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Abstract

The series of MaxSAT Evaluations, organized yearly since 2006, has been the main
forum for evaluating the state of the art in solvers for the Boolean optimization paradigm
of maximum satisfiability (MaxSAT). This article provides an overview of the 2018 Max-
SAT Evaluation, including a description of the main changes made in 2017 under a new
organizing team, an overview of the solvers and benchmarks submitted in 2018, and detailed
results of the 2018 evaluation.
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1. Introduction

Maximum Satisfiability (MaxSAT) is an optimization version of the propositional satisfi-
ability problem (SAT). In both cases, the problem is specified by a propositional formula
expressed in conjunctive normal form (CNF). In MaxSAT each clause additionally has a
positive integral weight given as part of the input.1. Unlike SAT, which is the problem of
finding a truth assignment that satisfies all clauses of the CNF, MaxSAT is the problem of
finding a truth assignment that maximizes the sum of weights of satisfied clauses. Many
practical problems involve some component of optimization, and thus MaxSAT can be used
to formalize problems from a range of application areas. For further details about MaxSAT
see, e.g., [28].

Solvers for the MaxSAT problem have been evolving and improving for over a decade,
and during that time our ability to solve complex MaxSAT instances has made tremen-
dous advances. The annual MaxSAT Evaluations aims to both monitor and facilitate that
progress. The main activity of the evaluation is to run as wide a set of current solvers as
possible against a fixed set of benchmarks in a uniform computational environment. Since
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none of the solver developers have prior knowledge of the benchmark set, the evaluation
provides trustworthy and unbiased data about the performance of current solvers on the
selected benchmark set. Computational limitations restrict the size of the benchmark set,
so there are of course limits to what we can conclude from the data. Nevertheless, the data
does provide a useful snapshot of current progress in MaxSAT solving and of the current
capabilities of different MaxSAT solving algorithms and solver implementations.

The MaxSAT evaluation series has two main purposes: support for continued progress
in MaxSAT solving, and promotion of MaxSAT as a viable formalism for solving a wide
range of NP-hard optimization problems. Support for the research community working
on improving MaxSAT solvers come from the data collected which can be used in various
ways to analyze and measure the performance of current solvers; the motivation it provides
through friendly competition among solver developers; the knowledge transfer and support
for new developers made possible by the recent instituted open source rules; and the large
and growing collection of benchmarks that are made available to the community. Promotion
of MaxSAT comes mainly from disseminating the results and activities of the evaluation, and
from the solicitation and collection of a diverse set of benchmarks that represent problems
from a wide range of application areas. The benchmarks also serve as examples of the
different problems that can be profitably represented in MaxSAT and then solved with
state of the art MaxSAT solvers.

This article provides an overview of the 2018 edition of the MaxSAT Evaluations. The
organizing team of the evaluations changed in 2017, and several changes were made to the
way the evaluation is run (for overviews of and analysis related to some of the previous
editions, see [2, 16, 3]). Since these changes have not previously been reported, an overview
of the main changes incorporated in the 2017–2018 evaluations is also provided. Considering
the 2018 evaluation, in particular, this article also provides an overview of the solvers
and benchmarks submitted in 2018, as well as a detailed overview of the results of the
2018 evaluation. Complete benchmark and solver data are available through the MaxSAT
Evaluation 2018 webpages at

https://maxsat-evaluations.github.io.

Furthermore, similarly as for the 2017 evaluation, a published evaluation proceedings are
available [6]. These proceedings contain more detailed contributed descriptions of the bench-
marks and solvers submitted to the 2018 evaluation.

In the rest of the article, we describe the organizational details of the 2018 MaxSAT
evaluation (Section 2), and overview the participating solvers (Section 3), submitted bench-
marks (Section 4), and the evaluation results (Section 5). Before that, however, for com-
pleteness we give a more formal description of the MaxSAT problem.

Maximum Satisfiability. Recall that a propositional clause is a disjunction of literals,
i.e., positive and negative Boolean variables. Satisfaction of a clause by a truth assignment
τ is defined in the standard way as for Boolean satisfiability. An instance I = (ϕh, ϕs, w)
of the MaxSAT problem consists of a set ϕh of hard clauses, a set ϕs of soft clauses, and a
function w which assigns a weight to each soft clause in ϕs. An assignment τ that satisfies
every clause in ϕh is a feasible solution to I. The cost of a solution τ to I is the sum of
the weights of soft clauses falsified by τ . A feasible solution τ is an optimal solution if it
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has the smallest cost among all feasible solutions to ϕ. The MaxSAT problem is to find an
optimal solution to a given instance I.

2. Overview of MaxSAT Evaluation 2018

We continue by describing the main organizational details of the 2018 MaxSAT Evaluation,
including new changes implemented for the 2017–2018 evaluations (Section 2.1), the evalu-
ation tracks (Section 2.2), the ranking schemes used in evaluating the performance of the
solvers (Section 2.3), disqualification of solvers (Section 2.4), the input and output formats
(Section 2.5), and the computing environment used for the evaluation (Section 2.6).

2.1 New Changes and Requirements

We provide an overview of the main changes and new requirements implemented in the
2017–2018 MaxSAT evaluations and motivate these changes.

Open-source Requirement on Solvers. Before 2017, solvers participating in MaxSAT
evaluations were submitted as compiled binaries; no requirements for their source availabil-
ity were imposed. Starting from 2017, it is required that all solvers participating in the
evaluations have their source available after the evaluation (open-source). Note that this
requirement does not impose any restrictions on the software license under which the source
is released. In particular, the authors of the solvers are free to apply for restricted-use li-
censes if they want. All that the evaluation requires is that others can read the solver’s
source code.

As with the SAT Competitions, this new requirement has three main motivations.
Firstly, source availability promotes openness: it is important that the community has
the option of analyzing the evaluation results in terms of implementation-level decisions,
which has not been previously possible. Secondly, the organizers wish to make it easier
for researchers to enter the world of MaxSAT solver development, with the potential of
speeding up the discovery of new performance-improving techniques for MaxSAT. Thirdly,
open-source solver technology is important for application domain specialists who want to
tweak MaxSAT solvers to improve their performance on a specific problem domain.

Solver and Benchmark Descriptions. Starting from 2017, submitting a short, 1–2
pages written solver description is mandatory for each solver participating in the evaluations.
The description must give a reasonable description of the main techniques implemented in
the solver, reflecting on the differences between the new and older solver versions when
applicable. The main motivation for this requirement, complementing the open-source
requirement, is to ensure that key features of participating solvers can be understood (on a
high level of abstraction) without the need to an in-depth understanding of the solver source
codes. This also ensures the availability of a written reference to each of the participating
solvers, as well as a historical account of the development of MaxSAT solvers for future
purposes.

While not mandatory, all benchmark submitters are also encouraged to submit 1–2 pages
written benchmark descriptions, motivated by the fact that knowledge of the underlying
problem domains of evaluation benchmarks is easily lost without descriptions linking this
knowledge with the individual benchmark files.
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These solver and benchmark descriptions have been gathered together and made avail-
able in a published evaluation proceedings 2018 [6]. In the current paper, we provide only
brief descriptions of the solvers and submitted benchmarks, so the proceedings can be con-
sulted for further details.

Removal of the Crafted-Industrial Benchmark Distinction. Starting from 2017,
no distinction is made between what were called “crafted” and “industrial” benchmarks
before 2017. This change is motivated by the fact that the distinction between “crafted”
and “industrial” is vague and open to subjective interpretation. This does, of course, mean
that by merging these categories there will tend to be a greater variety of instances types
used in the evaluation, with some instances being more “crafted” than “industrial” and
others more “industrial” than “crafted”. Nevertheless, our aim is to have a sufficient range
of instances so that no single type of instance dominates. In fact, the main motivation
behind developing declarative solver technology is its general applicability; merging of the
“crafted” and “industrial” track into one “main” track encourages researchers to develop
solvers that can handle a wider variety of instances.

2.2 Evaluation Tracks

The evaluation of MaxSAT solvers in MaxSAT Evaluation 2018 was divided into the follow-
ing tracks. Each track is characterized by the types of benchmarks instances used within
the track to evaluate the participating solvers. We note that MaxSAT Evaluation 2018 did
not include a track for randomly generated MaxSAT instances due to low interest from the
community to participate in such a track.

Main Tracks.

Unweighted: Combines the industrial and crafted unweighted and unweighted partial Max-
SAT categories from previous MaxSAT evaluations. All benchmarks are truly unweighted,
i.e., all soft clauses have unit weights. Purely randomly generated instances are not included.

Weighted: Combines the industrial and crafted weighted and weighted partial MaxSAT
categories from previous MaxSAT evaluations. All benchmarks will be truly weighted, i.e.,
contain soft clauses with different weights. Purely randomly generated instances are not
included.

Special Tracks for Incomplete Solvers. In addition to the two main tracks, focusing
on complete MaxSAT solvers that provide provably optimal solutions, two special tracks
(unweighted and weighted, following the categorization of the main tracks) for incomplete
solvers were organized. Compared to the main tracks, noticeably smaller per-instance time
limits were enforced in these tracks on the participating solvers. Furthermore, the ranking
of the solvers is based on the cost of solutions provided, not requiring optimal solutions.
Every incomplete solver participating in one or both of the tracks were evaluated using two
distinct per-instance time limits: 60 seconds and 300 seconds.

No-restrictions Track. The aim of this special track was to allow solvers not adhering
to the open-source requirements of MaxSAT Evaluation 2018 to take part in the evaluation.
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Portfolios applying instance-specific algorithm selection technique to select a third-party
MaxSAT solver to run on a per-instance basis were also encouraged to participate primarily
in this track. As in the other tracks, solvers were required to make use of only one processor
core. The benchmark set for the no-restrictions track was planned to consist of a mixture
of the benchmarks in the unweighted and weighted main tracks. However, there were no
solver submissions to this track, and so the track was not run.

2.3 Ranking Schemes

Ranking of solvers in the main tracks and the special tracks for incomplete solvers were
based on different schemes, following the aims of the tracks.

2.3.1 Main Tracks

Following the tradition of the previous MaxSAT evaluations, solvers participating in the
main tracks were ranked based on the number of solved instances within predefined per-
instance resource limitations. In the main tracks, “solving an instance” requires finding an
optimal solution.

2.3.2 Incomplete Solver Tracks

Solvers participating in the incomplete tracks were ranked using an incomplete score that
is computed by the sum of the ratios between the best solution found by a given solver and
the best solution found by any solver. More precisely, the following incomplete score was
adopted. ∑

i

(cost of best solution for instance i found by any solver + 1)

(cost of solution for instance i found by solver + 1)

For each instance, we considered the best solution found by all incomplete solvers within
300 seconds. For an instance i the score is 0 if no solution was found by that solver. Note
that, for each instance, the incomplete score is a value in [0, 1].

2.4 Disqualification of Solvers

A solver was considered buggy under the following circumstances.

• The solver (in any track) reports a truth assignment in a v line that does not satisfy
the hard clauses.

• The solver in the main track reports s OPTIMUM FOUND but the truth assignment
reported in its v line has cost higher than another known solution.

• The solver (in any track) reports a cost on its o line that does not match the actual
cost of the truth assignment reported on the v line.

• The solver crashes on a significant number of instances.

A somewhat relaxed approach was taken to solvers that did not provide correct answers
on every benchmark—the event is designed to be an evaluation, not a competition. In
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particular, a solver would not be immediately disqualified if it displayed a wrong solution
during the execution of the evaluation. The organizers allowed all participants a fair chance
of submitting bug fixes to their solvers in a timely manner based on feedback on wrong
results.

2.5 Input and Output Format

The input-output format has been slightly revised for uniformity for the 2017–2018 MaxSAT
Evaluations. We will here specify the current format for completeness; the 2017–2018
benchmark sets are in the new format.

2.5.1 Input Format

Starting in 2017 the same input format is used for all benchmark instances. The parameters
line is p wcnf nbvar nbclauses top, where nbvar, nbclauses and top are the highest
variable number, the number of clauses (soft and hard), and a weight indicating that a
clause is hard, respectively. We associate a weight with each clause, specified by the first
integer in the clause. The remaining numbers specify the positive and negative literals in
the clause, and each clause is terminated by 0.

Hard clauses have weight top, soft clauses have a weight smaller than top, and top is
always greater than the sum of the soft clause weights. Weights must be greater than or
equal to 1, and the sum of the weights of the soft clauses must be less than 264− 1 (so that
top is at most 264).

For example, the following specifies a legal MaxSAT instance.

c

c comment line

c

p wcnf 4 5 16

16 1 -2 4 0

16 -1 -2 3 0

8 -2 -4 0

4 -3 2 0

3 1 3 0

2.5.2 Output Format

The solvers were required to output messages to standard output. The output format is
inspired by the DIMACS output specification of the SAT competition. The solvers were not
allowed to write to files, only standard output, and standard error. Solver output necessary
for parsing the evaluation results were required to be sent to standard output. The output
lines are as follows.

Comments (c lines): Comment lines start with the two characters: lower case c followed
by a space. These lines are optional and may appear anywhere in the solver output. They
contain any information that authors want to emphasize.
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Solution Status (s line): This line starts with the two characters: lower case s followed by
a space. Only one such line is allowed. This line gives the answer of the solver. It must be
one of the following answers:

s OPTIMUM FOUND This line is to output when the solver has checked that the last o and v

lines (see the following) specify an optimal solution.

s UNSATISFIABLE This line is to be output when the solver has checked that the set of hard
clauses are unsatisfiable.2.

s UNKNOWN This line must be output in any other case. Note that solvers in the incomplete
track will typically output s UNKNOWN unless they can verify that the best solution they
have found is optimal, in which case they can output s OPTIMUM FOUND. However, no extra
score was associated with the incomplete track for proving optimality. Exact solvers in the
main track can output s UNKNOWN if they are unable to find an optimal solution but such
an answer receives no score. (Note that not outputting an s line is the same as outputting
s UNKNOWN)

Solution Cost Line (o lines): These lines start with the two characters, lower case o followed
by a space, and then followed by a number representing the cost of the best solution found,
i.e., the sum of the weights of clauses falsified by the solution.

Incomplete solvers have to catch the SIGTERM signal so that they can output an o (and v)
line specifying the best solution found just before termination. There is no need for exact
solvers in the main track to output any solution other than an optimal one. When they find
an optimal solution they can output an o and v line specifying the solution they found.

Solution Values (Truth Assignment) (v lines): These lines start with the two characters:
lower case v followed by a space. More than one v line is allowed but the evaluation
environment will act as if their content was merged. When the solver reports a solution it
must provide s, o and v lines. The v line provides a truth assignment to the variables of the
instance that will be used to check the correctness of the answer, i.e., it must provide a list
of non-complementary literals which, when interpreted as true, achieves a sum of weights of
unsatisfied clauses as specified in the o line. The solution line must define the value of each
variable. The order of literals does not matter. If the solver does not output a value line,
or if the value line does not match the specification, then UNKNOWN will be assumed.

For example, a valid output of a solver that has found an optimal solution might be as
follows.

c --------------------------

c My MaxSAT Solver

c --------------------------

o 143

s OPTIMUM FOUND

v -1 2 3 -4 -5 6 -7 8 9 10 -11 -12 13 -14 -15 16 -17 18 19 20

2. To the best of our knowledge the hard clauses of all instances used were satisfiable, and no solver returned
UNSATISFIABLE as an answer in the evaluation. However, in future evaluations we plan to verify the SAT
status of the hard clauses.
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2.6 Computing Environment

MaxSAT Evaluation 2018 was run on the StarExec cluster (https://www.starexec.org/)
using computing nodes with the following technical specifications: Intel(R) Xeon(R) CPU
E5-2609 0 @ 2.40GHz with 10240-KB cache and 128-GB main memory. To minimize the
effect of other processes affecting the runtimes of the solver, at most two solvers were run
on any node at the same time. For the complete tracks, a time limit of 3600 seconds and
a memory limit of 32 GB was enforced on each solver run. For the incomplete track, the
memory limit was also 32 GB, and two different time limits were enforced: 60 seconds and
300 seconds.

3. Participating Solvers

We proceed with an overview of the solvers that participated in MaxSAT Evaluation 2018.

3.1 Complete Solvers

Nine different solvers participated in the complete tracks (Section 2.2), with eight of the
solvers participating in both the weighted and unweighed complete tracks, and one partic-
ipating only in the weighted track (see Table 1).

The complete solvers used three different algorithmic approaches to solving MaxSAT
(with some significant differences in the way each of these approaches were realized).

Two solvers used the implicit hitting set approach originating from [10]. In this ap-
proach, cores are computed by a SAT solver and minimum-cost hitting sets of those cores
computed by an integer programming solver, in a loop until a truth assignment is found
that falsifies a weight of clauses equal to the weigh of the minimum-cost hitting set. Such
a truth assignment must be optimal.

Five of the solvers used a core based UNSAT to SAT approach. In particular, these
solvers solve a sequence of unsatisfiable SAT instances where the first satisfiable instance
gives a MaxSAT solution. These approaches build on the original idea of Fu and Malik [15]
of exploiting the cores, discovered when the SAT instance is UNSAT, to construct the next
SAT instance to solve.

Finally, two solvers use a SAT to UNSAT sequence of SAT instances, where each SAT
instance is constrained to find an improved solution, and the final UNSAT instance indicates
that the last model found was optimal (i.e., no better solutions exist). This is an old idea
that in the SAT context seems first to have been used in MiniSAT+ [13].

A few more details about the submitted solvers are given in the following (see [6] for
more details and citations to relevant publications).

LMHS. This is an implicit hitting set solver by Paul Saikko (main developer), Jeremias
Berg, and Matti Järvisalo all from the University of Helsinki, Finland. It was origi-
nally developed in [32] and has been extended in various ways [33], including MaxSAT
specific preprocessing techniques implemented by Tuukka Korhonen [20]. It uses Min-
iSAT 2.2 as the underlying SAT solver and CPLEX 12.8 3. as the underlying integer
programming solver.

3. Available for academics at https://www.ibm.com/developerworks/community/blogs/jfp/entry/

cplex_studio_in_ibm_academic_initiative?lang=en
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Table 1: Solvers participating in the complete tracks—approach and coverage.

Solver Weighted Unweighed Approach

LMHS 3 3 Implicit Hitting Set
MaxHS 3 3 Implicit Hitting Set

maxino 3 3 UNSAT to SAT core based
Open-WBO-Glucose 3 3 UNSAT to SAT core based

Open-WBO-Riss 3 3 UNSAT to SAT core based
RC-B 3 3 UNSAT to SAT core based
RC-A 3 3 UNSAT to SAT core based

Pacose 3 SAT to UNSAT
QMaxSAT 3 3 SAT to UNSAT

MaxHS. This solver was originally developed in Davies [10] and was authored by Fahiem
Bacchus from University of Toronto, Canada. The solver utilizes a number of tech-
niques to improve the effectiveness of the implicit hitting set approach. As the under-
lying SAT and IP engines, it uses MiniSAT 2.2 and CPLEX 12.8, respectively.

maxino. This solver was authored by Mario Alviano from the University of Calabria, Italy.
It employs a special technique for converting the set of found cores into cardinality
constraints originally described in [1]. It uses Glucose 4.1 [5] as the underlying SAT
solver.

Open-WBO-Glucose and Open-WBO-Riss. This solver was authored by Ruben Mar-
tins from CMU, USA; Norbert Manthey from Germany; and Miguel Terra-Neves,
Vasco Manquinho, and Ineŝ Lynce, from INESC-ID/IST, Portugal, building on [26].
It uses partition-based techniques [30] and incremental constraints that can be quickly
updated when a new core is found [25]. The two different versions -Glucose and -Riss
differ only by which SAT solver backend is used (Glucose 4.1 or RISS).

Pacose. This solver was authored by Tobias Paxian, Sven Reimer, and Bernd Becker from
Albert-Ludwigs-Universität, Germany. It uses the QMaxSat solver and adds a new
way to encode the pseudo-Boolean constraints [31]. Since the new encoding is only
for weighted problems the solver did not participate in the unweighted competition.
It uses Glucose 3.0 as the backend SAT solver.

QMaxSAT. This solver was authored by Aolong Zha from Kyushu University, Japan,
building on [21]. It handles weighted problems by encoding a pseudo-boolean con-
straint capturing the sum of the weights of the falsified soft clauses and modifies this
constraint to force the SAT solver to find improving solutions following the linear
SAT/UNSAT (LSU) algorithm [7, 13]. It uses Glucose 3.0 as the underlying SAT
solver.

RC-B and RC-A. This solver was authored by Alexey Ignatiev, Antonio Morgado, and
Joao Marques-Silva from the University of Lisbon, Portugal building on the PySAT
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Table 2: Solvers participating in the incomplete tracks and the main techniques employed.

Solver LSU Clustering Weight
Simp.

local search Other
Technique

LinSBPS 3 3 3

MaxRoster 3 3 3

Open-WBO-Inc-MSC 3 3

Open-WBO-Inc-OBV 3 3

Open-WBO-Inc-Cluster 3 3 3

Open-WBO-Inc-BMO 3 3 3

Open-WBO-(Gluc/Riss) 3

SatLike 3

SatLike-c 3 3

framework [17]. It is a new implementation of the OLL MaxSAT algorithm [27] with
the addition of a number of other enhancements. The two different versions -A and
-B differ only in the policy for core minimization (-A uses core minimization whereas
-B does not). It uses Glucose 3.0 as the underlying SAT solver.

3.2 Incomplete Solvers

The incomplete track, in which the solvers return the best solution they can find within the
time-bound, attracted nine different solvers (see Table 2).

The most common technique used in these incomplete solvers was the linear SAT/UNSAT
(LSU) algorithm [7, 13] in which a satisfying solution for the hard clauses is first found,
and then, via a CNF-encoded cardinality (for unweighted instances) or a CNF-encoded
pseudo-Boolean constraint (for weighted instances), the SAT solver is then forced to find a
better solution. The solvers did, however, vary in the techniques they used to encode these
constraints.

One advantage of LSU in the incomplete track is that it appears to often find the first
few improving solutions quite rapidly. The other advantage is that it can be used to try
to improve the best solution found via other techniques, one can simply give it the best
solution found so far as a starting point and LSU will force the SAT solver to try to find a
better solution.

Additional techniques that were often used in the incomplete solvers include: clustering
techniques to partition the set of soft clause so that some of the softs could be ignored at
various stages of the computation, weight simplification techniques (on the weighted
instances) so that a simpler problem with fewer distinct weights could be solved, and local
search.

A few more details about the submitted solvers are given in the following (see [6] for
more detail about these solvers and more citations to relevant publications).

LinSBPS. This solver is by Emir Demirović and Peter Stuckey from the University of
Melbourne, Australia. It makes direct use of LSU with the added technique of solution
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based phase saving [11]. It also simplifies the weights by dividing them by a constant
(which via integer division sets some soft clauses to weight zero, effectively removing
them). The best solution found with the most simplified weights are then used as
the starting point for a new LSU computation with less simplified weights. The
solutions found for the problem with simplified weights are also solutions for the
original problem and thus the best solution found can be tracked and returned when
the time limit is reached. It is built on top of Open-WBO and uses Glucose 4.1 as
the underlying SAT solver.

MaxRoster. This solver is by Takayuki Sugawara from Sugawara Systems, Japan. It first
runs a local search procedure for a short amount of time to try to find a good solution.
It then uses either LSU or an unsat-based algorithm based on the ratio of the cost of
initial solution and the sum of weights of the soft clauses. It uses MapleSAT as the
SAT solver for the LSU and unsat-based algorithms.

Open-WBO-Inc-MSC. All four of the Open-WBO-Inc solvers are authored by Saurabh
Joshi, Prateek Kumar and Sukrut Rao, from IIT Hyderabad, India; Vasco Manquinho
from INECS-ID, Portugal; Ruben Martins from CMU, USA; and Alexander Nadel
from Intel Corporation, Israel. This particular solver participated in the unweighted
tracks only. It utilizes an algorithm for enumerating minimum correction sets (MCSs).
Each MCS is a set of soft clauses whose removal renders the remaining hard and soft
clauses satisfiable, and thus yields a potentially reasonably low cost solution. After
enumerating MCS’s under some fixed resource bounds the best solution found is used
as a starting point for running LSU.

Open-WBO-Inc-OBV. This solver participated in the unweighted tracks only. It uses
a number of different orderings of the soft clauses and attempts to find a solution
satisfying the first k soft clauses in that ordering, for increasing values of k stopping
when the first k softs cannot be simultaneously satisfied. Various techniques are used
for picking the ordering [29]. After doing this under some fixed resource bounds the
best solution found is used as a starting point for running LSU.

Open-WBO-Inc-Cluster. This solver participated in the weighted tracks only. It first
clusters the soft clauses into different groups and gave all of the clauses in each group
the same weight. It then solves this weight simplified version of the problem with
LSU with special techniques for taking advantage of the regularity of the simplified
weights [19]. If LSU successfully solved the weight simplified version, the solution
found is used as a starting point for running LSU again on the original unsimplified
problem.

Open-WBO-Inc-BMO. This solver participated in the weighted tracks only. It clusters
the soft clauses by weight so that each set of soft clauses with the same weight are
in a separate cluster, and then sorts the clusters by decreasing weight. LSU is then
employed to find optimal solutions to the first k clusters for increasing k, under the
restriction that the number of falsified soft clauses in clusters 1 to k − 1 cannot be
increased [19]. After this, if there is time left, LSU is called on the original unsimplified
problem with the best solution found as its starting point.
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Table 3: Unweighted benchmark families submitted to the 2018 evaluation. The # col-
umn show the number of instances in that family. The Clauses, Variables, and %Softs
columns show the minimum and maximum of the number of clauses, number of variables
and percentage of softs among the instances in that family.

Family # Clauses Variables %Softs

drmx-atmostk 36 421–4,523 181–3,013 1.55–9.50
drmx-cryptogen 40 9,044–102,000 1,600–22,880 16.94–22.45
optic 65 349–171,411 153–20,294 0.31–64.64
uaq 97 1,664–8,831 516–6,050 2.47–7.81
vpa 67 604–559,809 55–5,356 0.96–9.11
xai-mindset2 45 864–22,324,591 264–76,107 0.031–7.353

Open-WBO-Glucose and Open-WBO-Riss. This solver is an incomplete version of
Open-WBO-Glucose and Open-WBO-Riss solvers used in the complete track (de-
scribed above) and is written by the same authors. It uses the LSU algorithm and
also employed solution phase saving.

SatLike. This solver is authored by Zhendong Lei and Shaowei Cai from Institute of Soft-
ware Chinese Academy of Sciences, Beijing, China. It employes a local search tech-
nique designed to handle both hard and soft clauses [22].

SatLike-c. This solver is by the same authors as SatLike, and it runs SatLike under some
fixed resource bound after which it runs LSU. It relies on the Open-WBO framework
for the LSU algorithm.

4. Benchmarks

In this section, we will briefly describe the new MaxSAT benchmarks submitted to the 2018
evaluation, and then discuss the set of benchmarks that the submitted solvers were run
against in each of the evaluation categories.

4.1 Submitted Benchmarks

Nine new benchmark families were submitted to the 2018 evaluation, as summarized in the
Tables 3 and 4. All of these new families are described in more detail in [6], but we provide
a brief description for each in the following.

drmx-atmostk. These are a set of benchmark instances each of which encodes a formula
saying that we would like to make all variables true, along with a hard cardinality constraint
saying that at most k can be true. More precisely, each instance is a formula F (m, k) =
Hm,k ∧Sm, where Hm,k is a CNF encoding of the cardinality constraint

∑m
i=1 xi ≤ k (using

different encodings) and Sm is the set of unit soft clauses {(x1), . . . , (xn)}. These formulas
all have an obvious optimal solution—simply pick any k variables and make them all true
and the rest false. This will satisfy the maximum number k of soft clauses. In the weighted
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Table 4: Weighted benchmark families submitted to the 2018 evaluation. The columns are
as in Table 3 and in addition the #Weights column shows the minimum and maximum
number of different weights among the instances in each family. If all instances have the
same value, only one number is given.

Family # Clauses Variables #Weights %Softs

cluster-expansion 21 60,375 125 71 100
drmx-atmostk 36 421–4,523 181–3,013 2 1.55–9.50
drmx-cryptogen 40 9,044–102,000 1,600–22,880 2 100
max-realizability 87 1,436–743,834 203–171,619 1–3 0.001–0.341
tcp 60 131,943–243,546 128,513–238,313 3 0.10–0.22

version of these instances, the clauses of Hm,k are given a weight of m+ 1 while the clauses
of Sm have weight 1. Hence, it is better to falsify all the clauses of Sm rather than one of
the clauses of Hm,k. Many solvers can exploit this fact to quickly conclude that the clauses
of H can be hardened.

On the other hand, it can also be noted that Davies analyzed such instances in her
thesis [10] and showed that implicit hitting set solvers like MaxHS and LMHS must exhibit
exponential runtimes on these instances.

drmx-cryptogen. These are a set of relatively easy SAT formulas encoding cryptanalysis
of some stream cipher generators that have been converted to MaxSAT formulas using the
so-called dual rail encoding. The dual rail encoding has been shown to translate some hard
SAT formulas into easy MaxSAT instances (notably the pigeonhole principle formulas) [8].
In this case, however, the dual rail encoding to MaxSAT was expected to make the instances
harder. Nevertheless, in the evaluation some solvers were able to solve all instances included
in the test suite. In the weighted instances all of the soft clauses were given weight 1 while
the hard clauses were given a weight large enough to make it better to falsify all soft clauses
rather than a single hard clause.

optic. These are a set of instances for automatically computing good CNF encodings
of various building block constraints. That is, in modeling real problems certain types
of constraints might frequently appear, e.g., cardinality constraints. The approach is to
construct a MaxSAT instance whose solution specifies a CNF encoding that optimally trades
of size for the unit-propagating power the encoding achieves [14]. The benchmark set
consists of a number of these MaxSAT instances.

uqa. These are a set of instances encoding the solving of various user authorization queries.
The user wants to perform an activity (typically on database system) that requires some set
of permissions be granted. Control of these permissions is organized by granting the user a
number of roles each of which carries some set of permissions, subject to some constraints
on the set of roles that can be simultaneously assigned. The MaxSAT instances encode
the problem of computing an optimal set of roles that grants the user the permissions they
need [4].
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vpa. These are a set of instances encoding the minimization of visibly pushdown au-
tomata. In the MaxSAT encoding each satisfied soft clause indicates that a pair of states in
the automata can be merged, and the hard clauses ensure that the minimized automaton
accepts the same language.

xai-mindset2. These are a set of instances encoding the problem of minimizing the size
of the decision rules in a set of k decision rules used to classify data items. In particular, for
explainable decisions as to why each data item was classified the way it was, the rules used
to make that classification should be as short as possible. So once the initial set of rules
have been determined the MaxSAT instances encode the optimization problem of removing
as many conditions from those rules as possible while still maintaining the accuracy of the
decisions [18].

cluster-expansion. These are a set of benchmark instances encoding generalized Ising
models, see the description in [6] for more details. Finding a most probable assignment in
a (non-generalized) binary Ising model is known to correspond to computing a maximum
cut in a corresponding graph, and previous evaluations have used Max-Cut instances that
correspond to solving binary Ising models.

max-realizability. These are a set of instances involving the synthesis of systems sat-
isfying a collection of linear temporal logic (LTL) formulas (specifications) [12]. If the
synthesized system satisfies one of the LTL formulas f , then f is said to be realized. These
instances encode the synthesis problem as a MaxSAT problem whose solution synthesizes
a system that realizes a maximum number the LTL formulas. There were two different
domains encoded among the instances. A small number of instances encoded a robotic nav-
igation problem, while the majority of the instances encoded power distribution network
problems.

tcp. These are a set of instances for finding optimal assignments of students to desks. In
these problems the desks have different sizes and the students have preferences as to who
they would like to sit with [24].

4.2 Benchmarks Used in the Evaluation

The benchmark sets used in the evaluation were constructed by randomly picking instances
from the set of all new benchmarks submitted to the evaluation and the set of all instances
from all previous evaluations. As in 2017, we set a predefined upper limit on the number
of benchmarks selected from each benchmark family. This was done to ensure that no
particular problem domains would be over-represented in the resulting benchmark sets,
which has been an issue in the pre-2017 benchmark sets. In particular, to put more emphasis
on new submitted benchmarks, we enforced an upper limit of 40 benchmarks from each new
submitted benchmark domain, and an upper limit of 25 benchmarks for the old benchmark
domains.

For the incomplete track, we selected a subset of the benchmarks used in the main
tracks that were not optimally solved by any complete solver in less than 300 seconds. This
ensures that the incomplete benchmarks are challenging for complete approaches.

More detailed information about the composition of the benchmark test suite used in
each track is given in Tables 5 to 8.
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Table 5: Unweighted benchmark used in the complete unweighted track of the 2018 evalu-
ation. The columns show the same information as Table 3. In addition, the column Year
shows the first year this benchmark family appeared in the annual evaluations.

Family # Year Clauses Variables %Softs

aes 7 2011 387–201,533 147–136,253 7.18–67.61

aes-key-recovery 20 2015 372,403–372,649 21,368–21,368 0.044–0.11

atcoss/mesat 15 2014 969,655–1,605,464 321,140–467,197 0.019–0.031

bcp-fir 20 2008 9,206–583,176 3,041–203,287 1.03–17.75

bcp-syn 25 2008 111–14,421 67–25,167 22.53–98.17

bcp-msp 25 2008 1,340–476,372 360–14,500 3.04–32.07

circuitDebuggingProblems 3 2009 621,323–2,223,029 399,591–1,304,121 100.0

circuitTraceCompaction 4 2009 38,700–2,452,560 15,760–913,940 0.0008–0.0518

close solutions 20 2013 137,496–4,810,148 2,888–314,455 1.30–27.03

des 20 2013 240,293–619,960 53,176–136,160 1.20–1.22

drmx-cryptogen 20 2018 9,044–102,000 1,600–22,880 16.94–22.45

drmx-atmostk 20 2018 421–4,523 181–3,013 1.55–9.50

extension-enforcement 25 2017 105,506–1,120,160 16,000–76,190 3.43–21.27

fault-diagnosis 25 2016 659,998–1,360,750 130,048–167,004 3.66–7.54

frb 15 2009 5,821–42,485 220–760 1.79–3.78

gen-hyper-tw 25 2017 11,754–2,413,400 3,852–1,225,430 0.006–0.121

hs-timetabling 2 2014 528,321–557,113 69,783–160,572 0.18–0.64

jobshop 3 2009 359,683–1,151,201 35,772–110,641 0.01–0.04

kbtree 10 2009 1,297–1,309 280–280 71.94–72.19

maxclique/structured 10 2011 630–378,247 70–1,035 0.26–34.33

maxcut/dimacs mod 8 2011 348–1,836 40–64 100.0

maxcut/spinGlass 2 2007 162–1,296 27–216 100.0

min-fill 15 2017 2,570–3,451,298 594–278,608 0.33–1.36

optic 40 2018 843–171,411 153–20,294 0.95–64.65

protein ins 12 2008 12,967–3,848,496 171–3,016 0.002–0.100

reversi 20 2014 4,072–334,992 836–55,432 0.02–0.79

scheduling 5 2013 47,065–1,171,279 12,617–289,958 0.16–0.57

SeanSafarpour 24 2008 140,056–8,812,799 45,552–2,785,108 100.0

set-covering/crafted/scpclr 4 2014 721–4,810 210–715 100.0

set-covering/crafted/scpcyc 6 2014 432–39,424 192–11,264 100.0

tpr/multiple path 10 2013 149,783–933,162 49,688–312,598 0.35–0.37

treewidth-computation 20 2015 30,519–3,803,650 6,025–341,053 0.003–0.0721

uaq 40 2018 1,664–8,831 516–6,050 2.47–7.81

vpa 40 2018 604–559,809 55–5,356 0.96–9.11

xai-mindset2 40 2018 864–22,324,591 264–76,107 0.031–7.35

All 600 111–22,324,591 27–2,785,108 0.0008–100.0
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Table 6: Weighted benchmark used in the complete weighted track of the 2018 evaluation.
The columns show the same information as Table 4. In addition, the column Year shows
the first year this benchmark family appeared in the annual evaluations.

Family # Year Clauses Variables #Weights %Softs
abstraction-refinement 10 2017 5,142,998–22,435,229 2,254,256–9,046,260 2 0.03–0.08
af-synthesis 25 2017 75,792–432,346 11,550–25,385 9 0.06–0.09
auctions/auc paths 15 2012 1,766–3,016 130–172 43–64 5.67–8.23
BTBNSL 25 2015 2,150–634,165 620–110,096 28–3,098 0.073–2.46
causal-discovery 25 2015 46,116–3,138,850 12,733–868,916 151–9,409 0.37–0.52
cluster-expansion 20 2018 60,375 125 71 100.0
correlation-clustering 25 2015 67,838–2,664,958 16,135–571,739 428–15,295 1.92–2.38
CSG 10 2013 29,699–1,654,241 791–11,325 22–144 0.005–0.07
css-refactoring 11 2017 7,459–399,473 1,901–23,379 71–195 2.91–10.86
dalculus 25 2017 1,971–77,089 873–21,118 7 0.71–3.25
drmx-atmostk/weighted 20 2018 519–4,523 194–3,013 2 100.0
drmx-cryptogen/weighted 20 2018 9,044–102,000 1,600–22,880 2–2 100.0
frb 20 2008 661–42,499 60–760 2 100.0
haplotyping-pedigrees 25 2012 276,866–3,700,524 62,161–215,039 2 0.51–1.63
hs-timetabling 13 2014 25,262–2,448,118 7,520–669,064 2–30 0.14–2.15
lisbon-wedding 20 2017 104,116–232,451 29,663–33,626 3–4 0.15–0.32
max-realizability 43 2018 2,267–743,834 246–171,619 3 0.001–0.34
maxcut/dimacs mod 17 2011 348–3,648 28–64 10–10 100.0
maxcut/spinGlass 3 2006 162–2,058 27–343 81–1,024 100.0
metro 15 2017 126,470–863,825 44,375–158,766 9–19 0.02–0.10
min-width 20 2017 5,083–374,950 3,880–192,509 174–4,700 1.96–9.16
miplib 10 2007 238–99,188 123–24,776 9–227 0.07–16.81
railway-transport 5 2015 719,175–17,367,985 71,809–392,516 2–1,748 0.07–0.98
relational-inference 8 2017 119,999–23,364,255 40,810–19,264,629 3–36 7.31–99.57
rna-alignment 25 2017 9,239–1,414,209 857–6,685 2–7 0.14–2.44
shiftdesign 15 2017 679,154–16,584,658 335,687–6,972,354 3 0.038–0.32
spot5/log 25 2012 479–37,639 96–3,004 2–5 2.48–15.31
staff-scheduling 10 2017 17,506–2,308,011 4,750–558,350 4 0.37–2.59
tcp 40 2018 132,073–243,215 128,530–238,260 3 0.10–0.22
timetabling 20 2010 1,602,794–51,338,353 423,364–7,515,310 20–173 0.12–0.26
upgradeability/wpms 25 2011 112,632 18,169 3–3 16.22
warehouses 10 2009 1,955–12,648 836–5,200 106–2,482 20.15–20.46
All 600 162–51,338,353 27–19,264,629 2–15,295 0.001–100.0
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Table 7: Unweighted benchmark used in the incomplete unweighted track of the 2018
evaluation. The columns show the same information as Table 5.

Family # Year Clauses Variables %Softs

aes 5 2011 73,120–201,533 7,840–136,253 10.72–67.61

aes-key-recovery 1 2015 372,403–372,403 21,368–21,368 0.04

atcoss/mesat 7 2014 969,655–1,605,464 321,140–465,243 0.019–0.031

bcp-msp 13 2008 4,350–476,372 1,200–14,500 3.04–32.07

bcp-syn 2 2008 6,552–13,034 6,136–25,167 78.10–88.75

close solutions 1 2013 1,298,432 289828 22.32

des 2 2013 560,857–587,549 12,4024–12,9928 1.19817–1.19820

extension-enforcement 13 2017 105,506–188,290 42,742–76,190 21.19–21.27

fault-diagnosis 3 2016 1,005,071–1,111,264 146,219–157,161 4.48–4.95

gen-hyper-tw 23 2017 75,405–2,413,400 46,941–1,225,430 0.006–0.121

hs-timetabling 1 2014 557,113 69,783 0.64

maxclique/structured 3 2011 112,234–378,247 800–1,000 0.264–0.713

maxcut/dimacs mod 6 2011 1,132–1,836 40–64 100.0

maxcut/spinGlass 1 2007 1,296 216 100.0

min-fill 8 2017 53,140–1,209,120 9,036–125,992 0.39–0.64

optic 11 2018 7,643–171,411 1,044–20,294 2.22–64.65

reversi 6 2014 62,928–136,176 10,452–22,562 0.05–0.11

scheduling 3 2013 47,065–1,171,279 12,617–289,958 0.16–0.57

SeanSafarpour 4 2008 1,759,150–8,812,799 463,080–2,785,108 100.0

set-covering/crafted/scpclr 3 2014 1,353–4,810 330–715 100.0

set-covering/crafted/scpcyc 6 2014 432–39,424 192–11,264 100.0

treewidth-computation 5 2015 38,856–1,023,459 7,274–118,369 0.007–0.062

uaq 9 2018 4,276–5,759 2,046–2,046 2.60–3.51

xai-mindset2 17 2018 31,470–22,324,591 6,412–76,107 0.03–2.74

All 153 432–22,324,591 40–2,785,108 0.006–100.0
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Table 8: Weighted benchmark used in the incomplete weighted track of the 2018 evaluation.
The columns show the same information as Table 6.

Family # Year Clauses Variables #Weights %Softs
abstraction-refinement 2 2017 12,681,081–13,561,252 6,422,659–6,536,173 2–2 0.026–0.047
af-synthesis 19 2017 75,792–432,346 11,550–25,385 9 0.05–0.09
BTBNSL 16 2015 31,112–634,165 7,067–110,096 268–3,098 0.25–1.77
causal-discovery 14 2015 145,910–3,138,850 40,290–868,916 494–9,409 0.37–0.46
cluster-expansion 20 2018 60,375 125 71 100.0
correlation-clustering 12 2015 156,237–2,664,958 35,940–571,739 914–15,295 1.92–2.38
hs-timetabling 13 2014 25,262–2,448,118 7,520–669,064 2–30 0.14–2.14
lisbon-wedding 12 2017 110,267–232,451 29,748–33,626 3 0.16–0.33
max-realizability 5 2018 301,030–743,834 25,185–171,619 3 0.001–0.010
maxcut/dimacs mod 10 2011 1,092–3,648 40–64 10 100.0.0
maxcut/spinGlass 1 2006 2058 343 1024 100.0
min-width 16 2017 18,005–374,950 11,558–192,509 285–4,700 1.96–9.16
miplib 5 2007 19,630–99,188 5,519–24,776 26–227 0.07–3.23
railway-transport 4 2015 2,285,655–17,367,985 85,796–392,516 2–1,748 0.07–0.98
relational-inference 2 2017 22,951,677–23,364,255 17,997,976–19,264,629 36 53.0–64.7

spot5/log 3 2011 15,294–29,921 701–1,335 5 2.86–3.40
staff-scheduling 10 2017 17,506–2,308,011 4,750–558,350 4 0.37–2.59
tcp 7 2018 132,268–242,852 128,562–238,175 3 0.11–0.18
timetabling 1 2010 10,632,939 1,908,942 103 0.18
All 172 1,092–23,364,255 40–19,264,629 2–15,295 0.001–100.0
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5. Evaluation Results

Finally, we turn to the evaluation results. We provide an overview of the results by first
focusing on the main tracks and then on the special tracks for incomplete solvers.

5.1 Main Tracks

5.1.1 Unweighted

Table 9 shows the number of solved instances and average solving time in seconds for in-
complete solvers on unweighted instances. RC2-B was the best-performing solver in the
unweighted track, closely followed by RC2-A and maxino. Recall that the difference be-
tween RC2-B and RC2-A lies in core minimization, RC2-B performs a limited form of core
minimization while RC2-A does not.

Figure 1 shows a cactus plot with the per-solver, per-instance running times in ascending
order. We can observe three distinct clusters with similar performance. The first cluster is
formed by RC2-B, RC2-A and maxino. These solvers use similar unsat-based algorithms
and solving techniques. The second cluster is formed by MaxHS, Open-WBO-Gluc and
Open-WBO-Riss and the third cluster by LMHS and QMaxSAT. Note that LMHS and
MaxHS implement similar algorithms but MaxHS enhancements allows it to clearly out-
perform LMHS. QMaxSAT is the only sat-unsat solver and performs poorly on unweighted
benchmarks.

The virtual best solver (VBS) is equivalent to run all solvers in parallel and stop when
the first solver finds an optimal solution. There is a clear gap between the VBS and RC2-B
which shows that solvers use different solving techniques that can solve a wide range of
benchmarks.

Table 10 shows the number of instances solved by each solver including the VBS for each
family. To improve readability, we excluded RC2-A and Open-WBO-Riss from the table
since they are similar (in both implementation and performance) to RC2-B and Open-
WBO-Gluc. Open-WBO-Gluc is denoted by Open-WBO in Table 10. While there are

Table 9: Ranking of complete solvers on unweighted instances including the VBS.

Solver #Solved Time, average (s)

VBS 472 92.73

RC2-B 421 126.32
RC2-A 416 138.98
maxino 405 137.5
MaxHS 386 178.06
Open-WBO-Gluc 382 171.54
Open-WBO-Riss 371 154.23
LMHS 323 261.75
QMaxSAT 292 257.03
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Figure 1: Cactus plot for complete solvers on unweighted instances including the VBS.

families where the performance of most MaxSAT solvers is similar, there are other families
on which the performance differs greatly. We highlight some of these families that exhibit
some interesting results.

Analysis of Sat-Unsat approaches. The only sat-unsat solver submitted to the un-
weighted track was QMaxSAT. We can observe that it performs poorly on some families
such as aes-key-recovery and extension-enforcement. The poor performance can be
partially explained by a large number of soft clauses for some of these benchmarks and
by the optimal value being small. For example, the aes-key-recovery family contains on
average 111,940 soft clauses per benchmark with optimal values of 1 or 2 for most bench-
marks. The extension-enforcement also has similar properties with 32,924 soft clauses
on average per benchmark and optimal solutions unsatisfying a small number of soft clauses
(on average 50 or less).

Complementarity between Hitting Set and Unsat-based approaches. These ap-
proaches often complement each other for several families. For example, hitting set ap-
proaches perform well for the families optic and kbtree, whereas unsat-based approaches
perform poorly on these families. In contrast, unsat-based approaches perform well for
the families fault-diagnosis and protein ins whereas hitting set approaches exhibit poor
performance on these families.

Mixed behavior. Some families exhibit mixed behavior. An interesting example is the
drmx-atmostk family for which some solvers are able to find an optimal solution for all
instances in that family while others were unable to find a single optimal solution. This
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Table 10: Results per family for the complete unweighted track of the 2018 evaluation.

Family # VBS RC2-B maxino MaxHS Open-WBO LMHS QMaxSAT

aes 7 2 1 1 2 1 2 1

aes-key-recovery 20 19 19 18 17 19 13 5

atcoss/mesat 15 9 8 9 9 8 9 9

bcp-fir 20 20 19 20 17 20 17 17

bcp-syn 25 13 12 12 12 13 12 5

bcp-msp 25 23 17 18 23 16 23 4

circuitDebuggingProblems 3 3 3 3 3 3 2 2

circuitTraceCompaction 4 4 4 4 2 4 2 3

close solutions 20 20 19 19 19 19 14 15

des 20 20 18 18 19 20 10 20

drmx-atmostk 20 20 20 19 7 20 7 20

drmx-cryptogen 20 20 20 20 20 0 0 0

extension-enforcement 25 15 12 12 11 7 11 0

fault-diagnosis 25 24 24 22 2 21 2 16

frb 15 15 15 5 15 15 7 15

gen-hyper-tw 25 5 4 5 3 3 5 2

hs-timetabling 2 1 1 1 1 1 1 1

jobshop 3 3 3 3 3 3 3 3

kbtree 10 10 0 0 10 2 4 0

maxclique/structured 10 7 6 5 6 7 7 5

maxcut/dimacs mod 8 3 1 2 3 1 2 1

maxcut/spinGlass 2 1 1 1 1 1 1 1

min-fill 15 7 5 4 7 2 7 4

optic 40 30 19 18 30 11 28 2

protein ins 12 12 12 12 3 12 3 12

reversi 20 14 14 14 14 14 14 14

scheduling 5 2 1 2 1 1 0 2

SeanSafarpour 24 22 21 20 15 21 10 10

set-covering/crafted/scpclr 2 2 0 0 2 0 2 0

set-covering/crafted/scpcyc 6 0 0 0 0 0 0 0

tpr/multiple path 10 10 10 10 10 10 10 10

treewidth-computation 20 16 16 16 14 14 16 16

uaq 40 33 33 31 26 31 21 26

vpa 40 40 40 40 40 40 40 37

xai-mindset2 40 27 23 21 19 22 18 14

All 600 472 421 405 386 382 323 292
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Table 11: Ranking of complete solvers on weighted instances including the VBS.

Solver #Solved Time, average (s)

VBS 499 141.48

RC2-B 421 256.02
RC2-A 416 267.55
MaxHS 390 274.87
Pacose 390 348.98
QMaxSAT 381 320.78
maxino 373 250.98
Open-WBO-Gluc 371 292.56
Open-WBO-Riss 338 315.47
LMHS 300 345.49

family would require further analysis to understand this behavior since we have solvers that
are based on hitting sets (MaxHS) and unsatisfiable cores (RC2-B and maxino) that can
solve these benchmarks but at the same time we also have other solvers of the same type
(LMHS for hitting sets and Open-WBO-Gluc for unsat-based) that are not able to solve
them.

5.1.2 Weighted

Table 11 shows the number of solved instances and average solving time in seconds for
complete solvers on weighted instances. RC2-B is the best-performing solver in the weighted
track with similar performance to RC2-A.

Figure 2 shows a cactus plots with all weighted solvers. For weighted benchmarks, we
can observe that RC2-B and RC2-A have similar performance but there is a gap between
these solvers and the remaining. MaxHS, Pacose, QMaxSAT, maxino and Open-WBO-Gluc
have similar performance with Open-WBO-Riss and LMHS trailing behind.

In contrast to the unweighted track, we can see that linear sat-unsat solvers perform
much better for weighted than unweighted problems. This can be surprising since to solve
weighted problems these solvers encode to CNF a pseudo-Boolean constraint that may have
thousands of literals and very large coefficients. To cope with this challenge, these solvers
often use encodings that are not arc consistent, such as the Adder encoding [35] that adds
a linear number of variables and clauses to the formula and prevent the solver from quickly
reaching the memory out. Even though Open-WBO-Gluc and Open-WBO-Riss only differ
in the underlying SAT solver, the difference in their performance is significant. This shows
that the underlying SAT solver can have a large impact on the performance of MaxSAT
solvers. Similarly to the unweighed track, LMHS and MaxHS have a large gap between
their performances even though they implement similar algorithms. The gap between the
VBS and RC2-B is even wider for weighted benchmarks than for unweighted benchmarks
which shows the diversity of MaxSAT solving techniques used in the different solvers.
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Figure 2: Cactus plot for complete solvers on weighted instances including VBS.

Table 12 shows the number of instances solved by each solver including the VBS for each
family of weighted benchmarks. To improve readability of the table, we omit RC2-A and
Open-WBO-Riss since they are similar to their counterparts RC2-B and Open-WBO-Gluc.
Open-WBO-Gluc is denoted by Open-WBO in Table 12. Some solver types are particularly
effective for some families whereas ineffective for others. We highlight those cases in the
following discussion.

Analysis of Sat-Unsat approaches. Solver based on sat-unsat approaches (Pacose and
QMaxSAT) are particularly effective for the spot5/log benchmark family. This family has
benchmark characteristics that are beneficial for a sat-unsat approach, namely the optimal
solution is close to the upper bound (on average larger than 70% of the sum of the weights
of soft clauses are unsatisfied) and the number of soft clauses is small (on average 450 soft
clauses per benchmark). In contrast, the performance of the sat-unsat approaches is very
poor for benchmark families with a very large number of soft clauses which is the case of
relational-inference (on average 3,721,201 soft clauses per benchmark).

Complementarity between Hitting Set and Unsat-based approaches. These ap-
proaches often complement each other for several families. For example, hitting set ap-
proaches perform well for the BTBNSL and correlation-clustering families, whereas
unsat-based approaches perform poorly on these benchmarks. In contrast, unsat-based ap-
proaches perform well for the af-synthesis, drmx-atmostk/weighted, lisbon-wedding
and shiftdesign families, whereas hitting set approaches perform poorly.
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Table 12: Results per family for the complete weighted track of the 2018 evaluation.

Family # VBS RC2-B MaxHS Pacose QMaxSAT maxino Open-WBO LMHS
abstraction-refinement 10 10 10 10 3 4 10 9 6
af-synthesis 25 25 15 5 25 21 12 12 1
auctions/auc paths 15 15 15 15 15 12 15 15 15
BTBNSL 25 18 5 18 9 9 6 5 8
causal-discovery 25 21 14 15 19 17 18 6 15
cluster-expansion 20 0 0 0 0 0 0 0 0
correlation-clustering 25 21 5 19 2 3 5 3 21
CSG 10 10 10 10 10 10 10 9 10
css-refactoring 11 11 11 5 10 9 10 10 2
dalculus 25 25 25 25 22 20 25 25 25
drmx-atmostk/weighted 20 20 20 6 20 20 19 14 6
drmx-cryptogen/weighted 20 20 20 20 0 0 0 20 0
frb 20 20 20 20 20 20 10 6 14
haplotyping-pedigrees 25 25 25 22 22 25 25 23 15
hs-timetabling 13 2 2 1 1 1 1 1 2
lisbon-wedding 20 9 8 0 1 0 7 6 0
max-realizability 43 39 38 39 39 39 37 38 37
maxcut/dimacs mod 17 9 2 9 2 3 1 2 7
maxcut/spinGlass 3 3 1 3 1 1 1 1 2
metro 15 15 15 15 15 15 15 15 12
min-width 20 5 3 3 5 5 4 4 3
miplib 10 5 5 5 5 5 5 5 3
railway-transport 5 2 2 1 2 2 1 1 1
relational-inference 8 8 5 7 0 0 7 6 6
rna-alignment 25 25 25 18 25 25 18 18 8
shiftdesign 15 15 15 8 13 15 15 15 6
spot5/log 25 25 16 11 22 25 15 15 7
staff-scheduling 10 2 0 0 1 2 1 1 0
tcp 40 39 34 26 38 37 34 39 15
timetabling 20 20 20 19 20 20 20 20 18
upgradeability/wpms 25 25 25 25 18 11 25 25 25
warehouses 10 10 10 10 5 5 1 2 10
All 600 499 421 390 390 381 373 371 300

Mixed behavior. There are also a few families where the behavior of solvers cannot
be categorized by using its type. For example, the drmx-cryptogen/weighted family
has solvers implementing hitting set (MaxHS) and unsat-based (RC2-B and Open-WBO)
solving all benchmarks in this family while other hitting set based solvers (LMHS) and
unsat-based solvers (maxino) cannot solve any of these benchmarks.
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Solver # Contributions

maxino 144
Open-WBO-Gluc 64
QMaxSAT 63
MaxHS 62
RC2-A 49
RC2-B 41
LMHS 36
Open-WBO-Riss 13

Total 472

(a) Contributions per solver
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Figure 3: Contribution of solvers to the VBS on unweighted instances.

Solver # Contributions

maxino 91
MaxHS 83
Open-WBO-Gluc 75
Pacose 67
QMaxSAT 49
LMHS 42
RC2-A 41
Open-WBO-Riss 31
RC2-B 20

Total 472
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Figure 4: Contributions of solvers to the VBS on weighted instances.

Hard benchmarks. The cluster-expansion family had no benchmarks solved by any
of the MaxSAT solvers submitted to the 2018 Evaluation.

5.2 Analysis of Virtual Best Solver

Since the gap between the VBS and the best solver for both unweighted and weighted is
very large, we perform a deeper analysis of the constitution of the VBS.

Figures 3 and 4 show the contribution of each solver and solver type to the VBS. We
group the solvers into the following types:

• Hitting set: MaxHS and LMHS;

• Unsat-based: maxino, Open-WBO-Gluc, Open-WBO-Riss, RC2-A and RC2-B;

• Sat-Unsat: Pacose and QMaxSAT.
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Table 13: Ranking of incomplete solver on unweighted instances.

(a) 60-second per-instance time limit

Solver Score (avg)

SATLike-c 0.735
LinSBPS 0.705
SATLike 0.675
Open-WBO-Inc-OBV 0.654
Open-WBO-Inc-MCS 0.631
Open-WBO-Gluc 0.612
Open-WBO-Riss 0.564
maxroster 0.541

(b) 300-second per-instance time limit

Solver Score (avg)

SATLike-c 0.854
maxroster 0.829
LinSBPS 0.782
SATLike 0.718
Open-WBO-Inc-OBV 0.713
Open-WBO-Inc-MCS 0.687
Open-WBO-Gluc 0.670
Open-WBO-Riss 0.633

Figures 3b and 4b show that unsat-based solvers have a larger contribution to the VBS,
followed by hitting set solvers and sat-unsat solvers. However, these results should be taken
with a grain of salt since a majority of the solvers are unsat-based. Figures 3a and 4a
break the contribution to the VBS by each solver. The maxino solver makes the largest
contribution on both unweighted and weighted benchmarks. Even though Open-WBO-Gluc
did not perform as well as other solvers, its contribution to the VBS is significant on both
unweighted and weighted benchmarks. On the other hand, RC2-B is the best-performing
solver for both unweighted and weighted but its contribution to the VBS is rather small
when compared to other solvers. This suggests that RC2-B is a robust solver but it is not
the fastest solver per benchmark, possibly due to its Python implementation.

5.3 Incomplete Tracks

5.3.1 Unweighted

Table 13 shows the average score of each incomplete solver on the 153 unweighted bench-
marks that were not optimally solved by any complete solver in less than 300 seconds.
These benchmarks are challenging to complete solvers and are a good target for incomplete
approaches that may not provide any guarantees of optimality. SATLike-c dominates both
60 and 300 seconds time limits with a better average score than the remaining solvers. Note
that the best-performing solver of MaxSAT Evaluation 2017 in the unweighted track with
60 seconds was the previous version of Open-WBO-Gluc and for 300 seconds was maxroster.
We can observe that all new submissions of incomplete MaxSAT solvers outperform Open-
WBO-Gluc. When considering a time limit of 300 seconds, SATLike-c still outperforms
maxroster. This shows that there was a significant improvement of incomplete approaches
for unweighted MaxSAT. SATLike-c pushes these boundaries by combining a stochastic
approach (SATLike) with a complete solver (previous version of Open-WBO-Gluc). This
combination outperforms any of the individual solvers and opens new research directions.

Figure 5 shows a cactus plot with the scores in ascending order with 300 seconds time
limit. This plot shows the distribution of the benchmark scores. For example, we can
observe that there are only around 40 benchmark for which SATLike-c has a score lower
than 0.8 and for the remaining 116 benchmarks the score is higher or equal to 0.8.
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Figure 5: Cactus plot for incomplete solvers on unweighted instances (300 seconds).

Table 14: Ranking of incomplete solver on weighted instances.

(a) 60-second per-instance time limit

Solver Score (avg)

Open-WBO-Inc-BMO 0.810
LinSBPS 0.799
maxroster 0.773
Open-WBO-Inc-Cluster 0.743
SATLike-c 0.696
Open-WBO-Gluc 0.669
SATLike 0.661
Open-WBO-Riss 0.638

(b) 300-second per-instance time limit

Solver Score (avg)

LinSBPS 0.900
Open-WBO-Inc-BMO 0.842
maxroster 0.804
Open-WBO-Inc-Cluster 0.762
SATLike-c 0.747
SATLike 0.702
Open-WBO-Gluc 0.68
Open-WBO-Riss 0.663

5.3.2 Weighted

Table 14 shows the average score of each incomplete solver on the 172 weighted benchmarks
that were not optimally solved by any complete solver in less than 300 seconds. Open-
WBO-Inc-BMO is the best-performing solver for 60 seconds with LinSBPS coming as a
close second. For 300 seconds, LinSBPS clearly outperforms the other incomplete MaxSAT
solvers. Note that maxroster was the best-performing solver under both 60-second and 300-
second time limits in the MaxSAT Evaluation 2017 and is outperformed by both LinSBPS
and Open-WBO-Inc-BMO in 2018. This shows the significant improvement of incomplete
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Figure 6: Cactus plot for incomplete solvers on weighted instances (300 seconds).

MaxSAT solvers for weighted benchmarks. Figure 6 shows a cactus plot with ascending
scores for each solver and we can observe that for 300 seconds LinSBPS has a high score
for the majority of the benchmarks since there are only around 20 out of 172 benchmarks
with a score lower than 0.85.

6. Conclusions

With this edition of the evaluation, 2018 marked the 12th year of the series of MaxSAT
Evaluations. In this article, we provided an overview of the main organizational details,
the participating solvers and submitted benchmarks and the results of the evaluation. The
evaluations witnessed concrete changes in 2017 with a new organizing team. This also
resulted in some major changes in submission requirements, perhaps most significantly the
requirement for open-source solver implementations. Overall, the changes implemented in
2017-2018 have not been reported before this, which further motivates the present article.

As for lessons learned in 2017–2018, we identify some avenues for potential further
improvements for forthcoming MaxSAT Evaluations. As with any solver evaluation, the
ranking scheme plays a significant role in terms of representing and providing overviews of
the evaluation results. One downside of the current scoring mechanism for the incomplete
track is that the solvers are only scored at the end of the timeout (60 and 300 sec.) Hence,
solvers that generate an equally good solution within these bounds get equal scores even
if one solver generated its solution much earlier. The Area Scoring Procedure used in the
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MiniZinc Challenges (see https://www.minizinc.org/challenge.html) tries to address
this issue and might offer a more accurate score for the incomplete track.

Incrementality has been identified as an important direction of MaxSAT solver devel-
opment, with various real-world use cases, including data-oriented problem settings where
fully grounding a high-level problem representation can result in extremely large MaxSAT
instances [23], as well as applications of MaxSAT solvers within counterexample-guided
abstraction refinement procedures for optimization problems [9]. While there are some ex-
ceptions to the rule, MaxSAT solvers do not generally offer interfaces for incremental use.
An incremental track in future MaxSAT Evaluations could provide further incentives for
solver developers to extend their solvers towards incrementality.

Finally, over its 12 year existence the evaluations have collected a large number of
benchmarks instances, and this collection is growing. Hence, curating these instances and
making them more easily available is a task that would be well worth undertaking.
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Juan A. Rodŕıguez-Aguilar, editors, Proc. AAMAS, 10643 of Lecture Notes in Com-
puter Science, pages 164–173. Springer, 2017.

[25] Ruben Martins, Saurabh Joshi, Vasco Manquinho, and Inês Lynce. Incremental cardi-
nality constraints for maxsat. In Barry O’Sullivan, editor, Proc. CP, 8656 of Lecture
Notes in Computer Science, pages 531–548. Springer, 2014.

[26] Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT
solver. In Carsten Sinz and Uwe Egly, editors, Proc. SAT, 8561 of Lecture Notes in
Computer Science, pages 438–445. Springer, 2014.

[27] António Morgado, Carmine Dodaro, and Joao Marques-Silva. Core-guided maxsat with
soft cardinality constraints. In Barry O’Sullivan, editor, Proc. CP, 8656 of Lecture
Notes in Computer Science, pages 564–573. Springer, 2014.

[28] António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and João Marques-
Silva. Iterative and core-guided MaxSAT solving: A survey and assessment. Con-
straints, 18(4):478–534, 2013.

[29] Alexander Nadel. Solving MaxSAT with bit-vector optimization. In Olaf Beyersdorff
and Christoph M. Wintersteiger, editors, Proc. SAT, 10929 of Lecture Notes in Com-
puter Science, pages 54–72. Springer, 2018.

31



Bacchus, Järvisalo & Martins

[30] Miguel Neves, Ruben Martins, Mikolás Janota, Inês Lynce, and Vasco M. Manquinho.
Exploiting Resolution-Based Representations for MaxSAT Solving. In Marijn Heule
and Sean Weaver, editors, Proc. SAT, 9340 of Lecture Notes in Computer Science,
pages 272–286. Springer, 2015.

[31] Tobias Paxian, Sven Reimer, and Bernd Becker. Dynamic polynomial watchdog en-
coding for solving weighted MaxSAT. In Olaf Beyersdorff and Christoph M. Winter-
steiger, editors, Proc. SAT, 10929 of Lecture Notes in Computer Science, pages 37–53.
Springer, 2018.

[32] Paul Saikko. Re-implementing and extending a hybrid SAT-IP approach to maximum
satisfiability. Master’s thesis, University of Helsinki, 2015. http://hdl.handle.net/

10138/159186.

[33] Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: A SAT-IP hybrid MaxSAT
solver. In Nadia Creignou and Daniel Le Berre, editors, Proc. SAT, 9710 of Lecture
Notes in Computer Science, pages 539–546. Springer, 2016.

[34] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Starexec: A cross-community in-
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