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Depth-based Local Search Heuristics for
Boolean Circuit Satisfiability⋆

Anton Belov1 and Matti Järvisalo2

1 Department of Computer Science and Engineering, York University, Canada
2 Department of Computer Science, University of Helsinki, Finland

Abstract. We propose a structure-exploiting heuristic for the justification-based
stochastic local search (SLS) method CRSat for Boolean circuit satisfiability. Ex-
perimental evaluation shows that the proposed depth-basedheuristic significantly
improved the performance of CRSat on structural instances arising from indus-
trial applications. A proof of probabilistically approximate completeness (PAC)
of CRSat relies on the same kind of variable ordering as the one imposed by the
depth-based heuristic, and hence provides a theoretical motivation for the heuris-
tic. Furthermore, we compare the behavior of (depth-based)CRSat to that of the
justification-based SLS method BC SLS driven by justification frontiers.

Keywords: Boolean circuit satisfiability, stochastic local search, search heuris-
tics, problem structure

1 Introduction

Boolean (or propositional) satisfiability (SAT) [6] solvers provide an efficient approach
to solving hard combinatorial problems arising from various real-world domains. To-
day, the dominant approach to solving industrially relevant application instances is pro-
vided by DPLL-based complete algorithms, especially, conflict-driven clause learning
(CDCL) [21, 9] solvers. In particular, this has been the caseever since the introduction
of CDCL in the mid nineties. Before this, stochastic local search (SLS) methods [18]
were considered a competitive alternative for applications of SAT.

At the present, local search is considered to be effective mainly in solving random
SAT instances. Despite this fact—and partly due it—the study of novel SLS-based SAT
algorithms has its motivations. The state-of-the-art SAT solvers aimed at real-world
problem instances today are rather homogenic due to the factthat the solvers typically
implement CDCL, and are highly optimized on the implementation level. Escaping
from this monoculture requires alternative algorithmic ideas. One potential approach
is to develop new hybrid solvers by combining ingredients ofCDCL and SLS. Ad-
ditionally, developing better SLS techniques for structural problem instances can be
motivated by the fundamental question of the interplay between problem structure and
search algorithms. For improving the applicability of SLS,further work is needed espe-
cially for handling variable dependencies, a problem identified as a major challenge in
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the context of SLS [17]. Compared to CDCL solvers that are implicitly able to focus the
search space exploration through tightly bound conflict analysis and decision heuristics,
developing structure-exploiting techniques in the context of SLS is challenging due to
the intrinsic simplicity of the SLS approach.

One problem in developing efficient techniques for handlingvariable dependen-
cies is that typically SLS solvers work on the flat CNF input format. Although some
structure-based techniques have been developed for conjunctive normal form (CNF)
level SLS (e.g., CNF encodings that are more suitable for CNF-level SLS [24]), there
is room for SLS techniques that exploit variable dependencies more directly. There
are also SAT solvers which—instead of demanding CNF translation before solving—
work directly on non-clausal formulas. These solvers oftenuse Boolean circuits as the
compact representation for a propositional formula in a DAG-like structure. However,
typically such solvers are complete DPLL style non-clausalalgorithms, see e.g. [15, 19,
20, 29].

A few SLS methods have been proposed for non-clausal formulas. Common to most
of these approaches is to explicitly exploit variable dependencies through independent
(or input) variables, i.e., sets of variables such that a truth assignment for them uniquely
determines the truth values of all other variables, by focusing the search on truth as-
signments over input variables [25, 16, 27, 23, 22, 28, 3].

An alternative circuit-level SLS method BC SLS was proposedin [14, 12], based on
utilizing justification frontier heuristics (see e.g. [20]) applied in some complete circuit-
level SAT solvers in electronic design automation. In BC SLS, the search is driven
top-down in the overall structure of the circuit rather thanin a bottom-up mode as is
done in local search methods focusing on input variables. This is achieved by guiding
the search using justification frontiers that enable exploiting observability dont cares
and offer an early stopping criterion that allows to end the search when the circuit is
de facto satisfiable, even if no concrete satisfying truth assignment has yet been found.
Without including additional search techniques not typically present in CNF-level local
search methods, the justification frontier based BC SLS was shown to clearly improve
performance on real-world SAT instances w.r.t. its CNF-level counterparts.

Most recently, motivated by the general idea of justification-based SLS search ap-
plied in BC SLS, another justification-based circuit-levelSLS methods, CRSAT, was
proposed [4]. Compared to BC SLS, on one hand CRSAT is more simplistic in that the
search is not explicitly based on the concept of justification frontier, motivated by the
observation that the frontier is rather costly to maintain during search, especially in the
context on SLS. On the other hand, CRSAT combines justification-based search with
limited circuit-level Boolean constraint propagation, most notably, forward propagation
that exploits the explicit circuit structure. It has been shown that variations of CRSAT

exhibit greatly improved performance compared to BC SLS.

In this work we study structure-based search heuristics in the context of CRSAT. In
particular, with the aim of further improving the performance of CRSAT, we propose
a simpledepth-basedsearch heuristic that exploits the explicit circuit structure. An
experimental evaluation reveals that the depth-based heuristic is promising, lifting the
performance of the standard CRSAT further on real-world circuit SAT instances arising
from industrial-style applications.
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The practical improvement brought by the depth-based heuristic can be theoretically
justified from a somewhat surprising perspective. Namely, the proof ofprobabilistically
approximate completeness(PAC) [11] of CRSAT applies precisely the same style of
variable ordering that is imposed by the proposed depth-based heuristic. In addition
to this intriguing observation, we also analyze the differences between (depth-based)
CRSAT and BC SLS. Combining these observations, we arrive at the hypothesis that
restricting justification-based local search to the justification frontier may not be the
optimal choice.

The rest of this report is organized as follows. After necessary background on
Boolean circuits (Section 2) and the recently proposed justification-based circuit-level
SLS methods BC SLS and CRSAT (Section 3), we introduce the proposed depth-
based search heuristic for CRSAT, resulting in the variant DEPTH-CRSAT. We then
analyze the behavior of DEPTH-CRSAT, comparing it to BC SLS, and also motivate
the heuristic by revealing its relationship with the probabilistic approximate complete-
ness of CRSAT (Section 5). Before conclusions, we provide an empirical evaluation of
the proposed search heuristic (Section 6).

2 Constrained Boolean Circuits

A Boolean circuitover a finite setG of gatesis a setC of equations of the form
g := f(g1, . . . , gn), whereg, g1, . . . , gn ∈ G andf : {0, 1}n → {0, 1} is a Boolean
function, with the additional requirements that (i) eachg ∈ G appears at most once as
the left hand side in the equations inC, and (ii) the underlying directed graph

〈G,E(C) = {〈g′, g〉 ∈ G×G | g := f(. . . , g′, . . .) ∈ C}〉

is acyclic. If〈g′, g〉 ∈ E(C), theng′ is achild of g andg is aparentof g′. For a gateg,
the sets of children (i.e., thefaninof g) and parents (i.e., thefanoutof g) are denoted by
fanin(g) andfanout(g), respectively. Thedescendantandancestorrelations are defined
in the usual way as the transitive closures of the child and parent relations, respectively.
If g := f(g1, . . . , gn) is inC, theng is anf -gate (or of typef ), otherwise it is aninput
gate(a gate with no children). A gate with no parents is anoutput gate. The sets of input
gates and output gates inC are denoted byinputs(C) andoutputs(C), respectively. A
gate that is neither an input nor an output gate is aninternal gate.

An (truth) assignmentfor C is a (possibly partial) functionτ : G → {0, 1}. A
complete assignmentτ for C is consistentif τ(g) = f(τ(g1), . . . , τ(gn)) for each
g := f(g1, . . . , gn) in C. A circuit C has2|inputs(C)| consistent complete assignments.
Thedomainof τ , i.e., the set of gates assigned inτ , is denoted bydom(τ). We say that
two assignments,τ andτ ′, disagreeon a gateg ∈ dom(τ) ∩ dom(τ ′) if τ(g) 6= τ ′(g).

A constrained Boolean circuitCα is a pair〈C,α〉, whereC is a Boolean circuit
andα is an assignment forC. With respect to a constrained circuitCα, each〈g, v〉 ∈
α is a constraint, andg is constrainedto v if 〈g, v〉 ∈ α. A complete assignmentτ
for C satisfiesCα if (i) τ is consistent withC, and (ii) it respects the constraints:
τ ⊇ α. If some complete assignment satisfiesCα, thenCα is satisfiableand otherwise
unsatisfiable. In this work we consider Boolean circuits in which the following Boolean
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functions are available as gate types; these circuits are often referred to asAnd-Inverter
Graphs(AIGs).

– NOT(v) is 1 iff v is 0.
– AND(v1, v2) is 1 iff both v1 andv2 are1.

However, notice that the techniques discussed in this papercan be adapted for a
wider range of types. In order to keep the presentation and algorithms simpler, we as-
sume that constraints only appear in the output gates of constrained circuits. Any circuit
can be rewritten into such a normal form [15].

The restriction of an assignmentτ to a setG′ ⊆ G of gates is defined as usual:
τ |G′ = {〈g, v〉 ∈ τ | g ∈ G′}. Given a non-input gateg := f(g1, . . . , gn) and a value
v ∈ {0, 1}, a justificationfor the pair〈g, v〉 is a partial assignmentσ : {g1, . . . , gn} →
{0, 1} to the children ofg such thatf(τ(g1), . . . , τ(gn)) = v holds for all extensions
τ ⊇ σ. That is, the values assigned byσ to the children ofg are enough to forceg to take
the consistent valuev. A gateg is justified in an assignmentτ if it is assigned, i.e.τ(g)
is defined, and (i) it is an input gate, or (ii)g := f(g1, . . . , gn) ∈ C andτ |{g1,...,gn} is a
justification for〈g, τ(g)〉. We denote the set ofunjustifiedgates in an assignmentτ by
unjust(Cα, τ).

The justification conejcone(Cα, τ) for a constrained circuitCα under an assign-
mentτ ⊇ α is defined top-down in the circuit structure, starting from the constrained
gates. Intuitively, the cone is the smallest set of gates which includes all constrained
gate and, for each justified gate in the set, all the gates thatparticipate in some subset-
minimal justification for the gate. More formally,jcone(Cα, τ) is the smallest of the
setsS of gates which satisfy the following properties.

1. If 〈g, v〉 ∈ α, theng ∈ S.
2. If g ∈ S and (i) g is a non-input gate, (ii)g is justified inτ , and (iii) 〈gi, vi〉 ∈ σ

for some subset minimal justificationσ for 〈g, τ(g)〉, thengi ∈ S.

Notice that by this definitionjcone(Cα, τ) is unambiguously defined.
As another key concept, thejustification frontierof Cα underτ , is the “bottom

edge” of the justification cone, i.e. those gates in the cone that are not justified:

jfront(Cα, τ) = jcone(Cα, τ) ∩ unjust(Cα, τ).

Notice that we always havejfront(Cα, τ) ⊆ unjust(Cα, τ), and also thatjfront(Cα, τ)
is unambiguously defined.

A gateg is interestingin τ if it belongs to the frontierjfront(Cα, τ) or is a descen-
dant of a gate in it; the set of all gates that are interesting in τ is called theinterest set
underτ , and denoted byinterest(Cα, τ). A gateg is an (observability) don’t careif it
is neither interesting nor in the justification conejcone(Cα, τ).

As observed in [14] if the justification frontierjfront(Cα, τ) is empty for some com-
plete assignmentτ , then the constrained circuitCα is satisfiable. Whenjfront(Cα, τ) is
empty, a satisfying assignment is obtained by (i) restrictingτ to the input gates appear-
ing in the justification cone, i.e. to the gate setjcone(Cα, τ) ∩ inputs(C), (ii) assigning
other input gates (don’t cares) arbitrary values, and (iii)recursively evaluating the val-
ues of non-input gates. Thus, wheneverjfront(Cα, τ) is empty, we say thatτ de facto
satisfiesCα.
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Finally, given a truth assignmentτ and a set of gatesG ⊆ dom(τ), we define

flip(G, τ) =


τ \

⋃

g∈G

{〈g, τ(g)〉}


 ∪

⋃

g∈G

{〈g, 1− τ(g)〉}.

In other words,flip(G, τ) is the truth assignment obtained by changing the truth-values
of the gates inG, and leaving the rest of the truth-values unchanged.

3 Justification-Based Circuit-Level SLS

In this section we give an overview of the justification-based circuit-level SLS meth-
ods BC SLS and CRSAT. Our goal in this paper is to develop structure-based search
heuristics for the latter, and to analyze the behavior of theheuristics w.r.t. the behavior
of the former method.

3.1 BC SLS – SLS Driven by Justification Frontiers

The first SLS algorithm for constrained Boolean circuits that uses the internal gates
to drive the search was proposed by Järvisalo, Junttila andNiemelä in [14], and later
improved and analyzed theoretically in [12]. Pseudocode for this algorithm, called BC
SLS, is presented as Algorithm 1.

The algorithm starts with a random complete truth assignment τ for Cα, and, as
long as the justification frontierjfront(Cα, τ) is not empty, picks a random gateg from
jfront(Cα, τ) (line 6), and proceeds by making one of the following two types of moves.

– In thedownwardmove the selected unjustified gateg is justified by flipping some
of its children. To achieve this, the algorithm constructs the setΣ of justifications
for g andτ(g), and either picks one justification randomly (this is thenon-greedy
downward move– line 12), or selects a justification that minimizes the sizeof the
interest set after the flip (this is thegreedy downward move– line 11). As a result
of this move, the gateg becomes justified, while some gates infanin(g) potentially
become unjustified.

– In theupwardmove the truth-value of the selected unjustified gateg itself is flipped
(line 14), if possible (ifg is constrained then the algorithm resorts to a non-greedy
downward move – line 12), thus making it justified, and, potentially, causing one or
more gates infanout(g) to become unjustified. The name “upward” is used because
it (often) pushes the unjustified gate(s) towards the outputs of the circuit.

The results of the empirical evaluation of BC SLS presented in [14, 12] demonstrate
that the algorithm is significantly more effective on industrial circuits than SLS-based
CNF-level algorithms. This indicates that circuit structure can be used by SLS-based
SAT algorithms to significantly accelerate the search for satisfying assignments.

As elaborated in [2], the dynamic behavior of BC SLS is a balance between driv-
ing the justification frontier towards the input gates usingthe downward moves (as
eventually the algorithm must flip some of the inputs) and taking recovery steps to fix
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Algorithm 1 BC SLS(Cα, p, q, cutoff)
Input: Cα – constrained Boolean circuit

p – the probability of non-greedy move
q – the probability of non-greedy downward move
cutoff– the cutoff, that is, the maximum number of steps

Output: status – SAT if a satisfying assignment forCα is found,UNKNOWN otherwise
τ – a de-facto satisfying assignment forCα if found, ∅ otherwise

1: τ ← a random truth assignment forCα

2: steps← 0
3: while steps< cutoff do
4: if jfront(Cα, τ ) = ∅ then
5: return 〈SAT, τ 〉
6: g ← a random element fromjfront(Cα, τ )
7: Σ ← the set of justifications for〈g, τ (g)〉
8: with-probability 1− p do
9: σ ← a random justification from the justifications inΣ ⊲ greedy downward move

that minimize|interest(Cα, ·)|
10: otherwise
11: if g ∈ dom(α) or with probability q do
12: σ ← random justification fromΣ ⊲ non-greedy downward move
13: else
14: σ ← {〈g, 1− τ (g)〉} ⊲ upward move
15: end with-probability
16: G← set of gates inσ that disagree withτ
17: τ ← flip(G, τ ) ⊲ flip
18: steps← steps+ 1

19: return 〈UNKNOWN, ∅〉

the incorrectly assigned gates in the justification cone (the upwards moves constitute
such recovery steps). During this process, there are no hints as to whether a mistake
has actually occurred or not: when the justification frontier is “deep” inside the circuit,
BC SLS relies on the truth-values in the justification cone tomake progress. If these
truth-values are set incorrectly, the chances to fix them aresmall, and get progressively
smaller as the justification frontier approaches the inputs. As a result, recovery from
mistakes requires potentially a very large number of steps.The algorithm described in
the following section attempts to address this deficiency ofBC SLS.

3.2 CRSAT – Justification-Based SLS with Limited Forward Propagation

In this section we briefly describe the circuit-level SLS method CRSAT proposed in [4].
The algorithm uses the idea of justification-based steps through the space of complete
truth assignments borrowed from BC SLS. However, it does notmaintain the justifi-
cation frontier, and does not perform explicit upward moves– instead, CRSAT uses
limited forward propagationto control the search.

Limited forward propagation is a restricted form of BooleanConstraint Propagation
(BCP) applied on the level of circuits. Pseudocode for the procedure is presented as
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Algorithm 2 LBCP-FORWARD(Cα, G, τ )
Input: Cα – constrained Boolean circuit;

G – a set of gates whose truth-value change are to be propagated.
τ – a truth assignment forCa;

Output: τ ′ – an assignment forCα which is a result of limited forward propagation of the
assignmentτ |G.

1: τ ′ ← τ
2: Q.ENQUEUE(G)
3: while ¬ Q.EMPTY do
4: g ←Q.POP FRONT

5: if g ∈ G then ⊲ g is one of the original gates
6: Q.ENQUEUE(fanout(g))
7: else
8: if g /∈ dom(α) and¬justified(τ ′, g) then ⊲ g unconstrained and unjustifed
9: τ ′ ← flip({g}, τ ′)

10: Q.ENQUEUE(fanout(g))

11: return τ ′

Algorithm 2. The algorithm makes use of a data structureQ which is a priority queue
of gates that uses a fixed topological ordering3 <t of the set of gates and allows to query
thesmallestgate in this ordering (i.e., “fanin-first”) in constant time. The priority queue
is backed up by a set, so that duplicate entries are not allowed. More details on this
data-structure are given in [2].

The algorithm operates as follows: given a set of gatesG (that, presumably, have
just changed their truth-value as a result of a previously performed flip), the algorithm
starts by enqueuing the gates fromG. Then, as long as the queue is not empty, the
smallest, according to the topological order<t gateg is removed from the queue, and

– if g ∈ G, then all gates infanout(g) are enqueued, and the algorithm continues,
– if g /∈ G, then the algorithm checks whether or notg’s truth-value is consistent with

that of its children. If it is, no action is taken; if it is not,andg is not constrained,
the algorithm flips the truth-value ofg (so now it is consistent with the truth-values
of the gates infanin(g)), and enqueues all gates infanout(g).

The key property of the propagation procedure in the contextof justification based
search is captured by the following proposition

Proposition 1 ([2], Propositions 5.33 and 5.34).Let Cα be a constrained Boolean
circuit, G a set of gates inC, and τ a truth assignment forCα. Further, let τ ′ =
LBCP-FORWARD(Cα, G, τ). Then, the following conditions hold.

(i) For any gateg /∈ G, if g is justified inτ and is not justified inτ ′, theng ∈ dom(α).
(ii) For any gateg ∈ unjust(Cα, τ ′) \G, we haveτ ′(g) = τ(g).

3 A topological ordering<t of the gates in a Boolean circuit is any strict total order that respects
the condition “ifg2 ∈ fanout(g1), theng1 <t g2”.
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Thus limited forward propagation does not create new unjustified unconstrained gates,
and preserves the truth-values of unconstrained gates thatremain unjustified ofter for-
ward propagation.

Pseudocode for CRSAT is presented as Algorithm 3. The algorithm starts by con-
structing a complete consistent extension of a random truth-value assignment toinputs(Cα)
— that is, the truth-value of each unconstrained internal gate is set consistently with the
truth-values of its children. Then, as long asunjust(Cα, τ) is not empty (that is,τ is
not a satisfying assignment), the algorithm selects a random gateg from unjust(Cα, τ)
(line 6), constructs the set of justificationsΣ for 〈g, τ(g)〉, and performs one of the
following types of moves:

– During therandom walka random justificationσ ∈ Σ is selected, the truth-values
of the setG of gates assigned inσ that disagree withτ are flipped, and the effects
of the flips are propagated using the procedure for limited forward propagation
LBCP-FORWARD, discussed earlier. We denote this combination of flip with lim-
ited forward propagation as astepof CRSAT from now on. The implementation
of the step is encapsulated in the function STEP(Cα, G, τ) (lines 17-20) that re-
turns the resulting complete assignment. The random walk isperformed with the
“walk-probability” wp.

– During thegreedy movethe algorithm selects from the setΣ of justifications for
〈g, τ(g)〉 one of the justifications that minimizes the size ofunjust(Cα, τ) after the
step (that is after the flip, followed by forward propagation).

It is easy to see that on one hand CRSAT is significantly simpler than BC SLS –
it uses the set of all unjustified gates, rather than the justification frontier, to perform
steps and to make heuristic decisions. It does not make upward moves, and so has less
control parameters. On the other hand, the steps of CRSAT arecrucially different from
those of BC SLS in that every flip is followed by limited forward propagation.

In [2] it is shown that as the result of these modifications, CRSAT is orders of
magnitude more efficient than BC SLS on a wide variety of industrial circuits. The
absence of upward moves in CRSAT is also justified, both theoretically and empirically.

4 Depth-Based Heuristics for CRSAT

We propose a simple depth-based heuristic for CRSAT, resulting in what we call DEPTH-
CRSAT. For introducing the heuristic and for discussing the relationship between DEPTH-
CRSAT and BC SLS, we first introduce some additional concepts.

Definition 1. LetCα be a Boolean circuit. Apathπ in Cα is any non-empty sequence
of gates〈g1, . . . , gn〉, such that for every1 < i ≤ n, gi ∈ fanin(gi−1).

Note that a path may not be empty but may contain only one gate.

Definition 2. Let Cα be a constrained Boolean circuit,τ a truth assignment forCα,
andg a gate inunjust(Cα, τ). Let π = 〈g1, . . . , gk〉 be a path inCα such thatg1 is
constrained, andgk = g. Then,π is a justification pathfor g in Cα underτ if
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Algorithm 3 CRSAT(Cα, wp, cutoff)
Input: Cα – constrained Boolean circuit

wp – the noise parameter, that is, the probability of random walk
cutoff– the cutoff, that is, the maximum number of steps

Output: status – SAT if a satisfying assignment forCa is found,UNKNOWN otherwise
τ – a satisfying assignment forCα if found, ∅ otherwise

1: τ ← a complete consistent extension of a random truth assignment to inputs(Cα)
2: steps← 0
3: while steps< cutoff do
4: if unjust(Cα, τ ) = ∅ then
5: return 〈SAT, τ 〉
6: g ← a random element fromunjust(Cα, τ )
7: Σ ← the set of justifications for〈g, τ (g)〉
8: with-probability wp do
9: σ ← random element ofΣ ⊲ random walk

10: otherwise
11: σ ← a random justification from the justifications inΣ ⊲ greedy downward move

that minimize|unjust(Cα, ·)| after step
12: end with-probability
13: G← set of gates inσ that disagree withτ
14: τ ← STEP(Cα, G, τ ) ⊲ flip + limited forward propagation
15: steps← steps+ 1

16: return 〈UNKNOWN, ∅〉

17: function STEP(Cα, G, τ ) ⊲ Flips gates inG and propagates forward
18: τ ′ ← flip(G, τ )
19: τ ′ ← LBCP-FORWARD(Cα, G, τ ′)
20: return τ ′

(i) for everyi < k, gi is justified underτ ; and
(ii) for everyi < k, 〈gi+1, τ(gi+1)〉 is in some subset-minimal justification for〈gi, τ(gi)〉.

In other words,π = 〈g1, . . . , gk〉 is a justification path forgk ∈ unjust(Cα, τ) if
for everyi < k we havegi ∈ jcone(Cα, τ) \ unjust(Cα, τ).

Proposition 2. LetCα be a constrained Boolean circuit,τ a truth assignment forCα,
and g a gate inunjust(Cα, τ). Then,g ∈ jfront(Cα, τ) if and only if there exists a
justification path forg in Cα underτ .

Proof. Follows from the definition ofjfront(Cα, τ).

Basically, a justification path for a gateg is a witness of (reason for) the fact that
g ∈ jfront(Cα, τ).

Consider now some execution of CRSAT, and assume that the gateg ∈ unjust(Cα, τ)
selected on line 6 of the algorithm is such thatg ∈ jfront(Cα, τ). Letσ be the justifica-
tion for 〈g, τ(g)〉 selected by the algorithm (either greedily or randomly) by the end of
line 12, andG be the set of gates inσ that disagree withτ . Let us consider the effects of
the step of the algorithm performed on line 14. Sinceg ∈ jfront(Cα, τ) by assumption,
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by Proposition 2 there is a justification path forg underτ . After the step,g becomes jus-
tified, and one or more gates inG possibly become unjustified – let us denote the subset
of gates inG that become unjustified after the step byG′. Notice that since each gates
g′ ∈ G′ belongs to some subset minimal justification forg, the justification path forg
can now be extended tog′. There is a possibility thatg′ is part of theuniquejustification
path for some other gate injfront(Cα, τ), and hence wheng′ becomes unjustified it will
“cut off” this path. This situation isnot possible, however, if the gateg selected on line
line 6 of the algorithm is taken to bea gate with the maximum depth among the gates
in jfront(Cα, τ), that is, from the set

argmax
g∈jfront(Cα,τ)

depth(Cα, g),

where

depth(Cα, g) =

{
0 if g ∈ outputs(C)
1 + max{depth(Cα, g′) | g′ ∈ fanout(g)} otherwise.

(1)
With this intuition, combined with the fact that CRSAT focuses on currently unjus-

tified gates (not only gate in the current justification frontier), we denote by DEPTH-
CRSAT the version of CRSAT in which the unjustified gateg on line 6 is selected
at random from thecurrent setunjust(Cα, τ) of unjustified gates at maximum depth
according to(1).

5 Insights into DEPTH-CRSAT

BC SLS uses the justification frontier and searches forde factosatisfying assignments,
while in CRSAT the search is focused on the set ofall unjustified gates. Related to this
fact, in this section we analyze differences in the behaviorof BC SLS and DEPTH-
CRSAT. Namely, we show that even by focusing search on unjustified gates with max-
imum depth as is done in DEPTH-CRSAT, there are examples of configurations under
which DEPTH-CRSAT may choose to justify a gate that is not in the current justifica-
tion frontier. In other words, in general DEPTH-CRSAT does not implicitly maintain
the justification frontier during search, something which is done explicitly in BC SLS
(with additional cost).

Additionally, and somewhat surprisingly, a proof of CRSAT being probabilistically
approximately complete (PAC) relies very much on focusing search on unjustified gates
with maximum depth. This fact directly implies that even themore restricted DEPTH-
CRSAT is PAC, and hence provides an additional motivation for applying the depth-
based heuristics in practice due to more focused search without losing PAC.

5.1 Justification Frontiers and DEPTH-CRSAT

An apparent difference between the methods is that BC SLS maintains an explicit jus-
tification frontier during search and focuses search on gates in the frontier, CRSAT
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relaxes the search to consider any unjustified gates (given that there are additional un-
justified gates that are not part of the current justificationfrontier).

This poses the question of the relationship between the set of unjustified gates (in
CRSAT) and the justification frontier (in BC SLS). We now look at this question from
the perspective of DEPTH-CRSAT. Especially, consider the following observations.

– Initially, we haveunjust(Cα, τ) = jfront(Cα, τ), sinceτ is a consistent extension
of some truth assignment toinputs(Cα).

– By focusing search on unjustified gates with maximum depth, as in DEPTH-CRSAT

and as discussed in Section 4, justification paths for the gates injfront(Cα, τ) are
not cut off.

– By Proposition 1, limited forward propagation does not create new unjustified un-
constrained gates.

Taking these observations into account, it appears that there is no danger of “cutting
off” existing justification paths during the BCP. Hence, We formalize the following
conjecture.

Conjecture 1 LetCα be a constrained Boolean circuit, andτk be a truth assignment
at the end of thekth step ofDEPTH-CRSAT onCα. Then, for anyk ≥ 0, it holds that
unjust(Cα, τk) = jfront(Cα, τk).

However,this conjecture turns out to be false, as demonstrated in the following.

Example 1.Consider the circuitCα depicted in Figure 1, withα = 〈g1, 0〉. The dashed
lines represent edges that have aNOT gate attached to them. Assume that the initial
truth assignment, which we denote byτ1, is a complete consistent extension of the
assignment{〈i1, 1〉, 〈i2, 1〉, 〈i3, 1〉} – this assignment is presented in Figure 1(a). The
letter “u” (letter “j”, respectively) denotes the fact thata gate is unjustified (justified,
respectively). We follow the execution of DEPTH-CRSAT onCα.

1. Figure 1(a):unjust(Cα, τ1) = {g1}, and so the gate selected by the algorithm on
line 6 isg1. Assume that the algorithm performs a random walk step and selects the
justification{〈g2, 1〉} for 〈g1, 0〉. The algorithm flips the value ofg2. Then forward
propagation does not change any assigned values. The resulting assignment,τ2, is
depicted in Figure 1(b).

2. Figure 1(b):unjust(Cα, τ2) = {g2}. Since{〈g4, 1〉} is the only justification for
〈g2, 1〉, the algorithm flips the value ofg4. Again, forward propagation does not
change any assigned values. The assignmentτ3, resulting from flippingg4, is de-
picted in Figure 1(c).

3. Figure 1(c):unjust(Cα, τ3) = {g4}. Again,{〈g5, 1〉} is the only justification for
〈g4, 1〉, and the algorithm flips the value ofg5. This time, forward propagation
assigns〈g3, 0〉 and〈g2, 0〉. Let us denote the resulting assignment, depicted in Fig-
ure 1(d), byτ4.

Note that underτ4, both of the gatesg1 andg5 are unjustified, and thusunjust(Cα, τ4) =
{g1, g5}. However,jfront(Cα, τ4) = {g1} – that is, the justification path for the gateg5
got “cut off” by the gateg1.
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Thus, even though the forward propagation does not create new unjustified uncon-
strained gates, the possibility of it creating new unjustified constrained gates may result
in some justification paths being “cut off”, which means thatConjecture 1 fails. �

ANDg1 0, u

ANDg2 0, j

ANDg3 1, j ANDg4 0, j

ANDg5 0, j

i1 1, j

i2 1, j i3 1, j

(a)

ANDg1 0, j

ANDg2 1, u

ANDg3 1, j ANDg4 0, j

ANDg5 0, j

i1 1, j

i2 1, j i3 1, j

(b)

ANDg1 0, j

ANDg2 1, j

ANDg3 1, j ANDg4 1, u

ANDg5 0, j

i1 1, j

i2 1, j i3 1, j

(c)

ANDg1 0, u

ANDg2 0, j

ANDg3 0, j ANDg4 1, j

ANDg5 1, u

i1 1, j

i2 1, j i3 1, j

(d)

Fig. 1. A counterexample for Conjecture 1: (a) – initial situation;(b) – after the flip ofg2; (c) –
after the flip ofg4; (d) – after the flip ofg5 and forward propagation.
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Hence we have the following.

Proposition 3. There are cases in whichDEPTH-CRSAT may select to justify a gate
that is not in the current justification frontier.

In other words, we always haveunjust(Cα, τk) ⊇ jfront(Cα, τk), and even for
DEPTH-CRSAT there are cases in whichunjust(Cα, τk) ⊃ jfront(Cα, τk). On the other
hand, it is not clear that restricting search on gates in the justification frontier, as done
in the BC SLS method, is always a good ideain the presence of forward propagation4.
In fact, some of the empirical data presented in [2] suggeststhat this may not be the
case.

It should also be noted that, from a practical perspective, maintaining the justifica-
tion frontier, even incrementally, is in the worst-case rather costly. Indeed, experimental
results in [2, 4] imply that CRSAT exhibits dominating performance w.r.t. BC SLS. In
the experimental evaluation presented in this paper, we will show that the depth-based
heuristic of DEPTH-CRSAT improves the performance of CRSAT further. While, as we
demonstrated above, the power of depth-based heuristic in the context of CRSAT does
not seem to be related to the justification frontier, it can beexplained by the analysis of
the PAC property of CRSAT, presented in the following section.

5.2 DEPTH-CRSAT and the PAC property of CRSAT

The notion ofProbabilistic Approximate Completeness (PAC)of SLS algorithms was
introduced by Hoos in [11]. Stated informally, an SLS algorithm is PAC if, for any
satisfiable problem instance, the probability of finding a solution is asymptotically 1.

Definition 3 (PAC; adapted from [11]). A SAT algorithmA is probabilistically ap-
proximately complete (PAC)if for any satisfiable instanceF ,

lim
t→∞

P (RuntimeA,F ≤ t) = 1, (2)

whereP (RuntimeA,F ≤ t) denotes the probability thatA finds a satisfying assign-
ment forF in time≤ t. Further, A is essentially incompleteif it is not PAC, that is,
there exists a satisfiable instanceF such that

lim
t→∞

P (RuntimeA,F ≤ t) < 1. (3)

Typically, the PAC property of an SLS algorithm is proven by showing that from any
given non-satisfying assignmentτ there is a non-zero probabilityp that the algorithm
arrives at some fixed satisfying assignmentτ∗ within a fixed number of steps. Note that
when each step takes finite time, we can associate steps with time in this analysis. Then,
the sequence of the firstn steps taken by the algorithm can be split into fragments ofk
steps each, and, when no assumptions are made with regard to the initial assignmentτ ,

4 As an intriguing complementary observation, we note that the efficiency of DPLL and CDCL
has been theoretically shown to notably decrease onunsatisfiableformulas in case decision
heuristics are restricted using justification frontiers [13].
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each fragment can be treated independently. Then, the PAC property follows from the
analysis of the resulting Markov chain.

Its easy to see that all CNF-level SLS methods that allow random walk duringany
stepare PAC [11] – random walk allows the algorithm to “cheat” theheuristic by giving
a non-zero probability to the event that the algorithm will make an improving step by
flipping the “correct” variable in a randomly chosen unsatisfied clause (any unsatisfied
clause has such a variable). Similar argument, generalizedto the setting of constrained
Boolean circuits, was used in [12] to show the PAC property ofBC SLS. In the case
of CRSAT, this approach to the proof of PAC property does not work due to the fact
that the deterministic forward propagation makes non-local changes to the current truth
assignment. Hence, there is a possibility that by setting the truth-value of one gate
correctly, the truth-values of other gates may become incorrect. Nevertheless, CRSAT,
is indeed PAC.

Theorem 2 ([2], Theorem 5.48).The CRSAT algorithm with any noise parameter
valuewp > 0 and infinite cutoff is probabilistically approximately complete.

The proof of Theorem 2 relies on the following two propositions. For detailed proofs
we refer the reader to [2]. For the following, given a constrained Boolean circuitCα, a
truth assignmentτ is called arestart assignmentif unjust(Cα, τ) ⊆ dom(α).

Lemma 1 ([2], Theorem 5.46).Starting from any restart assignment, there is a non-
zero probability that within a bounded number of steps,CRSAT will set all input gates
correctly, thus arriving at a satisfying assignment.

Proof sketch. If on line 6 CRSAT always selects an unjustified gate with maximum
depth (note that this event has always a non-zero probability), then, with non-zero
probability, at least one input gate will be set correctly after at mostdepth(Cα) =
maxg depth(C

α, g) steps, whereg ranges over all gates inC. 2

Lemma 2 ([2], Theorem 5.47).From any truth assignment, there is a non-zero proba-
bility that within a bounded number of stepsCRSAT will reach a restart assignment.

Proof sketch.If CRSAT selects at each step an unjustified gate with maximum depth
on line 6, then after a bounded number of steps all unconstrained unjustified gates will
become justified. When this is the case, the truth assignmentis the restart assignment.

2

Proof sketch (of Theorem 2).Consider any execution of CRSAT on a circuitCα, let
τi be a truth assignment on stepi of this execution, and letXi be a random variable
defined as follows:

Xi =





0 if τi is a non-satisfying restart assignment

1 if τi is a non-satisfying non-restart assignment

2 if τi is a satisfying assignment.

Letk1 andk2 be the bounds in Lemmas 1 and 2, respectively, and consider the sequence
of random variables

〈X0, Xk1 , Xk1+k2 , X2k1+k2 , X2k1+2k2 , . . . 〉.
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It is not difficult to see that this is a Markov chain. Furthermore, using Lemmas 1 and
2, one can show that the state 2 is the only persistent state. 2

It is clear that depth plays an essential role in establishing the PAC property of
CRSAT. Notably, the same reasoning establishes the PAC of DEPTH-CRSAT. Further-
more, since DEPTH-CRSAT selects a deepest unjustified gate with the probability 1,
the bounds on the number of steps used in Lemmas 1 and 2 are significantly smaller.
Hence, in theory, DEPTH-CRSAT converges to a satisfying assignment significantly
faster. The results of the empirical evaluation of DEPTH-CRSAT presented in the next
section confirm that this is also the case in practice.

6 Experiments

To evaluate the effectiveness of the depth-based heuristicfor CRSAT presented in this
paper we compare empirically the performance of CRSAT with that of DEPTH-CRSAT.
As also suggested in [14] in the context of BC SLS, in our implementations of CRSAT

and DEPTH-CRSAT justifications used for flipping truth-values are selected from the
set of subset minimal justifications for the gate value; in other words, for a false AND-
gate the value of a single child is flipped, and for a true AND-gate the values of all its
children flipped. This strategy gave positive results in preliminary experiments. Addi-
tionally, we note that both of the implementations apply circuit-level Boolean constraint
propagation as a preprocessing step before search.

We follow the methodology for comparative performance analysis of SLS-based
SAT algorithms described in [10]. According to this methodology, the comparative
analysis is performed by obtaining the empirical run-time and run-length distributions
(RTDs/RLDs) of the solvers that implement the algorithms ona variety of bench-
mark circuits. In our experiments, the RTDs/RLDs were obtained from 100 runs on
each benchmark circuit. The near-optimal setting of the walk probability parameterwp
was determined in the preliminary set of experiments. Sincein this paper we are con-
cerned with large-scale effects of the heuristics, we only compare the medians of the
obtained distributions. The medians are compared by employing the Mann-WhitneyU -
test (see [26] for example). Here we consider a difference between the median of the
run-times/run-length of two solversstatistically significantwhen theU -test rejects the
null hypothesis at thep-value of at most 0.05. All experiments were performed under
Linux (kernel version 2.6.9) using a Intel Core 2 Duo 3.00-GHz processor and 4 GB of
RAM.

Before presenting the results, we shortly describe the benchmarks used in the ex-
periments.

6.1 Benchmarks

The evaluation of the effectiveness of the depth-based heuristic in CRSAT was per-
formed on over 400 benchmark circuits from four different benchmark classes. These
circuits come directly from various industrial applications of SAT.
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hwmcc08-sat This is the set of 204 satisfiable benchmarks representing BMC prob-
lems (with step boundk = 45) obtained from all the sequential Hardware Model
Checking Competition HWMCC 2008 problems. Theaigbmc tool [5] was used
for the time frame expansion.

smtqfbv-sat These AIG circuits were obtained by bit-blasting instancesfrom theQF BV
category (theory of bit-vectors) used in the SMT competition 2009 [1]. For the bit-
blasting we used theBoolector SMT solver [8]. We used 61 satisfiable bench-
marks from this set for the experiments.

sss-sat-1.0These circuits by Velev originate from “formal verificationof buggy vari-
ants of a dual-issue superscalar microprocessor with exceptions, multicycle func-
tional units, and branch prediction” [30]. The benchmarks were originally in the
ISCAS format, and we converted them to AIGs usingABC [7]. We used 96 of
these circuits in our experiments.

vliw-sat-1.1 This is another suite of circuits by Velev originating from “formal veri-
fication of buggy variants of a VLIW microprocessor” [30]. Aswith the previous
set, the benchmarks were converted from theISCAS format to AIGs usingABC.
We used 98 of these circuits in our experiments.

6.2 Results

To evaluate the effectiveness of the depth-based selectionof unjustified gates empiri-
cally, we implemented two SAT solvers: the SAT solvercrsat that implements the
CRSAT algorithm described in Algorithm 3, and the SAT solvercrsat-d that imple-
ments the depth-based variant DEPTH-CRSAT.

In order to allow for the retrieval of the deepest unjustifiedgate incrsat-d, the
setunjust(Cα, τ) of unjustified gates is kept in a heap datastructure. The datastructure
allows to retrieve the deepest unjustified gate in constant time. However, there is a
performance penalty for insertions of the order oflog(|unjust(Cα, τ)|).

Table 1 summarizes the results of the empirical comparison between the perfor-
mance ofcrsat andcrsat-d. It is clear that overallcrsat-d takes significantly
fewer steps thancrsat to find a solution. Despite the fact that the use of a heap in-
curs a run-time penalty, the differences in the number of search steps translate into
the improvement in the run-time. As a result,crsat-d often solves more problems
from the benchmark set thancrsat. Figure 2 deserves special attention as it demon-
strates that the performance improvements incrsat-d are more pronounced on dif-
ficult problems than on the easy ones. The depth-based justification selection seems to
have particularly large impact on medium to hard problems from thehwmcc08-sat
andsmtqfbv-sat benchmark sets.

Interestingly, as the plots in Figure 3 demonstrate, the relative performance im-
provements are not necessarily directly related either to the depth of instances or their
size. Thus, we conjecture that some additional structural properties of circuits are at
play during the search for satisfying assignments in CRSAT.
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Table 1.Performance comparison betweencrsat andcrsat-d. The second column shows the
number of instances from each benchmark class used for the comparison. The third and fourth
columns show the number of instances that were solved (i.e.,success rate over50%) within the
allocated 300 seconds per try, by each solver. The remainingfour columns compare the total
median number of steps and the total median run-time in CPU seconds taken by each solver on
those instances that were solved bybothsolvers.

Benchmark classInstances InstancesInstancesTotal stepsTotal steps Total time Total time
from this solved solved on solved on solved on solved on solved

class by both by both by both by both
crsat-d crsat crsat-d crsat crsat-d crsat

hwmcc08-sat 204 137 103 7,227,75363,962,348 197.41 1289.12
smtqfbv-sat 61 53 38 2,124,98415,242,248 164.02 651.50
sss-sat-1.0 96 79 74 11,197,44825,020,062 600.16 1284.55
vliw-sat-1.1 98 94 95 8,984,08710,084,139 2014.17 2057.44
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Fig. 2. Performance comparison betweencrsat andcrsat-d. The plot, drawn on the loga-
rithmic scale, depicts the correlation between median number of steps required by the solvers to
find solutions – each median was measured from 100 tries for each instance, per solver. Those
instances where the performance differences are not statistically significant (p-value ofU -test
> 0.05) are not shown.
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Fig. 3. The correlation between the performance improvement incrsat-d, as opposed to
crsat, with the depth and the size of the circuits solvable by both solvers from three bench-
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(p-value ofU -test> 0.05) are not shown.
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7 Conclusions

We proposed a new, simple structure-based heuristic for thejustification-based circuit-
level SLS method CRSAT that combines justification-based SLS with forward prop-
agation. Resulting in the variant DEPTH-CRSAT, the proposed depth-based heuristic
increases the efficiency of CRSAT on various structural real-world circuit benchmark
classes. We also showed that the concept of gate depth plays acentral role in the proof of
the fact that CRSAT is probabilistically approximately complete (PAC). This immedi-
ately implies that even the restricted variant DEPTH-CRSAT is also PAC, which further
motivates the depth-based heuristic. This also implies that focusing search based on
gate depth is in a sense a natural choice when combined with limited forward propaga-
tion. Additionally, one should notice that there are cases when the depth-based heuristic
focuses search also on gates that do not appear in the justification frontier, in contrast
to the BC SLS method.

The structural property of gate depth, while quite a simple one, yields good results
as a heuristic in practice when applied in conjunction with limited forward propagation.
This raises the question of whether there are more intricatestructural gate properties—
or evencombinationsof different properties—harnessing which even more effective
and focused search heuristics could be developed. Indeed, developing a deeper under-
standing of the central structural properties for enhancing circuit-level SLS, especially
in conjunction with forward propagation, remains an important part of further work. In
addition to the important factor of practical efficiency, deeper insights into the interplay
between problem structure and search algorithms are required.
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We propose a structure-exploiting heuristic for the justi-
fication-based stochastic local search (SLS) method CRSat 
for Boolean circuit satisfiability. Experimental evaluation 
shows that the proposed depth-based heuristic signifi-
cantly improved the performance of CRSat on structural 
instances arising from industrial applications. A proof of 
probabilistically approximate completeness (PAC) of CRSat 
relies on the same kind of variable ordering as the one im-
posed by the depth-based heuristic, and hence provides a 
theoretical motivation for the heuristic. Furthermore, we 
compare the behavior of (depth-based) CRSat to that of 
the justification-based SLS method BC SLS driven by justi-
fication frontiers.
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