputs) for each
Boolean circuit satisfiability benchmark instance. For the instances based
on hardware multiplier designs, for which the number of unassigned input
variables is 2% or less out of all unassigned variables, BCMinisatinputs shows
an advantage over BCMinisat with respect to the number of decisions. How-
ever, for the hardware verification and BMC instances, the overall perfor-
mance of BCMinisatinputs is much worse, with timeouts on all verification
and half of the LTL BMC instances. The possible gains of input-restricted
branching seems to correlate with a very low relative number of input vari-
ables. On the equivalence checking instances, we notice that the number of
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decision for BCMinisatinputs is more than the brute-force upper bound, that
is, the size of the search space. For example, for eq-test.atree.braun.10
around 1.4− 1.8× 106, compared to the brute-force bound 220 ≈ 1.0× 106.
Considering that we are using a state-of-the-art clause learning solver, this
surprising result is most likely due to conflict clause forgetting; when forget-
ting a conflict clause C, the solver may have to re-examine the search space
characterised as unsatisfiable by C.
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Figure 5.1: Cumulative number of solved instances

In Figure 5.1 we have a cumulative plot of the number of solved instances as
a function of time, showing a drastic decrease in performance for the input-
restricted branching Minisat. The effect of input-restricted branching varies
depending on whether unsatisfiable or satisfiable instances are considered
(Figure 5.2).
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Figure 5.2: Running times on unsatisfiable (left) and satisfiable (right) in-
stances

On unsatisfiable instances input-restriction results in a clear efficiency de-
crease, with timed out runs shown on the horizontal line. For satisfiable
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instances, there seems to be no clear winner, although when selecting from
the relative small set of input variables, the probability of choosing a sat-
isfying assignment is intuitively greater. A noticeable point is that, while
BCMinisatinputs makes less decisions, for example, on the equivalence check-
ing instances, unrestricted BCMinisat is at least as efficient as BCMinisatinputs

when looking at running times. Interestingly, this is due to the fact that un-
restricted BCMinisat often manages more decisions per second (Figure 5.3
over the set of CNF instances solved by both BCMinisat and BCMinisatinputs).
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Figure 5.3: Number of decisions / second

We can make more interesting observations by looking at statistics over all
instances solved by both BCMinisat and BCMinisatinputs. An important as-
pect in the effectiveness of clause learning are the lengths of learned clauses,
i.e., the number of literals in the clauses. Since a conflict clause describes an
unsatisfiable part of the search space, shorter conflict clauses are intuitively
exponentially more effective than longer ones. In Figure 5.4 we have a com-
parison of the average lengths of learned clauses in the solved instances. With
input-restricted branching the learned clauses are typically evidently longer.
Longer learned clauses can also have a negative effect on the efficiency of the
solver, since handling the clauses can take more time, for example, to prop-
agate. This would partly explain the decrease in the number of decisions per
time unit for input-restricted branching Minisat.

We also look at the maximal decision levels visited by BCMinisat and
BCMinisatinputs on the different instance families (Figure 5.5). The intuitive
drop in the worst-case behaviour of Minisat resulting from input-restricted
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branching is reflected in the maximal decision levels for the families based
on multiplier designs, where the number of input variables is very low (see
column #inputs in Table 5.1). For the LTS BMC instances, however, the de-
cision levels are greater for the input-restricted branching solver, although the
number of input variables is still only around 10% out of all unconstrained
variables.
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We also observe that the VSIDS heuristic might not work as intended with
input-restricted branching. The number of unbranchable variables which
have better heuristic values than the best branchable variable can be high per
decision (median of averages: ud in Table 5.1). For example, for eq-test.
atree.braun.10 on the average there are, per decision, over 100 unbranch-
able variables with better heuristic scores than the best branchable one. From
another point of view, the fraction of increments on branchable variables
from the number of all increments to heuristic values during search can be
in some cases even as low as 1% (median: bb in Table 5.1)—running the risk
of VSIDS degenerating into a random heuristic.

These observations imply that in order to incorporate branching restric-
tions in clause learning solvers, the restriction itself should be taken into
account when developing suitable heuristics and learning schemes.

5.4 EXPERIMENT 2: RELAXED STRUCTURAL BRANCHING RESTRICTIONS

In order to study whether the robustness of input-restricted branching can be
improved while still branching on a subset of variables, we now apply con-
trolled schemes for allowing branching additionally on CNF variables other
than input variables based on structural properties of Boolean circuits. The
general idea here is to allow—in addition to input variables—branching con-
sistently on the best p% of unconstrained non-input variables according to
criteria that are based on different aspects of the underlying circuit structure.
Input variables are always included for assuring that Minisat remains com-
plete under the restrictions.

For the following, let Cτ be a simplified and normalized constrained cir-
cuit with the sets of unconstrained gates G, input gates inputs(Cτ ), and out-
put gates outputs(Cτ ). For a gate g := f(g1, . . . , gn), the set of g’s children
is children(g) = {g1, . . . , gn}, and the set of g’s parents is parents(g). For
a gate g ∈ G, the fanout fanout(g) is the number of gates whose child g
or g′ := NOT(g) is. The degree degree(g) is the sum of fanout(g) and the
number of g’s children. Additionally, let ∆max

inputs(g) denote the length of the
longest path under the child relation of Cτ from g to any input gate. Here
NOTs do not contribute to the length of the paths, since they are not trans-
lated. Similarly, ∆max

outputs(g) stands for the length of the longest path under
the parent relation of Cτ from g to any output gate. The duals of ∆max

inputs(g)
and ∆max

outputs(g) are ∆min
inputs(g) and ∆min

outputs(g), that is, denoting the lengths of
the shortest paths from g to any input and output, respectively.

We will investigate the following criteria.

Random restriction (denoted by rnd(p)): As a reference point for the other
structural restrictions, we allow branching on p% of randomly chosen
unconstrained non-input variables. Intuitively, this results in allowing
branching evenly across the underlying circuit structure.

Fanout-based restriction fan(p): Here gates are ranked according to the val-
ues fanout(g), with the criterion that gates with large values are pre-
ferred. This is a generalization of the idea of restricting branching to
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gates g with fanout(g) > 1 as suggested in the context of SAT-based
ATPG [122].

Degree-based restriction deg(p): Here gates are ranked according to the val-
ues degree(g), with the criterion that gates with large values are pre-
ferred. The value degree(g) is closely related to the number of occur-
rences of the variable corresponding to gate g in the CNF translation
of Cτ . Hence, this restriction is related to the counting based branch-
ing heuristics such as DLIS and MOMS, in which heuristic values are
based on counting the number of occurrences of variables/literals [57].

Flow-based restriction flow(p): Here gates are ranked according to the val-
ues flow(g), as defined below, with the criterion that gates with large
values are preferred.

flow(g) =





1
|outputs(Cτ )| if g ∈ outputs(Cτ )

∑

g′∈parents(g)

flow(g′)
|children(g′)| otherwise

In other words, we compute a total flow value for each gate by pouring
a constant quantity of flow down from the output gates of the circuit.
Notice that in the simplified and normalized circuit Cτ , the output
gates are always constrained by τ . Here the intuitive idea is that, if a
large total flow passes through a gate g, the gate is globally very con-
nected with the constraints in τ , and thus g would have an important
role in the satisfiability of the circuit.

Distance-based restrictions: Complementing the other restrictions based on
the underlying structure of Boolean circuits, we also consider restrict-
ing branching based on the distances of gates from inputs and outputs.

• In minmax− dist(p) gates are ranked according to the values

max{∆max
inputs(g), ∆max

outputs(g)},

with the criterion that gates with small values are preferred. Here
the idea is to concentrate branching on variables that are close to
both input and output variables.

• In maxmin− dist(p) gates are ranked according to the values

min{∆min
inputs(g), ∆min

outputs(g)},

with the criterion that gates with large values are preferred. Here
the idea is to concentrate branching on variables that are far from
both input and output variables (the dual of minmax− dist(p)).

In selecting the p% of variables according to a particular criterion, ties
are broken randomly from the set of variables having the break value of the
criterion. For example, consider fan(p). Let k be the break value such that

100× |{g | fanout(g) ≥ k}|/|G| ≥ p

5. EXPERIMENTS 45



and
100× |{g | fanout(g) ≥ k + 1}|/|G| < p

hold. Now branching is allowed on all gates g with fanout(g) ≥ k + 1 and
additionally on a number of randomly chosen gates g with the break value
fanout(g) = k so that the percentage p is reached.

We run BCMinisat with all the above-mentioned branching restrictions
and values p = 10, 20, 40, 60, 80. The results as the cumulative number of
solved instance are shown in Figure 5.6. First, as witnessed by the random
restriction, by allowing branching additionally on non-input variables the ro-
bustness of Minisat increases gradually. Considering the structural restric-
tions, it is interesting to see that for the fanout and degree based restrictions
only 20% additional branching variables are enough for the restrictions to
reach a level of robustness very close to unrestricted branching Minisat. For
the flow-based restriction, this holds from 40% on. It is very interesting to
see that the choice of the structural criterion does make a difference: we ob-
serve that the distance-based restrictions result in very poor performance. In
fact, the only restrictions on which Minisat solves all the CNF instances are
deg(20), deg(40), and flow(40) (for example, Minisat without any restrictions
on branching time outs on one instance out of the 570 CNF formulas, see
Table 5.1). From these results we draw the conclusion that branching can
be restricted even rather heavily without losing much of the robustness of a
clause learning SAT solver on various instance families. On the other hand,
at least the considered structural restrictions do not seem to be beneficial in
general on their own, since none of them give notable gains compared to
unrestricted branching with respect to running times.
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Figure 5.6: Cumulative number of solved instances for the structural branch-
ing restrictions

6 CONCLUSIONS

This work aims at contributing to the understanding of what type of search
techniques yield increasingly robust SAT solving engines for industrial-scale
structural combinatorial problems. The focus is on the effect of structure-
based branching restrictions on the efficiency of modern SAT solving tech-
niques. The work is well–motivated by the fact that, while techniques such
as novel decision heuristics and clause learning have been the focus of much
attention, the structural properties underlying CNF encodings of real-world
problems have not been extensively studied from the view point of branch-
ing restrictions. Although branching plays a key role in search for satisfiabil-
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ity, there still is no general consensus on what type of structural properties
(if any) reflect variables with high importance with respect to efficiency of
search, and how such knowledge could be exploited in making SAT solvers
more robust.

This work extends previous work on branching restrictions in DPLL based
SAT solving procedures both on the theoretical and the practical level. With
propositional proof complexity as the framework, we show that when branch-
ing is restricted to input variables in clause learning DPLL, the resulting
underlying proof system weakens considerably; input-restricted branching
clause learning DPLL and basic DPLL are polynomially incomparable. This
holds even when input-restricted branching clause learning DPLL is allowed
unlimited restarts and the ability to branch on variables with already assigned
values. Thus we provide an answer to the question of the relative efficiency
of input-restricted branching clause learning DPLL with respect to clause
learning DPLL, which was posed as an open problem in [67]. This also im-
plies that all implementations of clause learning DPLL, even with optimal
heuristics, have the potential of suffering a notable efficiency decrease when
input-restricted branching is applied.

The experiments confirm that, in general, input-restricted branching can
cause a notable loss of robustness in a clause learning SAT solver. This is
evident especially on unsatisfiable problem instances. We also show that
input-restricted branching results in, for example, longer conflict clauses on
the average, which in itself makes clause learning less effective and can also
hinder the overall efficiency of the solver. However, by relaxing the input-
restriction by allowing branching additionally on variables with particular
underlying structural properties in a systematic fashion, we are able to show
that branching can in fact be restricted quite heavily without making a clause
learning solver notably less efficient. Moreover, the choice of the structural
property on which such a relaxation is based on does make a difference.

6.1 TOPICS FOR FURTHER STUDY

Investigating each of the following topics could either strengthen the results
in this work, or are interesting research topics closely related to this work.

• Theorem 4.1 states that there is a family {Fn} of CNF formulas on
which the minimal length proofs in input-restricted branching clause
learning DPLL are superpolynomially longer than the ones in the basic
DPLL with respect to the number of clauses in each Fn. Can this re-
sult be strengthened to exponential differences, that is, an exponential
separation? This would require a family of circuits for which the sizes
of the circuits grow linear in n.

• The experiments in this work show that, in general, many branching
restrictions based on natural structural properties of circuit gates do
not give notable gains. Can such, relatively small branching restric-
tions still be found, for example, by further analysis combinations of
structural properties?
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• If static branching restrictions do not increase efficiency on their own,
as it seems by the experimental results in this work, one could investi-
gate more complex, dynamic branching restrictions for structural prob-
lems. An interesting question is whether one can gain from integrating
branching restrictions more tightly with clause learning.

• What is the exact power of clause learning DPLL without restarts? Can
it polynomially simulate RES without further relaxations? A positive
answer to this would further clarify the hierarchy shown in Figure 4.1.

• This work concentrates on branching restrictions for complete DPLL
based SAT solvers. What about local search for structural problems;
can structure and completeness-preserving branching restrictions, with
additional propagation mechanisms, be applied in restricting the set
of variables which to flip to the extend that local search for structural
problems would become feasible? Input-restricted flipping has been
considered to some extent in the literature [71, 103]. Could one do
better with more sophisticated flip restrictions?
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