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Abstract

The SAT Competitions constitute a well-established series of yearly open in-
ternational algorithm implementation competitions, focusing on the Boolean
satisfiability (or propositional satisfiability, SAT) problem. In this article, we
provide a detailed account on the 2020 instantiation of the SAT Competi-
tion, including the new competition tracks and benchmark selection procedures,
overview of solving strategies implemented in top-performing solvers, and a
detailed analysis of the empirical data obtained from running the competition.
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1. Introduction

From what was once mainly the archetypal intractable (in particular NP-
complete) problem, propositional satisfiability (or Boolean satisfiability, SAT)
has flourished into a success story of modern computer science [1]. This is due
to advances in SAT solvers, i.e., implementations of decision procedures for SAT,
which today form a central computational tool for solving real-world problem
instances of various kinds of NP-hard search and optimization problems. With
standardized input formats, readily-available APIs for incremental applications,
and certified proof logging and checking capabilities, applications of SAT solver
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technology have branched from the first breakthrough applications in automated
planning, test pattern generation and hardware verification to thousands of
different application settings.

The success of SAT would not be possible without the persistent efforts of
the SAT community to further improve the performance and robustness of SAT
solvers. The SAT Competition series, with a history dating back to the early
90s, aims to support and provide further incentives for maintaining this progress.
Organized yearly as an international open event, SAT Competitions (and their
variants in the forms of SAT Races and a SAT Challenge) [2, 3, 4, 5, 6, 7, 8]
have a consistent track record in receiving tens of solver submissions yearly,
submitted by the community at large for obtaining a snapshot of the current
state-of-the-art in practical SAT solving. Alongside participating solvers, the
competition invites through open calls submissions of benchmark instances
representing, in particular, new interesting applications scenarios of SAT solvers.
Indeed, in addition to evaluating recently developed solvers, an important aspect
of the SAT competition series is to collect on a yearly basis new benchmark sets,
consisting of instances from various different application settings, which together
with benchmark sets from previous years constitute a standard dataset for use
in research papers and SAT solver development.

This article focuses on the 2020 instantiation of the SAT Competitions. To
this end, we provide a detailed account of SAT Competition 2020 in terms of
organizational details, competition tracks, participating solvers, benchmarks,
and the empirical results from the competition. In terms of competition tracks,
two new tracks, namely the cloud track and an application-specific track, were
introduced in 2020, in addition to the already earlier established main, parallel,
and incremental tracks; we provide motivation and the new organizational details
for both of these new tracks. In terms of solvers, we provide an overview of
solving strategies and other details implemented in the top-performing solvers
from the competition, complementing the individual solver descriptions available
in the 2020 competition proceedings [9]. As for benchmarks, we describe how the
2020 benchmark sets were constructed for each of the competition tracks, with
an overview of the benchmarks contributed to the 2020 competition. In terms of
empirical results we provide further analysis on the competition results, going
beyond the standard rankings provided on the SAT competition web pages.1

Finally, we also provide a discussion on lessons learned and ideas for future
editions of SAT competitions.

This article is organized as follows. We start by providing an overview on
the competition, including details on and motivations for the several competi-
tion tracks, the rules and other technical requirements of the competition, the
ranking schemes used in evaluating the competing solvers, and the computing
environments used for executing the competition (Section 2). We then provide
an overview of the benchmark sets used in evaluating the solvers, including
their origins and the selection process used for constructing the sets (Section 3).

1https://satcompetition.github.io/2020/
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In Section 4 we provide an overview of the competition results followed by a
survey on the solving strategies implemented distinctly in the top-ranking solvers
in Section 5. Going considerably beyond the plain competition rankings, we
provide in Section 6, an in-depth analysis of the competition data from different
perspectives, including correlation analysis of runtime performance of solvers
and marginal contributions of individual solvers to the “virtual best solver” and
portfolios constructed from the competing solvers. The article is concluded with
future prospects in Section 7.

2. Overview of SAT Competition 2020

In this section, we describe the individual 2020 SAT Competition tracks,
explain the requirements for participation and the ranking criteria, as well as
describe the computing infrastructure used for executing the competition.

2.1. Competition Tracks

SAT Competition 2020 consisted of seven tracks: Main track, No-Limits
track, Planning track, “Glucose hack” track, Incremental Library track, Parallel
track, and the Cloud Track for massively parallel SAT solvers.

2.1.1. The Main, No-Limits, Planning, and “Glucose hack” tracks

The focus of the traditional Main track is on sequential SAT solvers and
their evaluation on structured, non-random benchmarks coming from various
application areas.

To participate in the Main track, solvers needed to output certificates for both
the satisfiable and the unsatisfiable instances. Moreover, the source code of the
solver were required to be made publicly available. Solvers not complying with
either of these two criteria were only evaluated in a so-called No-Limits track and
were not eligible for the Main track awards. The No-Limits track thus enabled
participation of closed-source solvers (not being able or willing to expose the
source code for legal or other reasons) as well as portfolio solvers (combining two
or more core SAT solvers developed by different groups of authors; c.f. Sect. 2.2).
Without limit, submissions could be solvers that use a lookup table or similar to
determine solutions. Thus, the No-Limits track was only evaluated with respect
to newly submitted benchmark instances, i.e., on instances which were submitted
to SAT Competition 2020.

However, solvers in No-Limits still competed against all other solvers sub-
mitted to the Main Track. Thus, to deserve a mention, a No-Limits solver
would need to rank among the best-performing solvers among the Main Track
participants. In 2020, the top ranked solvers in the No-Limits track were the
same as in the Main track. This also indicates the stability of results under the
exclusion of old benchmark instances.

Complementing the generality advocated by the standard SAT Competition
tracks, in which solvers are evaluated on a set of benchmarks including instances
from various types of different problem domains, for 2020 the organizers aimed
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to experiment with the potential of a more application-specific track, each year
highlighting a different problem domain where the SAT solving technology helps
to advance the state of the art. In 2020, the Planning track represented the
first trial instantiation of this idea. The focus of this track was specifically on
efficiently solving instances arising from the domain of SAT-based automated
planning [10]. Automated planning was chosen as the target problem domain
of this first instantiation of the domain-specific tracks due to its centrality as
one of the first breakthrough applications of SAT solvers. To this end, solvers
participating in the Planning track were evaluated on 200 benchmark instances
encoding planning problems. The same rules for participation as in the Main
track applied to the Planning track. Solvers submitted to the Main track
automatically participated in the Planning track.

The traditional Hack track (established 2009 as Minisat Hack track) was
organized as a sub-track of the Main track for hacks of Glucose 3 [11]. In the
past, several advances in SAT solving required only small modifications of an
established solver to achieve a considerable contribution. Hack tracks encourage
participation of such small modifications. The limit for being considered a “hack”
was—somewhat arbitrarily2—set to 1000 non-space character edit distance
from the sources of Glucose 3. Unfortunately, in 2020 there were not enough
participants in this sub-track and so we do not report on it in the results section.

We evaluated all 64 solver submissions (including different configurations of
specific solvers) to the Main track. Out of the 64 solvers, eight were explicitly
submitted to the No-Limits track. Four solvers were demoted to the No-Limits
track due to outputting invalid unsatisfiability proof certificates. Six solvers
were disqualified due to outputting truth assignments which did not satisfy the
corresponding benchmark instance. This left us with 46 configurations of 22
solvers, including one Glucose hack.

2.1.2. Incremental Library Track

The Incremental Library track was first introduced in SAT Race 2015 [12] and
also took place in SAT Competitions 2016 and 2017. In the Incremental Library
track the underlying idea is to mimic scenarios where a SAT solver is used as a
back-end solver in a more complex tool (typically solving a harder problem than
SAT) and is called multiple times before the enclosing tool reaches its final state.
“Incremental” here refers to the idea that the individual calls to the SAT solver are
not independent, but may share a common subset of the input clauses or differ
in the presence of additional unit clause assumptions [13, 14, 15]. Examples for
applications of incremental SAT solving are counterexample-guided abstraction
refinement (CEGAR) based approaches, e.g., for Bounded Model Checking [16],
SAT-based planning [17], multi-agent path finding [18], and satisfiability modulo
theories (SMT) solvers [19].

Instead of using or extending the DIMACS input format, in the the Incre-

2The specific threshold for edit distance is not central here; the idea is essentially to only
allow relatively small changes to the Glucose code base, i.e., “quick hacks” to Glucose.
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mental Library track a general incremental interface called IPASIR (Re-entrant
Incremental Solver API) is employed [12]. The idea is that we actually run
the enclosing tool on its own benchmark and communicate with the competing
SAT solver through this interface. SAT solvers that are submitted for this
track must hence implement the interface. Furthermore, it should be noted
that the solutions output by a solver may, in general, influence the forthcoming
invocations of the solver.

Six solver were submitted to the Incremental Library track. Two of the six
solvers were disqualified due to outputting wrong answers.

2.1.3. Parallel Track

The Parallel track evaluates the runtime performance of SAT solvers making
use of multiple processor cores in terms of wall-clock time. The benchmarks are
the same as in the Main track. In contrast to the Main track, proof logging for
unsatisfiable instances is not required in the Parallel track.3

A total of 14 solver configurations, based on 10 solvers, were submitted to
the Parallel track. Three solver configurations were disqualified due to wrong
answers.

2.1.4. Cloud Track

The Cloud track was a new development in the SAT Competitions for 2020.
The track focuses on evaluating distributed solvers running on multiple machines
in a network. Communication between the machines is possible using MPI and
SSH. We received six solver submissions to the Cloud track.

2.2. Mandatory Participation Requirements

The following requirements were imposed for participating in SAT Competi-
tion 2020.

Source Code. The source code of submitted SAT solvers had to be made available
(licensed for research purposes) except for the solvers participating only in the
No-Limits track.

Description. A short system description was required for each solver submission,
including a list of all authors involved in developing the solver, description of any
non-standard algorithmic techniques and data structures implemented in the
solver, as well as references to the relevant literature. These system descriptions
have been collected and made available publicly in the non-refereed competition
proceedings [9].

3Although this would, of course, be desirable, for the same reasons as in the Main track,
currently there are no good solutions known for efficient proof logging of parallel solvers.
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Benchmarks. The authors of solvers participating in the Main track were required
to submit 20 “new” benchmark instances. The exact details of this rule are further
explained in Section 3.1. In short, this rule guaranteed that the competition
could be run on instances mostly unseen to the solver developers prior to the
competition. Moreover, by making these benchmarks publicly available after the
competition, the SAT community benefits by having an ever growing repository
of diverse problems that next developments will target. The descriptions of the
submitted benchmarks are also made available in the competition proceedings [9].

Input and Output Format. No-limits The benchmark instances were presented
to the solvers in the de facto standard DIMACS input format for propositional
formulas in conjunctive normal form (CNF). A simple extension of this format
was to be adhered to when printing the satisfying assignment (see, e.g., [8],
Section 2.4).

Where required, proofs of unsatisfiability were to be output in the DRAT
format [20], either in its textual version—which is also very similar to the
DIMACS input format—or in a more compact binary version (for more details,
see [21], Unsat Certificates). Details on certification are further discussed in
Section 2.4.

Number of Submissions. Due to the shear number of participants in the SAT
Competitions, in order to make it feasible to run the whole competition, specific
limits were set on the number of submitted solvers. In particular, each solver
author was allowed to be an author of at most four different sequential solvers, two
different parallel solvers, and one “Glucose hack” sub-track solver. Two solvers
were considered different as soon as their sources differed or the compilation
options were different, or different command line options were used (with the
exception of an option enabling or disabling the proof output).

Portfolio Solvers. Apart from the No-Limits track, participants were not allowed
to submit a portfolio of solvers, i.e., a combination of two or more core SAT
solvers developed by different groups of authors.4 This rule is mainly meant to
encourage the SAT community to invest more effort into developing new solver
code bases. Moreover, while we acknowledge that research on solver selection
tools that typically orchestrate portfolio solvers is interesting, it is not at present
the focus of the SAT competitions.

Organizers. The organizers of the competition were not allowed to participate.

4In other words, a submission of a combination of solvers was only possible if all the authors
of all the parts were explicitly listed. This means that all the authors had to be notified if
such participation was planned and had to consider it carefully, also taking into account the
limited number of submissions per author as specified by the previous rule.
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2.3. Solver Ranking and Disqualification

Solvers were ranked using a PAR-2 score based on a 5000-second timeout.
A PAR-2 system assigns as many points as the amount of time (in seconds) it
took the solver to solve a particular instance and twice the time limit, i.e. 10 000
points, if the instance was not solved. In particular, this means that the lower
the score a solver obtained, the better the solver performs.

A solver was disqualified if it produced a wrong answer: specifically, if a
solver reported “unsatisfiable” on an instance that was proven to be satisfiable
by some other solver, or reported “satisfiable” but provided a wrong certificate.
Solvers disqualified from the competition were not eligible for awards.

2.4. Certificates

In all tracks, solvers were required to output a solution (a satisfying truth
assignment, i.e., a model on the instance in question) to certify recognizing a
satisfiable instance. On the other hand, certificates for unsatisfiable instances
(proofs) were required only in the Main track (besides the No-Limits track). In
some cases, a solver output the correct result, but the respective certificate was
wrong. Such solvers were demoted to the No-Limits track of the competition.

Each unsatisfiability proof produced by each solver was validated in a two-
step fashion. First, the tool DRAT-trim [20] was used for initial checking and
optimizing the proof, thereby obtaining a so-called LRAT proof file. An inde-
pendent formally-verified checker cake lpr [22] was then used for validating the
LRAT proof as a correct proof of unsatisfiability.

In a few cases DRAT-trim ran into the verification timeout of 45,000 seconds.
In the Main track, only those unsatisfiable benchmark instances for which the
proof produced by a solver could be validated at least by DRAT-trim were
considered solved by the solver. While there were several cases where cake lpr

ran out of resources, there was no case where DRAT-trim would accept a proof
and cake lpr would not.

2.5. Computing Environments

The Main, No-Limits, and Planning tracks were run on the StarExec cluster
[23] with computing nodes equipped with Intel Xeon 2.4 GHz processors and
128 GB of memory. The time limit enforced on each solver for solving an instance
was 5,000 seconds. In the Main track, proof validation was limited to 45,000
seconds per proof.) The solvers were allowed to use the full 128 GB of RAM.5

The Incremental Library Track was run on computers with 2x Intel Xeon
E5430 2.66 GHz (4-Core) processors and 24 GB of RAM. The Parallel track was
run on AWS m4.16xlarge machines with 64 virtual CPUs and 256 GB of memory,
while the Cloud track was run on Amazon Web Services (AWS) m4.4xlarge

5Unfortunately, the memory limit of 24 GB, that was used in the previous years, was by
mistake advertised on the competition web page prior to solver submission. This could have
resulted in some solvers not “daring” to use the full 128 GB in the competition. We do not,
however, have concrete evidence to support this possibility.
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Algorithm 1: Benchmark Instance Selection

Data: I : Set of Instances, A : Set of Authors
Data: Functions α : I → A and σ : I → {sat, unsat, unknown}
Result: S : Set of Selected Instances

1 S ← ∅
2 for a ∈ A do
3 I+a ← random(7, {e ∈ I | α(e) = a ∧ σ(e) = sat})
4 I−a ← random(7, {e ∈ I | α(e) = a ∧ σ(e) = unsat})
5 if |I+a |+ |I−a | < 14 then
6 l← 14− |I+a | − |I−a |
7 I?a ← random(l, {e ∈ I | α(e) = a ∧ σ(e) = unknown})
8 S ← S ∪ I+a ∪ I−a ∪ I?a
9 return S

machines with 16 virtual CPUs and 64 GB of memory. These tracks used
wall-clock timeouts of 5,000 seconds and 1,000 seconds, respectively.

3. Benchmarks

For data-driven selection of benchmark instances, we used GBD Tools6 which
facilitates querying for instances with desired properties, e.g., by instance author,
family, result or solver runtime [24]. We also use GBD Tools for distributing
benchmark instances and their attributes to the general public.7

3.1. Selection of Instances

The “Bring Your Own Benchmarks” (BYOB) rule, first established in SAT
Competition 2017 [25], was again followed in 2020. By this rule, solver authors
are required to submit 20 benchmark instances to accompany a solver submission
in order to participate in the competition. These benchmarks have to be “new”
in the sense that instances included in benchmark sets from previous SAT
competitions are not allowed. Furthermore, at least ten of the required 20
instances are required to be “interesting”, interpreted in loose terms by the
standard Minisat SAT solving needing at least one minute of runtime (on
typical computing hardware) to solve an instance. It should be noted that new
benchmarks could be submitted to the competition without needing to submit a
solver. As a results, as detailed in Table 1, 27 authors contributed a set of 1,260
new benchmark instances from a wide range of different instance families.

We decided to include a total of 300 new benchmarks and a further 100
benchmarks from previous SAT Competitions to the main benchmark set of
the 2020 competition. Key aims of benchmark selection is to ensure that (i)

6See https://pypi.org/project/gbd-tools/
7See https://gbd.iti.kit.edu
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Family Author Submitted Selected

0/1 Integer Programming

Riveros

6 2
Fermat 8 5
Schur Coloring 4 2
Sum Subset 5 2

Anti-Bandwidth Biere 187 14
Baseball Lineup Hickey 40 13
Bit-Vector Preiner 393 14
Cellular Automata Chowdhury 20 12
CNF Miter Manthey 38 7
Coloring Oostema 14 14
Core-based Generator Hartung 20 14
Cover Gacek 18 13

Cryptography
Paxian 50

106
6
34Shaw 20 14

Soos 36 14
Discrete Logarithm Jingchao 20 7
Edge Matching Holten 58 7
Flood-It Puzzle Stiphout 40 0
HGen Guanfeng 20 13
Hypertree Decomposition Schidler 56 14
Influence Maximization Kochemazov 20 14
Lam Discrete Geometry Nejati 20 9
Polynomial Multiplication Maoluo 20 8
Station Repacking Newman 20 12
Stedman Triples Johnson 23 7
Tensors Savicky 20 14
Termination Analysis Yolcu 12 7
Timetable Djamegni 20 14
Tournament Heule 16 14
Vlsat Bouvier 36 14

Σ 1260 300

Table 1: Families and amounts of newly submitted instances

the benchmark set includes enough many relatively hard-to-solve instances in
order to differentiate the overall runtime performances of the competing solvers
(without actually running the competing solvers during benchmark selection);
(ii) the number of benchmarks included in the benchmark set from different
problem domains is balanced across the problem domains, and that (iii) the
benchmark set is also balanced in terms of the number of unsatisfiable and
satisfiable instances included in the set.

To compile the set of 300 new instances, we first applied a hardness criterion
by filtering out all instances solved by Minisat in less than ten minutes.8 From

8Note that the limit of ten minutes is again somewhat arbitrary. This runtime hardness
filter essentially aims to make sure that enough instances are included in the final benchmark
set which allow for distinguishing in terms of relative performance between the best-performing
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SAT UNSAT UNKNOWN Σ

New Instances 114 78 108 300
Old Instances 21 57 22 100

Σ 135 135 130 400

Table 2: Amount of old and new instances by result

the resulting 1,012 instances, in order to obtain a balanced benchmark set, we
randomly selected k instances per author using the value k which ensured that
the resulting set contains at least 300 instances. This rule-based randomization
procedure is detailed as Algorithm 1. Specifically, we randomly selected seven
satisfiable and seven unsatisfiable instances per author (Lines 3 and 4) and
added instances of yet unknown result if this did not yield a total of 14 instances
(Lines 5–7). Of the such obtained 308 instances, we randomly removed eight
satisfiable instances, yielding a total of 114 satisfiable, 78 unsatisfiable and
108 instances of unknown satisfiability status.

We augmented the then obtained set of 300 new benchmarks with 100
instances from previous SAT competitions as follows. In order to further balance
the number of satisfiable and unsatisfiable instances in the new benchmark set,
we randomly selected 21 satisfiable, 57 unsatisfiable and 22 unknown instances.
With additional constraints, we made sure not to select instances from benchmark
families which are already represented in the set of 300 new instances (cf. Table 1).
We also excluded random, agile and planning instances (due to the Planning
track). The final main benchmark set contains 135 satisfiable, 135 unsatisfiable,
and 130 instances of “unknown” status (cf. Table 2).

3.2. Planning Instances

Classical planning is the problem of finding a sequence of actions—a plan—
that transforms the world from some initial state to a goal state. In 1992 Kautz
and Selman [10] proposed to encode planning as satisfiability, constituting one
of the hallmark early adoptions of SAT solving to solve real-world problems. In
their encoding the problem of finding a plan of length i (i.e., the makespan) is
translated into a Boolean formula Fi that is satisfiable if a plan of length i or
less exists. Their encoding is called sequential, whereas parallel encodings allow
the execution of multiple actions in one step [26, 27, 28]. Finding the smallest
makespan i for which Fi is satisfiable is important for SAT-based planning in
general and the generation of this benchmark set in particular. The hardest
formulas that a SAT-based planner has to solve are usually the last unsatisfiable
Fi before the next higher makespan i+ 1 is satisfiable [26].

competing solvers. Unfortunately this limit was much greater that the requirements imposed
for “interesting” benchmark instances by the BYOB rule. It could be more sensible to impose
the same ten minutes limit also for an instance being “interesting”. However, this would
require more efforts at least in terms of computation times from the solver authors in order to
construct a set of interesting new benchmarks required by the BYOB rule.
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Encoding SAT UNSAT

H Tree-REX 15 11
P Pasar 14 14
ME Madagascar ∃-step 5 10
MS Madagascar sequential 66 65

Σ 100 100

Table 3: Number of planning instances generated per encoding.

For the Planning track, the benchmark instances were generated using two
SAT-based planners Madagascar [29] and Pasar [30]. We used Madagascar
both in its default configuration to generate a parallel encoding based on ∃-step
plans and to generate a sequential encoding. Pasar uses the grounding routine
deployed by the well-known planner Fast Downward [31] to translate planning
tasks into a different formalism and then encodes it to SAT using a parallel
encoding. The classical planning benchmarks were selected from the Satisfying
and Optimal tracks of the International Planning Competitions 2014 9 and 2018
10. We only selected planning domains with unit cost and eliminated those that
take more than 100 GB of memory to encode into SAT. We ran both Pasar and
Madagascars ∃-configuration with a timeout of three hours on the remaining
instances to find the minimal makespans. For each planning task where this
process did not timeout, we generated a pair of satisfiable and unsatisfiable
SAT instances. A significant number of instances from this set were not used as
Minisat could solve them in under ten minutes. We augmented the remaining
domains with the last unsatisfiable formulas generated for planning tasks where
the minimal makespan could not be found. To generate the missing benchmarks,
we use a sequential encoding together with bounds11 on the optimal plan length.

In addition to the classical planning problems, we also included SAT instances
generated by Tree-REX [32], a planner for Hierarchical Task-networks (HTN).
In HTN planning, additional domain knowledge besides the problem description
is provided. The HTN benchmarks were provided by the author of Tree-REX.

The instances of the Planning track are large in size compared to the Main
track instances. Using the number of clauses as a metric, out of the 100 largest
instances across both tracks, 86 belong to the Planning track benchmark set.
The large size of Planning track instances can mainly be attributed to large
numbers of binary clauses that SAT encodings of planning problems naturally
produce. On average, more than 98% of the clauses are binary for planning
instances. The average for the Main track instances is below 60%.

Table 3.2 shows the number of benchmarks generated by each encoding.
For a complete list of the encoded planning tasks we refer to the generation

9https://helios.hud.ac.uk/scommv/IPC-14/repository/benchmarksV1.1.zip
10https://bitbucket.org/ipc2018-classical/domains
11Upper and lower bounds on plan length are available for some planning tasks from the

Optimal track that have unit cost actions.
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script.12 The benchmarks of the Planning track adhere to the following naming
convention: 〈SAT/UNSAT〉 〈encoding〉 〈name〉 〈makespan〉.cnf

3.3. Incremental Library Track Benchmarks

Benchmarks for the Incremental Library track consist of benchmark applica-
tions which implement and use the incremental SAT solver in their back-end
as well as benchmark instances which serve as input to these applications. For
evaluating solvers participating in the the Incremental Library track, we used six
available IPASIR applications. For each of the six applications, we individually
selected 50 application instances as follows.

Backbone Computation. Backbone variables [33, 34] are variables which take the
same value in all models of a given SAT instance. The application genipabones
incrementally determines backbone variables in a given satisfiable SAT instances
using the so-called dual rail encoding [12]. We selected 50 of the smallest and
easiest satisfiable instances from previous SAT competitions to evaluate solver
performance with this application.

Essential Variables. Variables which have to be assigned in all partial models of
a formula as essential (as opposed to don’t care-values) [35]. The application
genipaessentials incrementally determines essential variables in a given satisfiable
formula [12]. For this application, we used the same 50 satisfiable instances as
for backbone computation.

Longest Simple Paths (LSP). The application genipalsp determines longest simple
paths in a graph [36]. We selected 50 LSP instances for our evaluation.13

Maximum Satisfiability (MaxSAT). The application genipamax solves partial
MaxSAT problems by augmenting soft clauses with relaxation (or blocking)
variables which are input to a cardinality constraint [37]. The MaxSAT problem
is then solved by incrementally minimizing the bound of the cardinality constraint.
For this application, we selected 50 instances from MaxSAT Evaluation 2019.14

Quantified Boolean Formulas. Ijtihad is a QBF solver which uses counterexample-
guided expansion to incrementally solve a given QBF instance with a SAT
solver [38]. Here we used 50 instances from QBF Evaluation 2019.15

Planning (SAS+). We selected 50 planning instances to evaluate incremental
SAT solvers with Pasar, a planner which uses counterexample-guided abstraction
refinement (CEGAR) [30].

12https://satcompetition.github.io/2020/downloads/planning_generator.tar.xz
13http://algo2.iti.kit.edu/kalp/
14https://maxsat-evaluations.github.io/2019/
15http://www.qbflib.org/qbfeval19.php
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4. Competition Results

In this section, we provide a high-level overview of the results of SAT Com-
petition 2020. Later on, we will provide an overview of some of the key and new
solving techniques implemented in best-performing solvers (Section 5) as well as
a more in-depth analysis of the competition results (Section 6). An overview of
the top-10 solvers in each of the competition tracks discussed in the following is
provided in Table 4.

4.1. Main Track

Starting with the Main track, Figure 1 shows the cumulative solved instances
plot of the best-performing solver of the strongest ten teams (in short, the
top-10 solvers) together with the Virtual Best Solver (VBS—see also 6.1). The
best-performing solver overall on the combination of satisfiable and unsatisfiable
instances is Kissat-sat and the runner-up is Relaxed-newTech. Notice that
Relaxed-newTech solved more instances within the 2000-second limit. Third
place, based on the PAR-2 score, went to CMS-ccnr-lsids. It solved two
instances less than CaDiCaL-alluip-trail, but on the other hand solved various
formulas more quickly. Similar observations have been made also in earlier
recent SAT competitions where solvers were ranked based on the PAR-2 score.
Furthermore, we observe more differences in overall runtime performance among
the top solvers than what has been observed in the recent past competitions.

The four solvers Kissat-sat, Relaxed-newTech, CaDiCaL-alluip-trail,
and CMS-ccnr-lsids performed significantly better that all other solvers sub-
mitted to the Main track (cf. Table 4). A very interesting observation is that
these four top solvers all have a different code base. This has not been observed
for many years; more typically many of the best-performing solvers have been
based on same code bases.

The majority of the overall performance differences between the top-4 solvers
and the other solvers is due to performance differences on satisfiable instances;
see Figure 2. Indeed, in recent years, several techniques have been added to
SAT solvers to improve their performance on satisfiable instance. Examples
of such techniques are the integration of a local search solver and alternating
between a SAT mode (infrequent restarts) and an UNSAT mode (frequent
restarts and variable-move-to-front [39]). The best-performing solver in the Main
SAT track on satisfiable instances is Relaxed-newTech, followed by Kissat-sat

and CMS-ccnr-lsids.
Overall, solvers performed much more similarly on unsatisfiable instances

than on satisfiable instances; see Figure 3 for the runtime performance on
unsatisfiable instances. Only Kissat-unsat, the winner of the Main UNSAT
track, performed significantly better than all other participating solvers. It is
therefore not surprising that the VBS is reasonably close to Kissat-unsat. The
solvers CaDiCaL-trail and f2trc-s placed, respectively, second and third in
the Main UNSAT track.
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Figure 1: Performance of the top 10-solvers and the VBS on all Main track benchmarks

4.2. Planning Track

The competition in the Planning Track was more tight. The best solver
CaDiCaL-alliup-trail solved only one instance more than the runner up
CMS-ccnr-lsids. The PAR-2 scores of these two solvers were quite similar
as well. The third ranked solver, Kissat, solved fewer instances, but its fast
runtimes on several instances resulted in a strong PAR-2 score. Notice that
these three solvers were also strong in the Main track. It should be noted
that, somewhat disappointingly, none of the participating solvers were actually
optimized for planning instances.

4.3. Parallel Track

Turning to the Parallel track, Figure 4 shows the performance of all par-
ticipating parallel solvers. The best solver here is Painless-MCOMSPS-STR32.
Interestingly, this solver used 32 threads on the 64 virtual cores that were avail-
able. In fact, it has been observed in already recent earlier SAT competitions
that using fewer threads than the number of available virtual cores can be helpful;
as threads compete for memory, using all virtual cores may be detrimental to
overall performance. The runner up is Plingeling, while the third place goes
to ManyGlucose-32. Interestingly, one can observe from Table 4 that only the
Painless-MCOMSPS-STR* solvers and Plingeling had a lower PAR-2 score than
the winner of the Main Track (Kissat-sat). It appears still to be challenging
to beat the best-performing sequential solvers with with a parallel solver. (In
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Figure 2: Performance of the top-10 solvers and the VBS on Main track satisfiable benchmarks

fact, as we will show later on, sequential portfolios including only a few Main
track solvers show better performance than all of the parallel solvers.)

4.4. Cloud Track

The clear winner of the Cloud track is Mallob-Mono and the runner-up is
TopoSAT2 (see Figure 5). Mallob-Mono was able to solve more instances in 1000
seconds than the winner of the Parallel Track in 5000 seconds, which shows the
potential of distributed SAT solving. The other four participants performed
significantly worse. The massive parallelism in distributed SAT solving imposes
additional challenges on scalable information sharing and search diversification.
Since 2020 was the first year of this track, we expect a tighter competition in
the future.

5. Winning Solvers

In this section we will provide an overview of the participating teams and
solvers, and summarize new strategies implemented in the best-performing
solvers of the 2020 competition. We start with a few remarks on the evolution
of code-bases of well-known SAT solvers.
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Main Track
Pl. PAR-2 # Solver
1 3926.2 264 Kissat-sat

(1) 4083.1 260 Kissat

2 4179.3 253 Relaxed-newTech

3 4266.7 248 CMS-ccnr-lsids

(3) 4278.0 250 CMS-ccnr

4428.1 250 CaDiCaL-alluip-trail

4429.6 250 CaDiCaL-alluip

4436.5 245 Relaxed

4501.2 243 CMS-walksat

4554.0 243 CaDiCaL-trail

Parallel Track
Pl. PAR-2 # Solver
1 3316.6 283 Painless-MCOMSPS-str32

(1) 3714.7 271 Painless-MCOMSPS-str64

2 3743.4 269 Plingeling

3 3985.3 260 ManyGlucose-32

4022.7 262 Painless-Maple-v1

4036.3 258 ManyGlucose-64

4103.3 260 Painless-Maple-v2

4433.3 243 Syrup-Scavel

4903.4 225 Treengeling

5240.1 213 abcdsat-p20

Main Track, Satisfiable Instances
Pl. PAR-2 # Solver
1 2997.4 150 Relaxed-newTech

2 3127.6 146 Kissat-sat

3 3263.0 144 CMS-ccnr-lsids

(3) 3317.4 145 CMS-ccnr

3355.5 143 Relaxed

3721.2 139 CMS-walksat

3830.5 134 Kissat

3908.5 135 CaDiCaL-alluip-trail

3909.6 135 CaDiCaL-alluip

4265.6 126 CaDiCaL-trail

Parallel Track, Satisfiable Instances
Pl. PAR-2 # Solver
1 2853.7 153 Painless-MCOMSPS-str32

2 2913.6 154 Painless-Maple-v1

(2) 3082.7 151 Painless-Maple-v2

– 3196.9 148 Painless-MCOMSPS-str64

3 3805.9 133 Plingeling

4048.3 130 ManyGlucose-64

4076.2 130 ManyGlucose-32

4675.4 119 Syrup-Scavel

4907.1 114 Treengeling

6337.5 85 abcdsat-p20

Main Track, Unsatisfiable Instances
Pl. PAR-2 # Solver
1 4315.1 124 Kissat-unsat

(1) 4335.6 126 Kissat

(1) 4724.8 118 Kissat-sat

2 4842.5 117 CaDiCaL-trail

– 4846.7 116 CaDiCaL-sc2020

(2) 4947.8 115 CaDiCaL-alluip-trail

(2) 4949.6 115 CaDiCaL-alluip

3 4991.4 110 f2trc-s

(3) 5051.4 109 f2trc

(3) 5054.3 110 f2trc-DL

Parallel Track, Unsatisfiable Instances
Pl. PAR-2 # Solver
1 3680.8 136 Plingeling

2 3779.5 130 Painless-MCOMSPS-str32

3 3894.3 130 ManyGlucose-32

(3) 4024.2 128 ManyGlucose-64

4142.8 128 abcdsat-p20

4191.1 124 Syrup-Scavel

4232.5 123 Painless-MCOMSPS-str64

4899.8 111 Treengeling

5123.9 109 Painless-Maple-v2

5131.9 108 Painless-Maple-v1

Planning Track
Pl. PAR-2 # Solver
1 6406.9 80 CaDiCaL-alluip-trail

(1) 6409.3 80 CaDiCaL-alluip

2 6466.9 79 CMS-ccnr-lsids

(2) 6471.9 79 CMS-ccnr

(2) 6472.9 79 CMS-walksat

3 6596.4 75 Kissat-unsat

6650.1 79 CaDiCaL-trail

6713.0 75 Maple-Mix

6746.5 75 MapleCOMSPS-init

6754.3 73 Maple-Simp

Cloud Track
Pl. PAR-2 # Solver
1 2603.8 299 Mallob-Mono

2 3146.8 278 TopoSAT 2

3 4797.6 213 Slime

6800.8 132 Paracooba

7299.0 110 CTsat

8468.3 62 Paracooba-March

Table 4: Top 10 Solvers in Main, Planning, Parallel and Cloud Tracks: Place (Pl.), Score
(PAR-2) and Number of Solved Instances (#) per Solver. Three awardees per track underlined.
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Figure 3: Performance of the top 10 solvers + VBS on Main track unsatisfiable benchmarks

5.1. Evolution of SAT Solver Code-Bases: “On the Shoulders of Giants”

Progress in SAT solvers is often based on successful modifications of exist-
ing and openly available solver code-bases. One well-known tree of code-base
evaluation is rooted in the code-base of Minisat by Eén and Sörensson [40]. A
well-known fork of Minisat is Glucose by Audemard and Simon [11]. In partic-
ular, Glucose introduced the influential literal block distance (LBD) heuristics
for deciding which learned clauses to keep and which ones to forget during
search [41]. The SAT solver RISS by Manthey is a further fork of Glucose,
combining Glucose with the Coprocessor [42] preprocessor.

A further, more recent line of evolution in SAT solvers is rooted in the
CoMinisatPS by Oh, which is itself a again a fork of Minisat, and which
introduced three-tier clause-management [43]. Building on CoMinisatPS, the
SAT solver Maple appeared as a series of forks presenting innovative branching
heuristics at SAT Competition 2016 [44]. The at-the-time award-winning variant
MapleCOMSPS by Liang et al. implements a hybrid branching heuristic of classic
variable-state independent decaying sum (VSIDS) [45] and the newer learning
rate based branching (LRB) [46].

For SAT Competition 2017, Luo et al. integrated learned clause minimization
based on unit propagation (LCM) in their award-winning Maple LCM Dist [47]
which also uses the new branching heuristic Distance (Dist) in an initial
solving period [48]. In SAT Competition 2018, Ryvchin and Nadel successfully
integrated conditional chronological backtracking (ChronoBT) [49] in their award
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Figure 4: Performance of the solvers in the Parallel track.

award-winning solver Maple LCM Dist ChronoBT [50].
Kochemazov et al. improved three-tier clause-management by persisting addi-

tional clauses through hash-based detection of repeatedly learned clauses and pre-
sented their award-winning MapleLCMDistChronoBT-DL in SAT Race 2019 [51].
As can be seen in Table 5, numerous submissions to SAT Competition 2020 are
forks of some recent award-winning descendants of a Maple-based solver.

Also starting as a fork of Minisat with the integration of special treatment for
XOR constraints [52], CryptoMinisat by Soos continues to be a state-of-the-art
and feature-rich SAT solver. One highlight of CryptoMinisat are its advanced
data-logging capabilities for statistical analysis of SAT solver behavior [53].

Many independent and award-winning code-bases can be found among the
SAT solvers written by Biere. The sequential SAT solver Lingeling has been
award-winning since SAT Competition 2011 and is still competitive in its parallel
version Plingeling [54]. As of SAT Competition 2017, CaDiCaL by Biere
is another independent representative of state-of-the-art SAT solvers and its
improved re-implementation Kissat [55] was successful in the 2020 competition.

5.2. Sequential SAT Solvers

Sequential SAT solvers have been evaluated in the Main, Planning and
Incremental Library track of SAT Competition 2020. 18 teams submitted a total
of 48 solvers and configurations to the Main track and the Planning track of
the competition, and four solvers participated the Incremental Library track.
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Figure 5: Performance of the solvers in the Cloud track.

Table 5 displays an overview of the participating teams, base solvers and their
variants. In the following, we provide a short overview of the best-performing
solvers of 2020, based mainly on the solver descriptions submitted to the 2020
competition proceedings by the authors of the individual solvers.

5.2.1. Kissat

Three configurations of Kissat were submitted to the 2020 competition,
including one default configuration and two specialized configurations which are
specifically tailored towards satisfiable and unsatisfiable instances, respectively.
Kissat received four awards, achieving the first place in the Main track, the best
score on unsatisfiable instances, the second-best score on satisfiable instances
and the third place in the Planning track.

Kissat is a low-level re-implementation of CaDiCaL with new sophisticated
lazy data-structures for clause state monitoring, e.g., through binary clause
inlining, sentinel values and bit stuffing [56, 55]. Moreover, forward subsumption
for learned clauses is mostly replaced by vivification algorithms [57]. Since conflict
number has been observed to be too unstable for measuring the length of two
alternating restart modes, Kissat uses the new unit “ticks” which approximates
the number of cache-line accesses in unit-propagation [55]. Kissat also exploits
autarkies to account for saved phases. In order to keep valuable information of
saved phases, before each rephasing step Kissat computes the largest autarky
for the assignment implied by the current saved phases [58]. As such an autarky
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Team Base Solver Variant Name M U S P I

Biere Kissat

– 1 1 – – –
sat 1 1 2 – –
unsat – 1 – 3 –

Biere, Fleury Cadical SC2020 – – – – –

Zhang, Cai MapleLCMDistCBT-DL
Relaxed – – – – –
Rel. newTech 2 – 1 – –

Soos, Cai, Devriendt,
Gocht, Shaw, Meel

CryptoMiniSat-CCAnr
– 3 – 3 2 1
lsids 3 – 3 2 –

Soos, Selman, Kautz,
Devriendt, Gocht

CryptoMiniSat-WalkSAT – – – – – –

Hickey, Feng,
Bacchus

trail – 2 – – –
alluip – 2 – 1 –CaDiCaL

alluip-trail – 2 – 1 –

MapleLCMDist alluip-trail – – – – –

Kochemazov
MapleLCMDistCBT

f2trc – 3 – – –
f2trc-s – 3 – – –

MapleLCMDistCBT-DL f2trc – 3 – – –
Kochemazov, Zaikin,
Kondratiev, Semenov

MapleLCMDistCBT-DL-v3 – – – – – –

Lonlac,
Nguifo

MapleLCMDistCBT-DL-v3

Undominated – – – – –
Undom. Top16 – – – – –
Undom. Top24 – – – – –
Undom. Top36 – – – – –

Tchinda,
Djamegni

ExMapleLCMDistCBT

padc dl – – – – –
padc dl ovau lin – – – – –
padc dl ovau exp – – – – –
psids dl – – – – –

Shaw, Meel MapleLCMDistCBT-DL-v3 DurianSat – – – – –

Chen MapleLCMDistCBT-DL
Maple Mix – – – – –

Maple Simp – – – – –

Riveros MapleLCMDistCBT SLIME – – – – –

Li, Wu, Xu, Chen MapleLCMDistCBT-DL

Scavel – – – – –
Scavel01 – – – – –
Scavel02 – – – – –

Liang, Oh, Nejati,
Poupart, Ganesh

MapleCOMSPS LRB VSIDS 2
– – – – – –
init – – – – –

Chowdhury,
Müller, You

MapleLCMDistCBT-DL-v2.2

exp-V-LGB – – – – –

exp-V-L – – – – –
exp-L – – – – –
exp-V – – – – –

Li, Luo, Xiao,
Li, Manyà, Lü

MapleCM

+dist – – – – –
+dist+sat2s – – – – –
+dist+simp2 – – – – –
used+dist – – – – –

Kaiser, Hartung MapleLCMDist PauSat – – – – –

Osama, Wijs ParaFROST
– – – – – –
CBT – – – – –

Table 5: Teams and Solvers in the Main, Planning and Incremental Library Track. Column
Base Solver highlights solver genealogy, and Variant Name displays names of configurations
and forks. Distinctive names are underlined. The rightmost columns indicate the awards
given in the Main (M ) track, for performance on unsatisfiable (U ) and satisfiable (S) instances,
and in the Planning (P) and Incremental Library (I ) track.
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might contain satisfying assignments which imply disconnected components,
those variables are subject to subsequent variable elimination.

5.2.2. CryptoMiniSat

CryptoMiniSat received four awards, achieving the first place in the Incre-
mental Library track, the second place in the Planning track, the third place in
the Main track, and the third-best score on satisfiable instances. Two submitted
variants, default and LSIDS, scored mostly adjacent ranks in the individual
competition tracks.

The LSIDS variant of CryptoMiniSat comes with a new hybrid phase selection
approach [59, 60]. CryptoMiniSat comes with an independent implementation of
state-of-the-art hybrid branching heuristics which alternate between classic phase
saving and target phase selection [56]. CryptoMiniSat-CCAnr regularly schedules
short periods of local search and imports the best assignment for phase selection—
a procedure which is known as “rephasing” from CaDiCaL [56]. In addition,
CryptoMiniSat-CCAnr bumps the VSIDS scores of the first 100 variables in
those clauses which the SLS solver weighs most hard to satisfy [60]. Inprocessing
has been extended to include ternary resolution and more vivification [57].
CryptoMinisat alternates decay factors of its branching heuristics, thus avoiding
the restriction to a “single best” configuration [60]. The submitted version
of CryptoMinisat entails a new optimized implementation of Gauss-Jordan
Elimination [61]. CryptoMinisat periodically executes the BreakId algorithm
to calculate symmetry breaking clauses [62].

5.2.3. CaDiCaL AllUip

Based on CaDiCaL, its variants Trail and AllUip present implementations
of a new Trail Saving approach [63] and the improved clause-learning heuristic
Stable AllUIP [64]. Submitted were the three variants Trail, AllUip and
AllUip+Trail. The variants including Stable AllUIP were the most successful
in the 2020 competition, achieving in particular the first place in the Planning
track.

Stable AllUip resolves additional clauses beyond the First Unit Implication
Point (1-UIP) and keeps them whenever they are of smaller size and their LBD
not greater than that of the 1-UIP clause. By monitoring the frequency of clauses
which successfully pass that filter, the solver dynamically limits the amount
of such extended learning attempts [45, 64]. The Trail Saving variant caches
backtracked portions of the trail and uses them to restore decision levels during
search if possible [63].

5.2.4. Relaxed newTech

The Relaxed fork of MapleLCMDistCBT-DL was first presented in SAT Race
2019 [65]. In SAT Competition 2020, its variant newTech showed a good per-
formance especially on satisfiable instances. The solver received two awards,
achieving the second place in the Main track and the best score on satisfiable
instances.
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Relaxed integrates short runs of the local search solver CCAnr through pe-
riodic export and import of assignments [65] and uses a probabilistic schedule
for switching between ten phase selection modes. The Relaxed newTech vari-
ant uses occurrence counts of variables in unsatisfied clauses during stochastic
local search runs to recalculate variable priorities for their modified branching
heuristic [66].

5.2.5. Maple F2TRC

The F2TRC fork of MapleLCMDistCBT achieved the third best score on unsat-
isfiable instances. F2TRC comes with deterministic re-implementations of former
winning strategies in Maple, e.g., by replacing time-based intervals through
conflict-based intervals [67].

F2TRC introduces improved management of learned clauses in the tree tiers
core, tier2 and local, which are inherited from CoMinisatPS [43]. A dynamic
size limit for the core tier triggers the reassignment of inactive clauses from
core to tier2. To counter-act an observed starving of tier2, the conflict-based
heuristic that controls demotion of clauses from tier2 to local was replaced by a
size-based heuristic [67].

5.3. Parallel SAT Solvers

Six teams submitted a total of ten solvers and configurations to the Par-
allel track. In the following, we outline the best-performing parallel solver
implementations.

5.3.1. Painless MapleCOMSPS STR

Painless-MCOMSPS-STR integrates the solver MapleCOMSPS in the Painless

parallelization framework [68, 69]. The authors submitted a 32 and a 64 threaded
variant, which altogether won three awards, achieving the first place overall, the
best score on satisfiable and the second-best score on unsatisfiable instances.
Interestingly, the 32 threaded variant performed better than the 64 threaded
variant.

Painless uses a generic interface to integrate a solver and abstracts away
the implementation details of parallelism and concurrent data-structures. Due
to this, implementations in Painless boil down to implementing parallelization
and clause sharing strategies [68]. Painless-MCOMSPS-STR diversifies mainly
via hard-coded configurations of the branching strategies LRB and VSIDS,
and via sparse random initialization of variable polarities [70]. Two special
solver instances perform concurrent clause strengthening [71] and Gaussian
elimination, respectively. Regarding sharing, Painless-MCOMSPS-STR uses an
all-to-all strategy with a fixed-size clause buffer and a dynamic LBD filter [9].

5.3.2. Plingeling

The parallel solver Plingeling achieved the best score on unsatisfiable
instances, the second place in the overall evaluation, and the third-best score
on satisfiable instances. Plingeling is built around the well-known Lingeling
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and did not change since 2016. In a global master queue, Plingeling shares
unit clauses, equivalences and short clauses with a size limit of 40 and an LBD
limit of eight. Plingeling uses random seeds for diversification via variable
polarities [55, 54].

5.3.3. ManyGlucose

ManyGlucose was submitted in 32 and 64 threaded variants. The 32 threaded
variant won two awards in this competition, achieving the overall third place as
well as the third-best score on unsatisfiable instances. ManyGlucose is a fork of
GlucoseSyrup that uses strategies known from ManySat to achieve deterministic
solver behavior [72, 73, 74].

5.3.4. Painless Maple

Painless Maple received the award for second-best performance on satisfi-
able instances. Interestingly, Painless Maple at the same time exhibits worst
performance on unsatisfiable instances. Painless Maple integrates the solver
ExMapleLCMDistChronoBT into the Painless parallelization framework [68]. It
uses a sharing strategy in which the solvers are divided into those which only
export clauses and others which import and export clauses and was submitted
with two diversification variants v1 and v2. Painless Maple v1 diversifies via
hand-crafted heuristic configurations and Painless Maple v2 diversifies via
randomized initialization of branching heuristics [9].

5.4. Massively Parallel SAT Solvers in the Cloud Track

Five teams submitted a total of six solvers and configurations in the Cloud
track. In the following, we outline the best-performing massively parallel solver
implementations.

5.4.1. Mallob Mono

Mallob is a fork of the massively parallel SAT solver HordeSAT [70]. Mallob
performs dynamic load balancing through malleable job scheduling in case the
input contains several SAT instances of varying priority. This functionality is dis-
abled in the submitted variant Mallob Mono. Mallob uses Lingeling-bcj and
as every 14th solver Mallob spawns the stochastic local search solver YalSAT [75].
Diversification is done via randomized sparse initialization of branching scores.
Mallob shares clauses by organizing solvers in a binary tree in which clauses
are asynchronously aggregated in a buffer which is passed along this tree from
its leafs to the root. Each node performs a three-way merge of its local export
buffer and the two incoming buffers. The aggregate that approaches the root of
the binary tree is then broadcast to all solvers [76]. Mallob uses a global clause
size limit and a dynamic size limit for the sharing buffer, which depends on its
position in the binary tree and is larger the closer we get to the root. Clauses are
sorted by their size during aggregation, such that smaller clauses are preferred
over longer clauses. Duplicates are avoided by using a Bloom filter which is
cleared periodically [77].
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5.4.2. TopoSAT 2

TopoSAT 2 [78] is a massively parallel SAT solver using Glucose 3 [11].
The solver uses lock-free clause-exchange for solvers on the same machine and
the message passing interface (MPI) to share clauses between machines [74].
TopoSAT 2 strengthens clauses before export and delays clause import until the
trail-size reaches a local minimum. TopoSAT 2 diversifies via strategies used for
branching, restarting, and clause forgetting [79].

5.4.3. Slime

Slime is built from MapleLCMDistChronoBT and was first submitted as a
sequential solver to SAT Race 2019 with a new phase selection heuristic [80].
The new version of Slime submitted to the 2020 competition came with pe-
riodic randomization in geometrically increasing intervals [81]. Even thought
its sequential version was unsuccessful in the Main track, the MPI-based cloud
version of Slime achieved the third place in the Cloud track.

6. Differentiated Analysis of Main Track Results

In this section, we provide an additional analysis of the Main track results,
going beyond the rankings. In particular, we focus on metrics complementing
the PAR-2 score used for ranking the solvers in the actual competition.

6.1. Contributions to the Virtual Best Solver

The Virtual Best Solver (VBS) is a fictitious solver consisting of all solvers
that actually participated in the competition (or a specific track) and an oracle
which, when given an input instance, invokes the solver which performed the
best on that instance. This way, the performance of the VBS highlights a certain
upper bound on the performance achievable in principle by the participating
solvers (cf. the figures in Section 4).

One can see that the VBS solves all instances that were solved by at least
one solver and solves each instance in the best observed time. By quantifying
how much each participating solver contributes to the performance of the VBS,
we may attempt to establish which technology (as represented by the solvers)
is the most important (and to what degree) in the observed state of the art in
SAT solving. We consider here the following three related metrics conceptually
derived from the notion of VBS.

VBS-1 “The fastest takes it all”: For each solver, we count the number of times
the solver was the fastest to solve an instance.

VBS-2 “Time aware, but proportional”: A solver S solving an instance I in
time TS

I accrues the following fraction of a point for solving I: TVBS
I /TS

I ,
where TVBS

I is the runtime of the best solver on I.

VBS-3 “Split the point for solving”: We award each solver S solving an instance
I the fraction 1/|SI | of points, where SI is the set of solvers solving I.
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VBS-1 % Solver
46 11.5 Kissat-unsat

39 9.8 Kissat-sat

26 6.5 Kissat

18 4.5 CMS-ccnr-lsids

14 3.5 MapleCM+dist+sat2s

13 3.2 Relaxed

13 3.2 Maple-alluip-tr.

12 3.0 upGlucose3.0-PADC

10 2.5 CMS-ccnr

10 2.5 CaDiCaL-sc2020

VBS-2 % Solver
131.5 32.9 Kissat-sat

122.6 30.6 Kissat

115.4 28.9 Kissat-unsat

92.3 23.1 CMS-ccnr-lsids

88.8 22.2 CMS-ccnr

84.1 21.0 CaDiCaL-alluip-tr.

84.0 21.0 CaDiCaL-alluip

83.0 20.7 CaDiCaL-sc2020

82.3 20.6 Relaxed-newTech

81.5 20.4 Relaxed

VBS-3 % Solver
13.0 3.3 Kissat

11.9 3.0 Kissat-unsat

11.7 2.9 Relaxed-newTech

11.4 2.8 Kissat-sat

10.8 2.7 CaDiCaL-alluip-tr.

10.8 2.7 CaDiCaL-alluip

10.5 2.6 Relaxed

10.4 2.6 CaDiCaL-sc2020

10.3 2.6 CMS-walksat

9.6 2.4 CaDiCaL-trail

Table 6: VBS metrics for the results of the Main track, all instances. The total number of
solved problems was 316. There were 48 (non-disqualified) solvers (and their configurations).
Each table shows the first ten solvers sorted according to the respective metric.

We remark that the sum of VBS-1 points as well as the sum of VBS-3 points
computed across all solvers is equal to the number of instances solved by at
least one solver (later denoted total). This is obvious for VBS-1, as exactly one
solver scores a point for solving an instance. In the case of VBS-3, where we
discard the information about the solution times, we evenly split the one-point
reward for solving an instance among those solvers which succeeded in solving
the instance. In contrast, VBS-2 does not have this property as it in general
distributes more than one point per instance. Similarly as VBS-1, it takes the
solution time into account. Similarly as VBS-3, it does not award just the best
solver on an instance. For example, a solver that uses twice as much runtime
as the fastest solver on an instance receives a half a point. Furthermore, if all
solvers solve an instance equally fast, each solver receives a whole point for the
instance.

Table 6 provides the result of applying the just-described three metrics to
the full results of the Main track. We can see that the respective leaderboards
are generally dominated by Kissat in at least one of its configurations. VBS-1
tells us that Kissat-unsat was most often the fastest solver, in particular on
11.5 % of the solved instances.

The metric VBS-2 identifies Kissat-sat as the best solver. Its leading
score of 32.9 % of the total is more difficult to interpret, though: a solver can
score 32.9 % of VBS-2 total by solving 32.9 % of the solved instances in the
best observed time and no others. However, we see from its VBS-1 score that
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Iteration Selected Solver Solved Contributes

1 Kissat-sat 264 264
2 CaDiCaL-alluip 250 22
3 f2trc-s 214 10
4 Relaxed-newTech 253 6
5 Kissat-unsat 238 4
6 Relaxed 245 3
7 CMS-walksat 243 3
8 CMS-ccnr-lsids 248 1
9 MapleCBT-DL-v3 211 1

10 DurianSat 210 1
11 exp-V-LGB-MLD-CBT-DL 194 1

Total – 316

Table 7: A greedy set cover of the solved instances by solvers of the Main track.

Kissat-sat solved 9.8 % of the solved instances in the best observed time (and
some others). A solver can also score 32.9 % of VBS-2 total by solving all
solved instances, but always being roughly three times slower than the VBS.
The performance of Kissat-sat lies (clearly) somewhere between these two
extremes.

Finally, according to VBS-3, the best solver is Kissat with 13.0 points, which
amounts to 3.3 % of the distributed total score. The VBS-3 metric is generally
the most evenly distributed one, at least among the first 10 solvers. (The last
solver receives 0.9 points, which is 0.221 % of the total.) One can conclude from
this that most of the benchmarks are solved by most of the well-performing
solvers.

6.2. Greedy Set Cover

Another perspective on how much each solver contributes to the state of the
art can be obtained by attempting to construct a sequential schedule of solvers
(rather than relying on an oracle to pick one solver for each instance, as with
VBS) and observing how big role each solver plays in such a schedule. Since
constructing an optimal schedule tends to be computationally hard, we start
here by presenting a computationally more efficient alternative—a greedy set
cover approach.

With greedy set cover, we start with an empty schedule and iteratively
consider each solver for the addition to the schedule obtained so far, picking the
one with the highest “marginal contribution” in terms of the number of problems
the new schedule will be able to solve. We demonstrate this on the actual data
from the competition, again focusing in particular on the Main track results.

A greedy set cover of the solved instances by solvers of the Main track is
presented in Table 7. In the first iteration, the solver which solved the highest
number of instances is selected; in our case it was Kissat-sat with 264 instances
as we know already from Table 4. With these 264 instances already covered,
CaDiCaL-alluip is the best in further contributing to the set by additional 22
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k Time (s) Solved Best Schedule

1 5000 264 { Kissat-sat }
2 2500 278 { Kissat-unsat, Relaxed-newTech }
3 1666 272 { Kissat-unsat, Kissat-sat, CMS-ccnr-lsids }
4 1250 262 { Kissat-unsat, Kissat-sat, CMS-ccnr-lsids,

Maple-alluip-trail }
5 1000 253 { Kissat-unsat, Kissat-sat, CMS-ccnr-lsids,

Maple-alluip-trail, CaDiCaL-alluip }

Table 8: Schedules that maximize the number of solved Main track instances for k ∈ {1, . . . , 5}
solvers among which 5000 seconds are split uniformly.

instances in the second iteration. We can see that the further iterations tend
to add very little, with the final four iterations adding one instance each. Note
that each solver that managed to solve an instance uniquely (i.e., being the
only solver that solved a particular instance) shows up in the greedy set cover.
Indeed, the greedy set cover metric highlights solvers which are able to uniquely
solve specific benchmark instances and thereby contribute to the current state
of the art.

6.3. Time-Limited Schedules

The greedy set cover disregards the time it would take to execute the obtained
“schedule” (of running the solvers that jointly cover all solved instances). However,
we can also look at schedules that would fit in a prescribed time budget. A
natural choice of the budget seems to be the original time limit of 5000 s.

To this end, by employing a brute-force approach, we first construct a
sequence of schedules where the i-th schedule splits the available time of 5000 s
uniformly among i solvers and solves the highest number of instances under
these constraints. The results are presented in Table 8. We can see that the
initial increase from 264 to 278 of “covered” instances when using two solvers
instead of one (although allowing each to only use half of the time) does not
continue further with additional solvers allowed, although it is still better to use
three solvers in a fair time split (and cover 272 instances) than just one. Based
on this observation, it is plausible that the really hard instances that were solved
actually may require quite large runtime to get “cracked” by any solver and thus
the advantage of adding more solvers to the schedule quickly diminishes.

We complement this “uniform time split” schedule by formulating the schedule
construction problem as a MaxSMT formula and using the Z3 SMT solver [82]
in its optimization mode [83] to solve it. For each solver (and its configuration)
S we introduce an integer variable RS denoting the number of seconds S runs
in the new schedule. We then construct a formula with hard constraints 0 ≤ RS

for every S and
∑

S∈S R
S ≤ 5000 and with one soft constraint for every instance

I of the form ∨
S∈SI

TS
I ≤ RS ,
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Solver Time (s) Solved Contributes

Kissat-unsat 2523 219 219
Relaxed-newTech 2180 234 59
Kissat-sat 103 72 2
f2trc-DL 76 15 0
CaDiCaL-alluip 58 26 2
Maple-alluip-trail 34 12 1
MapleCM+dist+sat2s 18 18 1
CaDiCaL-sc2020 8 10 2

Total 5000 – 286

Table 9: An optimal 5000 s schedule for the Main track constructed using Z3.

k Best k-Tuple Score

1 { Kissat-sat } 3926.2

2 { Kissat-unsat, Relaxed-newTech } 3160.5
3 { Kissat-unsat, Relaxed-newTech, CaDiCaL-2020 } 2986.4
4 { Kissat, Relaxed-newTech, CaDiCaL-2020, Scavel01 } 2842.6
5 { Kissat-unsat, Relaxed-newTech, CaDiCaL-2020, Scavel01,

CMS-Walksat }
2757.3

6 { Kissat-sat, Kissat-unsat, Relaxed, Relaxed-newTech,
CaDiCaL-alluip-trail, f2trc-s }

2687.0

7 { Kissat-sat, Kissat-unsat, Relaxed, Relaxed-newTech,
CaDiCaL-alluip-trail, f2trc-s, CMS-Walksat}

2616.9

48 Set of all Solvers 2431.4

Table 10: Best performing k-tuples in terms of their VBS’s PAR-2 score.

where SI is the set of solvers which solved the instance I and TS
I is the time it

took solver S to solve I here rounded up to the nearest integer. (Note that while
RS are variables, i.e., unknowns, the TS

I are known constants in the formula.)
Finding a solution which satisfies all hard constraints and as many soft

constraints as possible, Z3 provided the schedule shown in Table 9 (in under
two hours on a single core of a 2.30 GHz CPU). The table is sorted by RS , the
time the schedule allocates to individual solvers, with zero entries ignored. It is
not clear to what degree is the obtained schedule unique and how much it relies
on each solver being present and for how long. Nevertheless, it is interesting to
observe the total number of problems covered, here 286, and compare it to the
278 achieved in Table 8 with the uniform split and two solvers.

As can be seen from the “contributes” column, the presence of f2trc-DL

in the schedule is not necessary. The 15 instances this solver solves under 76
seconds were already covered by the preceding three solvers. This result is due to
the fact that Z3 was not asked to produce a schedule with a minimal number of
participating solvers. Indeed, allowing any other solver to run for the 76 “wasted”
seconds would not increase the overall total.
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6.4. Small Portfolios

The PAR-2 score of the VBS of all 48 submitted solvers in the Main track is
2431.4, which is close to 40% better than the PAR-2 score of 3926.2 of the single
best solver Kissat-sat. Given the set of solvers S, the set of tuples of size k is
defined as follows Pk := {T | T ∈ 2S ∧ |T | = k}. We calculate the PAR-2 score
for each VBS created from solver tuples in Pk. In Table 10, we report on the
single best performing k-tuple Tk ∈ Pk (1 ≤ k ≤ 7).

Interestingly, each of the first five tuples Tk≤5 contains exactly one of the
three Kissat variants. The set T2 is composed of the two winners of the Main
SAT and Main UNSAT tracks. For i < 5 the relation Ti ⊂ Ti+1 holds only under
projection to base solvers due to the fluctuating variants of Kissat.

The composition changes more strongly in T6. Interestingly, we now have both
variants {Kissat-sat, Kissat-unsat} ⊂ T6, and moreover it holds that T6 ⊂ T7.
All solvers in Tk≤7 are among the top-performing solvers which received awards
in the Main track, with the only exception of Scavel01 ∈ T4 ∩ T5 (cf. Table 4).

6.5. Score per Instance Family

Contributions to the VBS can be captured by clustering the instances by
their family. We evaluate the runtimes of the three winning solvers of the
Main track on those new families which are represented by at least 14 instances
(cf. Table 1) and report their places and scores in Table 11. Interestingly, the
overall best solver Kissat-sat is outperformed by the second and third ranked
solvers Relaxed-newTech and CMS-ccnr-lsids on the Anti-Bandwidth, Vlsat,
and Influence Maximization families by a large margin.

6.6. Similarity of Solvers

To investigate the similarity of solvers from the Main track, we define a
similarity metric based on the measured runtimes. We start by removing 84
benchmarks that have not been solved by any solver. For the rest, a PAR-2
score is assigned to each instance for every solver, i.e., we set a score of 10,000

Kissat-sat Relaxed-newTech CMS-ccnr-lsids

Family Pl. PAR-2 Pl. PAR-2 Pl. PAR-2

Anti-Bandwidth 26 7435.6 2 5863.2 1 4958.7
Bit-Vector 7 8310.2 22 8772.4 42 9005.9
Coloring 2 5357.1 11 7589.3 13 7910.1
Core-Based Generator 3 1217.0 29 3170.7 4 1253.3
Cryptography 4 3451.4 6 3526.9 10 4124.2
Hypertree Decomposition 21 1173.3 8 1016.0 38 3188.0
Influence Maximization 22 2350.4 3 1838.9 11 2035.8
Tensors 2 1412.4 7 4411.2 11 7414.2
Timetable 41 7889.0 21 5103.8 19 5092.4
Tournament 4 10000.0 2 8715.0 4 10000.0
Vlsat 27 7149.7 5 5307.5 1 5026.4

Table 11: Place and PAR-2 of Winning Solvers in the Main Track per Instance Family
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for unsolved instances. Each solver S is thus associated with the PAR-2 scores
S1, . . . , S316. The similarity of two solvers S and S′, normalized to the interval
[0, 1] is defined as:

similarity(S, S′) = 1−
∑
|Si − S′i|

316 · 10 000

We calculate the similarity of the 30 solvers with the best average PAR-2 score
in the Main track. The results are shown in Figure 6 as a heat map, similar
to the visualization in [12]. Additionally, the result of hierarchically clustering
the solvers based on their similarity is illustrated as a dendrogram. The height
at which two solvers or clusters are joined reflects how similar they are. For
example, enabling trail saving in CaDiCaL-alluip has no impact on the runtime,
resulting in a similarity above 0.999. Therefore, the two solvers are joined low
in the dendrogram.

Interestingly, one identifiable large cluster consists of the Maple-descendants,
all of which are modifications of the winners in the SAT Competition 2018
and the SAT Race 2019. The similarity within the cluster is high, except for
Scavel and exp V MLD CBT DL. They form a subcluster with a lower similarity
compared to the rest, but a high similarity within. In fact, the highest measured
similarity, besides the aforementioned CaDiCaL-alluip, is observed between
them. The two solvers are both based on MapleLCMDistChronoBT-dl-v2.2, but
have different authors. This high similarity suggests that the changes they made
either result in a very similar behavior or do not have a significant impact on
the runtime performance.

The two configurations of Relaxed by Zhang and Cai use the same codebase
as a lot of solvers in the Maple-cluster. However, the overall performance of
the solver is better and closer to the CMS-cluster. The three CMS configurations
differ in their implementation of stochastic local search (SLS) and have similar
performance. The 2020 version of CaDiCaL exhibits weaker performance than
the modifications based on the 2019 version and does not quite fit into any
cluster.

The leftmost cluster in the heat map is comprised of other solvers originally
written by Biere. What is interesting to note is that the Kissat configuration
specialized for unsatisfiable instances joins the others configurations in the cluster
high in the dendrogram. In fact, Kissat-unsat has the lowest average similarity
to all other solvers in the top 30. This suggests its importance for an optimal
portfolio.

6.7. Influence of Benchmark Selection on Solver Ranking

To evaluate the impact of benchmark selection on the solver ranking, we follow
the experiments described in the tool suite benchfeature [84]. In particular,
we first use random sampling to select subsets of the benchmarks used in the
Main track. We start with 316 benchmarks that have been solved by at least
one solver in the Main track and remove a number of benchmarks randomly. For
each possible subset size (1–316) we generate 50 random samples. The solvers
are assigned a new rank in ascending order of their PAR-2 score on each random
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Figure 6: Heat-map and dendrogram (top) based on the runtime similarity of the solvers
participating in the Main track. Darker regions mean that the solvers are more similar. A more
precise relation between color and similarity-value together with a histogram of the values that
appear is given at the bottom.
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Figure 7: Mean and standard deviation of rank correlation under removal of random instances
over 50 samples for each size

sample. Note that we never encounter a tie. This ranking can be seen as an
estimate of the original ranking. If even relatively small random samples result
in a good estimate, we draw a positive conclusion about the robustness of the
ranking.

To determine how similar an estimate is to the original ranking, we calculate
the Spearman’s rank correlation coefficient of the two rankings. Spearman’s
rank correlation coefficient for two rankings r1 and r2 is defined by the following
equation:

ρ = 1−
6 ·

∑
S (r1(S)− r2(S))2

n(n2 − 1)
,

where n is the number of solvers in the Main track (48), and the rankings r{1,2}(S)
map a solver S to its rank, i.e., 1 for the best performing solver, whereas 48 is
assigned to the solver with the highest average PAR-2 score.

The coefficient ρ is in the interval [−1, 1], where a rank correlation of 1
means that the two rankings are equal and −1 means that one ranking is the
reverse of the other. To give a better intuition for ρ, we list a few modifications
to the original ranking together with the resulting rank correlation coefficient.
The smallest change we can make is to switch the rank of two adjacent solvers,
resulting in a high rank correlation ρ = 0.9999. Several small changes also result
in a high rank correlation; repeating the same modification as before n/2 times
to switch all pairs of adjacent solvers in rank still gives a value of ρ = 0.9974.
On the other hand, switching the highest ranked solver (Kissat-sat) with the
lowest results in a rank correlation of ρ = 0.7602. Moving Kissat-sat to the
bottom of the ranking while moving every other solver up one rank gives a higher
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Figure 8: Change of rank correlation under removal of individual benchmark families

ρ = 0.8776. Doing the same to all three Kissat configurations (with ranks 1, 2
and 11, now 46, 47 and 48) results in ρ = 0.6839.

The mean and standard deviation of the computed correlation coefficients
are depicted in Figure 7. The rank correlation is high even for relatively small
samples. The average rank correlation drops below 0.99 only after randomly
removing at least 95 benchmarks, which is 30% of the considered benchmark
set. Accordingly, removing fewer benchmarks randomly has almost no effect
on the ranking of the solvers. Furthermore, removing fewer than 200 (63%)
benchmarks still results in an average rank correlation above 0.96. This suggests
that the impact of the random selection in Algorithm 1 on the solver ranking is
limited. The collected data cannot show whether all of the benchmarks originally
submitted by the solver authors have a systematic bias. However, since each
newly submitted benchmark family originates from a different domain and is
often the result of current research, we can assume that the submitted families
together are representative.

Figure 8 shows the rank correlation coefficient resulting from removing a
complete benchmark family. As expected, removing a nonrandom subset can
have a higher impact on the ranking even if it is small. Removing the 13 hgen
benchmarks results in a (still high) rank correlation of 0.9895. Additionally, the
ranking of the top five solvers stays the same. The individual removal of all
other benchmark families results in a rank correlation above 0.99.
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7. Conclusion and Prospects

The 2020 SAT Competition successfully continues the tradition of the SAT
Competition series. In 2020, significant advances in SAT solvers compared to
previous years were observed. Some of the more interesting observations on
the winning solving strategies include the following. All winning solvers of
the Main track periodically schedule runs of a stochastic local search (SLS)
solver and import statistical information generated in unsuccessful SLS runs to
reconfigure weights in their branching heuristics. As observed from the results of
the Parallel track, it appears difficult to make proper use of more than 32 threads
for SAT solving, as in some occasions the 32-threaded version of the same solver
outperformed its 64-threaded counterpart. However, from the winner in the
massively parallel Cloud track, we can learn that classical all-to-all clause-sharing
can be outperformed by a more sophisticated clause-sharing architecture. It
appears challenging to integrate and test sophisticated state-of-the-art methods
in an incremental SAT solver and thus solvers usually disable parts of their
features in the incremental use case. The winner of the Incremental Library track
shows that it is worth integrating a full solver functionality in the incremental
use case.

Prospects

In the instance selection, the author-wise balancing of satisfiable and un-
satisfiable instances turned out often counterproductive as it did not lead to
a more balanced overall selection of new instances. Moreover, this practice
discriminated against authors who submitted solely satisfiable or unsatisfiable
instances. The hardness criterion of 10 Minisat minutes was set higher than the
hardness criterion of 1 Minisat minute of the “bring your own benchmarks” rule,
which can be viewed as problematic. As lessons learned, in future competitions
we will not aim to balance the benchmarks by satisfiability status on author level,
will aim to be more consistent with the imposed hardness criteria for benchmark
selection, and will also make sure to clearly communicate what it means for an
instance to be counted as unknown.

The IPASIR interface facilitates the integration of SAT solvers into incre-
mental applications. In contrast to benchmarking with instances given in the
DIMACS CNF format, there are only a few benchmark applications available for
the Incremental track. This calls for more community-level efforts for construct-
ing a more diverse and well-organized repository of applications for incremental
SAT solvers. Proper benchmarking and new tools for testing incremental SAT
solvers may also help solver authors to deal with more complex use cases.16

This year, the Hack track was organized for hacks of Glucose 3. In the
next competition, we plan on moving to the well-structured and documented
state-of-the-art SAT solver CaDiCaL. The CaDiCaL-alluip solver—which is a
modified CaDiCaL—has shown competitive performance in this competition.

16https://github.com/fkutzner/IncrementalMonkey
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The first instantiation of an Application track was the Planning track orga-
nized as a one-time track in 2020. The results show that different solvers take the
lead when we only evaluate for a single application, when compared to the overall
Main track results. We intend to run further instantiations of the Application
track. While none of the solvers that participated in the Planning track seemed
particularly optimized for planning instances, we hope that in future iterations
the community will pick up on the challenge of optimizing SAT solvers towards
different focus applications, as a complementary challenge when compared to
the generality of the Main track. In the next competition, the planned focus of
Application track will be on SAT solver applications in cryptography.

The portfolio rule has been established to prohibit the participation of pure
solver portfolios to stimulate the development of new codebases and to ensure
fair competition among sequential solvers. The rule was challenged in this
competition as it can be hurtful to cooperation in the community when solver
authors use the work of other researchers as fully integrated subsystems in
their own codebase. We aim to revisit and refine the portfolio rule in future
instantiations of the competition to ensure that the rule does not unnecessarily
hinder interesting algorithmic developments in SAT solving.
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