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Depth-based Local Search Heuristics for
Boolean Circuit Satisfiability*

Anton BeloV and Matti Jarvisald

! Department of Computer Science and Engineering, York Usitye Canada
2 Department of Computer Science, University of Helsinknl&nd

Abstract. We propose a structure-exploiting heuristic for the justifion-based
stochastic local search (SLS) method CRSat for Booleanit#atisfiability. Ex-
perimental evaluation shows that the proposed depth-beaatktic significantly
improved the performance of CRSat on structural instandsis@ from indus-
trial applications. A proof of probabilistically approxate completeness (PAC)
of CRSat relies on the same kind of variable ordering as tleeimposed by the
depth-based heuristic, and hence provides a theoretidatation for the heuris-
tic. Furthermore, we compare the behavior of (depth-baG&$§at to that of the
justification-based SLS method BC SLS driven by justificafiontiers.

Keywords: Boolean circuit satisfiability, stochastic local searakarsh heuris-
tics, problem structure

1 Introduction

Boolean (or propositional) satisfiability (SAT) [6] sohggprovide an efficient approach
to solving hard combinatorial problems arising from vasaaal-world domains. To-

day, the dominant approach to solving industrially relé\zgplication instances is pro-
vided by DPLL-based complete algorithms, especially, éctrdlriven clause learning

(CDCL) [21, 9] solvers. In particular, this has been the eags since the introduction
of CDCL in the mid nineties. Before this, stochastic locarsh (SLS) methods [18]

were considered a competitive alternative for applicatiohSAT.

At the present, local search is considered to be effectivialgnen solving random
SAT instances. Despite this fact—and partly due it—theytfdovel SLS-based SAT
algorithms has its motivations. The state-of-the-art SAlvexrs aimed at real-world
problem instances today are rather homogenic due to théhfaicthe solvers typically
implement CDCL, and are highly optimized on the implemeatatevel. Escaping
from this monoculture requires alternative algorithmiedad. One potential approach
is to develop new hybrid solvers by combining ingredient<C&fCL and SLS. Ad-
ditionally, developing better SLS techniques for struatyroblem instances can be
motivated by the fundamental question of the interplay leetwproblem structure and
search algorithms. For improving the applicability of SEi8ther work is needed espe-
cially for handling variable dependencies, a problem ifiegtas a major challenge in

* The second author is financially supported by Academy ofdfishlunder grant #132812.



the context of SLS [17]. Compared to CDCL solvers that ardititly able to focus the
search space exploration through tightly bound conflictyei®and decision heuristics,
developing structure-exploiting techniques in the contd>SLS is challenging due to
the intrinsic simplicity of the SLS approach.

One problem in developing efficient techniques for handimgable dependen-
cies is that typically SLS solvers work on the flat CNF inputniat. Although some
structure-based techniques have been developed for aingimormal form (CNF)
level SLS (e.g., CNF encodings that are more suitable for -@NE€l SLS [24]), there
is room for SLS techniques that exploit variable dependenaoiore directly. There
are also SAT solvers which—instead of demanding CNF tréinsldefore solving—
work directly on non-clausal formulas. These solvers ofte@ Boolean circuits as the
compact representation for a propositional formula in a Bi&@ structure. However,
typically such solvers are complete DPLL style non-claaigbrithms, see e.g. [15, 19,
20, 29].

A few SLS methods have been proposed for non-clausal fosnGlammon to most
of these approaches is to explicitly exploit variable dejsties through independent
(orinput) variables, i.e., sets of variables such thattagsignment for them uniquely
determines the truth values of all other variables, by fomughe search on truth as-
signments over input variables [25, 16, 27, 23,22, 28, 3].

An alternative circuit-level SLS method BC SLS was propadsdii4, 12], based on
utilizing justification frontier heuristics (see e.g. [2@pplied in some complete circuit-
level SAT solvers in electronic design automation. In BC St search is driven
top-down in the overall structure of the circuit rather thara bottom-up mode as is
done in local search methods focusing on input variables iShachieved by guiding
the search using justification frontiers that enable exiplgiobservability dont cares
and offer an early stopping criterion that allows to end thareh when the circuit is
de facto satisfiable, even if no concrete satisfying trutigeenent has yet been found.
Without including additional search techniques not tyfgaresent in CNF-level local
search methods, the justification frontier based BC SLS Wwaws to clearly improve
performance on real-world SAT instances w.r.t. its CNFel@ounterparts.

Most recently, motivated by the general idea of justificaimmsed SLS search ap-
plied in BC SLS, another justification-based circuit-leg&lS methods, CR&", was
proposed [4]. Compared to BC SLS, on one hand &RiS more simplistic in that the
search is not explicitly based on the concept of justificafiontier, motivated by the
observation that the frontier is rather costly to maintainiay search, especially in the
context on SLS. On the other hand, CRScombines justification-based search with
limited circuit-level Boolean constraint propagation,shootably, forward propagation
that exploits the explicit circuit structure. It has beeowh that variations of CR&
exhibit greatly improved performance compared to BC SLS.

In this work we study structure-based search heuristidsdércontext of CR&T. In
particular, with the aim of further improving the perforntanof CR3\T, we propose
a simpledepth-basedearch heuristic that exploits the explicit circuit sturet An
experimental evaluation reveals that the depth-baseddtieus promising, lifting the
performance of the standard CRiSfurther on real-world circuit SAT instances arising
from industrial-style applications.



The practical improvement brought by the depth-based stiuidan be theoretically
justified from a somewhat surprising perspective. Namkéyproof ofprobabilistically
approximate completene¢BAC) [11] of CRSXT applies precisely the same style of
variable ordering that is imposed by the proposed deptkébhsuristic. In addition
to this intriguing observation, we also analyze the diffexes between (depth-based)
CRSaT and BC SLS. Combining these observations, we arrive at tpethesis that
restricting justification-based local search to the jusdiion frontier may not be the
optimal choice.

The rest of this report is organized as follows. After neagsdackground on
Boolean circuits (Section 2) and the recently proposedficetion-based circuit-level
SLS methods BC SLS and CRS (Section 3), we introduce the proposed depth-
based search heuristic for CRS resulting in the variant BPTH-CRSAT. We then
analyze the behavior of EPTH-CRSAT, comparing it to BC SLS, and also motivate
the heuristic by revealing its relationship with the proitiatic approximate complete-
ness of CR&T (Section 5). Before conclusions, we provide an empiricaluation of
the proposed search heuristic (Section 6).

2 Constrained Boolean Circuits

A Boolean circuitover a finite setG of gatesis a setC of equations of the form
g = f(g1,...,9n), Whereg, g1,...,9, € Gandf : {0,1}" — {0,1} is a Boolean
function, with the additional requirements that (i) egch G appears at most once as
the left hand side in the equationsadh and (ii) the underlying directed graph

(GLEC)={{d,9) eGXxG | g:=f(....,q,...)0€C})

is acyclic. If (¢’, g) € E(C), theng’ is achild of g andg is aparentof ¢'. For a gate,
the sets of children (i.e., tHfaninof ¢) and parents (i.e., tfanoutof ¢) are denoted by
fanin(g) andfanout(g), respectively. Theescendarandancestorelations are defined
in the usual way as the transitive closures of the child amdmiaelations, respectively.
If g:= f(q1,-..,9n)isinC, theng is an f-gate (or of typef), otherwise it is afnput
gate(a gate with no children). A gate with no parents isatput gateThe sets of input
gates and output gatesd@are denoted binputs(C') andoutputs(C'), respectively. A
gate that is neither an input nor an output gate igw&rnal gate

An (truth) assignmentor C' is a (possibly partial) functiom : G — {0,1}. A
complete assignment for C is consistentf 7(¢g) = f(7(g91),...,7(gn)) for each
g := f(g1,...,gn) in C. Acircuit C has2l"Puts(C)l consistent complete assignments.
Thedomainof 7, i.e., the set of gates assignedrins denoted bylom(7). We say that
two assignments; and+’, disagreeon a gatey € dom(r) Ndom(7’) if 7(g) # 7' (g).

A constrained Boolean circui€® is a pair(C, ), whereC' is a Boolean circuit
anda is an assignment faf'. With respect to a constrained circdit*, each(g,v) €
« is aconstraint andg is constrainedto v if (g,v) € «. A complete assignment
for C satisfiesC® if (i) 7 is consistent withC', and (ii) it respects the constraints:
7 2 «. If some complete assignment satisfie¥, thenC is satisfiableand otherwise
unsatisfiableln this work we consider Boolean circuits in which the faliog Boolean



functions are available as gate types; these circuits éea offerred to adnd-Inverter
Graphs(AlIGs).

— NOT(v) is L iff visO.
— AND(v1,v2) is 1 iff both v; andv, arel.

However, notice that the techniques discussed in this peqretbe adapted for a
wider range of types. In order to keep the presentation agatithms simpler, we as-
sume that constraints only appear in the output gates ofreamad circuits. Any circuit
can be rewritten into such a normal form [15].

The restriction of an assignment to a setG’ C G of gates is defined as usual:
Tler = {{g,v) € T | g € G'}. Given a non-input gate := f(¢1,...,9,) and a value
v € {0,1}, ajustificationfor the pair(g, v) is a partial assignment: {g1,...,gn} —
{0,1} to the children ofy such thatf(r(g1),...,7(gn)) = v holds for all extensions
T D 0. Thatis, the values assigned#yo the children of; are enough to forceto take
the consistent value. A gatey is justified in an assignmentif it is assigned, i.er(g)
is defined, and (i) itis an input gate, or (§):= f(g1,...,9.) € Candr|y,, . 4115
justification for{g, 7(g)). We denote the set afnjustifiedgates in an assignmentby
unjust(C*, 7).

Thejustification congcone(C*, 7) for a constrained circui€® under an assign-
mentrT O « is defined top-down in the circuit structure, starting frdre tonstrained
gates. Intuitively, the cone is the smallest set of gateciwiicludes all constrained
gate and, for each justified gate in the set, all the gategtrétipate in some subset-
minimal justification for the gate. More formallycone(C?*, 7) is the smallest of the
setsS of gates which satisfy the following properties.

1. If {(g,v) € a, theng € S.
2. If g € S and (i) g is a non-input gate, (iiy is justified in, and (iii) (g;, v;) € o
for some subset minimal justificatienfor (g, 7(g)), theng; € S.

Notice that by this definitiofcone(C%, 7) is unambiguously defined.
As another key concept, thastification frontierof C'* underr, is the “bottom
edge” of the justification cone, i.e. those gates in the chagdre not justified:

jfront(C*, 1) = jeone(C“, 7) Nunjust(CY, 7).

Notice that we always havé&ont(C*, 1) C unjust(C®, ), and also thajfront(C*, 7)
is unambiguously defined.

A gateg is interestingin 7 if it belongs to the frontiejfront(C'*, 7) or is a descen-
dant of a gate in it; the set of all gates that are interestingis called theinterest set
underr, and denoted binterest(C%, 7). A gateg is an Ebservability don't careif it
is neither interesting nor in the justification cgaene(C*, 7).

As observed in [14] if the justification frontigiront(C“, 7) is empty for some com-
plete assignment, then the constrained circuit® is satisfiable. Wheijfront(C*, 7) is
empty, a satisfying assignment is obtained by (i) restrigti to the input gates appear-
ing in the justification cone, i.e. to the gate geihe(C*, 7) Ninputs(C), (ii) assigning
other input gates (don't cares) arbitrary values, andr@cursively evaluating the val-
ues of non-input gates. Thus, whenejfesnt(C*, 7) is empty, we say that de facto
satisfiesC'>,



Finally, given a truth assignmentand a set of gate§ C dom(7), we define

flip(G, ) = (T\ U {<g,T(g)>}) uJ g 1=}

geaG geqG

In other wordsflip(G, 7) is the truth assignment obtained by changing the truthesalu
of the gates inG, and leaving the rest of the truth-values unchanged.

3 Justification-Based Circuit-Level SLS

In this section we give an overview of the justification-lisécuit-level SLS meth-
ods BC SLS and CR& . Our goal in this paper is to develop structure-based search
heuristics for the latter, and to analyze the behavior otiheristics w.r.t. the behavior

of the former method.

3.1 BC SLS - SLS Driven by Justification Frontiers

The first SLS algorithm for constrained Boolean circuitst thses the internal gates
to drive the search was proposed by Jarvisalo, JunttilaNaedhela in [14], and later
improved and analyzed theoretically in [12]. Pseudocodéhis algorithm, called BC
SLS, is presented as Algorithm 1.

The algorithm starts with a random complete truth assignmeor C*, and, as
long as the justification frontigfront(C“, 7) is not empty, picks a random gajdrom
jfront(C*, 7) (line 6), and proceeds by making one of the following two gypEmoves.

— In thedownwardmove the selected unjustified gatés justified by flipping some
of its children. To achieve this, the algorithm construbts $et> of justifications
for g andr(g), and either picks one justification randomly (this is tten-greedy
downward move- line 12), or selects a justification that minimizes the sikzthe
interest set after the flip (this is tlggeedy downward moveline 11). As a result
of this move, the gatg becomes justified, while some gatesanin(g) potentially
become unjustified.

— Intheupwardmove the truth-value of the selected unjustified gateelf is flipped
(line 14), if possible (ifg is constrained then the algorithm resorts to a non-greedy
downward move — line 12), thus making it justified, and, ptigdly, causing one or
more gates iflanout(g) to become unjustified. The name “upward” is used because
it (often) pushes the unjustified gate(s) towards the oatpfithe circuit.

The results of the empirical evaluation of BC SLS presemtgil4, 12] demonstrate
that the algorithm is significantly more effective on indiadtcircuits than SLS-based
CNF-level algorithms. This indicates that circuit struetwan be used by SLS-based
SAT algorithms to significantly accelerate the search ftisang assignments.

As elaborated in [2], the dynamic behavior of BC SLS is a beddmetween driv-
ing the justification frontier towards the input gates usihg downward moves (as
eventually the algorithm must flip some of the inputs) andngkecovery steps to fix



Algorithm 1 BC SLS(C“, p, q, cutoff
Input: C — constrained Boolean circuit
p — the probability of non-greedy move
q — the probability of non-greedy downward move
cutoff— the cutoff, that is, the maximum number of steps
Output: status — SAT if a satisfying assignment far'® is found, UNKNOWN otherwise
T — a de-facto satisfying assignment f6f* if found, @ otherwise
1. 7 «+ arandom truth assignment f61*
2: steps«+ 0
3: while steps< cutoff do
if jfront(C*, 1) = 0 then
return (SAT,7)
g < arandom element froffront(C<, 7)
XY «+ the set of justifications fofg, 7(g))
with-probability 1 — p do
o < arandom justification from the justifications i > greedy downward move
that minimize|interest(C<, -)|
10: otherwise

QN aRr

11: if g € dom(«) or with probability ¢ do

12: o «+ random justification from¥’ > non-greedy downward move
13: else

14: o+ {{g,1—-7(9))} > upward move

15: end with-probability

16: G <+ set of gates i that disagree withr

170 7« fiip(G,7) >flip
18: steps«+ steps+ 1

19: return (UNKNOWN, ()

the incorrectly assigned gates in the justification cone (pwards moves constitute
such recovery steps). During this process, there are ne Bsito whether a mistake
has actually occurred or not: when the justification frane'deep” inside the circuit,
BC SLS relies on the truth-values in the justification conentetke progress. If these
truth-values are set incorrectly, the chances to fix thensaua!, and get progressively
smaller as the justification frontier approaches the inpissa result, recovery from
mistakes requires potentially a very large number of st€ps.algorithm described in
the following section attempts to address this deficiend©fSLS.

3.2 CR®=T - Justification-Based SLS with Limited Forward Propagation

In this section we briefly describe the circuit-level SLS hoet CR\T proposed in [4].
The algorithm uses the idea of justification-based stemaitiir the space of complete
truth assignments borrowed from BC SLS. However, it doesmaihtain the justifi-
cation frontier, and does not perform explicit upward movegstead, CRS&r uses
limited forward propagationio control the search.

Limited forward propagation is a restricted form of Bool€zonstraint Propagation
(BCP) applied on the level of circuits. Pseudocode for thecedure is presented as



Algorithm 2 LBCP-FORWARD(C?, G, 7)

Input: C'* — constrained Boolean circuit;
G — a set of gates whose truth-value change are to be propagated
T — a truth assignment far'*;
Output: 7' — an assignment fof"™ which is a result of limited forward propagation of the
assignment|q.
T
© Q.ENQUEUHG)
- while = Q.EmMPTY doO
g < Q.POPFRONT
if g € Gthen > g is one of the original gates
Q.ENQUEUHfanout(g))
else
if g ¢ dom(«) and—justifiedr’, g) then > g unconstrained and unjustifed
7'« flip({g},7")
Q.ENQUEUHfanout(g))

oNTRWONE

[EnY
e

. return 7’

[EY
=

Algorithm 2. The algorithm makes use of a data structirehich is a priority queue
of gates that uses a fixed topological ordefing of the set of gates and allows to query
thesmallestgate in this ordering (i.e., “fanin-first”) in constant tirighe priority queue
is backed up by a set, so that duplicate entries are not alloiere details on this
data-structure are given in [2].

The algorithm operates as follows: given a set of gatgshat, presumably, have
just changed their truth-value as a result of a previoustjopmed flip), the algorithm
starts by enqueuing the gates fraf Then, as long as the queue is not empty, the
smallest, according to the topological ordergateg is removed from the queue, and

— if g € G, then all gates ifianout(g) are enqueued, and the algorithm continues,

— if g ¢ G, then the algorithm checks whether or gttruth-value is consistent with
that of its children. If it is, no action is taken; if it is n@ndg is not constrained,
the algorithm flips the truth-value gf(so now it is consistent with the truth-values
of the gates irfanin(g)), and enqueues all gatesfimout(g).

The key property of the propagation procedure in the cortEitstification based
search is captured by the following proposition

Proposition 1 ([2], Propositions 5.33 and 5.34)Let C* be a constrained Boolean
circuit, G a set of gates irC, and 7 a truth assignment fot>. Further, let7' =
LBCP-FORWARD(C®, G, 7). Then, the following conditions hold.

(i) Forany gateg ¢ G, if g is justified in and is not justified in”, theng € dom(«).
(i) For any gateg € unjust(C*, ")\ G, we haver’(g) = 7(g).

3 A topological ordering<; of the gates in a Boolean circuit is any strict total ordet teapects
the condition “ifg> € fanout(g1), theng: <; g»".



Thus limited forward propagation does not create new uffiipgdtunconstrained gates,
and preserves the truth-values of unconstrained gatesaimain unjustified ofter for-
ward propagation.

Pseudocode for CRS is presented as Algorithm 3. The algorithm starts by con-
structing a complete consistent extension of a random-ralihe assignment taputs(C)
— that s, the truth-value of each unconstrained interntd gaset consistently with the
truth-values of its children. Then, as long agust(C?, 7) is not empty (that ist is
not a satisfying assignment), the algorithm selects a narghteg from unjust(C%, 7)
(line 6), constructs the set of justifications for (g, 7(g)), and performs one of the
following types of moves:

— During therandom walka random justificatiow € X' is selected, the truth-values
of the set of gates assigned in that disagree with are flipped, and the effects
of the flips are propagated using the procedure for limitesvéod propagation
LBCP-FORWARD, discussed earlier. We denote this combination of flip witi |
ited forward propagation asstepof CRSAT from now on. The implementation
of the step is encapsulated in the functiore®(C*, G, 1) (lines 17-20) that re-
turns the resulting complete assignment. The random wabkiformed with the
“walk-probability” wp.

— During thegreedy movehe algorithm selects from the s&t of justifications for
(g9, 7(g)) one of the justifications that minimizes the sizaiofust(C*, 7) after the
step (that is after the flip, followed by forward propagajion

It is easy to see that on one hand CRSs significantly simpler than BC SLS —
it uses the set of all unjustified gates, rather than theficeation frontier, to perform
steps and to make heuristic decisions. It does not make apwaves, and so has less
control parameters. On the other hand, the steps of &@R&ecrucially different from
those of BC SLS in that every flip is followed by limited forvdgoropagation.

In [2] it is shown that as the result of these modifications,38R is orders of
magnitude more efficient than BC SLS on a wide variety of itdaiscircuits. The
absence of upward moves in CRISis also justified, both theoretically and empirically.

4 Depth-Based Heuristics for CR3T

We propose a simple depth-based heuristic for @R &sulting in what we call BPTH-
CRSaT. Forintroducing the heuristic and for discussing the retethip between BPTH-
CRSaT and BC SLS, we first introduce some additional concepts.

Definition 1. LetC'* be a Boolean circuit. Aathr in C¢ is any hon-empty sequence
of gates(¢1, ..., gn), such that for every < i <mn, g; € fanin(g;—1).

Note that a path may not be empty but may contain only one gate.

Definition 2. Let C be a constrained Boolean circuit, a truth assignment fo€'<,
andg a gate inunjust(C*, 7). Letw = (¢1,...,gx) be a path inC* such thatg, is
constrained, and = g. Then,r is ajustification pattfor g in C* underr if



Algorithm 3 CRSAT(C*, wp, cutoff)
Input: C — constrained Boolean circuit
wp — the noise parameter, that is, the probability of randonkwal
cutoff— the cutoff, that is, the maximum number of steps
Output: status — SAT if a satisfying assignment faf'* is found, UNKNOWN otherwise
T — a satisfying assignment far* if found, () otherwise
1: 7 + a complete consistent extension of a random truth assignméarputs(C)
2: steps«— 0
3: while steps< cutoff do
if unjust(C*,7) = 0 then
return (SAT, 1)
g < arandom element frominjust(C*, )
XY + the set of justifications fotg, 7(g))
with-probability wp do
o <+ random element oFf > random walk
otherwise
o + arandom justification from the justifications i > greedy downward move
that minimize|unjust(C®, -)| after step
12: end with-probability
13: G <+ set of gates i that disagree withr
14: T+ STEP(C*,G,T) > flip + limited forward propagation
15: steps«— steps+ 1
16: return (UNKNOWN, 0)

Fooo~No o

17: function STEM(C*, G, T) > Flips gates inG and propagates forward
18: 7' «flip(G,7)

19: 7'+ LBCP-FORWARD(C*, G, 7’)

20: return 7’

(i) foreveryi < k, g; is justified under-; and
(i) foreveryi <k, (gi+1,7(gi+1)) isin some subset-minimal justification f@s, 7(g;)).

In other wordsst = (g1, ..., gk) is a justification path fog, € unjust(C<,7) if
for everyi < k we havey; € jcone(C?,7) \ unjust(C®, 7).

Proposition 2. Let C“ be a constrained Boolean circuit,a truth assignment fo€'*,
and g a gate inunjust(C*, 7). Then,g € jfront(C*, ) if and only if there exists a
justification path forg in C underr.

Proof. Follows from the definition offront(C*, 7).

Basically, a justification path for a gateis a witness of (reason for) the fact that
g € jfront(C*, 7).

Consider now some execution of CRS and assume that the ggte unjust(C“, 7)
selected on line 6 of the algorithm is such that jfront(C¢, 7). Leto be the justifica-
tion for (g, 7(g)) selected by the algorithm (either greedily or randomly)Huy énd of
line 12, and= be the set of gates nthat disagree withr. Let us consider the effects of
the step of the algorithm performed on line 14. Sigce jfront(C*, 7) by assumption,



by Proposition 2 there is a justification path founderr. After the stepg becomes jus-
tified, and one or more gatesdpossibly become unjustified — let us denote the subset
of gates inG that become unjustified after the step®@}. Notice that since each gates
g € G’ belongs to some subset minimal justification §othe justification path foy

can now be extended to. There is a possibility that' is part of theuniquejustification
path for some other gate jfront(C%, 7), and hence whegl becomes unjustified it will
“cut off” this path. This situation isotpossible, however, if the gateselected on line
line 6 of the algorithm is taken to teegate with the maximum depth among the gates
in jfront(C%, 7), that is, from the set

argmax depth(C®, g),
g€Ejfront(C,T)

where

« ~_ O if g € outputs(C)
depth(C*, g) = {1 + max{depth(C<, ¢') | ¢' € fanout(g)} otherwise.
1)
With this intuition, combined with the fact that CR8focuses on currently unjus-
tified gates (not only gate in the current justification fient we denote by BPTH
CRSaT the version of CR&T in which the unjustified gatg on line 6 is selected
at random from theurrent setunjust(C*, 7) of unjustified gates at maximum depth

according to(1).

5 Insights into DEPTH-CRSAT

BC SLS uses the justification frontier and searchesléofactosatisfying assignments,
while in CRSAT the search is focused on the seatifunjustified gates. Related to this
fact, in this section we analyze differences in the behagfdBC SLS and EPTH
CRAT. Namely, we show that even by focusing search on unjustitiéelsgwith max-
imum depth as is done inEBPTH-CRSAT, there are examples of configurations under
which DEPTH-CRSAT may choose to justify a gate that is not in the current justific
tion frontier. In other words, in generalHPTH-CR3AT does not implicitly maintain
the justification frontier during search, something whishlone explicitly in BC SLS
(with additional cost).

Additionally, and somewhat surprisingly, a proof of CRSeing probabilistically
approximately complete (PAC) relies very much on focusemysh on unjustified gates
with maximum depth. This fact directly implies that even there restricted BPTH-
CR=AT is PAC, and hence provides an additional motivation for wpgl the depth-
based heuristics in practice due to more focused searcbutithsing PAC.

5.1 Justification Frontiers and DEPTH-CRSAT

An apparent difference between the methods is that BC SL8taias an explicit jus-
tification frontier during search and focuses search onsgatehe frontier, CR&T

10



relaxes the search to consider any unjustified gates (gharitiere are additional un-
justified gates that are not part of the current justificafiontier).

This poses the question of the relationship between thefsetjostified gates (in
CR=AT) and the justification frontier (in BC SLS). We now look atglgjuestion from
the perspective of BPTH-CRSAT. Especially, consider the following observations.

— Initially, we haveunjust(C*, ) = jfront(C%, 7), sincer is a consistent extension
of some truth assignment teputs(C*).

— By focusing search on unjustified gates with maximum deptin ®ePTH-CRSAT
and as discussed in Section 4, justification paths for thesgajfront(C%, 1) are
not cut off.

— By Proposition 1, limited forward propagation does not teegew unjustified un-
constrained gates.

Taking these observations into account, it appears thae fkeno danger of “cutting
off” existing justification paths during the BCP. Hence, VWgnfalize the following
conjecture.

Conjecture 1 Let C“ be a constrained Boolean circuit, ang be a truth assignment
at the end of théth step of DEPTH-CRSAT on C'®. Then, for anyt > 0, it holds that
unjust(C?, 13,) = jfront(C*, 13).

However this conjecture turns out to be falsgs demonstrated in the following.

Example 1.Consider the circui€® depicted in Figure 1, withh = (g1, 0). The dashed
lines represent edges that havei@r gate attached to them. Assume that the initial
truth assignment, which we denote by, is a complete consistent extension of the
assignment (i1, 1), (i2, 1), (i3, 1)} — this assignment is presented in Figure 1(a). The
letter “u” (letter “j”, respectively) denotes the fact thatgate is unjustified (justified,
respectively). We follow the execution ofd®TH-CRSAT on C.

1. Figure 1(a)unjust(C*, 1) = {g1}, and so the gate selected by the algorithm on
line 6 isg;. Assume that the algorithm performs a random walk step dedtsdhe
justification{ (g2, 1)} for (g1, 0). The algorithm flips the value @f,. Then forward
propagation does not change any assigned values. Theimgagsignmentzs, is
depicted in Figure 1(b).

2. Figure 1(b)unjust(C*,5) = {g2}. Since{{g4,1)} is the only justification for
(g2, 1), the algorithm flips the value af;. Again, forward propagation does not
change any assigned values. The assignmgnesulting from flippinggy, is de-
picted in Figure 1(c).

3. Figure 1(c)unjust(C,13) = {g4}. Again,{(gs, 1)} is the only justification for
(94, 1), and the algorithm flips the value @f. This time, forward propagation
assignggs, 0) and(g, 0). Let us denote the resulting assignment, depicted in Fig-
ure 1(d), byry.

Note that undery, both of the gateg;, andgs are unjustified, and thusijust(C, 74) =
{91, g5 }. Howeverjfront(C*, 14) = {¢1} —thatis, the justification path for the gate
got “cut off” by the gatey;.

11



Thus, even though the forward propagation does not creataingistified uncon-
strained gates, the possibility of it creating new unjustiftonstrained gates may result
in some justification paths being “cut off”, which means tGanjecture 1 fails. B

\
\

(© (d)

Fig. 1. A counterexample for Conjecture 1: (a) — initial situati¢io) — after the flip ofgz; (c) —
after the flip ofg4; (d) — after the flip ofgs and forward propagation.
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Hence we have the following.

Proposition 3. There are cases in whidDEpPTH-CRSAT may select to justify a gate
that is not in the current justification frontier.

In other words, we always hauemjust(C*, 1) 2 jfront(C*, ), and even for
DEPTH-CRSAT there are cases in whichjust(C*, 7,) D jfront(C%, 7). On the other
hand, it is not clear that restricting search on gates inukéfication frontier, as done
in the BC SLS method, is always a good ide#he presence of forward propagatibn
In fact, some of the empirical data presented in [2] suggdsiisthis may not be the
case.

It should also be noted that, from a practical perspectigntaining the justifica-
tion frontier, even incrementally, is in the worst-casdeatcostly. Indeed, experimental
results in [2, 4] imply that CRST exhibits dominating performance w.r.t. BC SLS. In
the experimental evaluation presented in this paper, weshdlw that the depth-based
heuristic of DEPTH-CRSAT improves the performance of CRSfurther. While, as we
demonstrated above, the power of depth-based heuristi@ioantext of CR&T does
not seem to be related to the justification frontier, it camkglained by the analysis of
the PAC property of CRA&T, presented in the following section.

5.2 DePTH-CRSAT and the PAC property of CRSAT

The notion ofProbabilistic Approximate Completeness (PAE)SLS algorithms was
introduced by Hoos in [11]. Stated informally, an SLS algfom is PAC if, for any
satisfiable problem instance, the probability of finding luson is asymptotically 1.

Definition 3 (PAC; adapted from [11]). A SAT algorithmA is probabilistically ap-
proximately complete (PACQjJ for any satisfiable instancg,

lim P(Runtimea p <t) =1, (2)
t—o00
where P(Runtimea r < t) denotes the probability thak finds a satisfying assign-
ment forF' in time < t. Further, A is essentially incomplet# it is not PAC, that is,
there exists a satisfiable instangesuch that

lim P(Runtimea.p <t) < 1. 3)
t—o0
Typically, the PAC property of an SLS algorithm is proven hpwing that from any
given non-satisfying assignmentthere is a non-zero probabiligythat the algorithm
arrives at some fixed satisfying assignmehtvithin a fixed number of steps. Note that
when each step takes finite time, we can associate stepsmwélirtthis analysis. Then,
the sequence of the firststeps taken by the algorithm can be split into fragments of
steps each, and, when no assumptions are made with regaslitottal assignment,

4 As an intriguing complementary observation, we note thaietiiiciency of DPLL and CDCL
has been theoretically shown to notably decreasarmatisfiableformulas in case decision
heuristics are restricted using justification frontier3][1
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each fragment can be treated independently. Then, the Rég2gy follows from the
analysis of the resulting Markov chain.

Its easy to see that all CNF-level SLS methods that alloweemdialk duringany
stepare PAC [11] — random walk allows the algorithm to “cheat” bteairistic by giving
a non-zero probability to the event that the algorithm willka an improving step by
flipping the “correct” variable in a randomly chosen undaiclause (any unsatisfied
clause has such a variable). Similar argument, generalizéek setting of constrained
Boolean circuits, was used in [12] to show the PAC propertB6f SLS. In the case
of CRSaT, this approach to the proof of PAC property does not work duné fact
that the deterministic forward propagation makes nontlcltanges to the current truth
assignment. Hence, there is a possibility that by settimgtthth-value of one gate
correctly, the truth-values of other gates may become nectrNevertheless, CRS,
is indeed PAC.

Theorem 2 ([2], Theorem 5.48). The CRSAT algorithm with any noise parameter
valuewp > 0 and infinite cutoff is probabilistically approximately cpfate.

The proof of Theorem 2 relies on the following two proposisoFor detailed proofs
we refer the reader to [2]. For the following, given a conisied Boolean circuiC'®, a
truth assignment is called arestart assignmenif unjust(C*, 7) C dom«).

Lemma 1 ([2], Theorem 5.46)Starting from any restart assignment, there is a non-
zero probability that within a bounded number of stePR SaT will set all input gates
correctly, thus arriving at a satisfying assignment.

Proof sketch. If on line 6 CR&T always selects an unjustified gate with maximum
depth (note that this event has always a non-zero probgbitien, with non-zero
probability, at least one input gate will be set correctlfeafit mostdepth(C®) =
max, depth(C?, g) steps, wherg ranges over all gates ifi. O

Lemma 2 ([2], Theorem 5.47)From any truth assignment, there is a non-zero proba-
bility that within a bounded number of ste@R SAT will reach a restart assignment.

Proof sketch.If CRSAT selects at each step an unjustified gate with maximum depth
on line 6, then after a bounded number of steps all unconsiiainjustified gates will
become justified. When this is the case, the truth assignimené restart assignment.

O

Proof sketch (of Theorem 2)Consider any execution of CR$ on a circuitC?, let
7; be a truth assignment on stepf this execution, and leX; be a random variable
defined as follows:

0 if ; is a non-satisfying restart assignment
X; =<1 if r; is a non-satisfying non-restart assignment
2 if 7; is a satisfying assignment.

Letk; andks be the boundsin Lemmas 1 and 2, respectively, and consigleetiuence
of random variables

<X07 Xk’l 5 Xk1+k27X2k1+k2aX2k’1+2k2a R >
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It is not difficult to see that this is a Markov chain. Furthem®, using Lemmas 1 and
2, one can show that the state 2 is the only persistent state. O

It is clear that depth plays an essential role in establgsiie PAC property of
CRSaT. Notably, the same reasoning establishes the PACEHTB-CRSAT. Further-
more, since BPTH-CRSAT selects a deepest unjustified gate with the probability 1,
the bounds on the number of steps used in Lemmas 1 and 2 arfcsigity smaller.
Hence, in theory, BPTH-CRSAT converges to a satisfying assignment significantly
faster. The results of the empirical evaluation &fREYH-CRSAT presented in the next
section confirm that this is also the case in practice.

6 Experiments

To evaluate the effectiveness of the depth-based heufiistiCRSAT presented in this
paper we compare empirically the performance of @GR®ith that of DEPTH-CRSAT.
As also suggested in [14] in the context of BC SLS, in our impatations of CR&r
and DeEpTH-CRSAT justifications used for flipping truth-values are selectexhf the
set of subset minimal justifications for the gate value; meotvords, for a false AND-
gate the value of a single child is flipped, and for a true AN&degthe values of all its
children flipped. This strategy gave positive results ifipri@ary experiments. Addi-
tionally, we note that both of the implementations applguit-level Boolean constraint
propagation as a preprocessing step before search.

We follow the methodology for comparative performance gsial of SLS-based
SAT algorithms described in [10]. According to this methlodyy, the comparative
analysis is performed by obtaining the empirical run-timd aun-length distributions
(RTDs/RLDs) of the solvers that implement the algorithmseomariety of bench-
mark circuits. In our experiments, the RTDs/RLDs were ai#tdifrom 100 runs on
each benchmark circuit. The near-optimal setting of th&wabbability parameteswp
was determined in the preliminary set of experiments. Sindkis paper we are con-
cerned with large-scale effects of the heuristics, we oplygare the medians of the
obtained distributions. The medians are compared by ermgdige Mann-Whitney/-
test (see [26] for example). Here we consider a differenteden the median of the
run-times/run-length of two solvertatistically significantvhen thelU-test rejects the
null hypothesis at the-value of at most 0.05. All experiments were performed under
Linux (kernel version 2.6.9) using a Intel Core 2 Duo 3.00ZGiocessor and 4 GB of
RAM.

Before presenting the results, we shortly describe theaadks used in the ex-
periments.

6.1 Benchmarks
The evaluation of the effectiveness of the depth-basedidteun CRSAT was per-

formed on over 400 benchmark circuits from four differemmtiemark classes. These
circuits come directly from various industrial applicatsoof SAT.
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hwmcc08-sat This is the set of 204 satisfiable benchmarks representin@ Bkbb-
lems (with step bound = 45) obtained from all the sequential Hardware Model
Checking Competition HWMCC 2008 problems. Taiegbnt tool [5] was used
for the time frame expansion.

smtgfbv-sat These AIG circuits were obtained by bit-blasting instarfoes theQ~_BV
category (theory of bit-vectors) used in the SMT compati2009 [1]. For the bit-
blasting we used thBool ect or SMT solver [8]. We used 61 satisfiable bench-
marks from this set for the experiments.

sss-sat-1.0These circuits by Velev originate from “formal verificatiof buggy vari-
ants of a dual-issue superscalar microprocessor with &ecsp multicycle func-
tional units, and branch prediction” [30]. The benchmarlesavoriginally in the
| SCAS format, and we converted them to AlGs usiABC [7]. We used 96 of
these circuits in our experiments.

vliw-sat-1.1 This is another suite of circuits by Velev originating frorfofmal veri-
fication of buggy variants of a VLIW microprocessor” [30]. Asth the previous
set, the benchmarks were converted fromItiBCAS format to AIGs usingABC.
We used 98 of these circuits in our experiments.

6.2 Results

To evaluate the effectiveness of the depth-based seleatianjustified gates empiri-
cally, we implemented two SAT solvers: the SAT soleersat that implements the
CRSaT algorithm described in Algorithm 3, and the SAT soleersat - d that imple-
ments the depth-based variare®r+-CRSAT.

In order to allow for the retrieval of the deepest unjustifigde incr sat - d, the
setunjust(C?*, 7) of unjustified gates is kept in a heap datastructure. Thesttataure
allows to retrieve the deepest unjustified gate in consiarg.tHowever, there is a
performance penalty for insertions of the ordetaf(|unjust(C*, 7)|).

Table 1 summarizes the results of the empirical comparigtwéen the perfor-
mance ofcr sat andcr sat - d. It is clear that overaltr sat - d takes significantly
fewer steps thanr sat to find a solution. Despite the fact that the use of a heap in-
curs a run-time penalty, the differences in the number ofcéeateps translate into
the improvement in the run-time. As a resuwt,sat - d often solves more problems
from the benchmark set tharr sat . Figure 2 deserves special attention as it demon-
strates that the performance improvementsrisat - d are more pronounced on dif-
ficult problems than on the easy ones. The depth-basedgasitifn selection seems to
have particularly large impact on medium to hard probleromfthehwrc c08- sat
andsnt gf bv- sat benchmark sets.

Interestingly, as the plots in Figure 3 demonstrate, thatike performance im-
provements are not necessarily directly related eitheneadepth of instances or their
size. Thus, we conjecture that some additional structungberties of circuits are at
play during the search for satisfying assignments in @RS
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Table 1.Performance comparison betwemmsat andcr sat - d. The second column shows the
number of instances from each benchmark class used for thpazson. The third and fourth
columns show the number of instances that were solvedguecess rate ové&i0%) within the
allocated 300 seconds per try, by each solver. The remafoingcolumns compare the total
median number of steps and the total median run-time in CRbnsis taken by each solver on
those instances that were solvedtmnth solvers.

Benchmark classinstances Instancesinstanceg Total steps Total stepg{ Total time|Total time
from this|| solved | solved || on solved| on solved|| on solved on solved
class by both | by both || by both | by both
crsat-d| crsat ([crsat-d| crsat |crsat-d| crsat
hwntc08- sat 204 137 103 || 7,227,75363,962,348 197.41 | 1289.12
snt gf bv- sat 61 53 38 2,124,98415,242,248 164.02 | 651.50
sss-sat-1.0 96 79 74 11,197,4485,020,064 600.16 | 1284.55
viiwsat-1.1| 98 94 95 8,984,087/10,084,139 2014.17| 2057.44
hwmccOS-satI 5] I I
smtgfbv-aigs-sat 2
sss-sat-1.0 v
vliw-sat-1.1 < .
1e+07 EAFEER & S - 15 7 4
O DDDL v v U
1e+06 | a m e
o éj%
oo, 9
oo
100000 F oo o __

crsat median steps

10000

1000

Cutoff 1e+07 —

1 1 1 1
1000 10000 100000 1e+06
crsat-d median steps

100

100 1e+07

Fig. 2. Performance comparison betweensat andcr sat - d. The plot, drawn on the loga-
rithmic scale, depicts the correlation between median rurobsteps required by the solvers to
find solutions — each median was measured from 100 tries fir ieatance, per solver. Those
instances where the performance differences are nottataliig significant p-value of U-test

> 0.05) are not shown.
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Fig. 3. The correlation between the performance improvementrisat - d, as opposed to
cr sat, with the depth and the size of the circuits solvable by batliess from three bench-
marks sets. Those instances where the performance diffeseare not statistically significant
(p-value of U-test> 0.05) are not shown.
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7 Conclusions

We proposed a new, simple structure-based heuristic fqughiéication-based circuit-
level SLS method CR& that combines justification-based SLS with forward prop-
agation. Resulting in the variantEPTH-CRSAT, the proposed depth-based heuristic
increases the efficiency of CRS on various structural real-world circuit benchmark
classes. We also showed that the concept of gate depth ptaysral role in the proof of
the fact that CR&T is probabilistically approximately complete (PAC). Thismedi-
ately implies that even the restricted variare®rH-CRSAT is also PAC, which further
motivates the depth-based heuristic. This also implies ftiausing search based on
gate depth is in a sense a natural choice when combined wiited forward propaga-
tion. Additionally, one should notice that there are caseemthe depth-based heuristic
focuses search also on gates that do not appear in the jatifidrontier, in contrast
to the BC SLS method.

The structural property of gate depth, while quite a simple,yields good results
as a heuristic in practice when applied in conjunction wittited forward propagation.
This raises the question of whether there are more intratatietural gate properties—
or evencombinationsof different properties—harnessing which even more effect
and focused search heuristics could be developed. Indeedlaping a deeper under-
standing of the central structural properties for enhamcircuit-level SLS, especially
in conjunction with forward propagation, remains an impattpart of further work. In
addition to the important factor of practical efficiencyeger insights into the interplay
between problem structure and search algorithms are esjuir
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