
Structure-Based Local Search Heuristics for
Circuit-Level Boolean Satisfiability

Anton Belov1⋆ and Matti Järvisalo2⋆⋆

1 Complex and Adaptive Systems Laboratory, University College Dublin, Ireland
2 Department of Computer Science, University of Helsinki, Finland

Abstract. This work focuses on improving state-of-the-art in stochastic local
search (SLS) for solving Boolean satisfiability (SAT) instances arising from real-
world industrial SAT application domains. The recently introduced SLS method
CRSAT has been shown to noticeably improve on previously suggested SLS tech-
niques in solving such real-world instances by combining justification-based lo-
cal search with limited Boolean constraint propagation on the non-clausal for-
mula representation form of Boolean circuits. In this work,we study possibilities
of further improving the performance of CRSAT by exploiting circuit-level struc-
tural knowledge for developing new search heuristics for CRSAT. To this end,
we introduce and experimentally evaluate a variety of search heuristics, many of
which are motivated by circuit-level heuristics originally developed in completely
different contexts, e.g., for electronic design automation applications. To the best
of our knowledge, most of the heuristics are novel in the context of SLS for SAT
and, more generally, SLS for constraint satisfaction problems.

1 Introduction

Stochastic local search (SLS) [11] is an important paradigmwhich facilities finding so-
lutions to various kinds of hard computational problems viasearching over a declarative
formulation of the problem at hand. It has been recognized that one possibility to push
further the efficiency of SLS techniques is to develop searchtechniques that exploit
the structureof constraint satisfaction problems. Indeed, various structure-exploiting
SLS methods have been developed (among others) for generic constraint satisfaction
problems (CSPs; for examples see [1, 2, 18, 10]) and Boolean satisfiability (SAT; for
examples see [16, 20, 21, 17, 19, 14, 13, 22, 4, 5]).

This work focuses on developing efficient structure-exploiting SLS techniques for
SAT. In more detail, we study techniques that are aimed atindustrially relevant(or,
as termed in the latest 2011 SAT Competition,application) instance classes. The most
effective methods for solvingrandomSAT instances are based on SLS. Furthermore, re-
cent advances in SLS forcraftedSAT instances has resulted in an SLS method winning
the satisfiable crafted instance category of the 2011 SAT Competition3. In contrast, on
industrial instances the current SLS methods are often notably inferior to the dominant
conflict-driven clause learning (CDCL) SAT solvers.

⋆ Partially supported by SFI PI grant BEACON (09/IN.1/I2618).
⋆⋆ Financially supported by Academy of Finland under grant 132812.

3 Results are available athttp://satcompetition.org/2011/.

To the best of our knowledge, currently the best performing SLS method aimed at
industrial SAT instances is CRSAT [5, 6]. Instead of working on the rather low conjuc-
tive normal form (CNF) level, CRSAT searches for a solution directly on the level of
arbitrary propositional formulas, relying on the compact representation form of Boolean
circuits for a succinct way of representing propositional formulas. Furthermore, instead
of relying on restricting search to input variables, as often has been proposed [16, 20, 21,
17, 19], CRSAT is based on thejustification-basedcircuit-level SLS approach [14, 13],
searching over the whole subformula structure, and incorporates a limited form of di-
rected circuit-level Boolean constraint propagation to further exploit structural aspects
of the input formulas[5].

We have recently shown that CRSAT can be further improved by incorporating a
structure-based heuristic for focusing search steps. Thisresulted in thedepth-based
variant of CRSAT [6]. The depth-based heuristic has interesting fundamental prop-
erties, including the fact that CRSAT remainsprobabilistically approximately com-
plete(PAC) [12] even when focusing search via the heuristic.

Contributions The success of the depth-based search heuristic suggests that circuit-
level structural properties of SAT instances can indeed be expoited to further improve
SLS. Motivated by this, in this work we develop and experimentally study a wide
range of novel structure-based SLS search heuristics, focusing on CRSAT . We pro-
vide a systematic large-scale study of the proposed structure-based heuristics. We re-
late the heuristics to the depth-based heuristic studied indetail in [6], with the aim of
developing further understanding on what are the underlying properties that make the
depth-based search work in practice. Furthermore, we investigate whether related (or
even completely different) structural properties result in even more effective heuris-
tics. Analysis of the experiments reveals various interesting observations on the type of
structural properties of circuits result in effective search heuristics.

Finally, as a future motivation for the studied heuristics,we are interested in ex-
tending the CRSAT approach, combining justification-based search over logical com-
binations of constraints and exploiting limited constraint propagation, to more generic
classes of constraint satisfaction problems (CSPs) for which local search is a very viable
alternative [1, 2, 18, 10]. The development of good structure-based search heuristics for
the circuit-level is directly applicable for the logical combinations of more high-level
constraints, where the logical combinations can be viewed as circuits.

Organization Key definitions and concepts related to Boolean circuit satisfiability are
reviewed as necessary preliminaries in Sect. 2. Sect. 3 is dedicated to presenting the
CRSAT circuit-level SLS algorithm for which this work develops structure-based search
heuristics. The heuristics are introduced in Sect. 4. Before conclusions (Sect. 6), results
of an extensive empirical evaluation on the effectiveness of the structure-based heuris-
tics are presented in Sect. 5.

2 Preliminaries

A Boolean circuitover a finite setG of gatesis a setC of equations of the form
g = f(g1, . . . , gn), whereg, g1, . . . , gn ∈ G andf : {0, 1}n → {0, 1} is a Boolean

function, with the additional requirements that (i) eachg ∈ G appears at most once
as the left hand side in the equations inC, and (ii) the underlying directed graph
〈G,E(C)〉, whereE(C) = {〈g′, g〉 ∈ G×G | g = f(. . . , g′, . . .) ∈ C}, is acyclic.
If 〈g′, g〉 ∈ E(C), theng′ is a child of g andg is a parentof g′. For a gateg, the
sets of its children (i.e., thefanin of g) and parents (i.e., thefanoutof g) are denoted
by fanin(C, g) and fanout(C, g), respectively. Thedescendantandancestorrelations
fanin∗ andfanout∗ are the transitive closures of the child and parent relations, respec-
tively. If g = f(g1, . . . , gn) is in C, theng is anf -gate (or of typef). A gate with no
children (resp. no parents) is aninput gate(resp. anoutput gate). The sets of input gates
and output gates inC are denoted byinputs(C) andoutputs(C), respectively. A gate
that is neither an input nor an output is aninternal gate. Typical gate types includeNOT

(NOT(v) is 1 iff v is 0) andAND (AND(v1, v2) is 1 iff both v1 andv2 are1).
An (truth) assignmentfor C is a (possibly partial) functionτ : G → {0, 1}. A

complete assignmentτ for C is consistentif τ(g) = f(τ(g1), . . . , τ(gn)) for each
g = f(g1, . . . , gn) in C. When convenient we write〈g, v〉 ∈ τ instead ofτ(g) = v.
Thedomainof τ , i.e., the set of gates assigned inτ , is denoted bydom(τ). We say that
two assignments,τ andτ ′, disagreeon a gateg ∈ dom(τ) ∩ dom(τ ′) if τ(g) 6= τ ′(g).
For a truth assignmentτ and set of gatesG ⊆ dom(τ), let flip(G, τ) denote the truth
assignment obtained by changing the values of the gates inG, and leaving the rest ofτ
unchanged.

A constrained Boolean circuitCα consists of a Boolean circuitC and an assignment
α for C. Each〈g, v〉 ∈ α is a constraint, andg is constrainedto v if 〈g, v〉 ∈ α.
A complete assignmentτ for C satisfiesCα if (i) τ is consistent withC, and (ii) it
respects the constraints:τ ⊇ α. If some assignment satisfiesCα, thenCα is satisfiable.
A circuit that is not satisfiable isunsatisfiable. Without loss of generality, we assume
that constraints are imposed only on output gates.

The restriction τ |G′ of an assignmentτ to a setG′ ⊆ G of gates is defined as
{〈g, v〉 ∈ τ | g ∈ G′}. Given a gate equationg = f(g1, . . . , gn) and a valuev ∈
{0, 1}, a justification for the pair〈g, v〉 is a partial assignmentσ : {g1, . . . , gn} →
{0, 1} to the children ofg such thatf(τ(g1), . . . , τ(gn)) = v holds for all exten-
sionsτ ⊇ σ. That is, the values assigned byσ to the children ofg are enough to
forceg to take the consistent valuev. For example, the justifications for〈g, 0〉, where
g = AND(g1, g2), are{〈g1, 0〉}, {〈g2, 0〉}, and{〈g1, 0〉, 〈g2, 0〉}, out of which the first
two aresubset-minimal. A gateg is justified in an assignmentτ if it is assigned, i.e.τ(g)
is defined, and (i) it is an input gate, or (ii)g = f(g1, . . . , gn) ∈ C andτ |{g1,...,gn} is a
justification for〈g, τ(g)〉. We denote the set ofunjustifiedgates in an assignmentτ by
unjust(Cα, τ).

3 CRSat: Justification-Based SLS with Forward Propagation

CRSAT is an SLS-based SAT algorithm for Boolean circuits that operates directly on
circuit structure – that is, without the conversion to CNF. The algorithm was first de-
scribed in [5] and was subsequently analyzed theoreticallyand improved in [6]. In this
section we provide a high-level overview of the algorithm, and refer the reader to [5, 6]
for additional details.

CRSAT is based on thejustification-based[14, 13] approach to circuit-level SLS.
In this approach, the circuit is traversed from the outputs to inputs, and the values of
the internal gates are adjusted using local information in an attempt to eliminate all
unjustified gates. CRSAT combines a weakened version of justification-based SLS with
so calledlimited forward propagation– a restricted form of circuit-level Boolean con-
straint propagation, described in what follows.

Pseudo-code for CRSAT is presented as Algorithm 1. First, a complete extension of
a random value assignment toinputs(Cα) is constructed, i.e., the value of each uncon-
strained internal gate is set consistently with the values of its children. Then, as long as
unjust(Cα, τ) is not empty (i.e.,τ is not a satisfying assignment), the algorithm heuris-
tically selects an unjustified gateg (line 6; we will discuss gate selection heuristics in
the next section in detail). Once an unjustified gateg is chosen, the algorithm selects
a justificationσ for 〈g, τ(g)〉 (lines 7- 13) and performs a searchstep. The latter con-
sists of (i) flipping the values of gates on whichσ andτ disagree (line 15), followed by
(ii) propagating the consequences of the flip towards the outputs of the circuit (line 16).

Algorithm 1 Generic CRSAT(Cα, wp, cutoff)
Input: Cα – constrained Boolean circuit

wp – noise parameter ,i.e., probability of random walk
cutoff– cutoff, i.e., maximum number of steps

Output: status – SAT if a satisfying assignment forCa is found,UNKNOWNotherwise
τ – a satisfying assignment forCα if found, ∅ otherwise

1: τ ← a complete extension of a random assignment toinputs(Cα)
2: steps← 0
3: while steps< cutoff do
4: if unjust(Cα, τ) = ∅ then
5: return 〈SAT, τ 〉

6: g ← a heuristically selected gate fromunjust(Cα, τ)
7: Σ ← the set of justifications for〈g, τ (g)〉
8: with-probability wp do
9: σ ← random element ofΣ ⊲ random walk

10: otherwise
11: σ ← a random justifications from those inΣ that minimize

12: the number of unjustified gates after the step ⊲ greedy downward move
13: end with-probability
14: G← set of gates inσ that disagree withτ
15: τ ← flip(G, τ) ⊲ flip
16: τ ← LBCP-FORWARD(Cα, G, τ) ⊲ limited forward propagation
17: steps← steps+ 1

18: return 〈UNKNOWN, ∅〉

The justificationσ used to make a step can be selected from the setΣ of all justifica-
tions for〈g, τ(g)〉 either at random (with probabilitywp), or greedily with the objective
of minimizing the number of unjustified gates after the step.Note that takingΣ to be a
set ofsubset-minimaljustifications results in good performance in practice; this is also
how our current implementation works.

The forward propagation procedure LBCP-FORWARD is presented as Algorithm 2.
It uses a priority queueQ of gates (with no duplicates) that allows to query thesmall-
estgate according to a topological order in constant time4. Essentially, the procedure
implements a circuit-level Boolean constraint propagation algorithm, except that (i) the
values are propagatedonly towards the outputs of the circuit, and (ii) propagation along
each path stops immediately when an unjustified gate becomesjustified; hence it im-
plementslimited forward propagation. The addition of limited forward propagation to
justification-based SLS results in multiple orders of magnitude speed-ups on industrial
SAT instances [3].

Algorithm 2 LBCP-FORWARD(Cα, G, τ)
Input: Cα – constrained Boolean circuit;
G – a set of gates whose value changes are to be propagated.
τ – an assignment forCa;

Output: τ ′ – an assignment forCα which is a result of limited forward propagation of the
assignmentτ |G.

1: τ ′ ← τ

2: Q.ENQUEUE(G)
3: while ¬ Q.EMPTY do
4: g ←Q.POP FRONT

5: if g ∈ G then ⊲ g is one of the original gates
6: Q.ENQUEUE(fanout(g))
7: else
8: if g ∈ unjust(Cα, τ ′) \ dom(α) then ⊲ g unconstrained and unjustified
9: τ ′ ← flip({g}, τ ′)

10: Q.ENQUEUE(fanout(g))

11: return τ ′

It comes as no surprise that the effectiveness of CRSAT depends critically on the
way the gates are selected for justification during the search (Line 6 of Algorithm 1).
A good selection heuristic focuses search to the most important gates in terms of sat-
isfiability. On the other hand, if a too deterministic (focused) selection procedure is
used, the search may not converge into a satisfying assignment. In [6] we showed that
the efficiency of CRSAT can be significantly improved by focusing the search using
a structure-based gate selection heuristic which takes into account thedepthof the se-
lected gates. In the next section we describe a number of additional structural properties
of gates and propose a number of gate selection heuristics based on these properties.

4 Structure-Based Search Heuristics for CRSAT

In this section we introduce a number of heuristics for selecting of the unjustified gate
to justify at each search step in the main loop of CRSAT (line 6 of Algorithm 1). The
underlying idea is that these heuristics should be able to take into account the structural

4 Recall that a topological order on the set of gates in a circuit is any strict total order< that
respects the condition “ifg1 ∈ fanin(g2), theng1 < g2”

properties of the constrained Boolean circuit at hand, and focus the search on the gates
that are deemed important based on these properties. Additionally, we must aim ateffi-
cientlycomputable heuristics, as the main loop may be executed millions of times in a
typical run of the algorithm (although, in contrast to typical SLS algorithms, most of the
computation effort in CRSAT is attributed to the execution of forward propagation, and
hence we can afford slightly more expensive computations than usual SLS heuristics).

We now give a listing of the initial set of gate properties, with intuition on why
these properties may be interesting. We then describe the corresponding gate selection
heuristics, and, in the next section, present the results ofthe preliminary empirical eval-
uation of these heuristics. The analysis of the results willlead us to the development of
additional heuristics, which will be described and analyzed in Sect. 5.

Depth: depth(C, g), where thedepthof a gateg in C is

depth(C, g) =

{

0 if g ∈ outputs(Cα)
1 + max{depth(C, g′) | g′ ∈ fanout(C, g)} otherwise.

The importance of gate depth for CRSAT was justified theoretically and confirmed
empirically in [6]. The key aspect is that selection of gateswith high depth drives
the algorithm close to the inputs of the circuit, thus allowing the algorithm to ex-
plore the space of assignments to input gates faster.5 The depth of all gates inC
can be computed inO(|C|) time (where|C| denotes the number of gates inC), and
stored for constant time retrieval.

FO: |fanout(C, g)|
Gates with largefanout sizeare in a sense more influential than the rest. Intuitively,
by forcing CRSAT to justify these gates, the truth values of these critical parts of
the circuit are fixed first, which may result in many of the other gates’ values to be
set by forward propagation. The fanout size of a gate is retrieved in constant time.

TFO: |fanout∗(C, g)|
This is also a measure of the influence of the gate in the circuit: intuitively, the
largerthe size of the transitive fanout, the more influence the gate’s value has on
transitively justifying the output constraints of the circuit via forward propagation.
The computation of the size of the transitive fanout of a gaterequiresO(|C|) in the
worst-case (although typically only a fraction of gates inC have to be evaluated).

TFI: |fanin∗(C, g)|
The size of the transitive-faninof a gateg can be considered an estimate of the
number of search steps required to justify all gates in the sub-circuit rooted atg.
This measure is also related to the size of theinterest setused as an objective
function in justification-based SLS algorithm BC SLS [14, 13]. The computation
of the size of the transitive fanin of a gate requiresO(|C|) in the worst-case.

CC: CC(C, g, τ(g)), where theSCOAP (Sandia Controllability and Observability Anal-
ysis Program) combinational controllability measure[9] CC is defined as follows:

5 Here one should notice that driving the search towards inputgates in justification-based search
is different from the idea of restrictingthe flipsto input gates as in [16, 20, 21, 17, 19] due to
the conceptual differences of these approaches.

CC(C, g, 0) =

{

1 if g ∈ inputs(C)
1 + ming′∈fanin(C,g) CC(C, g

′, 0) if g is anAND-gate,

CC(C, g, 1) =

{

1 if g ∈ inputs(C)
1 +

∑

g′∈fanin(C,g) CC(C, g
′, 1) if g is anAND-gate.

Given a gateg and its current valuevg, SCOAP aims to provide a measure of how
difficult it is to satisfy the sub-circuit rooted atg given thatg is constrained tovg
(i.e., tocontrol the valuevg atg). Originally, SCOAP was used as a combinational
testability measure. For our purposes, SCOAP intuitively provides a measure of
how difficult it is to transitively justify the output constraints of a circuit. Due to
the fact that we apply And-Inverter graphs (AIGs) as benchmark instances in this
paper, the definition is restricted toAND-gates only. However, the definition can be
naturally extended to other gate types.
Here one should notice the original definition of SCOAP assigns for NOT-gates
(negations) the value of the gate’s childincremented by one. In contrast, here we do
no increment such values, but insteadimplicitly skip NOTs in the following sense.
In caseg = NOT(g′), all gates infanout of g′ are included infanout of g′ instead
of g. This is due to the fact that negations (inverters) are handled implicitly in the
justification steps and forward propagation performed by CRSAT , and hence the
CC value assigned to eachNOT-gate equals the value assigned to the gate’s child.
Note that SCOAP controllability measures for all gates inC can be computed in
O(|C|) time.

CO: CO(C, g), where theSCOAP combinational observability measure[9] is defined
as follows:

CO(C, g) =

{

0 if g ∈ outputs(C)
1 + ming′∈fanout(C,g) CCO(C, g

′, g) otherwise,

where for anAND-gate we have

CCO(C, g′, g) = CO(C, g′) +
∑

g′′∈fanin(C,g′)\{g}

CC(C, g′′, 1).

As in CC, we implicitly skip NOTs in the definition. This measure attempts to cap-
ture how difficult it is toobservea specific value for a gate given the output con-
straints; in other words, how likely is it that the value is part of a minimal justifica-
tion that is transitively consistent with the output constraints. The measure can be
computed for all gates inC in O(|C|) time.

Flow: flow(C, g), where theoutput flow valueof a gateg in C is

flow(C, g) =

1 if g ∈ outputs(C)
∑

g′∈fanout(C,g)

flow(C, g′)

|fanout(C, g′)|
otherwise.

In other words, we compute a total flow value for each gate by pouring a unit
quantity flow down from the output gates of the circuit. Here it is important to

notice that the definition offlow implicitly skips NOT-gates. This flow-based idea
was first evaluated in [15] as a heuristic for restricting theset of decision variables in
CDCL solvers. Our intuition is that, if a large total flow passes through a particular
gate, the gate isglobally very connected with the constraints inτ , approximating
in a sense the number of possible paths for forward propagation, and thusg would
have an important role in the satisfiability of the circuit.

Each of the structural properties presented above gives rise to a pair of gate selection
heuristics: for a given propertyf(Cα, g, τ), one heuristic selects at random a gate from

argmax
g∈unjust(Cα,τ)

f(Cα, g, τ).

We will refer to this heuristic as amax-variant, f -max, of the heuristic based onf .
And, a dual heuristic, themin-variant, f -min, selects at random a gate from

argmin
g∈unjust(Cα,τ)

f(Cα, g, τ).

Thus, we have 7 pairs of dual heuristics, and the baseline heuristic Rand that simply
selects a random gate from fromunjust(Cα, τ) – this is the heuristic used in the original
paper on CRSAT [5].

We now note that some of the presented structural measures ofgates are in parts
correlated (either positively or negatively) with gate depth (these areTFO, TFI , CC,
CO), while others (FO, Flow) are not. The reason that we pay a particular attention to
the depth is that we know that theDepth-max heuristic is very effective [6]. As such,
when we evaluate the heuristics based on the properties thatare positively correlated
with depth (depth-friendlyheuristics) we are interested in detecting improvements over
Depth-max. Such an improvement would suggest that another, perhaps more funda-
mental property, is at play in CRSAT-style circuit SLS. Furthermore, the duals of depth-
friendly heuristics are expected a priori to perform poorly. In evaluating the heuristics
that are not correlated with depth (depth-agnosticheuristics), we are also interested in
detecting significant differences in performance on some classes, or even on particular
problem instances. Such differences would suggest that depth-agnostic heuristics might
be used as secondary heuristics in CRSAT (e.g. for tie-breaking).

To summarize, the following heuristics are the primary targets of the empirical eval-
uation and analysis presented in the next section:

– Baseline: Rand and alsoDepth-max.
– Depth-friendly: TFO-max, TFI-min , CC-min (small controllability value means

the gate iseasyto control, and hence intuitively close to inputs),CO-max (large
observability value means the gate isdifficult to observe, and hence intuitively far
from outputs).

– Depth-agnostic: FO-min, FO-max, Flow-min, Flow-max.

5 Evaluation

In order to provide an objective empirical comparison of SLSsolvers, the well-known
SLS textbook by Hoos and Stützle [11] suggests a procedure for finding near-optimal

noise (the setting of the parameterwp in Alg. 1) by essentially binary searching for the
noise values for each individual instance and solver to be evaluated. While full binary
search is computationally infeasible given the vast numberof benchmark instances used
in our experiments and, on the other hand, the computationalresources available to us,
we applied the following approximation of the Hoos-Stützle scheme. Noise was opti-
mized for each solver and instance individually based on 25 tries using a timeout of 200
seconds per try (with no limit on the number of steps), at noise values 0.05, 0.1, 0.2,
0.3, 0.4, 0.5. The noise with highest success rate (primary criterion) and best median
time (secondary criterion) was selected. In cases where there were two or more options
ranked best using both of these criteria, a random candidateamong those options was
picked. Note that the benchmark-class based noise optimization, which is computation-
ally cheaper, is often insufficient on industrial application benchmarks. For example,
among 61 solved instances of one of the benchmark classes described below (sss-sat-
1.0) we found 10 instances to have a near-optimal noise value,wpno, of 0.05, 10 with
wpno = 0.1, 14 instances withwpno = 0.2, 9 instances withwpno = 0.3, 9 instances
with wpno = 0.4 and 9 instances withwpno = 0.5.

The reported CPU times and number of steps for each instance are the median CPU
time (in seconds) and the median number of search steps with the best noise setting
over 25 tries for the experiments summarized in Fig. 1 and 3, and over 100 tries for
the experiments summarized in Fig. 2.6. The experiments were performed on an HPC
cluster, each node of which runs on a dual quad-core Xeon E5450 3-GHz with 32 GB
of memory.

5.1 Benchmark Families

As benchmarks, we considered over 650 And-Inverted circuits (AIGs, that is, con-
strained Boolean circuits in which gate typesAND and NOT are used) from five dif-
ferent industrial application benchmark classes. We obtained the AIGs as described in
the following.

hwmcc08-sat 204 satisfiable AIGs obtained from the Hardware Model Checking Com-
petition 2008 problems7. The original sequential circuits were unfolded using the
aigtobmc tool (part of the AIGer package8) The step boundk = 45 was used for
the time frame expansion.

smtqfbv-sat 61 satisfiable AIGs generated by using the Boolector SMT solver9 [8] to
bit-blastQF BV (theory of bit-vectors) instances of the SMT Competition 200910

into AIGs.

6 Based on our experience, given the large number of instances, 25 tries is enough to detect the
main trends. The experiments described in Fig. 2 require more precision.

7 Original instances available athttp://fmv.jku.at/hwmcc08/ .
8 Available athttp://fmv.jku.at/aiger/
9 http://fmv.jku.at/boolector/

10 http://www.smtcomp.org/2009/

sss-sat-1.098 satisfiable AIGs from “formal verification of buggy variants of a dual-
issue superscalar microprocessor”11 [23]. These circuits, originally in the ISCAS
format, were converted to AIG using the ABC system12 [7].

vliw-sat-1.1 98 satisfiable AIGs from “formal verification of buggy variants of a VLIW
microprocessor”, originating from the same place and converted to AIG in a similar
fashion as sss-sat-1.0 instances.

sat-race Satisfiable AIGs filtered from a total of 200 instances used inthe final round
of structural SAT trackof the SAT Race 2008 and 2010 competitions.13

In order to be able carry out the experiments in practice, we picked a selection of a
total of 300 instances from these benchmark classes as follows. Based on the good per-
formance reported in [6] for theDepth-max heuristic, we filtered out trivial instances
for Depth-max (instances for which the median number of steps was< 730). From
the remaining ones, in order to we picked those instances that we considersolvedby
Depth-max (i.e., instances for which the success rate forDepth-max was≥ 50 %)14.
This resulted in the following distribution of instances: hwmcc08 – 95, smtqfbv – 46,
sss-sat-1.0 – 61, vliw-sat-1.1 – 96, and sat-race – 2.

5.2 Results and Analysis

Fig. 1 presents a “cactus” plot, i.e., the number of instances that can be solved within a
given time15, summarizing the comparative performance of the 15 structure-based gate
selection heuristics described in Sect. 4. The following conclusions can be drawn.

First, we note that whenever a heuristic outperforms the baselineRand heuristic, its
dual performs worse thanRand, and vice versa. In fact, we see that in many cases the
better the performance of a heuristic, the worse is the performance of its dual. This sug-
gests that the properties proposed in Sect. 4 are meaningfulin the context of CRSAT .
One exception to the nice “symmetric” picture is the pair based on SCOAP combina-
tional controllabilityCC, where the worse of the duals,CC-max, performs surprisingly
close to the baselineRand – we will discuss this point later. An additional observation
is that the depth-friendly heuristicsTFO-max, TFI-min , CC-min and CO-max al-
ways perform significantly better than their duals, and, furthermore, form most of the
best performing heuristics. This corroborates the hypothesis that there is an important
underlying property correlated with the depth of gates.

Second, we observe surprisingly good performance from the depth-agnosticFlow-
min. Recall that, intuitively, gates with high flow are those that have large influence on
other gates in the circuit. Thus, on the surface, this resultcasts doubt on the role of the

11 Available athttp://www.miroslav-velev.com/sat_benchmarks.html
12 http://www.eecs.berkeley.edu/ ˜ alanmi/abc/
13 Available athttp://baldur.iti.uka.de/sat-race-2010/downloads.ht ml
14 This allowed us to perform these extensive experiments in practice within the given time frame.

We hope to extend the experiments also to those instances unsolved byDepth-max.
15 The median CPU times were used for the plot. The median numberof search steps would also

be an appropriate measure for comparing the quality of search heuristics. However, the relative
performance differences based on time and on number steps are very close in this case, and
the cactus plot using running times is easier to read.

Fig. 1. A comparison of the performance of 15 gate-selection heuristics described in Sect. 4 as a cactus plot, i.e., the number ofthose instances that can
eachsolvedwithin a given time limit. An instance is consideredsolvedif a success rate over the 25 tries is≥ 50%. The CPU time of a solved instance is
the median CPU time for the instance over all runs (includingthe unsuccessful ones).

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

 150 175 200 225 250 275 300

C
P

U
 ti

m
e

(s
ec

)

number of solved instances

TFI-max
Depth-min

FO-min

TFO-min
Flow-max

CO-min

CC-max
Rand

FO-max

CC-min
CO-max

Flow-min

TFO-max
Depth-max

TFI-min

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

T
F

I-
m

in
, n

um
be

r
of

 s
ea

rc
h

st
ep

s

Depth-max, number of search steps

hwmcc08-sat
smtqfbv-sat
sss-sat-1.0
vliw-sat-1.1

sat-race

(a) Depth-maxvs TFI-min

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

T
F

I-
m

in
, n

um
be

r
of

 s
ea

rc
h

st
ep

s

Level-min, number of search steps

hwmcc08-sat
smtqfbv-sat
sss-sat-1.0
vliw-sat-1.1

sat-race

(b) Level-min vs TFI-min

Fig. 2. Scatter plots that compare the performances of selected heuristics in terms of the median
number of steps, over 100 tries. Timed-out instances are plotted with the number of steps set to
107, on the vertical and horizontal lines.

influential gates in the context of CRSAT . On the other hand, between the two duals
based on the size of the fanout of gates, it is theFO-max that performs well, rather than
FO-min. A closer look at some of our instances resolves this apparent contradiction
– the flow isnot depth-agnostic, but, in fact, is negatively correlated with depth. The
reason for this is that most of our benchmark circuits have significantly more inputs
than outputs, and thus gates that are close to inputs tend to have small flow values. At
the same time, we did not detect any interesting relationships betweenDepth-maxand
FO-min, most likely due to the fact that the latter is much more a local property than
the former. This suggests that to further study the effects of “influence” of gates in the
context of CRSAT , alternative measures are needed, e.g., ones that are basedon graph-
theoretic centrality measures. This conclusion is corroborated by the fact that, although
the depth-friendly heuristics capture high influence — gates with large depth often have
large transitive fanout and thus have high influence throughforward propagation — the
results show thatTFO-max is not the best performing heuristic.

Finally, we observe that the SCOAP-based heuristicsCC-min andCO-max, as well
as theTFO-max heuristic based on the size of the transitive fanout of gates, do not per-
form as well asDepth-max. However, in contrast, the heuristic that prefers gates with
small transitive fanin, TFI-min , appears to perform noticeably better thanDepth-max.
The scatter plot in Fig. 2(a) which compares the performanceof these two heuristics in
terms of the number of search steps demonstrates that the size of the transitive fanin of
gates can provide a better guidance to CRSAT than the depth of the gate.

Note that gates with small transitive fanin are very likely to be close to the inputs.
Based on the theoretical analysis of CRSAT in [3] and [6] the performance of the algo-
rithm should improve if it arrives to the input level frequently. Hence, to get insight into
the reasons of the good performance ofTFI-min , we need to understand whether the
heuristic is effective simply because it brings the algorithm faster to the input level, or
whether there is another mechanism at play. One way to investigate the answer to this

question is to compare the performance ofTFI-min with a heuristic that is based on a
measure that disregards the number of gates in the sub-circuit rooted at the gate, and
takes into account only the distance from the gate to the input level. Such a measure,
well known in EDA literature, is called thelevelof a gate, and is defined as follows:

Level: level(C, g), where thelevelof a gateg in C is

level(C, g) =

{

0 if g ∈ inputs(C)
1 + max{level(C, g′) | g′ ∈ fanin(C, g)} otherwise.

Thus,level(C, g) is simply the maximum distance from the gateg to an input gate,
and so the depth-friendly heuristic based on level,Level-min, would control the search
solely based on the distance to the inputs.

The comparative performance ofTFI-min andLevel-min is presented in the scat-
ter plot in Fig. 2(b). We observe that performances of the twoheuristics are highly
correlated. As such, this comparison does not give a definitive answer to the question
of which measure is more fundamental for CRSAT . To gain some insight, we can in-
troduce heuristics that go for the input gates more aggressively thanLevel-min. Such
heuristics can, for instance, be based on the following measures:

LLevel: level(C, g), where the“low” level of a gateg in C is

llevel(C, g) =

{

0 if g ∈ inputs(C)
1 + min{llevel(C, g′) | g′ ∈ fanin(C, g)} otherwise.

ALevel: alevel(C, g), where the“average” levelof a gateg in C is

alevel(C, g) =

{

0 if g ∈ inputs(C)
1 +

∑

g′∈fanin(C,g) level(C, g
′)/|fanin(C, g)| otherwise.

Thus, the “low” level ofg is the shortest distance fromg to some input gate, while
the “average” level ofg is somewhere in between the level and the “low” level; that
is, we always havelevel(C, g) ≥ alevel(C, g) ≥ llevel(C, g). As such, theLLevel-
min heuristics will drive the search to the input gates extremely aggressively, while the
ALevel-min heuristic represents a middle ground betweenLevel-min andLLevel-min .

The cactus plot in Fig. 3 summarizes the comparative performance in terms of CPU
time of the three level-based heuristics described above and TFI-min . We note that the
performance of level-based heuristics degrades as the heuristics attempt to drive the
search towards the inputs more aggressively. This observation provides partial evidence
to the hypothesis that the size of transitive fanin of a gate,which provides an estimate
of the amount of work needed to justify a sub-circuit rooted at the gate, is a more
fundamental structural property in the context of CRSAT . However, in order to evaluate
this hypothesis properly, we need to discover classes of problems where the measures
Level andTFI are not correlated. Finally, due to the fact that on the instances in our
benchmark set the two measures appear to be correlated, we note that sinceLevel is a
cheaper-to-compute measure, in practical applications one might want to consider using
Level-min, rather thanTFI-min , as a gate-selection heuristic.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 200 225 250 275 300

C
P

U
 t
im

e
 (

s
e
c
)

number of solved instances

LLevel-min
ALevel-min

TFI-min
Level-min

Fig. 3. A comparison of the performance ofTFI-min with various level-based gate-selection
heuristics as a cactus plot, i.e. the number of those instances that can eachsolvedwithin a given
time limit. An instance is consideredsolvedif a success rate over the 25 tries is≥ 50%. The
CPU time of a solved instance is the median CPU time for the instance over all runs (including
the unsuccessful ones).

6 Conclusions

We presented results of experiments on the applicability ofdifferent circuit-level prop-
erties as the basis of structure-based search (gate selection) heuristics for the state-of-
the-art SLS method CRSAT for industrial-related Boolean satisfiability instances.The
results can be seen as first steps towards understanding the role of structural information
in justification-based local search for SAT with limited Boolean propagation integrated
into the search. We identified a number of easy-to-compute structural properties which
appear suitable as the basis of heuristics for CRSAT , some of which can even outper-
form the recently introduced depth-based variant of CRSAT. The promise of the result-
ing heuristics was also corroborated by showing the dual properties result in extremely
weakly performing heuristics.

The now presented results open up various interesting questions for further work on
improving structure-based SLS for SAT. First, the observation that somewhat differently
defined structural properties result in good heuristics suggests to study different ways of
combiningthe resulting heuristics for achieving even better performance. This includes
the question of what are the actual underlying properties togive good performance, and
which the now studied easy-to-compute properties may be approximating. In addition
to gate selection heuristics, we also aim to study differentobjective functionsthat are
based on structural properties of SAT instances. Finally, we note that the development
of good structure-based search heuristics for the circuit-level is directly applicable for
the logical combinations of more high-level constraints (more generic CSPs), where
the logical combinations can be viewed as circuits. This is one of the main research
directions we are currently pursuing.

AcknowledgementsWe thank the anonymous referees for helpful comments.

References

1. Ågren, M., Flener, P., Pearson, J.: Generic incremental algorithms for local search. Con-
straints 12(3), 293–324 (2007)

2. Ågren, M., Flener, P., Pearson, J.: Revisiting constraint-directed search. Inf. Comput. 207(3),
438–457 (2009)

3. Belov, A.: Stochastic Local Search for Non-clausal and Circuit Satisfiability. Ph.D. thesis,
York University, Toronto, Canada (2010)

4. Belov, A., Stachniak, Z.: Improving variable selection process in stochastic local search for
propositional satisfiability. In: Proc. SAT. LNCS, vol. 5584, pp. 258–264. Springer (2009)

5. Belov, A., Stachniak, Z.: Improved local search for circuit satisfiability. In: Proc. SAT. LNCS,
vol. 6175, pp. 293–299. Springer (2010)

6. Belov, A., Järvisalo, M., Stachniak, Z.: Depth-driven circuit-level stochastic local search for
SAT. In: Walsh, T. (ed.) Proc. IJCAI. pp. 504–509. AAAI Press(2011)

7. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification tool. In:
Proc. CAV. LNCS, vol. 6174, pp. 24–40. Springer (2010)

8. Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and arrays. In:
Proc. TACAS. LNCS, vol. 5505, pp. 174–177. Springer (2009)

9. Goldstein, L.: Controllability/observability analysis of digital circuits. IEEE Transaction on
Circuits and Systems 26, 685–693 (1979)

10. Hentenryck, P.V., Michel, L.: Constraint-based local search. MIT Press (2005)
11. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Elsevier / Mor-

gan Kaufmann (2004)
12. Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT. In:

Proc. AAAI. pp. 661–666. AAAI Press (1999)
13. Järvisalo, M., Junttila, T., Niemelä, I.: Justification-based local search with adaptive noise

strategies. In: Proc. LPAR. LNCS, vol. 5330, pp. 31–46. Springer (2008)
14. Järvisalo, M., Junttila, T., Niemelä, I.: Justification-based non-clausal local search for SAT.

In: Proc. ECAI. pp. 535–539. IOS Press (2008)
15. Järvisalo, M., Niemelä, I.: The effect of structural branching on the efficiency of clause

learning SAT solving: An experimental study. Journal of Algorithms 63(1–3), 90–113 (2008)
16. Kautz, H., McAllester, D., Selman, B.: Exploiting variable dependency in local search. In:

IJCAI (1997)
17. Muhammad, R., Stuckey, P.: A stochastic non-CNF SAT solver. In: Proc. PRICAI. LNCS,

vol. 4099, pp. 120–129. Springer (2006)
18. Naveh, Y.: Guiding stochastic search by dynamic learning of the problem topography. In:

Proc. CPAIOR. LNCS, vol. 5015, pp. 349–354. Springer (2008)
19. Pham, D., Thornton, J., Sattar, A.: Building structure into local search for SAT. In: Proc. IJ-

CAI. pp. 2359–2364 (2007)
20. Sebastiani, R.: Applying GSAT to non-clausal formulas.J. Artif. Intell. Res. 1, 309–314

(1994)
21. Stachniak, Z.: Going non-clausal. In: SAT (2002),http://gauss.ececs.uc.edu/

Conferences/SAT2002/Abstracts/stachniak.ps
22. Stachniak, Z., Belov, A.: Speeding-up non-clausal local search for propositional satisfiability

with clause learning. In: Proc. SAT. LNCS, vol. 4996, pp. 257–270. Springer (2008)
23. Velev, M.N., Bryant, R.E.: Superscalar processor verification using efficient reductions of

the logic of equality with uninterpreted functions to propositional logic. In: Proc. CHARME.
LNCS, vol. 1703, pp. 37–53. Springer (1999)

