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Abstract—We introduce an extensible framework for cor-
relation clustering by harnessing the Maximum satisfiability
(MaxSAT) Boolean optimization paradigm. The approach is
based on formulating the correlation clustering task in an
exact fashion as MaxSAT, and then using a state-of-the-art
MaxSAT solver for finding clusterings by solving the MaxSAT
formulation. Our approach allows for finding optimal clusterings
wrt the objective function of the problem, extends to constrained
correlation clustering—by allowing for easy integration of user-
defined domain knowledge in terms of hard constraints over
the clusterings of interest—as well as overlapping correlation
clustering. First experiments on the scalability of the approach
are presented.

I. INTRODUCTION

Correlation clustering [1] is the well-studied [2], [3], [4],
[5] NP-hard task of partitioning a given set of objects into
groups based on a given pairwise similarity measure between
the objects. This clustering paradigm is geared towards clas-
sifying data based on qualitative information—as opposed to
quantitative information—of pairs of data points, arising from
various applications in biology [6], social network analysis
and information retrieval [7], [8]. Correlation clustering can
be also seen as a form of agnostic learning [9], [1]. For our
considerations, following the original definition given in [1],
the problem input consists of an undirected graph over a set
of nodes (representing the data points to be clustered), with
positive and negative edges, indicating that two data points are
similar or dissimilar, respective. The objective is to partition
(i.e., cluster) the data points into clusters, minimizing the sum
of the number of positive edges between different partitions
and the number of negative edges within the partitions.

We introduce an extensible framework for correlation clus-
tering that allows for finding cost-optimal clusterings wrt the
objective function of the problem. We formulate the correlation
clustering task in an exact fashion in the Boolean optimization
paradigm of Maximum satisfiability (MaxSAT), and harness a
state-of-the-art MaxSAT solver for finding optimal clusterings
by optimally solving the MaxSAT formulation. This is in
contrast with previously proposed approximation and local-
search algorithms for correlation clustering which cannot
give optimality-guarantees on the produced clustering. Our
approach also extends to constrained correlation clustering—
by allowing for easy integration of user-defined domain knowl-
edge in terms of hard constraints over the clusterings of
interest—as well as overlapping correlation clustering [7].

The main contributions of this paper are the following.
–We present a novel and extensible MaxSAT-based ap-

proach to optimal correlation clustering. To our best knowl-
edge this is the first practical approach to exactly solving

correlation clustering, i.e., to finding optimal clusterings wrt
to the actual objective function of the problem. In contrast,
previous work on correlation clustering has mainly focused on
approximation algorithms and greedy local-search techniques
which cannot in general find optimal clusterings.

–At the core of the approach, we present two different
MaxSAT formulations of correlation clustering, as well as
performance-improving optimizations to the encodings (Sec-
tions IV–VI). We provide initial experimental results on
real-world data sets, comparing our approach to both an
exact integer programming formulation [2], and an in-exact
spectral clustering approach specialized to clustering protein
sequences [10]. The first results show that our approach (i) can
provide cost-optimal solutions and (ii) scales better than the
exact integer programming formulation (Section VII).

–Our approach easily extends to the task of constrained
correlation clustering, which allows for the user to specify
the clusterings of one’s interest by imposing hard used-
defined constraints over the search space of clusterings. While
approaches to constrained clustering have been proposed pre-
viously for different clustering paradigms [11], [12], [13], [14],
[15], [16], to our best knowledge, this is the first approach that
allows for seamless integration of user knowledge into the task
of correlation clustering. We show experimentally that added
user knowledge decreases the running time of our approach,
and steers the obtained clusterings fast toward a predefined
ground-truth clustering (Section VII-B).

–Our approach easily extends also to overlapping cor-
relation clustering [7], hence giving a novel approach to
constrained overlapping correlation clustering. We show ex-
perimentally that our approach is able to precisely reconstruct
an existing ground truth clustering for UCI data sets, which
could not be achieved using recently proposed greedy local
search methods for overlapping correlation clustering [7] (Sec-
tion VIII). Finally, we note that our approach has the potential
to similarly cover other variants of correlation clustering, such
as (constrained) chromatic correlation clustering [8].

II. CORRELATION CLUSTERING

A. Problem Definition

For defining the problem of correlation clustering, we fol-
low [17], [7]. However, while the original definition [17] is re-
stricted to complete knowledge of the pairwise (dis)similarities
of data points (in other words, to complete graphs), we allow
also partial (dis)similarity information.

A correlation clustering instance consists of a set V =
{v1, . . . , vN} of data points, and a binary similarity function
s : E → {0, 1} over a subset E ⊂ V × V of the ordered



pairs of the data points. We assume that s is symmetric, i.e.,
that s(vi, vj) = s(vj , vi) for any two data points vi, vj . Two
data points vi, vj are considered (dis)similar if s(vi, vj) = 1
(if s(vi, vj) = 0). A correlation clustering instance (V, s)
can be interpreted as an undirected graph with the set V
of nodes and two types of labelled edge relations: E+ =
{{vi, vj} | s(vi, vj) = 1} (representing similar pairs of nodes)
and E− = {{vi, vj} | s(vi, vj) = 0} (representing dissimilar
pairs of nodes). Any function cl : V → N is a solution to
the correlation clustering instance, representing a clustering
of the data points into clusters indexed with natural numbers.
In correlation clustering, the objective is to cluster the data
points in a way that correlates as well as possible with s, i.e,
to find a function cl : V → N minimizing the cost function

G(cl) =
∑

(vx,vy)∈E
cl(vx)=cl(vy)

(1− s(vx, vy)) +
∑

(vx,vy)∈E
cl(vx) 6=cl(vy)

s(vx, vy).

(1)
A clustering cl of V is optimal iff G(cl) ≤ G(cl′) for any
clustering cl′ of V .

B. Correlation Clustering as Integer Programming

Correlation clustering is an NP-hard optimization prob-
lem [4]. Previous work on algorithms for correlation clustering
has focused on approximation and greedy local search algo-
rithms which cannot in general provide optimal solutions to the
problem. However, an exact integer programming formulation
of correlation clustering [2] has been used as a basis of
approximating the problem. Given a correlation clustering
instance (V, s), the integer program uses binary indicator
variables xij ∈ {0, 1}, where i < j, with the interpretation
that two data points vi, vj ∈ V are in the same cluster (in
different clusters) if xij = 1 (xij = 0). Using these variables,
the set of optimal solutions to the following integer program
represent the set of optimal clusterings of V under s [2].

MINIMIZE
∑

s(vi,vj)=0

xij −
∑

s(vi,vj)=1

xij

where xij + xjk ≤ 1 + xik for all distinct i, j, k
xij ∈ {0, 1} for all i, j s.t i 6= j.

The purpose of the transitivity constraint xij +xjk ≤ 1+xik
is to ensure a well-defined clustering: For any (vi, vj , vk) ∈
V × V × V , each of the points vi, vj , vk must belong to
exactly one cluster, and hence it follows that if points vi, vj are
assigned to the same cluster and points vj , vk are assigned to
the same cluster, by transitivity then points vi, vk should also
be assigned to the same cluster. Stated as a linear constraint
with the defined variables we require that if xij + xjk = 2
then xik = 1, which is exactly what the constraint enforces.

To the best of our knowledge, attempts to optimally solve
this integer program have not so far been reported. In the
paper, we present experimental results for correlation clus-
tering real-world data sets by optimally solving this integer
programming formulation using the state-of-the-art integer
programming solver CPLEX. Before this, we will next present

two alternative declarative formulations of correlation cluster-
ing as Maximum satisfiability (MaxSAT). It turns out that our
MaxSAT formulations allow for optimally clustering notably
larger real-world data sets than the integer programming
approach.

III. MAXIMUM SATISFIABILITY (MAXSAT)

Before describing our MaxSAT formulations of optimal
correlation clustering, this section shortly reviews necessary
basic concepts on Maximum satisfiability (see e.g. [18]).

For a Boolean variable x, there are two literals, x and ¬x.
A clause is a disjunction (∨, logical OR) of literals and a truth
assignment is a function from Boolean variables to {0, 1}. A
clause C is satisfied by a truth assignment τ (τ(C) = 1) if
τ(x) = 1 for a literal x in C, or τ(x) = 0 for a literal ¬x in
C. A set F of clauses is satisfiable if there is an assignment
τ satisfying all clauses in F (τ(F ) = 1), and unsatisfiable
(τ(F ) = 0 for any assignment τ ) otherwise. A partial MaxSAT
instance F = (Fh, Fs) consists of two sets Fh, Fs of clauses.
The clauses in Fh are hard, and the ones in Fs soft. Any truth
assignment τ that satisfies Fh is a solution to F . The cost
of τ for F , denoted by COST(F, τ), is the number of clauses
in Fs not satisfied by τ . A solution τ is (globally) optimal
for F if COST(F, τ) ≤ COST(F, τ ′) holds for any solution
τ ′ to F . The cost of the optimal solutions of F is denoted
by OPT(F ). Given a partial MaxSAT instance F , the partial
MaxSAT problem asks to find an optimal solution to F . For
simplicity, we will from here on drop the term “partial” when
referring to partial MaxSAT instances.

MaxSAT is a viable approach to finding globally optimal
solutions to various optimization problems. In general, the
MaxSAT-based approach has two steps. First, the problem is
encoded as a MaxSAT instance F in a way that any optimal
solution to F can be mapped to an optimal solution of the
original problem. Then, an off-the-shelf MaxSAT solver is
used to find an optimal solution to the MaxSAT instance.
In this work, we extend the application domains of MaxSAT
to optimally correlation clustering real-world data. The basic
idea behind both of our MaxSAT formulations of correlation
clustering, is that hard clauses are used to enforce that any
solution to the MaxSAT instance represents a well-defined
clustering (i.e., a mapping cl : V → N; recall Sect. II-A). The
set of soft clauses are then used to encode the cost function in
a faithful way, so that each solution to the MaxSAT instance
can be mapped into a clustering with exactly the same cost.

IV. A MAXSAT FORMULATION

Our first MaxSAT formulation (“Encoding 1”) of corre-
lation clustering can be viewed as a reformulation of the
integer programming formulation (recall Sect. II-B) in terms
of MaxSAT. However, it turns out (as we will show in the
experimental evaluation) that the MaxSAT formulation allows
one to optimally solve notable larger data sets than the integer
programming formulation.

Similarly as in the integer programming formulation, we use
indicator variables xij , where i < j, with the interpretation



that xij = 1 iff points vi and vj belong to the same cluster.
Using these variables, Encoding 1 forms the MaxSAT instance
F 1 = (F 1

h , F
1
s ) summarized in Figure 1.

Hard Clauses F 1
h : (¬xij ∨ ¬xjk ∨ xik) for all (vi, vj , vk) ∈ V 3

where i, j, k are distinct

Soft Clauses F 1
s : (xij) for all s(vi, vj) = 1

(¬xij) for all s(vi, vj) = 0

Fig. 1. MaxSAT instance F 1 = (F 1
h , F

1
s ) produced by Encoding 1.

We next describe the different parts of F 1 in detail.

A. Hard Clauses

The hard clauses F 1
h of Encoding 1 are a clausal formulation

of the transitivity constraints xij+xjk ≤ 1+xik for all distinct
i, j, k in the integer program. In terms of propositional logic,
these can be stated as (xij ∧ xjk) → xik, which in clausal
form corresponds to

T(vi, vu, vj) := ((¬xij ∨ ¬xjk ∨ xik).) .

B. Soft clauses

The soft clauses F 1
s encode the cost function: each pair

(vi, vj) ∈ E for which s(vi, vj) = 0 (resp., (vi, vj) = 1) that
are (not) assigned to the same cluster should correspond to
exactly one soft clause being left unsatisfied. This is achieved
simply by introducing the soft clause (¬xij) (resp., (xij)) for
each such pair.

C. Constructing a Clustering from a MaxSAT Solution

Any solution τ to F 1 represents a valid clustering clτ of
V , constructed as follows: Assign point clτ (v1) = 1 and
clτ (vj) = 1 whenever τ(x1j) = 1. Recursively, for the
smallest i for which the point vi is not assigned yet by clτ ,
and let clτ (vi) = 2 and clτ (vk) = 2 whenever τ(xik) = 1.
Iterate this process until there are no unassigned points left.
Since the hard transitivity constraints must be satisfied by τ ,
this process will not create any conflicts, and each point will
be assigned into exactly one cluster. Furthermore, it follows
that the optimal solutions of F 1 correspond to the optimal
clusterings of V . The correctness of Encoding 1 can hence
be formalized as follows; this follows from the observation
of the fact that Encoding 1 is a reformulation of the integer
programming formulation, and the fact that each unsatisfied
clause corresponds to exactly one pair of points that incur a
cost to that clustering.

Theorem 1: Given a set of data points V = {v1, . . . , vN},
a subset E ⊂ V ×V , and a similarity function s : E → {0, 1},
let F 1(V, s) be the MaxSAT instance produced by Encoding
1. The clustering clτ∗ : V → N constructed from an optimal
solution τ∗ to F is an optimal clustering of V under s. �

We note that Encoding 1 does not require a predefined
number of clusters. This is avoided by the definition of the xij
variables, interpreted as pairwise indicator variables for two
data points vi, vj being assigned to the same cluster. However,
Encoding 1 is not very compact, due to the fact that the number
of clauses encoding the transitivity constraints is cubic in the

number of data points. Next, we will present an alternative
MaxSAT formulation that is more compact that Encoding 1.

V. AN ALTERNATIVE MAXSAT FORMULATION

Next we present a more compact encoding which, in con-
trast to Encoding 1, assumes an upper bound K on the amount
of available clusters. This corresponds to a setting in which
the problem is to find an optimal clustering of the data using
at most K clusters. This version of correlation clustering has
previously been studied in [5]. In practice, by simply solving
Encoding 2 for different values of K, one can obtain optimal
clustering for an arbitrary upper bound number on the number
of clusters.

Encoding 2 uses N · K Boolean variables yik, where i =
1..N (the number of data points) and k = 1..K (the number of
clusters). The interpretation of these variables is that yik = 1
iff point vi belongs to cluster k. Furthermore, we employ two
types of auxiliary variables, which are used for achieving a
compact clausal encoding.
(i) Aijk, where i = 1..N , j = 2..N , i < j, and k = 1..K,
with the interpretation Aijk = 1 iff points vi and vj are both
assigned to cluster k. More formally, Aijk ↔ (yik ∧ yjk).
(ii) Dij , where i = 1..N , j = 2..N , and i < j, with the
interpretation that if Dij = 0, then points vi and vj are not
assigned to the same cluster. More formally, ¬Dij → (¬yik ∨
¬yjk) for each cluster k.

As with Encoding 1 the hard clauses limit the set of
solutions to well-defined clusterings, and the soft clauses
encode the cost function in a faithful way. However, the hard
and soft clauses differ notable from those of Encoding 1.

Concretely, Encoding 2 forms the MaxSAT instance F 2 =
(F 2
h , F

2
s ) summarized in Figure 2.

Hard Clauses F 2
h : EXACTLYONE(vi) for all vi ∈ V

HARDSIMILAR(Aijk) for all s(vi, vj) = 1
and 1 ≤ k ≤ K

HARDDISSIMILAR(vi, vj , k) for all s(vi, vj) = 0
and 1 ≤ k ≤ K

Soft Clauses F 2
s : SOFTSIMILAR(vi, vj) for all s(vi, vj) = 1

SOFTDISSIMILAR(vi, vj) for all s(vi, vj) = 0

Fig. 2. MaxSAT instance F 2 = (F 2
h , F

2
s ) produced by Encoding 2.

We next describe the different parts of F 2 in detail.

A. Ensuring Well-defined Clusterings

The hard constraints EXACTLYONE(vi) enforce that each
solution represents a well-defined clustering, by enforcing that
each data point vi is assigned into exactly one cluster k. In
terms of the variables in the encoding, for each i exactly one
of the variables yi1, . . . , yiK should be assigned to 1, i.e.,
EXACTLYONE(vi) :=

∑K
k=1 yik = 1. A number of different

encodings of this cardinality constraint as clauses have been
previously developed [19]. In our experiments, we used the
so-called sequential encoding [20].



B. Encoding Similarity

For a pair (vi, vj) of data points, the constraints
HARDSIMILAR(Aijk) for each k = 1..K and
SOFTSIMILAR(vi, vj) together enforce the requirement
that vi, vj are assigned to the same cluster, given that the
soft constraint SOFTSIMILAR(vi, vj) is satisfied. In terms
of propositional logic, this requirement can be expressed as
the formula (yi1 ∧ yj1) ∨ (yi2 ∧ yj2) ∨ . . . ∨ (yiK ∧ yjK). In
order to the express this propositional formula as clauses, we
employ the auxiliary variables Aijk. In terms of propositional
logic, the resulting hard constraint is Aijk ↔ (yik ∧ yjk),
resulting in the clausal form

HARDSIMILAR(Aijk) :=

(¬Aijk ∨ yik) ∧ (¬Aijk ∨ yjk) ∧ (Aijk ∨ ¬yik ∨ ¬yjk).

The soft constraint, expressing that points vi and vj are
assigned to the same cluster whenever s(vi, vj) = 1, can be
encoded as a single clause:

SOFTSIMILAR(vi, vj) := (Aij1 ∨ · · · ∨AijK).

For some intuition, we note that if this clause is satisfied in
a solution, then for some j, Aijk is necessarily assigned to
1 in the solution. Since all hard clauses are satisfied in any
solution, it follows that both points vi and vj will be assigned
to cluster k, exactly as required. If points vi and vj are not
assigned to the same cluster, then due to the hard constraints
Aijk = 0 for all k, and the soft clause is not satisfied.

C. Encoding Dissimilarity
For a pair (vi, vj) of data points, the constraints

HARDDISSIMILAR(vi, vj , k) for each k = 1..K and
SOFTDISSIMILAR(vi, vj) together enforce the requirements
that vi, vj are assigned to different clusters. This can be
expressed by requiring for each cluster that at least one of
vi, vj should not be assigned to that cluster, which in clausal
form is expressed by (¬yik ∨ ¬yjk) for a cluster k.

For the full encoding, this time we use the auxiliary vari-
ables Dij , and define them in terms of propositional logic as
¬Dij → (¬yik ∨ ¬yjk) for each cluster k = 1..K; that is, if
Dij = 0, then vi and vj are not assigned to the same cluster,
which in clausal form can be expressed as

HARDDISSIMILAR(vi, vj , k) := (Dij ∨ ¬yik ∨ ¬yjk).

Now we can express the soft constraints that vi and vj should
not be assigned to the same cluster simply as

SOFTDISSIMILAR(vi, vj) := (¬Dij).

For some intuition, we note that if the clause (¬Dij) is
satisfied in a solution to F 2, then the clauses (¬yik ∨ ¬yjk)
have to also be satisfied for all j in the solution, and hence
points vi and vj are not assigned to the same cluster. On the
other hand, if vi and vj are assigned to the same cluster k,
then the solution has to assign Dij = 1 in order to satisfy the
hard clause (Dij ∨ ¬yik ∨ ¬yjk), resulting in one unsatisfied
clause, namely (¬Dij), exactly as required for representing
the correlation clustering cost function faithfully.

D. Constructing a Clustering from a MaxSAT Solution

Given a solution τ to F 2, we can easily construct a
corresponding well-defined clustering clτ of the data point by
assigning each point vi into the cluster k for which τ(yik) = 1.
Due to the hard constraints F 2

h , in any solution τ there is
exactly one such k for every i. Especially, the clustering
constructed from an optimal solution to F 2 will be an optimal
clustering of the data, minimizing the correlation clustering
objective function. This correctness of Encoding 2 can be
formalized as follows.

Theorem 2: Given a set of data points V = {v1, . . . , vN}, a
subset E ⊂ V×V , and a similarity function s : E → {0, 1}, let
F 2(V, s) be the MaxSAT instance produced by Encoding 2 for
a predefined number K of clusters. The clustering clτ∗ : V →
{1, . . .K} constructed from an optimal solution τ∗ to F is an
optimal clustering of V under s over all clusterings cl : V →
{1, . . .K}. �

Intuitively, the result follows from the already discussed
connections between the cost incurred by a clustering and the
number of unsatisfied soft clauses in Encoding 2.

VI. OPTIMIZATIONS TO THE MAXSAT ENCODINGS

In this section we describe specific optimizations to the
MaxSAT encodings. These optimizations are not necessary for
ensuring correctness of the encodings, but have a clear positive
effect on the time it takes to solve especially the MaxSAT
instances produced by Encoding 2, i.e., the time a MaxSAT
solver needs for finding an optimal clustering.

1) Pruning Symmetric Solutions: The first optimization,
specific to Encoding 2, prunes some of the symmetries within
the solution space of clusterings. The solution space is highly
symmetric: given any clustering cl of V of cost G(cl), any
permutation of the cluster indices is a well-defined clustering
with the same cost G(cl). Hence, for any clustering cl of V
there exists another clustering cl′ for which G(cl) = G(cl′)
and cl′(v1) = 1. This means that we need only search through
clusterings where the first point is assigned to the first cluster.
In practice we achieve this by substituting the hard constraint
EXACTLYONE(v1) in F 2

h with the following k hard clauses:
(y11) and (¬y1k) for k = 2..K. While this simple substitution
only prunes away a small part of the symmetric solutions, it
turned out that in practice it pays off in terms of solving time.
Note that this optimization cannot be used for Encoding 1,
since Encoding 1 does not allow to directly enforce data points
being assigned to specific cluster indices.

2) Exploiting Erroneous Triangles: The second improve-
ment is based on so-called erroneous triangles [17] which are
triplets of points vi, vj , vk for which s(vi, vj) = s(vj , vk) = 1
and s(vi, vk) = 0. Viewed as a subgraph, such three points
form a triangle in which two edges are labeled with 1 and
one with 0. An erroneous triangle represents what we call a
local conflict in the input data: any well-defined clustering
is forced to either assign points vi, vj or vj , vk into different
clusters, incurring a cost of one, or to assign vi, vk into the
same cluster, again incurring a cost of one. Hence, no matter
how these three points are assigned to clusters, a cost of at



least 1 is incurred. Our key observation is that information on
such local conflicts, based on a set of erroneous triangles found
in the input data, can be encoded directly into the MaxSAT
instance by modifying Encoding 2. This turned out to be very
beneficial in terms of scalability in practice.

Intuitively, the idea is to lower the cost of the MaxSAT
instance in a controlled way. This is done by explicitly
encoding into the instance knowledge about the fact that each
node-disjoint erroneous triangle in the input data explicitly
contributes to the lower bound on the cost of optimal solutions
by one. This results in improvements in the running time of a
MaxSAT solver, as the solver does not need to prove the lower
bound any more. We will now describe how the knowledge of
erroneous triangles is used in modifying the MaxSAT instances
produced by Encoding 2.

An erroneous triangle vi, vj , vk corresponds to three
soft clauses in the MaxSAT instance produced by
Encoding 2; these clauses are SOFTSIMILAR(vi, vj),
SOFTSIMILAR(vj , vk) and SOFTDISSIMILAR(vi, vk). Now,
we introduce fresh relaxation variables rij , rjk, and rik,
and replace in F 2

s the soft clause SOFTSIMILAR(vi, vj)
by the (soft) clause SOFTSIMILAR(vi, vj) ∨ rij ,
SOFTSIMILAR(vj , vk) by SOFTSIMILAR(vj , vk) ∨ rij , and
SOFTDISSIMILAR(vi, vk) by SOFTDISSIMILAR(vi, vk) ∨ rij .
The intuition is that, by assigning one of the three relaxation
variables to 1 satisfies the corresponding original soft clause,
essentially removing the local conflict due to the erroneous
triangle, lowering the cost of optimal solutions by one.
To ensure correctness (maintain the optimal solutions), we
require that exactly one of the relaxation variables is assigned
to one, resulting in the fact that every erroneous triangle
results in lowering the cost of (optimal) solutions by exactly
one. To achieve this, we add to F 2

h a set of hard clauses
which encode the cardinality constraint rij + rjk + rik = 1.

Given a set of t node-disjoint erroneous triangles in the
input data, Encoding 2 can be modified in the same way
iteratively for each of the erroneous triangles, reducing the cost
of (optimal) solutions by exactly t. A maximal set of node-
disjoint erroneous triangles can be found in polynomial-time
(in practice, in negligible time) from a given input data using a
simple greedy algorithm which iteratively locates an erroneous
triangle in the data (until none exist), and after that disregards
the data points already contained in a found erroneous triangle.
We note that erroneous triangles could also be applied to
modify Encoding 1. However, we observed experimentally that
mainly Encoding 2 benefits from this modification.

VII. EXPERIMENTAL EVALUATION

In the following we provide results of an experimental eval-
uation of our MaxSAT-based approach (both Encoding 1 and
Encoding 2). In the experiments, we used real-world data sets:
clustering proteins based on their amino-acid sequences [10]
and overlapping correlation clustering [7] of standard UCI
data sets (reported in Section VIII).

Our first focus is on the protein data, for which we present
extensive results comparing the scalability of the MaxSAT

encodings with the integer programming formulation, and the
quality of the (optimal) MaxSAT solutions found with solu-
tions produced by the specialized protein correlation clustering
algorithm SCPS [10] (based on spectral clustering). Especially,
we demonstrate that our MaxSAT approach allows for scalable
optimal correlation clustering under added user knowledge in
the form of additional constraints over the preferred cluster-
ings, imposed by domain experts. In Section VIII we show
how our MaxSAT Encoding 2 can be easily modified to
cover overlapping correlation clustering [7], and report on
experimental results on the standard YEAST and EMOTION
UCI data sets which show that our MaxSAT-based approach
can precisely reconstruct an existing ground truth clustering,
hence providing notable better solutions that a previously
proposed greedy local search method [7] for overlapping
correlation clustering, without using more computation time
to find an optimal solution.

For solving the MaxSAT instances resulting from Encod-
ing 1 and 2, we used the academic, off-the-shelf MaxSAT
solver MaxHS [21]. For solving the integer programming
formulation, we used the commercial state-of-the-art integer
programming solver CPLEX from IBM. A timeout of 2
hours and a memory limit of 20 GB were enforced for all
experiments.

A. Clustering Protein Sequences

Following [22], [10], we apply our MaxSAT-based ap-
proach to the task of clustering proteins to homologous
groups under given pairwise similarities of their amino acid
sequences. The data used for the experiments are data sets 1–
4 from [10] (see http://www.paccanarolab.org/software/scps/).
The data sets consist of 669 (data set 1 / D1) 586 (D2), 567
(D3), and 654 (D4) sequences, respectively. The similarity val-
ues provided with the data were computed using BLAST [23].
Originally, the values computed by BLAST are real numbers
in the interval [0, 1]. In order to obtain a binary similarity
function for applying our MaxSAT encodings, we round these
values to the nearest number, either 0 or 1, following the OCC-
ISECT set-intersection indicator algorithm applied in previous
experimental work on correlation clustering [7]. With the
data, a ground-truth clustering—a manually-crafted taxonomy
of proteins—based on SCOOP [24] is provided: the ground
truth of sets D1, D2, D3, D4 consists of 5, 6, 5, 8 clusters
respectively. In our experiments, the number of clusters in the
ground truth was given as an upper bound on the number
of clusters both for the SCPS algorithm and our MaxSAT
Encoding 2.

1) Scalability on Unpruned Data Sets: Figure 3 reports
the running time of MaxHS (for our MaxSAT encodings) and
CPLEX (for the integer programming formulation) for an in-
creasing number of points from the unpruned data set D2. The
trends are similar for the other three data sets. Our MaxSAT
approach scales clearly better than the integer programming
approach. Surprisingly, this holds true even for Encoding 1,
which is essentially a MaxSAT reformulation of the integer
programming formulation. In fact, CPLEX runs out of memory
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Fig. 3. Running times on different numbers of points from D2.

already with less than 200 data points. The figure suggests that
Encoding 1 scales better than Encoding 2. However, the size
of the MaxSAT instances produced by Encoding 1 limits its
usability for larger data sets. Additionally, as shown in the
following, Encoding 2 scales well for greater numbers of data
points especially when integrating expert user knowledge as
additional constraints, as well as after pruning the similarity
function s in the input data.

2) Clustering Quality: Before turning to the task of in-
tegrating user knowledge, we report on a comparison of
the MaxSAT approach and the SCPS algorithm, focusing on
the quality of the produced clusterings. Clustering quality is
measured both in terms of the standard measures precision
and recall [10] (and F-score, based on precision and recall),
as well as the actual fundamental correlation clustering cost
function under minimization (cf. Eq. 1). Precision and recall
are computed wrt a given ground-truth clustering (GT).

For a clustering cl of a set of data points V , let P (cl) =
{(vi, vj) ∈ V 2 | cl(vi) = cl(vj)} be the set of pairs of points
that are assigned to the same cluster, and g : V → N the
ground-truth clustering. Precision Pr(g, cl) and recall R(g, cl)
are defined as

Pr(g, cl) =
|P (g) ∩ P (cl)|
|P (cl)|

and R(g, cl) =
|P (g) ∩ P (cl)|
|P (g)|

.

The F-score of two clusterings is the harmonic mean of
precision and recall:

F (g, cl) =
2

1
Pr(g,cl) +

1
R(g,cl)

.

Table I summarizes the quality of clusterings obtained for
the largest number of data points still solvable in each data
set and every method. We observe that according to recall
and F-score, the clusterings produced by the SCPS algorithm
resemble the ground-truth clustering more. On the other hand,
the precision values for Encoding 1 are very good; in other
words, given that a clustering produced by Encoding 1 assigns
two points into the same cluster, they belong to the same

cluster in the ground-truth clustering with higher probability
than when using SCPS. Additionally, while both SCPS and
our MaxSAT Encoding 2 were given the number of clusters
in the ground clustering as the upper bound on the number
of clusters, only Encoding 2 produced the same number of
clusters as in the ground-truth clustering.

A clear advantage of the MaxSAT approach is observed
by inspecting the actual costs of the clusterings found by
the methods. Indeed, the MaxSAT approach can find optimal
clusterings wrt the fundamental correlation clustering cost
function under minimization, whereas the clusterings produced
by SCPS often have notably higher cost and are thus clear
worse in light of the cost function. Interestingly, the costs of
ground-truth clusterings provided with the data turned out also
to have rather high cost wrt the actual cost function.

We note that SCPS works on the original real-valued simi-
larity data while the cost function Eq. 1 is defined for binary
similarity values. However, we also checked the clustering
reported by SCPS when given the binary similarity function as
input: the costs of the produced clusterings were even higher
in those cases.

Comparing Encodings 1 and 2, we observe that the clus-
terings produced with Encoding 1 generally have lower cost.
However, Encoding 1 also produces clusterings with a high
number of clusters, since the number of clusters is not bound.
Clearly, the freedom to use any number of clusters results in
clusterings with slightly lower cost, but at the same time, the
number of clusters produced may be considered (too) high.

We next turn to the question of scalability in the presence
of user knowledge and data pruning. Due to its size, Encoding
1 was not applicable for the larger numbers of data points, and
hence we focus in the following on Encoding 2.

B. Integrating User Knowledge

Our exact MaxSAT approach has the advantage of easily
adapting to integration user knowledge (UK), in the form of
additional hard constraints on the clusterings of interest. The
idea is to allow a domain expert to add information about
which points should (not) be assigned to the same clusters.
Being able to handle the integration of user knowledge allows
for an iterative approach to correlation clustering, in which the
user can iteratively refine their preferences on the character-
istics of clusterings of interest. This idea of domain specific
constrained clustering has been studied for other clustering
settings [11], [12], [16], [13], [15], [14]. However, to the best
of our knowledge, our approach is the first one for correlation
clustering that easily adapts to additional user knowledge
constraints.

In order to force a pair of points (vi, vj) to (not) be
assigned to the same cluster, we simply need to add the
clauses SOFTSIMILAR(vi, vj) (SOFTDISSIMILAR(vi, vj)) as
hard clauses to the MaxSAT Encoding 2: since hard clauses
are satisfied in every solution to the MaxSAT instance, the
two points will (not) be assigned to the same cluster in any
optimal clustering provided by the MaxSAT solver.



TABLE I
CLUSTERING QUALITY FOR LARGEST NUMBERS OF DATA POINTS SOLVABLE BY ALL METHODS. (SCPS / ENCODING 1/ ENCODING 2)

(SCPS/ Enc1/ Enc2) # Clusters produced # GT clusters Precision Recall F-score Cost Cost of GT
D1 300P 5/28/5 5 0.68/0.86/0.6 0.8/0.69/0.65 0.73/0.72/0.63 616/487/491 591
D2 320P 6/21/6 6 0.81/0.96/0.73 0.89/0.74/0.74 0.85/0.83/0.73 883/719/786 869
D3 260P 4/20/5 5 0.92/0.93/0.78 0.9/0.49/0.53 0.91/0.64/0.63 626/464/470 623
D4 200P 7/28/8 8 0.68/0.81/0.53 0.82/0.48/0.48 0.75/0.60/0.51 184/106/106 177

In fact, in addition to integration of user knowledge within
the MaxSAT approach (using Encoding 2) being simple, the
scalability of the approach improves remarkably in the pres-
ence of even small amounts of user knowledge. We simulated
the idea of input user knowledge by randomly sampling a
percentage of all the information in the ground-truth clustering
provided with the data sets. Figure 4 shows the running
time of the MaxSAT solver with different amounts of UK
added when clustering the data sets entirely. Already after
adding 2% user knowledge, we were able to cluster the whole
data sets. Furthermore, as shown in Table II, the inclusion
of user knowledge dramatically improves the F-score of the
clusterings obtained.

C. Scalability after Pruning

As noted for example in [7], the input data can often contain
a lot of redundancy, justifying some form of pruning of the
available similarity information. In this spirit, we experimented
on pruned data sets, in which the similarity function (the edge
relations of the input data, viewed as a graph) is pruned.
Table III summarizes the results after pruning the data sets
by including each of the edges in the similarity graph with
20% probability. For a comparison, even though the SCPS
algorithm was given the full similarity data as input, the
costs of the clusterings obtained using Encoding 2 are still
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TABLE II
F-SCORES WITH ADDED USER KNOWLEDGE (UNPRUNED DATA SETS).

Data Set 1% UK 2% UK 3% UK 4% UK ≥ 5% UK
D1 0.954 0.997 0.997 1 1
D2 − 0.97 1 1 1
D3 0.986 0.996 1 1 1
D4 − 0.987 0.991 0.998 1

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5

 2000

 2050

 2100

 2150

 2200

F
 -

 S
c
o

re

O
p

ti
m

u
m

 C
o

s
t

UK added (%)

Enc 2 F-score

Enc 2 Cost

SCPS F-Score

SCPS Cost

Fig. 5. Evolution of optimum cost and F-score with user knowledge (D2).

lower than those obtained using SCPS. The pruning did have
a somewhat (but not drastic) negative effect on the F-score
values obtained with Encoding 2. Figure 5 shows the evolution
of both the cost and F-score of the clusterings obtained by
Encoding 2 on the pruned data sets 2 and 4. (The results
are similar for the other data sets.) Interestingly, the plots
illustrate the difference between optimizing the cost function
and measuring similarity between a clustering and a ground
truth. We clearly see that both the cost of the clustering and
the F-score is altered by the inclusion of user knowledge.
The F-score improves as we steer the clustering toward the
ground truth. The cost also converges fast toward the cost of
the ground-truth clustering.

We note that even when working with pruned data, we still
measure the cost of the clustering wrt the full data, which is
why the globally optimal cost wrt the pruned data set might
be higher than the cost of the ground-truth clustering wrt the
entire data set. This is the case on D4, where adding user
knowledge lowers the cost of the clustering. In D2 we however
see the opposite. The ground-truth clustering has higher cost
than the clustering produced by encoding 2, so the cost of the
clustering produced rises when more UK is added.

TABLE III
COST OF CLUSTERINGS ON THE PRUNED DATA SETS.

SCPS Cost Encoding 2 Cost Cost of GT
D1 2452 2042 1988
D2 2167 2153 2185
D3 2596 2146 2573
D4 1881 1643 1275



VIII. OVERLAPPING CORRELATION CLUSTERING

Finally, we demonstrate the extensibility of the MaxSAT-
based approach to variants of correlation clustering, focusing
on overlapping correlation clustering [7] in which individual
data points are allow to be assigned to more than one cluster.
Encoding 2 can be easily adapted for overlapping correlation
clustering. As a result, our MaxSAT-based approach can
precisely reconstruct an existing ground-truth clustering, hence
providing notable better solutions that a previously proposed
greedy local search method [7].

We consider a variant of overlapping correlation clustering
as defined in [7]. Again, we are given a set V = {v1, . . . , vN}
of data points, a binary similarity function s : E → {0, 1}
defined over a subset E ⊆ V × V , and a set L = {1, . . . ,K}
of clusters. The objective is to find a clustering that assigns
each point into a set of labels, i.e. a function cl : V →
2L \ {∅} minimizing the cost function H(cl) defined as∑

(vi,vj)∈E
cl(vi)∩cl(vj)6=∅

(1− s(vi, vj)) +
∑

(vi,vj)∈E
cl(vi)∩cl(vj)=∅

s(vi, vj)

It is simple to modify Encoding 2 in order to cover overlap-
ping correlation clustering; the constraints enforcing that each
data point must be assigned to exactly one cluster is relaxed
into constraints which enforce that each data point must be
assigned to at least one cluster. More concretely, for each data
point vi, we replace the constraint EXACTLYONE(vi) in En-
coding 2 (recall Figure 2) with the clause (yi1∨yi2∨· · ·∨yiK).
This is the only modification needed.

In order to test the MaxSAT approach to overlapping
correlation clustering using the modification of Encoding 2
just described, we consider the task of reconstructing an
existing ground-truth clustering. In order to be able to di-
rectly compare our results with those reported in [7] for
greedy local search methods for correlation clustering, we
replicated the experimental setup of [7]. We used the well-
known EMOTION and YEAST UCI data sets, contain-
ing 593 and 2417 data points, respectively. A ground-truth
clustering is provided with these data sets, available at
http://mulan.sourceforge.net/datasets.html. EMOTIONS has 6
clusters, YEAST 14. We obtained a binary similarity measure
between the points by assigning a similarity value of 1 to each
pair of point that share at least 1 cluster label. We applied
Encoding 2 by setting the upper bound on the number of
clusters according to the ground-truth clustering.

The solutions found with MaxSAT correspond exactly to
the ground-truth clustering, i.e., solution was in both cases
a perfect reconstruction of the original clustering, achieving
a precision and recall value of 1 and a cost of 0. The EMO-
TIONS data set was solved optimally in 6 seconds and YEAST
in just over 400 seconds. The running times reported in [7] for
two methods proposed in that work for the same experiment
are similar. However, neither one of their algorithms managed
to perfectly reconstruct the ground-truth clustering on either
of the data set, even when setting the upper bound according
to the ground-truth clustering. This shows the benefits of our
MaxSAT approach, guaranteeing optimal solutions.

IX. CONCLUSIONS AND FUTURE WORK

We presented a MaxSAT-based approach to correlation clus-
tering that extends to constrained and overlapping correlation
clustering. To our best knowledge, this is the first approach
which provides both cost-optimal clusterings and enables
seamless integration of user knowledge for focusing the search
on clusterings with specific properties of interest. Future work
consists of developing more compact encodings, extending the
approach to weighted graphs, and scaling the approach up
to larger data sets. Finally, it would be interesting to apply
the approach to different application domains, especially to
domains in which user knowledge plays an important role.
Acknowledgements. This work is supported by Academy of
Finland under grants 132812 (MJ) and 251170 (JB,MJ).

REFERENCES

[1] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” Machine
Learning, vol. 56, no. 1-3, pp. 89–113, 2004.

[2] N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent
information: Ranking and clustering,” J. ACM, vol. 55, no. 5, 2008.

[3] M. Charikar, V. Guruswami, and A. Wirth, “Clustering with qualitative
information,” J. Comput. Syst. Sci., vol. 71, no. 3, pp. 360–383, 2005.

[4] R. Shamir, R. Sharan, and D. Tsur, “Cluster graph modification prob-
lems,” Discr. Appl. Math., vol. 144, no. 1-2, pp. 173–182, 2004.

[5] I. Giotis and V. Guruswami, “Correlation clustering with a fixed number
of clusters,” Theory of Computing, vol. 2, no. 1, pp. 249–266, 2006.

[6] A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering gene expression
patterns,” J. Comput. Biol., vol. 6, no. 3/4, pp. 281–297, 1999.

[7] F. Bonchi, A. Gionis, and A. Ukkonen, “Overlapping correlation clus-
tering,” in Proc. ICDM. IEEE, 2011, pp. 51–60.

[8] F. Bonchi, A. Gionis, F. Gullo, and A. Ukkonen, “Chromatic correlation
clustering,” in Proc. KDD. ACM, 2012, pp. 1321–1329.

[9] M. J. Kearns, R. E. Schapire, and L. M. Sellie, “Toward efficient agnostic
learning,” in Proc. COLT. ACM, 1992, pp. 341–352.

[10] T. Nepusz, R. Sasidharan, and A. Paccanaro, “SCPS: a fast implemen-
tation of a spectral method for detecting protein families on a genome-
wide scale,” BMC Bioinformatics, vol. 11, p. 120, 2010.

[11] K. Wagstaff and C. Cardie, “Clustering with instance-level constraints,”
in Proc. ICML. Morgan Kaufmann, 2000, pp. 1103–1110.

[12] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, “Constrained K-
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