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Abstract. We propose subsumed label elimination (SLE), a so-
called label-based preprocessing technique for the Boolean opti-
mization paradigm of maximum satisfiability (MaxSAT). We for-
mally show that SLE is orthogonal to previously proposed SAT-based
preprocessing techniques for MaxSAT in that it can simplify the un-
derlying minimal unsatisfiable core structure of MaxSAT instances.
We also formally show that SLE can considerably reduce the num-
ber of internal SAT solver calls within modern core-guided MaxSAT
solvers. Empirically, we show that combining SLE with SAT-based
preprocessing improves the performance of various state-of-the-art
MaxSAT solvers on standard industrial weighted partial MaxSAT
benchmarks.

1 INTRODUCTION

Maximum satisfiability (MaxSAT), the optimization counterpart of
Boolean satisfiability (SAT), is becoming a competitive approach
to solving hard optimization problems due to recent advances in
MaxSAT solving [2, 38]. As MaxSAT is finding an increasing num-
ber of applications in solving real-world optimization problems—
ranging from, e.g., inconsistency analysis, diagnosis, design debug-
ging, and fault localization [15, 14, 4, 32, 44, 30, 39, 27, 35] to fur-
ther applications in AI, combinatorics, data analysis, and bioinfor-
matics [41, 23, 43, 3, 10, 21, 8, 9, 42]—there is a high demand for
new techniques for speeding up MaxSAT solving further.

This paper focuses on improving the efficiency of solving real-
world MaxSAT instances via preprocessing the instances before call-
ing a state-of-the-art MaxSAT solver. In particular, effective pre-
processing techniques for MaxSAT have the promise of providing
solver-independent speeds-up to overall solving times, similarly to
SAT where preprocessing is today an integral part of the solving pro-
cess [20, 29]. This motivates work on MaxSAT-level preprocessing,
in hope of bridging the gap between highly successful SAT prepro-
cessing and the currently less studied and understood role of prepro-
cessing for MaxSAT [7, 11, 31, 5, 13].

One approach to MaxSAT preprocessing is to lift commonly ap-
plied SAT preprocessing techniques, such as bounded variable elim-
ination [20], self-subsuming resolution, and forms of clause elimina-
tion [26], to MaxSAT. Direct applications of such SAT preprocess-
ing techniques are not correct w.r.t. preserving the optimal solutions
of MaxSAT instances [7]. However, correct liftings to MaxSAT are
enabled by the so-called labelled conjunctive normal form (LCNF)
representation [7, 6].

A natural next goal for MaxSAT preprocessing is to go beyond
lifting well-known SAT preprocessing techniques, by developing
novel MaxSAT-specific LCNF-level preprocessing techniques that
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can be applied in conjunction with SAT-based preprocessing tech-
niques, ideally with orthogonal simplification properties. In this pa-
per, we address this challenge by proposing label-based preprocess-
ing as a form of native LCNF-level MaxSAT preprocessing. In par-
ticular, we propose the preprocessing technique of subsumed label
elimination (SLE). The main aim of SLE is, working in conjunction
with SAT-based preprocessing on labelled MaxSAT instances, to de-
tect and eliminate redundant labels, i.e., auxiliary variables that are
first added to maintain correctness under SAT-based preprocessing,
but which can be inferred to be redundant by a simple polynomial-
time deduction rule that SLE implements. Arising from deduction
rules proposed in the nineties for the so-called binate covering prob-
lem [17, 16], a key insight of SLE is that redundant labels can be
eliminated by comparing the label-setsL of clausesCL on the LCNF
level, i.e., regardless of the contents of C. While SLE is based on a
relatively simple observation, it significantly differs from the earlier
proposed SAT-based preprocessing techniques for MaxSAT. In prac-
tice it also tends to provide further speed-ups to the MaxSAT solving
process for several state-of-the-art MaxSAT solvers.

In more detail, we analyze how known LCNF-lifted SAT prepro-
cessing techniques and SLE modify key properties of MaxSAT in-
stances: the (labelled) minimal unsatisfiable cores (LMUSes) and (la-
belled) minimal correction sets (LMCSes). We show that SLE is fun-
damentally different from LCNF-lifted SAT preprocessing. In con-
trast to SAT preprocessing which is unable to simplify LMUSes and
LMCSes, SLE can effectively remove labels from LMUSes. Via a
straightforward translation of LCNFs to standard MaxSAT, this im-
plies that SLE can reduce the number of standard MUSes in the re-
sulting MaxSAT instance. This can improve the performance of so-
called core-guided MaxSAT solvers, such as [22, 25, 40, 36, 37], as
well as those based on the implicit hitting set approach [18, 19, 11].
Giving a concrete witnessing family of LCNF-MaxSAT instances,
we show that SLE has the potential to drastically decrease the num-
ber of iterations performed by various core-guided MaxSAT solvers.
Complementing the theoretical analysis, we show empirically that
by combining SLE with LCNF-lifted SAT preprocessing, noticeably
more labels (i.e. redundancies) are eliminated than without SLE on
weighted partial MaxSAT instances of the industrial track of Max-
SAT Evaluation 2015. Further, we show that the additional simplifi-
cations translate into runtime improvements for various state-of-the-
art MaxSAT solvers on industrial weighted partial instances.

This paper is organized as follows. After preliminaries on labelled
CNFs and SAT-based preprocessing for MaxSAT (Section 2), we de-
tail subsumed label elimination (Section 3), and provide a theoretical
analysis of SLE both in terms of its effects on the core structure of
MaxSAT instances (Section 4) and its potential to speed-up MaxSAT
solving (Section 5). Empirical results on simplifications provided by
SLE and the impact of SLE on the performance of MaxSAT solvers
are provided in Section 6.



2 PRELIMINARIES
Throughout this paper, we work with labelled CNFs (LCNFs) [7, 6]
which allow for generalizing MaxSAT and provide a convenient for-
malism for describing correct liftings of SAT preprocessing tech-
niques to MaxSAT. For an intuitive reading, in LCNF a set of labels is
associated with each clause. An empty label-set denotes that the cor-
responding clause is hard, while a non-empty label-set implies that
the corresponding clause is soft. Furthermore, key concepts such as
maximum satisfiability, minimal unsatisfiable subsets and minimal
correction sets, are defined over the label-sets L of LCNF clauses
CL instead of the clauses C.

Before the formal definitions, consider the MaxSAT instance with
three unweighted soft clauses shown in Figure 1 (1). As argued in
[7], in order to apply e.g. bounded variable elimination (VE) [20]
and still maintain the set of optimal solutions, each soft clause Ci

needs to be attached an auxiliary fresh variable li, resulting in the
instance (Figure 1, 2a). On the level of LCNFs [6], the resulting in-
stance is shown in Figure 1 (2b). Restricting VE from eliminating
any of the added variables allows for sound application of most SAT
preprocessing techniques in terms of MaxSAT. As an example, first
eliminating the variable x and then y gives (possibly among others;
here ./x denotes resolving on x) the clause shown in Figure 1 (3a).
Notice how the original one-to-one mapping between the clauses and
labels vanishes, as after VE a clause may contain multiple labels. To
solve the MaxSAT instance after preprocessing, the clauses obtained
by preprocessing are then considered hard, and for each li the unit
soft clause (¬li) with weight inherited from Ci is added into the in-
stance. On the LCNF level, labelled VE [7] results equivalently in
the LCNF instance (3b), explicitly separating original variables and
the labels in each of the clauses.

(1) MaxSAT instance:
C1 = (x ∨ y ∨ z), C2 = (¬x ∨ ¬a ∨ y), C3 = (¬y ∨ ¬a ∨ ¬b)

(2a) After adding labels:
C1 = (x ∨ y ∨ z ∨ l1)
C2 = (¬x ∨ ¬a ∨ y ∨ l2)
C3 = (¬y ∨ ¬a ∨ ¬b ∨ l3)
. . .

(3a) After variable eliminating
x and y:
((C1 ./x C2) ./y C3)
= (¬a ∨ ¬b ∨ z ∨ l1 ∨ l2 ∨ l3)
. . .

(2b) LCNF representation:
C
{l1}
1

C
{l2}
2

C
{l3}
3

. . .

(3b) After labelled variable
elimination on x and y:
((C
{l1}
1 ./x C

{l2}
2 ) ./y C

{l3}
3 )

= (¬a ∨ ¬b ∨ z){l1,l2,l3}
. . .

Figure 1: Example of SAT-based preprocessing on the CNF and LCNF level.

2.1 Labelled CNFs and MaxSAT
Assume a countable set Lbl of labels. A labelled clause CL consists
of a clause C and a (possibly empty) set L ⊆ Lbl of labels. A LCNF
formula Φ is a set of labelled clauses.Cl(Φ) and Lbls(Φ) denote the
set of clauses and labels of Φ, respectively, and LCl(Φ, l) = {CL |
CL ∈ Φ, l ∈ L} the set of labelled clauses in Φ that have l in their
label-set. A LCNF formula is satisfiable iff Cl(Φ) (a CNF formula)
is satisfiable.

Given a LCNF formula Φ and a subsetM ⊆ Lbls(Φ) of its labels,
the subformula Φ|M of Φ induced by M is {CL ∈ Φ | L ⊆ M},
i.e., the LCNF formula obtained by removing from Φ all labelled

clauses with at least one label not in M ; notice that Φ|Lbls(Φ)\M =
{CL ∈ Φ | L∩M = ∅}. The removal REMOVE(Φ,K) of the label-
set K ⊆ Lbls(Φ) from Φ gives {CL\K | CL ∈ Φ}, i.e, the LCNF
formula obtained by removing all labels from Φ that are in K (note
that removal does not remove clauses).

A (labelled) unsatisfiable core of an unsatisfiable LCNF formula
Φ is a label-set L ⊆ Lbls(Φ) such that Φ|L is unsatisfiable. An
unsatisfiable core L is minimal (a LMUS) iff Φ|L′ is satisfiable for
all L′ ⊂ L. We denote the set of minimal unsatisfiable cores of Φ
by LMUS(Φ). A (labelled) minimal correction subset (LMCS) of Φ
is a label-set R ⊆ Lbls(Φ) such that (i) Φ|Lbls(Φ)\R is satisfiable,
and (ii) Φ|Lbls(Φ)\R′ is unsatisfiable for all R′ ⊂ R. We denote the
set of LMCSes of Φ by LMCS(Φ). Hitting set duality, formalizing a
connection between LMUSes and LMCSes, is useful in this work.

Theorem 1 (Hitting set duality [6]) A label-set R ⊆ Lbls(Φ) of a
LCNF formula Φ is a LMCS of Φ iff R is an irreducible hitting set
over LMUS(Φ), i.e., iff R is a hitting set over LMUS(Φ) and no
R′ ⊂ R is a hitting set of LMUS(Φ).

A LCNF-MaxSAT instance consists of a LCNF formula Φ, and a
weight function w : Lbls(Φ) → N assigning a positive weight w(l)
to each label l ∈ Lbls(Φ). The cost of a label-set L ⊆ Lbls(Φ) is
the sum of the weights of the labels in L. Given a LCNF-MaxSAT
instance Φ such that Φ|∅ is satisfiable, any assignment τ that satisfies
Φ|∅ is a solution to the LCNF-MaxSAT instance. A solution τ is
optimal if it satisfies Φ|Lbls(Φ)\R for some minimum-cost LMCS R
of Φ. The cost of τ is the cost of R. We treat the MaxSAT problem
for LCNFs as the problem of computing R. In the rest of the text
we will always assume that solutions to (Φ, w) exist, i.e., that Φ|∅ is
satisfiable.

A (standard/non-labelled) MaxSAT instance F = (Fh, Fs, w)
consists of a set Fh of hard and a set Fs of soft clauses, together with
a functionw : Fs → N assigning a positive weightw(C) to each soft
clause C ∈ Fs. A (standard) minimal correction set (MCS) of F is
a subset-minimal subset of Fs whose removal from Fs makes the in-
stance satisfiable. Similarly, a (standard) minimal unsatisfiable core
(MUS) of F is a subset-minimal subset F ′s for which Fh ∪ F ′s is an
unsatisfiable set of clauses. Given a non-labelled MaxSAT instance
F , any truth assignment τ satisfying all hard clauses is a solution to
the instance. A solution τ is optimal if the sum of the weights of the
soft clauses τ satisfies is the maximum over all solutions. Notice that
the soft clauses falsified by an optimal solution form a minimum-cost
MCS of F .

A MaxSAT instance F = (Fh, Fs, w) can be viewed as a LCNF-
MaxSAT instance (ΦF , w) by introducing (i) for each hard clause
C ∈ Fh the labelled clause C∅, and (ii) for each soft clause C ∈ Fs

the labelled clause C{lC}, where lC is a distinct label for C with
weight w(lC) = w(C). It is easy to see that any optimal solution
to ΦF is an optimal solution to F , and vice versa. An essential intu-
ition is that LMCSes of (ΦF , w) correspond exactly to the MCSes of
(Fh, Fs, w) in that for any MCS {C1, . . . , Ck} there is a correspond-
ing LMCS {lC1 , . . . , lCk} (and vice versa). Similarly, LMUSes of
(ΦF , w) correspond to MUSes of (Fh, Fs, w).

To the other direction, a LCNF-MaxSAT instance (Φ, w) can be
viewed as a MaxSAT instance FΦ by associating with each label
li ∈ Lbls(Φ) a distinct variable ai, and introducing (i) for each la-
belled clause CL ∈ Φ a hard clause C ∨

∨
li∈L ai, and (ii) for each

li ∈ Lbls(Φ), a soft clause (¬ai) with weight w((¬ai)) = w(li),
where w(li) is the weight of the label li. Again, using this reduction,
LMUSes and LMCSes of (Φ, w) correspond exactly to the MUSes



and MCSes of FΦ. Importantly for this work, especially the discus-
sion in Section 5, this reduction allows one to treat any standard Max-
SAT solver as a LCNF-MaxSAT solver.

Example 2 Consider the MaxSAT instance Fex = (Fh, Fs, w) with
w(C) = 1 for all C ∈ Fs, Fh = {(x ∨ y), (¬t ∨ ¬z), (¬z ∨
y), (¬y∨z), (z∨t)}, and Fs = {(¬x), (x), (y∨t), (z∨t∨x)}. The
assignment τ for which τ(t) = τ(x) = 0 and τ(y) = τ(z) = 1 is
an optimal solution to Fex with cost 1. The LCNF-MaxSAT instance
ΦFex corresponding to Fex is

ΦFex = {(x ∨ y)∅, (¬t ∨ ¬z)∅, (¬z ∨ y)∅, (¬y ∨ z)∅, (z ∨ t)∅,

(¬x){l1}, (x){l2}, (y ∨ t){l3}, (z ∨ t ∨ x){l4}}

with w(li) = 1 for i = 1..4. Now Cl(ΦFex) = Fh ∪ Fs and
Lbls(ΦFex) = {l1, l2, l3, l4}. The label-set L = {l1, l2} is an
LMUS of ΦFex as

ΦFex |L ={(x ∨ y)∅, (¬t ∨ ¬z)∅, (¬z ∨ y)∅, (¬y ∨ z)∅,

(z ∨ t)∅, (¬x){l1}, (x){l2}}

is unsatisfiable. The sets R1 = {l1} and R2 = {l2} are examples of
(minimum-cost) LMCSes of ΦFex . The fact that τ is an optimal solu-
tion to the LCNF-MaxSAT instance ΦFex can be verified by checking
that τ satisfies ΦFex |Lbls(ΦFex )\R2

. Converting ΦFex back to Max-
SAT results in the instance F ′ = (F ′h, F

′
s, w) with

F ′h = {(x ∨ y), (¬t ∨ ¬z), (¬z ∨ y), (¬y ∨ z), (z ∨ t),
(¬x ∨ a1), (x ∨ a2), (y ∨ t ∨ a3), (z ∨ t ∨ x ∨ a4)}

and F ′s = {(¬a1), (¬a2), (¬a3), (¬a4)}.

2.2 SAT-based Preprocessing for LCNFs
A motivation for viewing MaxSAT instances as LCNF in [7] was
to develop sound applications of SAT preprocessing techniques for
MaxSAT. Many important SAT preprocessing techniques, including
bounded variable elimination (VE) [20], self-subsuming resolution
(SSR), and subsumption elimination (SE), cannot be used directly
on MaxSAT instances [7]. However, the techniques can be applied
on LCNFs by taking into account the natural restrictions implied by
the SAT-level techniques on the label-sets of labelled clauses. With
this intuition, the following LCNF-liftings of VE, SSR, and SE were
proposed [7].

• LCNF-lifting of the resolution rule: The resolvent of two labelled
clauses (x ∨ A)L1 and (¬x ∨ B)L2 w.r.t. x is (x ∨ A)L1 ./x
(¬x ∨B)L2 = (A ∨B)L1∪L2 .

• LCNF-lifting of VE (LVE): Let Φx and Φ¬x, resp., denote the
sets of labelled clauses that contain the literal x and the literal
¬x, resp. LVE allows for replacing Φx ∪ Φ¬x with Φx ./x
Φ¬x = {AL1 ./x BL2 | AL1 ∈ Φx, B

L2 ∈ Φ¬x, A ∨
B non-tautological} given that |Φx ./x Φ¬x| ≤ |Φx ∪ Φ¬x|.

• LCNF-lifting of SE (LSE): A labelled clause AL1 subsumes BL2

if A ⊆ B and L1 ⊆ L2. LSE allows for removing subsumed
clauses.

• LCNF-lifting of SSR (LSSR):
Given labelled clauses (l∨A)L1 and (¬l∨B)L2 , ifAL1 subsumes
BL2 , LSSR allows for replacing (¬l ∨B)L2 with BL2 .

Blocked clause elimination (BCE) [28] is sound for MaxSAT [7],
and could as such be directly applied on MaxSAT instances. How-
ever, for a uniform presentation, it makes sense to consider a straight-
forward lifting of BCE.

• LCNF-lifting of BCE (LBCE): A labelled clause CL is blocked in
Φ if C is blocked in Cl(Φ). LBCE allows for removing blocked
clauses.

Example 3 Consider the LCNF-MaxSAT instance ΦFex from Exam-
ple 2. Applying LSE to remove (z ∨ t ∨ x){l4} and LVE to eliminate
x and t results in the formula

{(y){l1}, (¬z ∨ y)∅, (¬y ∨ z)∅, (){l1,l2}, (y ∨ ¬z){l3}}.

Removing (y ∨ ¬z){l3} by LSE and eliminating z by LVE results in
the preprocessed formula Φpre

Fex
= {(y){l1}, (){l1,l2}}.

LVE, LSSR, LSE, and LBCE are correct due to the following.

Proposition 4 ([7]) Let Φ be a LCNF-MaxSAT instance and Φpre the
LCNF-MaxSAT instance resulting from an application of LVE, LSSR,
LSE, and LBCE on Φ. Then LMUS(Φ) = LMUS(Φpre) and, by The-
orem 1, LMCS(Φ) = LMCS(Φpre).

3 SUBSUMED LABEL ELIMINATION
We propose and analyze subsumed label elimination (SLE), a label-
based preprocessing technique for MaxSAT. The primary goal of
SLE is to provide further simplifications when applied in conjunction
with SAT-based preprocessing; SLE focuses on removing labels from
non-singleton label-sets (produced starting from non-labelled Max-
SAT instances mainly by LVE). Before a formal definition of SLE,
we begin with an example to illustrate some of the shortcomings of
SAT-based preprocessing for MaxSAT that SLE seeks to address.

Example 5 Consider the MaxSAT instance F = (Fh, Fs, w) with
w(C) = 1 for all C ∈ Fs and

Fh = {(x ∨ y)} and Fs = {(¬x), (¬y)}.

Converting F to LCNF gives the instance ΦF = {(x ∨
y)∅, (¬x){l1}, (¬y){l2}}. Applying LVE to eliminate both x and y
results in the LCNF-MaxSAT instance pre(ΦF ) = {(){l1,l2}}. Fi-
nally, converting pre(ΦF ) back to MaxSAT gives the MaxSAT in-
stance F ′ = (F ′h, F

′
s, w) with

F ′h = {(a1 ∨ a2)} and F ′s = {(¬a1), (¬a2)},

i.e., the exact same instance as F modulo variable naming. In other
words, LVE (or LSSR, LSE, and LBCE) is unable to simplify F . Fur-
thermore, notice that F contains exactly one MUS: {(¬x), (¬y)}.
As the clauses (¬x) and (¬y) occur in exactly the same MUSes, no
optimal solution to F falsifies both of them. As an alternative view,
no MCS of F contains both (¬x) and (¬y), which means that either
clause could be hardened, i.e., changed to a hard clause, without re-
moving all of the optimal solutions of the instance. As we will see,
SLE captures this simplification on the LCNF-level.

More concretely, consider a LCNF-MaxSAT instance Φ. SLE is
based on the following observation. Consider two labels l1, l2 ∈
Lbls(Φ) such that w(l1) ≤ w(l2), and l1 appears in at least the
same LMUSes of Φ as l2. Then l2 is redundant in that l2 can be re-
placed by l1 in any LMCS R of Φ without increasing the cost of
R. Hence l2 can be removed from Φ while maintaining at least one
minimum-cost LMCS. This is more formally stated as Theorem 6.

Theorem 6 Let l1, l2 ∈ Lbls(Φ) and Φpre = REMOVE(Φ, {l2}).
Assume that, for all L ∈ LMUS(Φ), l2 ∈ L implies l1 ∈ L. Then
∅ 6= LMCS(Φpre) ⊆ LMCS(Φ).



Proof. Φpre|Lbls(Φpre)\R = Φ|Lbls(Φ)\R for any label-set
R ⊆ Lbls(Φpre). Hence it suffices to show that there is an R ∈
LMCS(Φ) s.t. R ⊆ Lbls(Φpre). This can be verified by viewing
R as an irreducible hitting set of LMUS(Φ). If R 6⊆ Lbls(Φpre),
then l2 ∈ R. By assumption, R′ = (R \ {l2}) ∪ {l1}, a subset
of Lbls(Φpre), is also an irreducible hitting set of LMUS(Φ) and
hence a LMCS of Φ. �

While the assumption in Theorem 6 is likely not checkable in poly-
nomial time, a stricter, easier-to-check version of the assumption, for-
malized in Proposition 7, gives the basis for SLE. In words, let L be
any label-set and CL′

any labelled clause of Φ. If L′ contains labels
l1 and l2 such that l2 ∈ L but l1 /∈ L, then CL′

is not a member of
the formula Φ|L. This is specifically true for any LMUS of Φ.

Proposition 7 Let l1, l2 ∈ Lbls(Φ) and LCl(Φ, l2) ⊆ LCl(Φ, l1).
Then, for all L ∈ LMUS(Φ), l2 ∈ L implies l1 ∈ L.

Proof. Let L be a label-set such that l2 ∈ L and l1 /∈ L. We show
that L is not a LMUS of Φ. From the assumption LCl(Φ, l2) ⊆
LCl(Φ, l1) it follows that, if CL′

is a labelled clause for which
l2 ∈ L′, then l1 ∈ L′. ThusCL′

/∈ Φ|L, and hence Φ|L = Φ|L\{l2}.
As such L /∈ LMUS(Φ) as either Φ|L is satisfiable or Φ|L1 is unsat-
isfiable for L1 = L \ {l2} ⊂ L. �

The final part in the formalization of SLE ensures that the removal
of l2 preserves at least one minimum-cost LMCS of the instance. This
follows by adding an assumption on the weights of l1 and l2.

Proposition 8 Let l1, l2 ∈ Lbls(Φ) and Φpre =
REMOVE(Φ, {l2}). Assume that, for all L ∈ LMUS(Φ), l2 ∈ L
implies l1 ∈ L, and w(l1) ≤ w(l2). Then all minimum-cost LMCSes
of Φpre are also minimum-cost LMCSes of Φ.

Proof. Following the proof of Theorem 6 letR′ = (R\{l2})∪{l1}
be the LMCS of Φ constructed in order to replace the LMCS R 6⊆
Lbls(Φpre). The extra assumption on the weights guarantees that the
cost of R′ is not higher than the cost of R. �

Putting these results together gives SLE. Informally, SLE re-
moves subsumed labels l2, or, more formally, converts Φ into
REMOVE(Φ, {l2}).

Definition 9 (Subsumed Label Elimination (SLE)) Let Φ be a
LCNF-MaxSAT instance and l1, l2 ∈ Lbls(Φ). We say that l1 sub-
sumes l2 if (i) LCl(Φ, l2) ⊆ LCl(Φ, l1), and (ii) w(l1) ≤ w(l2).
SLE allows for removing subsumed labels from LCNF-MaxSAT in-
stances.

Example 10 Consider the LCNF-MaxSAT instance

Φ ={(xi ∨ yj)∅ | i, j = 1..4} ∪

{(¬xi ∨ ¬x3)∅, (¬xi ∨ ¬x4)∅ | i = 1, 2} ∪

{(¬yi){l,li}, (¬yi){l,ti} | i = 1..4}

with w(l) = 1 and w(li) = w(ti) = 2 for all i. First note that
LVE, LSSR, LSE, and LBCE cannot simplify Φ. Specifically, as every
variable appears both negatively and positively at least twice and
no produced resolvents are tautologies, LVE cannot eliminate any
variables. However, l subsumes all of the other labels, and hence
applying SLE gives

{(xi ∨ yj)∅ | i, j = 1..4} ∪

{(¬xi ∨ ¬x3)∅, (¬xi ∨ ¬x4)∅ | i = 1, 2} ∪

{(¬yi){l} | i = 1..4}.

Each yi appears negatively only in a single clause and can hence be
eliminated by LVE, resulting in

{(xi){l} | i = 1..4} ∪ {(¬xi ∨ ¬x3)∅, (¬xi ∨ ¬x4)∅ | i = 1, 2}.

Now each xi only appears positively in a single clause. LVE then
gives Φpre = {(){l}}.

Remark 1 While the main focus of this work is on understanding
the effect of SLE on the core structure of MaxSAT instances and
the potential of SLE to speed up state-of-the-art MaxSAT solvers,
we note that SLE (for MaxSAT) can be viewed as the counterpart
of the so-called dominance rule proposed in the early 90s in con-
junction with branch-and-bound approaches for the so-called binate
covering problem [17, 16] with applications in logic synthesis. More
details on this connection are provided in Appendix A. To the best
of our knowledge, however, SLE has not been previously proposed,
analyzed, or empirically evaluated in the context of MaxSAT.

4 EFFECTS OF SLE
We continue by analyzing SLE in terms of how it simplifies LCNFs.
We show that SLE is orthogonal to the LCNF-lifted SAT-based pre-
processing techniques in terms of the LMUSes and LMCSes—and
hence MaxSAT solutions—preserved under simplification.

We start with relatively simple corollaries of the definition. First,
we observe that subsumed labels remain subsumed after applications
of SAT-based preprocessing.

Proposition 11 Let l ∈ Lbls(Φ) and assume that SLE can eliminate
l from Φ. Let Φpre be Φ after applying LVE, LSSR, LSE, or LBCE.
Then SLE can eliminate l from Φpre.

Proof. Let l1 be a label that subsumes l in Φ. It suffices to
show that the preconditions of SLE are satisfied in Φpre. First,
the precondition w(l1) ≤ w(l) is trivially satisfied as none of
the techniques alter the weights of labels. For the second pre-
condition, LCl(Φpre, l) ⊆ LCl(Φpre, l1), the non-trivial case is
LCl(Φpre, l) 6= ∅. As LCl(Φ, l) ⊆ LCl(Φ, l1), it is enough to ver-
ify that none of the SAT-based preprocessing techniques introduce a
labelled clause CL ∈ Φpre with l ∈ L and l1 /∈ L. This is trivially
true for LSE and LBCE as they only remove clauses. This is also true
for LSSR as it only removes literals, not labels. Finally, LVE cannot
produce resolvents which contain l but not l1, since there are no la-
belled clauses CL′

in Φ with l ∈ L′ and l1 /∈ L′. Thus the label-set
of any resolvent produced by LVE, which is a union of label-sets in
Φ, contains either both or neither of l1 and l. �

Thus it makes sense to incorporate SLE into the preprocessing
loop together with LVE, LSSR, LSE, and LBCE.

In analogy with Proposition 11, subsumed labels remain subsumed
also under SLE steps quite generally. An exception comes from cases
in which two labels l1 and l2 subsume each other, i.e., when l1 and
l2 occur in exactly the same label-sets and w(l2) = w(l1). Note
also that, generally, if l1 subsumes l2, and l2 subsumes l3, then l1
subsumes l3.

Turning to comparing SLE and SAT-based preprocessing, Propo-
sitions 4 and 12 together illustrate fundamental differences between
SLE and LVE, LSSR, LSE, and LBCE. By Proposition 4, LVE,
LSSR, LSE, and LBCE preserve the LMUSes of LCNF-MaxSAT
instances. This is not true for SLE. Instead, SLE guarantees (only)
that at least one minimum-cost (optimal) LMCS and, as such, that at
least one optimal solution of the instance is preserved.



Proposition 12 SLE does not in general preserve LMUSes (or
LMCSes) of LCNF-MaxSAT instances.

Proof. Consider the instances Φ and Φpre from Example 10. The
sets {l, li} and {l, ti} are LMUSes of Φ for all i but not of Φpre. �

An alternative way of stating Proposition 12 is that applying SLE
does not in general preserve all optimal solutions to LCNF-MaxSAT
instances. For a simple example, consider the LCNF-MaxSAT in-
stance Φ = {(x){l1}, (¬x){l2}} with unit-weighted labels. There
are two optimal solutions to Φ: τ1(x) = 1 satisfying Φ|Lbls(Φ)\{l2},
and τ2(x) = 0 satisfying Φ|Lbls(Φ)\{l1}. However, by LVE we can
simplify Φ to {(){l1,l2}} and by SLE further to {(){l1}}. The only
LMCS of the simplified instance is {l1}, corresponding to the solu-
tion τ2.

Instead of preserving LMUSes, SLE could be seen as a form of
LMUS minimization in the sense that all LMUSes remaining after
SLE are projections of LMUSes of the original LCNF onto the re-
maining set of labels.

Theorem 13 Let Φ be a LCNF-MaxSAT instance and l ∈ Lbls(Φ)
a subsumed label. Let Φpre = REMOVE(Φ, {l}), i.e., the formula
after eliminating l by SLE from Φ. Then all LMUSes Lp of Φpre are
of the form Lp = L ∩ Lbls(Φpre) for some LMUS L of Φ.

Proof. First notice that Φ|Lp ⊆ Φpre|Lp as the restriction operator
only removes labels from label-sets, not clauses. If Φ|Lp = Φpre|Lp ,
then the same will be true for any Lp

s ⊆ Lp, so Lp itself is an LMUS
of Φ. Otherwise, the reason for a labelled clause CL to be in Φpre|Lp

but not in Φ|Lp is that the eliminated label l was in L, i.e., CL /∈ Φ
but CL∪{l} ∈ Φ. Hence Φ|Lp∪{l} = Φpre|Lp , and Lp ∪ {l} is a
LMUS of Φ. �

For further differences between SLE and LVE, LSSR, LSE, and
LBCE, consider a MaxSAT instance F and a soft clause C ∈ Fs.
Let ΦF be the LCNF-MaxSAT instance corresponding to F and lC
the label for which C{lc} ∈ ΦF . A simple application of Theorem 4
gives that if lC is removed from ΦF by LVE, LSSR, LSE, or LBCE,
then any optimal solution to ΦF , which is also an optimal solution to
F , will satisfy C.

Proposition 14 Let Φpre
F be the instance resulting after an applica-

tion of LVE, LSSR, LSE, or LBCE on ΦF . If lC /∈ Lbls(Φpre
F ), then

any optimal solution τ to ΦF , which is also an optimal solution to
F , will satisfy C.

Proof. Since τ is optimal, it satisfies ΦF |Lbls(ΦF )\R for some
minimum-cost LMCS R of ΦF . By Theorem 4, lC /∈ R, and thus
C ∈ Cl(ΦF |Lbls(ΦF )\R). �

Informally, it could be said that SAT-based preprocessing can only
remove labels that are “uninteresting” in terms of LMCS computa-
tion. In contrast, elimination of lC by SLE means that some (but not
necessarily all) optimal solutions of F satisfy C, as shown next.

Proposition 15 Let Φpre
F be the instance resulting from an appli-

cation of SLE on ΦF . If lC /∈ Lbls(Φpre), then there is an optimal
solution τ to ΦF and F that satisfiesC. Furthermore, there may exist
optimal solutions to ΦF that do not satisfy C.

Proof. By the assumption that lC is subsumed, it follows from The-
orem 6 and Proposition 8 that there is a minimum-cost LMCS R of
ΦF for which lC /∈ R. The first part of the claim follows by observ-
ing that ΦF |Lbls(ΦF )\R is satisfiable and C ∈ Cl(ΦF |Lbls(ΦF )\R).
For the second part of the claim, consider the discussion following
Proposition 12. �

5 SLE AND CORE-GUIDED SOLVERS

We now show that SLE has the potential to considerably lower the
number of iterations made by so-called core-guided MaxSAT solvers,
one of the most successful current MaxSAT solving approaches.
The core-guided approach has several variants, e.g. [2, 38, 22, 25,
40, 36, 37, 18, 19]. In this work, we study the effect of SLE on
two different types of core-guided solvers through generic abstrac-
tions. The first one, CG-MaxSAT (Algorithm 1), iteratively employs
a SAT solver to extract unsatisfiable cores and rules out each of the
found cores from the formula by a clause replication and relaxation
step. Several algorithms that fit the CG-MaxSAT abstraction have
been proposed [22, 25, 40, 36, 37]. The second one, MaxHS (Algo-
rithm 2), is an abstraction of the implicit hitting set approach to Max-
SAT [18, 19], iteratively using a SAT solver to extract unsatisfiable
cores, and an exact minimum-cost hitting set algorithm to compute
hitting sets over the found cores.

In more detail, at each iteration i, CG-MaxSAT invokes a SAT
solver on the clauses of a working formula F i

w (initialized as all
clauses of the MaxSAT instance viewed as hard). If the working for-
mula is satisfiable, CG-MaxSAT terminates and returns the satisfying
assignment returned by the SAT solver. Otherwise, the SAT solver re-
turns an unsatisfiable core κ of F i

w. CG-MaxSAT then duplicates the
clauses in κ to create two sets κr and κr̄ . Both sets contain exactly
the same clauses as κ; each clause C ∈ κ is duplicated into two:
Cr ∈ κr and C r̄ ∈ κr̄ . The weight of Cr is set to wm, the min-
imum weight over the clauses in the core, and the weight of C r̄ to
w(C) − wm. The clauses of κr̄ are added to the working formula
unaltered. Finally, the working formula is updated by relaxing the
clauses in κr . The method of relaxation varies between core-guided
solvers. For our analysis, the important consequences of relaxation
are that the (possibly altered) clauses of κr do not appear as a core in
future iterations, and that the optimal cost of F i+1

w (when viewed as a
MaxSAT instance) is exactly wm lower than the optimal cost of F i

w.
Termination of CG-MaxSAT is guaranteed by the fact that wm > 0
on all iterations and that a MaxSAT instance of cost 0 is satisfiable
as a SAT instance. For a concrete example of a relaxation step, con-
sider the classical Fu-Malik algorithm [22] and its extensions to the
weighted case [33, 1]. These algorithms augments each Ci ∈ κr

with a fresh relaxation variable ri, creating the clause Ci ∨ ri, and
additionally adds a hard exactly-one constraint

∑
ri = 1 over the

relaxation variables. The intuition behind this step is that assign-
ing a relaxation variable to 1 effectively removes the corresponding
clause from the formula, hence removing the core κr . Additionally,

Input: MaxSAT instance F = (Fh, Fs, w).
Output: An optimal solution τ for F .
F 0
w ← Fh ∪ Fs

for i=0,. . . do
(result, κ, τ)← SATSOLVE(F i

w)
if result=”satisfiable” then

return τ // optimal solution
else

F i
w = (F i

w \ κ) // SAT solver returned unsat core
wm ← min{w(C) | C ∈ κ}
(κr, κr̄)← CLAUSEREPLICATE(κ,wm)
F i
w ← F i

w ∪ κr̄

F i+1
w ← RELAX(F i

w, κ
r)

end
end

Algorithm 1: CG-MaxSAT



Input: MaxSAT instance F = (Fh, Fs, w).
Output: An optimal solution τ for F .
K ← ∅ // set of found unsat cores of F
Fw ← (Fh ∪ Fs)
while true do

H ← MINCOSTHITTINGSET(K)
Fw ← Fh ∪ (Fs \H)
(result, κ, τ)← SATSOLVE(Fw)
if result=”satisfiable” then

return τ // optimal solution
else
K ← K ∪ {κ} // SAT solver returned unsat core

end
end

Algorithm 2: MaxHS

the exactly-one constraint ensures that the cost is lowered exactly by
wm.

MaxHS is a hybrid algorithm that uses a SAT solver for core ex-
traction over a working formula Fw (initialized as all clauses of the
input instance viewed as hard). Given a collection K of extracted
cores, MaxHS uses an exact algorithm (integer programming solver
in practice) to find a minimum-cost hitting set hs over K. The work-
ing formula is then updated to contain all clauses of F except for
the soft clauses in hs, and the SAT solver is invoked again. If the
working formula is satisfiable, the satisfying assignment obtained is
an optimal solution to F . Otherwise another core is obtained and the
search continues again with hitting set computation.

The main result of this section is that there are families of LCNF-
MaxSAT instances on which SLE can significantly decrease the num-
ber of SAT solver calls and clause replication when subsequently
solving the instances with CG-MaxSAT or MaxHS.

Proposition 16 For A ∈ {CG-MaxSAT, MaxHS}, there is a fam-
ily of LCNF-MaxSAT instances ΦN , with Θ(N) different labels, on
which

(i) A requires Θ(N) calls to its SAT solver, and, for A = CG-
MaxSAT, A requires Θ(N) clause replication steps, on Θ(N !)
different executions; while

(ii) A is guaranteed to require only two (one unsatisfiable and one
satisfiable) SAT solver calls if SLE is applied on ΦN before A

under the assumption that the internal SAT solver is guaranteed to
return minimal unsatisfiable cores.

Proof. The family of LCNF-MaxSAT instances witnessing the claim
is the same for CG-MaxSAT and MaxHS. LetN be sufficiently large
and define

ΦN :=

2N−2⋃
i=1

Pi ∪
N−1⋃
i=1

Hi, where

Pi =

N⋃
j=1

{(¬pji ∨ ¬p
j
k)∅ | k = (i+ 1)..(2N − 1)} and

Hi =


(

N∨
j=1

pjk

){l,li} ∣∣∣∣ k = i..(N + i)

 ,

with w(l) = w(lN−1) = N and w(li) = 1 for all other labels li.
Notice that ΦN contains N − 1 LMUSes of the form {l, li} for all
1 ≤ i ≤ N − 1. Hence, the only minimum-cost LMCS of ΦN is

{l}. Furthermore, refuting any of the LMUSes requires proving the
unsatisfiability of the formula ΦN |{l,li}, which corresponds to an
instance of the pigeonhole principle; meaning that the extraction any
of the LMUSes of ΦN requires an exponentially long SAT solver
call [24]. Next we sketch the executions of both CG-MaxSAT and
MaxHS that require Θ(N) SAT-solver calls when solving ΦN .

Conversion of ΦN to MaxSAT results in the formula F =
(Fh, Fs, w), where

Fh =

2N−2⋃
i=1

N⋃
j=1

{(¬pji ∨ ¬p
j
k) | k = i..(2N − 1)}

∪
N−1⋃
i=1

{(
al ∨ ai ∨

N∨
j=1

pjk

) ∣∣∣∣ k = i..(N + i)

}
and Fs = {(¬al), (¬a1), . . . , (¬aN−1)}
with w((¬al)) = w((¬aN−1)) = N and w(C) = 1 for all other
C ∈ Fs. The MUSes of F correspond exactly to the LMUSes of ΦN

and are of the form {(¬al), (¬ai)} for all i = 1..N −1. For an intu-
ition on the executions requiring a linear number of SAT solver calls
of both algorithms, notice that both can terminate immediately and
only after encountering and processing the MUS {(¬al), (¬aN−1)}
corresponding to the the LMUS {l, lN−1}.

For A = MaxHS, assume that the internal SAT solver returns the
MUSes of in any order with {(¬al), (¬aN−1)} last. Then the hitting
set hs computed by MaxHS will not contain the clause (¬al) before
the (N − 1)th iteration and as such MaxHS can not terminate as
F \ hs will always contain the MUS {(¬al), (¬aN−1)}. There are
a total of (N − 2)! executions in which the MUS {(¬al), (¬aN−1)}
is returned last.

For A = CG-MaxSAT, the long executions are similar. Assume
that the first MUS returned by the SAT-solver in CG-MaxSAT is
{(¬al), (¬a1)}. The smallest weight wm of the clauses in the core
is 1, so CG-MaxSAT proceeds by replicating the clause (¬al) into
two clauses Cr = (¬al) and C2 = (¬al), setting w(Cr) = 1
and w(C2) = N − 1, adding C2 back into the working formula,
relaxing the core {Cr, (¬a1)}, and reiterating. Assume that CG-
MaxSAT proceeds similarly by processing the cores {(¬al)i, (¬ai)}
for i = 1..N − 2 during the first N − 2 iterations where (¬al)i
is the copy of the clause (¬al) produced in the previous itera-
tion. Finally on the (N − 1)th iteration CG-MaxSAT encounters
the core {(¬al)N−2, (¬aN−1)}. At this point w((¬al)N−2) = 2
and w((¬aN−1)) = N , so CG-MaxSAT replicates (¬aN−1) and
relaxes the core before invoking its SAT solver one final time in
order to find the current working formula satisfiable. In total, CG-
MaxSAT performsN SAT solver calls andN−1 clause replications.
A similar argument can be made for any ordering of the MUSes with
{(¬al), (¬aN−1)} last.

Part (ii) of the proposition follows by noting that SLE can remove
lN−1 due to l, resulting in the formula

pre(ΦN ) :=

2N−2⋃
i=1

Pi ∪
N−2⋃
i=1

Hi ∪
(

N∨
j=1

pjk

){l} ∣∣∣∣ k = (N − 1)..(2N − 1)

 .

The only LMUS of the preprocessed formula is {l}, which is why
both algorithms are guaranteed to need only a single unsatisfiable
and a single satisfiable SAT-solver call, and furthermore, why CG-
MaxSAT needs no clause replication steps, during solving. �



6 EXPERIMENTS

Complementing the theoretical analysis, we evaluate the practi-
cal effects of SLE on the 2015 MaxSAT Evaluation benchmarks
(http://www.maxsat.udl.cat/15/). We observe that SLE is beneficial
especially on industrial weighted partial benchmark instances. When
applying SLE in conjunction with the LCNF-lifted SAT-based pre-
processing techniques (LVE, LSSR, LSE, LBCE), noticeably more
labels can be removed than without applying SLE. Furthermore, SLE
improves the overall performance of various state-of-the-art Max-
SAT solvers on industrial weighted partial benchmarks.

All reported solving times include the time spent in preprocess-
ing as well as in the actual MaxSAT solving. The experiments were
run on 2.53-GHz Intel Xeon quad-core machines with 32-GB RAM
under Linux. A per-instance timeout of 1800 seconds and a memory
limit of 30 GB were enforced.

We implemented SLE by extending the Coprocessor 2.0 SAT pre-
processor [34] in the following way. Given a MaxSAT instance as
input, we convert the instance to LCNF, apply Coprocessor to pre-
process the LCNF, and then convert the preprocessed LCNF back to
a MaxSAT instance. LVE, LSSR LSE, LSSR, and LBCE are realized
by representing a labelled clause CL as C ∨

∨
li∈L ai in Copro-

cessor, applying the existing implementations of VE, SSR, SE and
BCE, while forbidding the elimination of any of the ai variables cor-
responding to the labels.

A simple way of implementing SLE consists of explicitly check-
ing for each label l whether or not l is subsumed. A potentially more
efficient way of implementing SLE would be to track the resolvents
produced by LVE and only check labels that have appeared in re-
solvents produced. However, as shown in Figure 3, even the simple
implementation appears to be sufficient; we did not observe any sig-
nificant increase in total preprocessing time (w/pre+SLE) compared
to not using SLE (w/pre). We also note that SLE does not increase
overall memory consumption wrt SAT-based preprocessing.

The fraction of labels (i.e. soft clauses) remaining after prepro-
cessing with and without SLE (applying in both cases LVE, LSSR,
LSE, and LBCE) is shown in Figure 2 for both unweighted and
weighted partial industrial and crafted instances. SLE is effective in
removing additional labels in particular on the industrial weighted
partial instances. For example, for one third of the instances (x =
0.3), with SLE close to 80% of the labels are eliminated (y ≈ 0.2,
i.e., some 20% of the labels remain afterwards); in comparison, with-
out SLE only ≈ 45% are eliminated. As a side-note, when examin-
ing the instance families in more detail, we found that out of the 172
industrial benchmarks in which no labels were removable by prepro-
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Figure 2: Fraction of labels remaining in industrial (left) and crafted (right)
unweighted (PMS) and weighted (WPMS) benchmarks after preprocessing
with and without SLE.
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Figure 3: Influence of SLE on preprocessing time

cessing, 151 were new instances in the 2015 evaluation. In fact, when
preprocessing the 2014 evaluation instances—which are a subset of
the 2015 evaluation instances—using SLE, at least 80% of the labels
are eliminated from over 50% of the instances. This suggests that, in
terms of SLE, the instances added for 2015 are structurally different
from the ones from 2014.

Table 1: Number of solved industrial weighted partial benchmarks and total
time spent on solved instances without preprocessing (default), with SAT-
based preprocessing (w/pre), and with both SAT-based preprocessing and
SLE (w/pre+SLE).

Solved instances (total running time over solved in seconds)
config. Eva LMHS Open-WBO Primal-Dual
default 379 (22,543) 354 (50,981) 331 (15,762) 390 (18,423)
w/pre 384 (20,613) 368 (46,525) 369 (12,345) 391 (15,267)
w/pre+SLE 386 (19,138) 389 (48,277) 369 (11,739) 392 (13,925)

The additional simplifications obtained via SLE are also reflected
in the total number of solved instances and solver runtimes on indus-
trial weighted partial instances. Results are shown in Table 1 for the
state-of-the-art MaxSAT solvers Eva [40], core-guided, best indus-
trial weighted partial solver in 2014; LMHS [11], one of the best
crafted and industrial weighted partial solvers in 2015, a labelled
lifting of the SAT-IP hybrid MaxSAT solver MaxHS [18]; Open-
WBO [36], one of the best industrial unweighted solvers in 2015;
and Primal-Dual [12], a new core-guided solver from 2015. SAT-
based preprocessing together with SLE results in the highest num-
ber of solved instances for each of the solvers. The increase in the
number of solved instances is especially noticeable for LMHS. SLE
also decreases the total runtime over all solved instances for each of
the solvers. For example, for both Eva and Primal-Dual, using SLE
improves further on applying only SAT-based preprocessing by de-
creasing the total runtime by approximately 10%, at the same time
enabling Primal-Dual and Eva to solve one and two more instances,
respectively. Finally, Figure 4 shows a comparison the running times
of the individual instances with the solvers are presented in the or-
der LMHS (first column), Eva (second), Open-WBO (third), and
Primal-Dual (fourth column). For each solver, we compare runtimes
on logscale when applying SLE together with LVE, LSSR, LSE, and
LBCE (’w/pre+SLE’) to (i) without preprocessing (left), and (ii) pre-
processing only with LVE, LSSR, LSE, and LBCE (’w/pre”, right).
For a majority of the instances, SLE improves the total solving time
of each of the solvers both compared to using no preprocessing, and
only using LVE, LSSR, LSE and LBCE.



 1

 10

 100

 1000

 1  10  100  1000

w
/p

re
+

S
LE

LMHS

 1

 10

 100

 1000

 1  10  100  1000

w
/p

re
+

S
LE

Eva

 1

 10

 100

 1000

 1  10  100  1000

w
/p

re
+

S
LE

OpenWBO

 1

 10

 100

 1000

 1  10  100  1000

w
/p

re
+

S
LE

PrimalDual

 1

 10

 100

 1000

 1  10  100  1000

w
/p

re
+

S
LE

LMHS w/pre

correlation-clustering
upgradeability-problem
haplotyping-pedigrees
preference_planning
railway-transport
hs-timetabling
wcsp_spot5_log
wcsp_spot5_dir
timetabling
packup-wpms
BTBNSL

 1

 10

 100

 1000

 1  10  100  1000

w
/p

re
+

S
LE

Eva w/pre

 1

 10

 100

 1000

 1  10  100  1000

w
/p

re
+

S
LE

OpenWBO w/pre

 1

 10

 100

 1000

 1  10  100  1000

w
/p

re
+

S
LE

PrimalDual w/pre

Figure 4: Effect of SLE on runtimes without (top) and with (bottom) other preprocessing on industrial weighted partial instances.

7 CONCLUSIONS
We proposed subsumed label elimination (SLE) as a MaxSAT pre-
processing technique that is beneficial to apply in conjunction with
SAT-based preprocessing techniques before MaxSAT solving. SLE
is orthogonal to SAT-based preprocessing in that SLE can eliminate
redundant auxiliary variables (labels) from clauses irrespective of the
original variables occurring in clauses. On the level of labelled CNFs,
this accounts to removing redundant labels from LMUSes, thereby
resulting in cases in a decrease in the number and sizes of MUSes of
MaxSAT instances. Furthermore, SLE has the potential to drastically
reduce the number of iterations performed by core-guided MaxSAT
solvers, currently one of the important classes of MaxSAT solvers.
Applying SLE further improves the running times of various state-
of-the-art MaxSAT solvers on standard industrial weighted partial
benchmarks. For future work, we aim to study more general notions
of redundancies over labels in LCNFs to obtain further label-based
preprocessing techniques for MaxSAT, as well as to study potential
applications in MUS extraction.
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A SLE and Dominance in Binate Covering
SLE (for MaxSAT) can be viewed as the counterpart of the so-called
dominance rule proposed in the early 90s in conjunction with branch-
and-bound approaches for the so-called binate covering problem [17,
16] with applications in logic synthesis. In short, in the binate cover-
ing problem, we are given a Boolean function f : {0, 1}n → {0, 1}
over the variables x1, . . . , xn, and a function cost : {1..n} → N
assigning a non-negative cost cost(i) to each variable xi. The task
is to find a truth assignment τ over x1, . . . , xn that minimizes∑n

i=1 τ(xi) · cost(i) subject to f(τ(x1), . . . , τ(xn)) = 1. The
dominance rule for binate covering is described in [17] for the so-
called modified covering matrix representation of binate covering for
Boolean functions in CNF. We interpret the rule directly on the defi-
nition as follows: variable xi dominates xj if (i) the literal xi occurs
in a clauseC whenever the literal xj occurs inC; (ii) ¬xj occurs in a
clause C whenever ¬xi occurs in C; and (iii) cost(xi) ≤ cost(xj).
A dominated variable can be assigned to 0.

A LCNF-MaxSAT instance (Φ, w) can be viewed as an instance
of binate covering by viewing each labelled clause CL ∈ Φ as the
clause C ∨ L, and letting cost(l) = w(l) for each l ∈ Lbls(Φ)
and cost(x) = 0 for each variable in

⋃
Cl(Φ). After this reduction,

one can observe that, for any label l ∈ Lbls(Φ), it holds that l is
dominated in the resulting binate covering instance if and only if
SLE can eliminate l from (Φ, w).
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