
Weak Models of Distributed Computing,
with Connections to Modal Logic

Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju,
Tuomo Lempiäinen, Kerkko Luosto, Jukka Suomela, and Jonni Virtema

LH, AK, JV: School of Information Sciences, University of Tampere
MJ, JL, TL, JS: Helsinki Institute for Information Technology HIIT,

Department of Computer Science, University of Helsinki
KL: Department of Mathematics and Statistics, University of Helsinki

ABSTRACT
This work presents a classification of weak models of dis-
tributed computing. We focus on deterministic distributed
algorithms, and we study models of computing that are
weaker versions of the widely-studied port-numbering model.
In the port-numbering model, a node of degree d receives mes-
sages through d input ports and it sends messages through d
output ports, both numbered with 1, 2, . . . , d. In this work,
VVc is the class of all graph problems that can be solved in
the standard port-numbering model. We study the following
subclasses of VVc:

VV: Input port i and output port i are not necessarily
connected to the same neighbour.

MV: Input ports are not numbered; algorithms receive a
multiset of messages.

SV: Input ports are not numbered; algorithms receive a
set of messages.

VB: Output ports are not numbered; algorithms send the
same message to all output ports.

MB: Combination of MV and VB.
SB: Combination of SV and VB.

Now we have many trivial containment relations, such as
SB ⊆ MB ⊆ VB ⊆ VV ⊆ VVc, but it is not obvious if, e.g.,
either of VB ⊆ SV or SV ⊆ VB should hold. Nevertheless, it
turns out that we can identify a linear order on these classes.
We prove that SB (MB = VB (SV = MV = VV (VVc.
The same holds for the constant-time versions of these classes.

We also show that the constant-time variants of these
classes can be characterised by a corresponding modal logic.
Hence the linear order identified in this work has direct
implications in the study of the expressibility of modal logic.
Conversely, we can use tools from modal logic to study these
classes.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems

c© ACM, 2012. This is the authors’ version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in Proc. 31st Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC’12, July 16–18, 2012, Madeira, Portugal).
http://doi.acm.org/10.1145/2332432.2332466

Keywords
anonymous networks, deterministic distributed algorithms,
graph problems, modal logic, port-numbering model

1. INTRODUCTION
We introduce seven complexity classes, VVc, VV, MV, SV,

VB, MB, and SB, each defined as the class of graph prob-
lems that can be solved with a deterministic distributed
algorithm in a certain variant of the widely-studied port-
numbering model. We present a complete characterisation of
the containment relations between these classes, as well as
their constant-time counterparts, and identify connections
between these classes and questions related to modal logic.

1.1 Distributed Algorithms
For our purposes, a distributed algorithm is best under-

stood as a state machine A. In a distributed system, each
node is a copy of the same state machine A. Computation
proceeds in synchronous steps. In each step, each machine

(1) sends messages to its neighbours,
(2) receives messages from its neighbours, and
(3) updates its state based on the messages that it received.

If the new state is a stopping state, the machine halts.
Let us now formalise the setting studied in this work.

We use the notation [k] = {1, 2, . . . , k}. For each positive
integer ∆, let F(∆) consist of all simple undirected graphs
of maximum degree at most ∆. A distributed algorithm for
F(∆) is a tuple A = (Y,Z, z0,M,m0, µ, δ), where

• Y is a finite set of stopping states,

• Z is a (possibly infinite) set of intermediate states,

• z0 : {0, 1, . . . ,∆} → Z defines the initial state depend-
ing on the degree of the node,

• M is a (possibly infinite) set of messages,

• m0 ∈M is a special symbol for “no message”,

• µ : Z × [∆] → M is a function that constructs the
outgoing messages,

• δ : Z ×M∆ → Y ∪ Z defines the state transitions.

To simplify the notation, we extend the domains of µ and
δ to cover the stopping states: for all y ∈ Y , we define
µ(y, i) = m0 for any i ∈ [∆], and δ(y, ~m) = y for any
~m ∈M∆. In other words, a node that has stopped does not
send any messages and does not change its state any more.

http://doi.acm.org/10.1145/2332432.2332466

G:

p:

=

1
2

3 1
2

3
2

11 2

2 1
2

1

1
1

3
2
1

1
2
1

2
1

Figure 1: A port numbering p of graph G. Here we
present p using two different notations.

3
1

2 1
2

3
2

11 2

2 1
1

2

1
1

Figure 2: Consistent port numbering.

1.2 Port Numbering
Now consider a graph G = (V,E) ∈ F(∆). We write

deg(v) for the degree of node v ∈ V . A port of G is a pair
(v, i) where v ∈ V and i ∈ [deg(v)]. Let P (G) be the set of
all ports of G. Let p : P (G)→ P (G) be a bijection. Define

A(p) = {(u, v) : p((u, i)) = (v, j) for some i and j},
A(G) = {(u, v) : {u, v} ∈ E}.

We say that p is a port numbering of G if A(p) = A(G); see
Figure 1. The intuition here is that a node v ∈ V has deg(v)
communication ports; if it sends a message to its port (v, i),
and p((v, i)) = (u, j), the message will be received by its
neighbour u from port (u, j).

We say that a port numbering is consistent if p is an
involution, i.e.,

p
(
p((v, i))

)
= (v, i) for all (v, i) ∈ P (G).

See Figure 2 for an example.

1.3 Execution of an Algorithm
For a fixed distributed algorithm A, graph G, and port

numbering p, we can define the execution of A in (G, p)
recursively as follows.

The state of the system at time t = 0, 1, . . . is represented
as a state vector xt : V → Y ∪ Z. At time 0, we have
x0(u) = z0(deg(u)) for each u ∈ V .

Now assume that we have defined the state xt at time t.
Let (u, i) ∈ P (G) and (v, j) = p−1((u, i)). Define

at+1(u, i) = µ(xt(v), j).

In words, at+1(u, i) is the message received by node u from
port (u, i) in round t+ 1, or equivalently the message sent

by node v to port (v, j). For each u ∈ V we define a vector
~at+1(u) of length ∆ as follows:

~at+1(u) =
(
at+1(u, 1), at+1(u, 2), . . . , at+1(u,deg(u)),

m0,m0, . . . ,m0

)
.

That is, we simply take all messages received by u, in
the order of increasing port number; the padding with the
dummy messages m0 is just for notational convenience so
that ~at+1(u) ∈ M∆. Finally, we define the new state of a
node u ∈ V as follows:

xt+1(u) = δ(xt(u),~at+1(u)).

We say that A stops in time T in (G, p) if xT (u) ∈ Y for
all u ∈ V . If A stops in time T in (G, p), we say that S = xT
is the output of A in (G, p). Here S(u) = xT (u) is the local
output of u ∈ V .

1.4 Graph Problems
A graph problem is a function Π that associates with each

undirected graph G = (V,E) a set Π(G) of solutions. Each
solution S ∈ Π(G) is a mapping S : V → Y ; here Y is a finite
set that does not depend on G.

We emphasise that this definition is by no means universal;
however, it is convenient for our purposes and covers a wide
range of classical graph problems:

• Finding a subset of vertices. A typical example is
the task of finding a maximal independent set : Y =
{0, 1}, and each solution S is the indicator function of
a maximal independent set.

• Finding a partition of vertices. A typical example is
the task of finding a vertex 3-colouring : Y = {1, 2, 3},
and each solution S is a valid 3-colouring of the graph.

• Deciding graph properties. A typical example is decid-
ing if a graph is Eulerian: Here Y = {0, 1}. If G is
Eulerian, there is only one solution S with S(v) = 1
for all v ∈ V . If G is not Eulerian, valid solutions are
mappings S such that S(v) = 0 for at least one v ∈ V .
Put otherwise, all nodes must accept a yes-instance,
and at least one node must reject a no-instance.

The idea is that a distributed algorithm A solves a graph
problem if, for any graph G and for any port numbering of G,
the output of A is a valid solution S ∈ Π(G). However, the
fact that we study graphs of bounded degree requires some
care; hence the following somewhat technical definition.

Let Π be a graph problem. Let T : N × N → N. Let
A = (A1,A2, . . .) be a family of distributed algorithms. We
say that A solves Π in time T if the following hold for any
∆ ∈ N, any graph G ∈ F(∆), and any port numbering p
of G:

(a) Algorithm A∆ stops in time T (∆, |V |) in (G, p).
(b) The output of A∆ is in Π(G).

We say that A solves Π in time T assuming consistency if
the above holds for any consistent port numbering p of G.
Note that we do not even require that A stops if the port
numbering happens to be inconsistent.

We say that A solves Π or A is an algorithm for Π if there
is any function T such that A solves Π in time T . We say
that A solves Π in constant time or A is a local algorithm
for Π if T (∆, n) = T ′(∆) for some T ′ : N→ N, independently
of n.

1.5 Algorithm Classes
Now we are ready to introduce the concepts studied in this

work: variants of the definition of a distributed algorithm.
For a vector ~a = (a1, a2, . . . , a∆) ∈M∆ we define

set(~a) = {a1, a2, . . . , a∆},
multiset(~a) =

{
(m,n) : m ∈M,n = |{i ∈ [∆] : m = ai}|

}
.

In other words, multiset(~a) discards the ordering of the ele-
ments of ~a, and set(~a) furthermore discards the multiplicities.

Let Vector be the set of all distributed algorithms, as
defined in Section 1.1. We define three subclasses of distrib-
uted algorithms, Set ⊆ Multiset ⊆ Vector, and Broadcast ⊆
Vector:

• A ∈ Multiset if multiset(~a) = multiset(~b) implies δ(x,~a)

= δ(x,~b) for all x ∈ Z,

• A ∈ Set if set(~a) = set(~b) implies δ(x,~a) = δ(x,~b) for
all x ∈ Z.

• A ∈ Broadcast if µ(x, i) = µ(x, j) for all x ∈ Z and
i, j ∈ [∆].

Classes Multiset and Set are related to incoming messages.
Intuitively, an algorithm in class Vector considers a vector of
incoming messages, while an algorithm in Multiset considers
a multiset of incoming messages, and an algorithm in Set
considers a set of incoming messages. Algorithms in Multiset
and Set do not have any access to the numbering of incoming
ports.

Class Broadcast is related to outgoing messages. Intuitively,
an algorithm in class Vector constructs a vector of outgoing
messages, while an algorithm in Broadcast can only broadcast
the same message to all neighbours. Algorithms in Broadcast
do not have any access to the numbering of outgoing ports.

1.6 Problem Classes
So far we have defined classes of algorithms; now we will

define seven classes of problems:

Π ∈ VVc: there is an algorithm A ∈ Vector that solves Π
assuming consistency,

Π ∈ VV: there is an algorithm A ∈ Vector that solves Π,

Π ∈ MV: there is an algorithm A ∈ Multiset that solves Π,

Π ∈ SV: there is an algorithm A ∈ Set that solves Π,

Π ∈ VB: there is an algorithmA ∈ Broadcast that solves Π,

Π ∈ MB: there is an algorithm A ∈ Multiset ∩ Broadcast
that solves Π,

Π ∈ SB: there is an algorithm A ∈ Set ∩ Broadcast that
solves Π.

We will also define the constant-time variants of the classes:

Π ∈ VVc(1): there is a local algorithm A ∈ Vector that
solves Π assuming consistency,

Π ∈ VV(1): there is a local algorithm A ∈ Vector that
solves Π, etc.

Note that consistency is irrelevant for all other classes; we
only define the consistent variants of VV and VV(1). The
classes are summarised in Figure 3a. Figure 4 summarises
what information is available to an algorithm in each class.

=

=

=

≠

≠

≠

(a)

VVc

VV

MV

SV

VB

MB

SB

VVc

VV

MV

SV

VB

MB

SB

(b)

Figure 3: (a) Trivial subset relations between the
classes. (b) The linear order identified in this work.

VVc:

VV:

G:

MV, SV:

VB:

MB, SB:

1
2

3 1
2

3
2

11 2

2 1
2

1

1
1

1
2

3

1 2

2
1

1

1
2

3
2

1

2 1

1

3
1

2 1
2

3
2

11 2

2 1
1

2

1
1

Figure 4: Auxiliary information that is available to
a distributed algorithm in each class.

2. CONTRIBUTIONS
This work is a systematic study of the complexity classes

VVc, VV, MV, SV, VB, MB, and SB, as well as their constant-
time counterparts. Our main contributions are two-fold.

First, we present a complete characterisation of the con-
tainment relations between these classes. The definitions of
the classes imply the partial order depicted in Figure 3a. For
example, classes VB and SV are seemingly orthogonal, and
it would be natural to assume that neither VB ⊆ SV nor
SV ⊆ VB holds. However, we show that this is not the case.
Unexpectedly, the classes form a linear order (see Figure 3b):

SB (MB = VB (SV = MV = VV (VVc. (1)

In summary, instead of seven classes that are possibly distinct,
we have precisely four distinct classes. These four distinct
classes of algorithms can be concisely characterised as follows,
from the strongest to the weakest:

(1) consistent port numbering (class VVc),
(2) no incoming port numbers (class SV and equivalent),
(3) no outgoing port numbers (class VB and equivalent),
(4) neither (class SB).

We also show an analogous result for the constant-time ver-
sions:

SB(1) (MB(1) = VB(1) (SV(1)

= MV(1) = VV(1) (VVc(1).
(2)

The main technical achievement here is proving that SV =
MV; this together with the ideas of a prior work [3] leads to
the linear orders (1) and (2).

Second, we identify a novel connection between distributed
computational complexity and modal logic. In particular,
the classes VVc(1), VV(1), MV(1), SV(1), VB(1), MB(1), and
SB(1) have natural characterisations using certain variants of
modal logic. This correspondence allows one to apply tools
from the field of modal logic—in particular, bisimulation—to
facilitate the proofs of (1) and (2). Conversely, we can lift
our results from the field of distributed algorithms to modal
logic, by re-interpreting the relations identified in (2).

3. MOTIVATION AND RELATED WORK
In this work, we study deterministic distributed algorithms

in anonymous networks—all state transitions are determin-
istic, all nodes run the same algorithm, and initially each
node knows only its own degree. This is a fairly weak model
of computation, and traditionally research has focused on
stronger models of distributed computing.

3.1 Stronger Models
There are two obvious extensions:

(a) Networks with unique identifiers: initially, all nodes are
labelled with O(logn)-bit, globally unique identifiers.
With this extension, we arrive at Linial’s [17] model of
computation; Peleg [21] calls it the local model.

(b) Randomised distributed algorithms: the nodes have
access to a stream of random bits. The state transitions
can depend on the random bits.

Both of these extensions lead to a model that is strictly
stronger than any of the models studied in this work. The
problem of finding a maximal independent set is a good

example of a graph problem that separates the weak models
from the above extensions. This problem is clearly not in
VVc—a cycle with a symmetric port numbering is a sim-
ple counterexample—while it is possible to find a maximal
independent set quickly in both of the above models.

3.2 Port-Numbering Model
While most of the attention is on stronger models, one of

the weaker models has been studied extensively since the
1980s. Unsurprisingly, it is the strongest of the family, model
VVc, and it is commonly known as the port-numbering model
in the literature.

The study of the port-numbering model was initiated by
Angluin [2] in 1980. Initially the main focus was on problems
that have a global nature—problems in which the local output
of a node necessarily depends on the global properties of the
input. Examples of papers from the first two decades after
Angluin’s pioneering work include Attiya et al. [4], Yamashita
and Kameda [25–27], and Boldi and Vigna [9], who studied
global functions, leader election problems, spanning trees,
and topological properties.

Based on the earlier work, the study of the port-numbering
model may look like a dead end: positive results were
rare. However, very recently, distributed algorithms in the
port-numbering model have become an increasingly impor-
tant research topic—and surprisingly, the study of the port-
numbering model is now partially motivated by the desire
to understand distributed computing in stronger models of
computation.

The background is in the study of local algorithms, i.e.,
constant-time distributed algorithms. The research direc-
tion was initiated by Naor and Stockmeyer [19] in 1995,
and initially it looked like another area where most of the
results are negative—after all, it is difficult to imagine a
non-trivial graph problem that could be solved in constant
time. However, since 2005, we have seen a large number of
local algorithms for a wide range of graph problems; see the
survey [22] for an overview.

At first sight, constant-time algorithms in stronger models
and distributed algorithms in the port-numbering model seem
to be orthogonal concepts. However, in many cases a local
algorithm is also an algorithm in the port-numbering model.
Indeed, a formal connection between local algorithms and
the port-numbering model has been recently identified [13].

3.3 Weaker Models
While the study of the port-numbering model has been

recently revived, it is also time to question whether its role as
the the standard model in the study of anonymous networks
is justified. First, the definition is somewhat arbitrary—it is
not obvious that VVc is the “right” class, instead of VV, for
example. Second, while the existence of a port numbering
is easily justified in the context of wired networks, weaker
models such as Broadcast and Set seem to make more sense
from the perspective of wireless networks.

If we had no positive examples of problems in classes
below VVc, there would be little motivation for pursuing
further. However, the recent work related to the vertex cover
problem [3] calls for further investigation. It turned out that
2-approximation of vertex cover is a graph problem that is
not only in VVc(1), but also in MB(1)—that is, we have a
non-trivial graph problem that does not require any access to
either outgoing or incoming port numbers. One ingredient of

the vertex cover algorithm is the observation that MB(1) =
VB(1), which raises the question of the existence of other
similar collapses in the hierarchy of weak models.

We are by no means the first to investigate the weak models.
Computation in models that are strictly weaker than the
standard port-numbering model has been studied since the
1990s, under various terms [1,3,7–9,11,16,20,23,24,28]—see
the full version of this work [14] for an overview. Questions
related to specific problems, models, and graph families have
been studied previously, and indeed many of the techniques
and ideas that we use are now standard—this includes the
use of symmetry and isomorphisms, local views, covering
graphs (lifts) and universal covering graphs, and factors
and factorisations. Mayer, Naor, and Stockmeyer [18, 19]
made it explicit that the parity of node degrees makes a
huge difference in the port-numbering model, and Yamashita
and Kameda [26] discussed factors and factorisations in this
context.

However, it seems that a comprehensive classification of the
weak models from the perspective of solvable graph problems
has been lacking. Our main contribution is putting all pieces
together in order to provide a complete characterisation of
the relations between the weak models and the complex-
ity classes associated with them. We also advocate a new
perspective for studying the weak models—the connections
with modal logic can be used to complement the traditional
graph-theoretic approaches, and in particular bisimulation is
a very convenient tool that complements the closely related
graph-theoretic concept of covering graphs.

3.4 Distributed Algorithms and Modal Logic
Modal logic (see Section 4) has, of course, been applied

previously in the context of distributed systems. However,
our perspective is a radical departure from the traditional
approach.

In the textbook approach, possible worlds are possible
states of the (distributed) system and accessibility relations
are possible state transitions. We turn this setting upside
down.

In our approach, possible worlds correspond to machines
and accessibility relations correspond to communication links.
Hence a Kripke model is, in essence, an encoding of the
structure of a computer network.

While such an interpretation is of course always possi-
ble, it turns out to be particularly helpful in the study of
weak models of distributed computing. With this interpre-
tation, for example, a local algorithm in Set ∩ Broadcast
corresponds to a formula in modal logic, while a local algo-
rithm in Multiset ∩ Broadcast corresponds to a formula in
graded modal logic—local algorithms are exactly as expres-
sive as such formulas, and the running time of an algorithm
equals the modal depth of a formula. Standard techniques
from the field of modal logic can be directly applied in the
study of distributed algorithms, and conversely our classifi-
cation of the weak models of distributed computing can be
rephrased as a result that characterises the expressibility of
modal logics in certain classes of Kripke models.

4. CONNECTIONS WITH MODAL LOGIC
In this section, we show how to characterise each of the

classes SB(1), MB(1), VB(1), SV(1), MV(1), VV(1), and
VVc(1) by a corresponding modal logic, in the spirit of de-
scriptive complexity theory (see Immerman [15]). For each

class there is a modal logic such that every algorithm in the
class can be described by a formula in the modal logic, and
conversely, each formula defines an algorithm in the class.

4.1 Logics ML, GML, MML, and GMML
Our characterisation uses basic modal logic ML, graded

modal logic GML, multimodal logic MML, and graded mul-
timodal logic GMML—see, e.g., Blackburn, de Rijke, and
Venema [5] or Blackburn, van Benthem, and Wolter [6] for
further details on modal logic.

Basic modal logic, ML, is obtained by extending propo-
sitional logic by a single (unary) modal operator 3. More
precisely, if Φ is a finite set of proposition symbols, then the
set of ML(Φ)-formulas is given by the following grammar:

ϕ := q | (ϕ ∧ ϕ) | ¬ϕ | 3ϕ, where q ∈ Φ.

The semantics of ML is defined on Kripke models. A
Kripke model for the set Φ of proposition symbols is a tuple
K = (W,R, τ), where W is a nonempty set of states (or pos-
sible worlds), R ⊆ W 2 is a binary relation on W (accessibility
relation), and τ is a valuation function τ : Φ→ P(W).

The truth of an ML(Φ)-formula ϕ in a state v ∈ W of
a Kripke model K = (W,R, τ) is defined recursively in the
obvious way. For the modal case it holds that

K , v |= 3ϕ iff

K , w |= ϕ for some w ∈W s.t. (v, w) ∈ R.

The syntax of graded modal logic [12], GML, extends the
syntax of ML with the rules 3≥kϕ, where k ∈ N. The
semantics of these graded modalities 3≥k is the following:

K , v |= 3≥kϕ iff∣∣{w ∈W : (v, w) ∈ R and K , w |= ϕ}
∣∣ ≥ k.

Up to this point we have considered modal logics with
only one modality 3. Multimodal logic, MML, is the natural
generalisation of ML that allows an arbitrary (finite) number
of modalities. Given a set I of indices and a finite set Φ of
proposition symbols, the set of MML(I,Φ)-formulas is defined
by the same grammar as for ML(Φ) with 3ϕ replaced by
〈α〉ϕ, for each α ∈ I.

The Kripke models corresponding to the multimodal lan-
guage MML(I,Φ) are of the form

K = (W, (Rα)α∈I , τ),

where Rα ⊆ W 2 for each α ∈ I. The truth of an MML(I,Φ)-
formula in K is defined in the obvious way.

We can naturally extend MML by graded modalities 〈α〉≥k
for each α ∈ I and k ∈ N and obtain graded multimodal logic
GMML(I,Φ).

Let L be a modal logic and ϕ an L-formula. The modal
depth of ϕ, denoted by md(ϕ), is the largest number of nested
modalities in ϕ.

Given a modal logic L and a Kripke model K for L, each
L-formula ϕ defines a subset {v ∈W : K , v |= ϕ} of the set
of states in K ; this set is denoted by ‖ϕ‖K .

4.2 Bisimulation and Definability
We will now define one of the most important concepts in

modal logic, bisimulation. The objective is to characterise
definability in the corresponding modal logics, so that if two
states w and w′ are bisimilar they cannot be separated by
any formula of the corresponding logic. Bisimulation can be

defined in a canonical way for each of the logics ML, GML,
MML, and GMML.

Bisimulation for MML is defined as follows. Let K =
(W, (Rα)α∈I , τ) and K ′ = (W ′, (R′α)α∈I , τ

′) be Kripke mod-
els for a set Φ of proposition symbols. A nonempty relation
Z ⊆ W ×W ′ is a bisimulation between K and K ′ if the
following conditions hold.

(B1) If (v, v′) ∈ Z, then v ∈ τ(q) iff v′ ∈ τ ′(q) for all q ∈ Φ.

(B2) If (v, v′) ∈ Z and (v, w) ∈ Rα for some α ∈ I, then there
is a w′ ∈W ′ such that (v′, w′) ∈ R′α and (w,w′) ∈ Z.

(B3) If (v, v′) ∈ Z and (v′, w′) ∈ R′α for some α ∈ I, then
there is a w ∈ W such that (v, w) ∈ Rα and (w,w′) ∈ Z.

If there is a bisimulation Z such that (v, v′) ∈ Z, we say that
v and v′ are bisimilar w.r.t. MML.

Fact 1. Let L be one of the modal logics ML, MML, GML
and GMML, and let K and K ′ be Kripke models, v ∈ W
and v′ ∈W ′. If v and v′ are bisimilar w.r.t. L, then for all
L-formulas ϕ we have K , v |= ϕ iff K ′, v′ |= ϕ.

4.3 Characterising Constant Time Classes
There is a natural correspondence between the framework

for distributed computing defined in this paper and the logics
ML, GML, MML, and GMML. For any input graph G and
port numbering p of G, the pair (G, p) can be transformed
into a Kripke model K (G, p) = (W, (Rα)α∈I , τ) in a canonical
way. Given a local algorithm A, its execution can then be
simulated by a modal formula ϕ. The crucial idea is that the
truth condition for a diamond formula 〈α〉ψ is interpreted
as communication between the nodes:

K , v |= 〈α〉ψ iff v receives the message “ψ is true”

from some u such that (v, u) ∈ Rα.

Conversely, given a modal formula ϕ, the evaluation of its
truth in the Kripke model K (G, p) can be done by a local
algorithm A.

The general idea of the correspondence between modal
logic and distributed algorithms is described in Table 1.

We define four different Kripke models Ki(G, p) for (G, p),
reflecting the fact that algorithms in the lower classes do not
use all the information encoded in the port numbering. Let
G = (V,E) ∈ F(∆), and let p be a port numbering of G.
The accessibility relations used in K1(G, p) are the following:

R(i,j) =
{

(u, v) ∈ V × V : p((v, j)) = (u, i)
}

for each pair (i, j) ∈ [∆] × [∆]. For algorithms in classes
below Vector we need alternative accessibility relations with
corresponding restrictions on their information about p. For
each i ∈ [∆] we define that

R(i,∗) =
⋃
j∈[∆]

R(i,j) and R(∗,i) =
⋃
j∈[∆]

R(j,i).

In addition we define that R(∗,∗) =
⋃

(i,j)∈[∆]×[∆] R(i,j). Note

that R(∗,∗) = {(u, v) : {u, v} ∈ E} is the edge set E inter-
preted as a symmetric relation.

In addition to the accessibility relations, we encode the
local information on the degrees of vertices into a valuation
τ : Φ∆ → P(V), where Φ∆ = {qi : i ∈ [∆]}. The valuation τ
is given by τ(qi) = {v ∈ V : deg(v) = i}.

Table 1: Correspondence between modal logic and
distributed algorithms.

Modal logic Distributed algorithms

Kripke model K
{

input graph G = (V,E)
port numbering p

states W nodes V

relations Rα, α ∈ I edges E, port numbering p

valuation τ
}

node degrees (initial state)
proposition symbols

formula ϕ algorithm A
formula ϕ is true in world v node v outputs 1
modal depth of ϕ running time of A

The four versions of a Kripke model corresponding to
graph G and port numbering p are now defined as follows:

K1(G, p) = (V, (Rα)α∈I∆,1 , τ), where I∆,1 = [∆]× [∆],

K2(G, p) = (V, (Rα)α∈I∆,2 , τ), where I∆,2 = {∗} × [∆],

K3(G, p) = (V, (Rα)α∈I∆,3 , τ), where I∆,3 = [∆]× {∗},
K4(G, p) = (V, (Rα)α∈I∆,4 , τ), where I∆,4 = {(∗, ∗)}.

For each i ∈ {1, 2, 3, 4}, we denote the class of all Kripke
models of the form Ki(G, p) by Ki. Furthermore, we denote
by K0 the subclass of K1 consisting of the models K1(G, p),
where p is a consistent port numbering of G.

In order to give a precise formulation of the correspondence
between modal logics and the constant time classes of graph
problems, we define now the concept of modal formulas
solving graph problems. W.l.o.g., we consider here only
problems Π such that the solutions S ∈ Π(G) are functions
V → {0, 1}, or equivalently, subsets of V .

Let L be a modal logic, let i ∈ {1, 2, 3, 4}, and let Ψ =
(ψ1, ψ2, . . .) be a sequence of modal formulas such that ψ∆ ∈
L(I∆,i,Φ∆) for each ∆ ∈ N. Then Ψ defines a solution
for a graph problem Π on the class Ki if for all ∆ ∈ N,
all G ∈ F(∆), and all port numberings p of G, the subset

‖ψ∆‖Ki(G,p) defined by the formula ψ∆ in the model Ki(G, p)
is in set Π(G). Furthermore, the sequence Ψ defines a solution
for Π on the class K0, if the condition above with i = 1 holds
for all consistent port numberings p.

Note that any sequence Ψ = (ψ1, ψ2, . . .) of modal formulas
as above gives rise to a canonical graph problem ΠΨ that
it solves: for each graph G, the solution set ΠΨ(G) simply

consists of the sets ‖ψ∆‖Ki(G,p) where G ∈ F(∆) and p
ranges over the (consistent) port numberings of G.

Let L be a modal logic, let i ≤ 4, and let C be a class
of graph problems. We say that L captures C on Ki if the
following two conditions hold:

• If Ψ = (ψ1, ψ2, . . .) is a sequence of formulas such that
ψ∆ ∈ L(I∆,i,Φ∆) for all ∆ ∈ N, then ΠΨ ∈ C.

• For every graph problem Π ∈ C there is a sequence Ψ =
(ψ1, ψ2, . . .) of formulas such that ψ∆ ∈ L(I∆,i,Φ∆) for
all ∆ ∈ N, which defines a solution for Π on Ki.

The main result of this section is that the constant time
version of each of the classes VVc, VV, MV, SV, VB, MB,

Table 2: The intended meaning of the subformulas.

Subformulas of ψ∆ Algorithm A∆

ϕ`,t is true in world v bit ` of local state xt(v) is 1
ϑm,j,t is true in world v node v sends message m to port j in round t
χm,i,j,t is true in world v node v receives message m from port i in round t, the message was sent by a neighbour to port j

Table 3: Constructing the formula ψ∆, given an algorithm A∆.

Recursive definition of the formulas Execution of A∆

ϕ`,0: Boolean combination of qi ∈ Φ∆ initialisation: x0(u) = z0(deg(u))

ϑm,j,t+1: Boolean combination of ϕ`,t, ` ≤ L local computation: m = µ(xt(v), j)

χm,i,j,t+1 = 〈α〉ϑm,j,t+1 with α = (i, j) communication: construct ~at+1(v)

ϕ`,t+1: Boolean combin. of ϕk,t, k ≤ L, and χm,i,j,t+1, m ∈M , i, j ∈ [∆] local computation: xt+1(v) = δ(xt(v),~at+1(v))

and SB is captured by one of the modal logics MML, ML,
GMML, and GML on an appropriate class Ki.

Theorem 1. (a) MML captures VVc(1) on K0.
(b) MML captures VV(1) on K1.
(c) GMML captures MV(1) on K2.
(d) MML captures SV(1) on K2.
(e) MML captures VB(1) on K3.
(f) GML captures MB(1) on K4.
(g) ML captures SB(1) on K4.

Proof sketch. We describe here the idea behind the
proof of (b); other cases are similar.

Assume first that Ψ = (ψ1, ψ2, . . .) is a sequence of formulas
with ψ∆ ∈ MML(I∆,1,Φ∆) for each ∆ ∈ N. We describe
a local algorithm A∆ ∈ Vector that simulates the recursive
evaluation of the truth of ψ∆ on a Kripke model K1(G, p).

The idea is that in the j:th step of computation of the algo-
rithm A∆ each node u sends the truth values of subformulas
of ψ∆ of modal depth j − 1 in u to its neighbours. After
receiving these truth values from its neighbours each node u
computes the values of subformulas of ψ∆ of modal depth j.
Now after md(ψ∆) computation steps of the algorithm A∆

each node u knows whether ψ∆ holds in it or not.
For the other direction, assume that Π is a graph problem

in VV(1). Thus, there is a sequence A = (A1,A2, . . .) of
local algorithms in Vector that solves Π. We will encode
information on the states of computation and messages sent
during the execution of A∆ on an input (G, p) by suitable
formulas of MML.

Using the definitions of Section 1.1, let A∆ = (Y, Z, z0,M,
m0, µ, δ), and let T be the running time of A∆. We use a
binary encoding for the states xt(v) of nodes in the computa-
tion of A∆; let L be the length of this encoding. We assume
w.l.o.g. that the output of the algorithm is the first bit of xT .
We will build a formula ψ∆ ∈ MML(I∆,1,Φ∆) that simulates
A∆ from the following subformulas:

• ϕ`,t for ` ≤ L and t ≤ T ,
• ϑm,j,t for m ∈M , j ∈ [∆] and t ∈ [T],
• χm,i,j,t for m ∈M , i, j ∈ [∆] and t ∈ [T].

The intended meaning of these subformulas is given in Table 2,
and their recursive definitions are given in Table 3.

Given an input (G, p) to the algorithm A∆, the output on
a node v is 1 if and only if

v ∈ ‖ϕ0,T ‖K1(G,p).

Thus, defining ψ∆ := ϕ0,T we get ‖ψ∆‖K1(G,p) ∈ Π(G) for all
G ∈ F(∆) and all port numberings p of G. Hence we conclude
that the sequence Ψ = (ψ1, ψ2, . . .) defines a solution to Π.

As an additional remark, we note that md(ψ∆) is equal to
the running time T of A∆.

5. RELATIONS BETWEEN THE CLASSES
Now we are ready to prove relations (1) and (2) that we

gave in Section 2.

5.1 Equality MV = SV
Theorem 2 is the most important technical contribution of

this work. Informally, it shows that outgoing port numbers
necessarily break symmetry even if we do not have incoming
port numbers—provided that we are not too short-sighted.

Theorem 2. Let Π be a graph problem and let T : N×N→
N. Assume that there is an algorithm A1 ∈ Multiset that
solves Π in time T . Then there is an algorithm A2 ∈ Set
that solves Π in time T +O(∆).

To prove Theorem 2, we define the following local algorithm
A′∆ ∈ Set. Each node v constructs two sequences, βt(v) and
Bt(v) for t = 0, 1, . . . , 2∆. Before the first round, each node v
sets β0(v) = ∅ and B0(v) = ∅. Then in round t = 1, 2, . . . , 2∆,
each node v does the following:

(1) Set βt(v) = (βt−1(v), Bt−1(v)).
(2) For each port i, send (βt(v), deg(v), i) to port i.
(3) Let Bt(v) be the set of all messages received by v.

Let G = (V,E) ∈ F(∆), and let p be a port numbering of
graph G. We will analyse the execution of A′∆ on (G, p). If
p((v, i)) = (u, j), we define that π(v, u) = i. That is, π(v, u)
is the outgoing port number in v that is connected to u. Let

mt(u, v) = (βt(u), deg(u), π(u, v))

denote the message that node u sends to node v in round t;
it follows that mt(u, v) ∈ Bt(v) for all {u, v} ∈ E.

We begin with the following technical lemma. We em-
phasise that in the statement of the lemma, the sets {u,w},
{v1, v2, . . . , vk}, and {v′1, v′2, . . . , v′k+1} may intersect—for ex-
ample, we may have u = v1 = v′1.

Lemma 1. Suppose that all of the the following hold for
some t ≥ 4:

(a) Nodes u and w are two distinct neighbours of v.
(b) Nodes v1, v2, . . . , vk are k distinct neighbours of v.
(c) We have βt(u) = βt(w) = βt(vi) for all i = 1, 2, . . . , k.
(d) We have deg(u) = deg(w) and π(u, v) = π(w, v).

In particular, node v receives the same message from u and
w in round t. Then the following holds:

(e) There are k + 1 distinct neighbours of v, denoted by
v′1, v

′
2, . . . , v

′
k+1, such that

βt−2(u) = βt−2(w) = βt−2(v′i)

for all i = 1, 2, . . . , k + 1.

Proof. From βt(u) = βt(w) it follows that βt−2(u) =
βt−2(w). This implies mt−2(u, v) = mt−2(w, v).

For all i = 1, 2, . . . , k, node vi receives the message

mt−1(v, vi) = (βt−1(v), deg(v), π(v, vi))

from v in round t − 1. By assumption, we have βt(vi) =
βt(vj) for all i, j, which implies Bt−1(vi) = Bt−1(vj). Now
mt−1(v, vi) ∈ Bt−1(vi) implies mt−1(v, vj) ∈ Bt−1(vi) for all
i, j.

In any port numbering, we have π(v, vi) 6= π(v, vj) for i 6= j;
hence mt−1(v, vi) 6= mt−1(v, vj), and Bt−1(v1) contains k
distinct messages. That is, node v1 has k distinct neighbours,
u1, u2, . . . , uk, such that

(βt−1(ui), deg(ui), π(ui, v1)) = mt−1(ui, v1) = mt−1(v, vi)

= (βt−1(v),deg(v), π(v, vi)).

In particular, βt−1(ui) = βt−1(v) for all i.
Now let us investigate the messages that the nodes ui

receive in round t− 2. We have

mt−2(v1, ui) = (βt−2(v1), deg(v1), π(v1, ui)).

However, βt−1(ui) = βt−1(v) implies Bt−2(ui) = Bt−2(v) for
all i. In particular, mt−2(v1, ui) ∈ Bt−2(v) for all i. Now
π(v1, ui) 6= π(v1, uj) implies mt−2(v1, ui) 6= mt−2(v1, uj) for
all i 6= j.

To summarise, v receives the following messages in round
t− 2: k distinct messages,

mt−2(v1, ui) =
(
βt−2(v1), deg(v1), π(v1, ui)

)
for i = 1, 2, . . . , k, and two identical messages,

mt−2(u, v) = mt−2(w, v) =
(
βt−2(u), deg(u), π(u, v)

)
.

Moreover, βt−2(v1) = βt−2(u). Hence v receives at least k+1
messages in round t−2, each of the form (βt−2(u), ·, ·). Hence
v has at least k + 1 distinct neighbours v′i with βt−2(u) =
βt−2(v′i).

Lemma 2. If a node v receives the same message from
its neighbours u and w in round 2t, and v has k distinct
neighbours v1, v2, . . . , vk such that β2t(vi) = β2t(u) = β2t(w)
for all i = 1, 2, . . . , k, then v has at least t+ k− 1 neighbours.

Proof. The proof is by induction on t. The base case
t = 1 is trivial. For the inductive step, apply Lemma 1.

Hence if a node v has two neighbours u and w with
m2t(u, v) = m2t(w, v), node v has at least t+ 1 neighbours.
As the maximum degree of graph G is at most ∆, we know
that m2∆(u, v) 6= m2∆(w, v) whenever u and w are two
distinct neighbours of v. In particular,

(β2∆(u),deg(u), π(u, v)) 6= (β2∆(w), deg(w), π(w, v)).

Once we have finished running A′∆, which takes O(∆)
time, we can simulate the execution of A1 ∈ Multiset with an
algorithm A2 ∈ Set as follows: if a node u in the execution
of A1 sends the message a to port i, algorithm A2 sends the
message

(β2∆(u), deg(u), i, a)

to port i. Now all messages received by a node are distinct.
Hence given the set of messages received by a node v in A2,
we can reconstruct the multiset of messages received by v
in A1. This concludes the proof of Theorem 2.

Corollary 1. We have MV = SV and MV(1) = SV(1).

Proof. Immediate from Theorem 2.

5.2 Equalities VB = MB and VV = MV
The following theorems are implicit in prior work [3]; we

give more detailed proofs in the full version of this work [14].
The basic idea is that A2 augments each message with the full
communication history, and orders the incoming messages
lexicographically by the communication histories—the end
result is equal to the execution of A1 in the same graph G
for a very specific choice of incoming port numbers.

Theorem 3. Let Π be a graph problem and let T : N×N→
N. Assume that there is an algorithm A1 ∈ Vector that solves
Π in time T . Then there is an algorithm A2 ∈ Multiset that
solves Π in time T .

Theorem 4. Let Π be a graph problem and let T : N ×
N→ N. Assume that there is an algorithm A1 ∈ Broadcast
that solves Π in time T . Then there is an algorithm A2 ∈
Multiset ∩ Broadcast that solves Π in time T .

Corollary 2. We have VB = MB, VB(1) = MB(1),
VV = MV, and VV(1) = MV(1).

5.3 Separating the Classes
Trivially, SB ⊆ MB ⊆ MV and SB(1) ⊆ MB(1) ⊆ MV(1).

Together with Corollaries 1 and 2 these imply

SB ⊆ MB = VB ⊆ SV = MV = VV,

SB(1) ⊆ MB(1) = VB(1) ⊆ SV(1) = MV(1) = VV(1).

Now we proceed to show that the subset relations are proper.
We only need to come up with a graph problem that separates
a pair of classes—here the connections to modal logic and
bisimulation are a particularly helpful tool.

For the case of VB 6= SV, the separation is easy: we can
consider the problem of breaking symmetry in a star graph.

Theorem 5. There is a graph problem Π such that Π ∈
SV(1) and Π /∈ VB.

Proof. An appropriate choice of Π is the (artificial) prob-
lem of selecting a leaf node in a star graph. More formally,
we have the set of outputs Y = {0, 1}. We define Π(G) as
follows, depending on G:

(a) G = (V,E) is a k-star for a k > 1. That is, V =
{c, v1, v2, . . . , vk} and E = {{c, vi} : i = 1, 2, . . . , k}.
Then we have S ∈ Π(G) if S : V → Y , S(c) = 0, and
there is a j such that S(vj) = 1 and S(vi) = 0 for all
i 6= j.

(b) G = (V,E) is not a star. Then we do not restrict the
output, i.e., S ∈ Π(G) for any function S : V → Y .

It is easy to design a local algorithm A1 ∈ Set that solves Π:
First, all nodes send message i to port i for each i; then a
node outputs 1 if it has degree 1 and if it received the set of
messages {1}.

It is equally easy to see that an algorithm A2 ∈ Broadcast
cannot solve the problem. Let G be a k-star, and let p be any
port numbering of G. Now in the Kripke model K3(G, p),
all leaf nodes are bisimilar w.r.t. MML. Equivalently, in any
execution of A2 on (G, p), all leafs are in the same state at
each time step.

Corollary 3. We have VB 6= SV and VB(1) 6= SV(1).

Proof. Follows from Theorem 5.

To show that SB 6= MB, we can consider, for example, the
problem of identifying nodes that have an odd number of
neighbours with odd degrees.

Theorem 6. There is a graph problem Π such that Π ∈
MB(1) and Π /∈ SB.

Proof. We define Π as follows. Let G = (V,E) and
S : V → {0, 1}. We have S ∈ Π(G) if the following holds:
S(v) = 1 iff v is a node with an odd number of neighbours
of an odd degree.

The problem is trivially in MB(1): first each node broad-
casts the parity of its degree, and then a node outputs 1 if it
received an odd number of messages that indicate the odd
parity.

To see that the problem is not in SB, it is sufficient to argue
that the white nodes in the following graphs are bisimilar,
yet they are supposed to produce different outputs.

More precisely, we can partition the nodes in five equivalence
classes (indicated with the shading and shapes in the above
illustration), and the nodes in the same equivalence class
are bisimilar in the Kripke model K4(G, p) w.r.t. ML; recall
that the model is independent of the choice of the port
numbering p. Equivalently, in the execution of any algorithm
A ∈ Set ∩ Broadcast, all nodes in the same equivalence class
have the same state and hence produce the same output.

Corollary 4. We have SB 6= MB and SB(1) 6= MB(1).

Proof. Follows from Theorem 6.

Finally, to separate VV and VVc, we can use the construc-
tion of Figure 5—there a consistent port numbering necessar-
ily breaks symmetry, while an inconsistent port numbering
may be symmetric.

(a)

(b)

1

1

3

3 3

3

1

1

1

1

1

11

1

11

2

2

2

2 2
2

2

2
2

2

3

3

2

2 2

2

3

3

3

3

3

33

3

33

1

1

1

1 1
1

1

3
3

1

2

2

1

1 1

1

2

2

2

2

2

22

2

22

3

3

3

3 3
3

3

3
3

3

Figure 5: (a) A 3-regular graph G that does not have
a 1-factor [10, Figure 5.10]. (b) A port numbering
of G.

Theorem 7. There is a graph problem Π such that Π ∈
VVc(1) and Π /∈ VV.

Proof. We define Π so that for the graph G = (V,E)
illustrated in Figure 5a, Π(G) consists of all non-constant
functions S : V → {0, 1}, that is, we have u, v ∈ V with
S(u) 6= S(v). For all other graphs Π(G) consists of all
functions S : V → {0, 1}.

Let us first prove that the problem is in VVc(1). Let
G be the graph of Figure 5a. Graph G is 3-regular. It
can be verified that G does not have any 1-factor (perfect
matching); hence it does not have any 2-factor, either. Now
the arguments of Yamashita and Kameda [26, Section 5.1]
imply that in any consistent port numbering of G, there are
two nodes with distinct local views; moreover, it suffices to
focus on radius-T local views for a (small) constant T . We
define that the type of a node is an encoding of its radius-T
local view (as an integer, using some canonical encoding).
Now in G we have always nodes of at least two different
types. Hence we can solve the problem as follows: a node
outputs 1 iff it is adjacent to a node with a strictly smaller
type. This produces a non-constant output in G, for any
port numbering p, and it stops in constant time in any graph;
hence it is a local algorithm that solves Π.

To see that an algorithm A ∈ Vector cannot solve the
problem without assuming consistency, consider the port
numbering p in Figure 5b. If we reverse the arrows, the same
figure can be interpreted as an illustration of the Kripke
model K1(G, p), and it is straightforward to verify that all
nodes are bisimilar w.r.t. MML.

Corollary 5. We have VVc 6= VV and VVc(1) 6= VV(1).

Proof. Follows from Theorem 7.

In summary, we have established that the classes we have
studied form a linear order of length four—see (1) and (2)
in Section 2. As a corollary of (2) and Theorem 1, we can
make, for example, the following observations.

Corollary 6. (a) MML captures the same class of prob-
lems on K1 and K2.

(b) Both MML and GMML capture the same class of prob-
lems on K2.

(c) The class of problems captured by MML becomes strictly
smaller if we replace K2 with K3.

(d) MML on K3 captures the same class of problems as
GML on K4.

To keep the proofs of Theorems 5, 6, and 7 as simple
as possible, we introduced graph problems that were highly
contrived. An interesting challenge is to come up with natural
graph problems that separate the classes. Another challenge
is to come up with decision problems that separate the classes.

6. ACKNOWLEDGEMENTS
We thank anonymous reviewers for their helpful feedback,

and Mika Göös and Joel Kaasinen for discussions and com-
ments. This work was supported in part by Academy of
Finland (grants 129761, 132380, 132812, and 252018), the
research funds of University of Helsinki, and Finnish Cultural
Foundation.

The full version of this work is available online [14].

7. REFERENCES
[1] Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro

Cornejo, Bernhard Haeupler, and Fabian Kuhn.
Beeping a maximal independent set. In Proc. DISC
2011, volume 6950 of LNCS, pages 32–50. Springer,
2011.

[2] Dana Angluin. Local and global properties in networks
of processors. In Proc. STOC 1980, pages 82–93. ACM
Press, 1980.

[3] Matti Åstrand and Jukka Suomela. Fast distributed
approximation algorithms for vertex cover and set cover
in anonymous networks. In Proc. SPAA 2010, pages
294–302. ACM Press, 2010.

[4] Hagit Attiya, Marc Snir, and Manfred K. Warmuth.
Computing on an anonymous ring. J. ACM,
35(4):845–875, 1988.

[5] Patrick Blackburn, Maarten de Rijke, and Yde Venema.
Modal Logic, volume 53 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University
Press, 2001.

[6] Patrick Blackburn, Johan van Benthem, and Frank
Wolter, editors. Handbook of Modal Logic, volume 3 of
Studies in Logic and Practical Reasoning. Elsevier,
2007.

[7] Paolo Boldi, Shella Shammah, Sebastiano Vigna, Bruno
Codenotti, Peter Gemmell, and Janos Simon.
Symmetry breaking in anonymous networks:
characterizations. In Proc. ISTCS 1996, pages 16–26.
IEEE, 1996.

[8] Paolo Boldi and Sebastiano Vigna. Computing vector
functions on anonymous networks. In Proc. SIROCCO
1997, pages 201–214. Carleton Scientific, 1997.

[9] Paolo Boldi and Sebastiano Vigna. An effective
characterization of computability in anonymous
networks. In Proc. DISC 2001, volume 2180 of LNCS,
pages 33–47. Springer, 2001.

[10] J. A. Bondy and U. S. R. Murty. Graph Theory with
Applications. North-Holland, New York, 1976.

[11] Krzysztof Diks, Evangelos Kranakis, Adam Malinowski,
and Andrzej Pelc. Anonymous wireless rings. Theoret.
Comput. Sci., 145(1–2):95–109, 1995.

[12] Kit Fine. In so many possible worlds. Notre Dame J.
Formal Logic, 13(4):516–520, 1972.

[13] Mika Göös, Juho Hirvonen, and Jukka Suomela. Lower
bounds for local approximation. In Proc. PODC 2012.
ACM Press, 2012.

[14] Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana
Laurinharju, Tuomo Lempiäinen, Kerkko Luosto,
Jukka Suomela, and Jonni Virtema. Weak models of
distributed computing, with connections to modal logic,
2012. Manuscript, arXiv:1205.2051 [cs.DC].

[15] Neil Immerman. Descriptive Complexity. Graduate
Texts in Computer Science. Springer, 1999.

[16] Fabian Kuhn and Roger Wattenhofer. On the
complexity of distributed graph coloring. In Proc.
PODC 2006, pages 7–15. ACM Press, 2006.

[17] Nathan Linial. Locality in distributed graph algorithms.
SIAM J. Comput., 21(1):193–201, 1992.

[18] Alain Mayer, Moni Naor, and Larry Stockmeyer. Local
computations on static and dynamic graphs. In Proc.
ISTCS 1995, pages 268–278. IEEE, 1995.

[19] Moni Naor and Larry Stockmeyer. What can be
computed locally? SIAM J. Comput., 24(6):1259–1277,
1995.

[20] Nancy Norris. Computing functions on partially
wireless networks. In Proc. SIROCCO 1995, pages
53–64. Carleton Scientific, 1996.

[21] David Peleg. Distributed Computing:
A Locality-Sensitive Approach. SIAM Monographs on
Discrete Mathematics and Applications. SIAM, 2000.

[22] Jukka Suomela. Survey of local algorithms. ACM
Comput. Surveys. To appear.

[23] Stephen Wolfram. Statistical mechanics of cellular
automata. Reviews of Modern Physics, 55(3):601–644,
1983.

[24] Masafumi Yamashita and Tsunehiko Kameda. Electing
a leader when processor identity numbers are not
distinct (extended abstract). In Proc. WDAG 1989,
volume 392 of LNCS, pages 303–314. Springer, 1989.

[25] Masafumi Yamashita and Tsunehiko Kameda.
Computing functions on asynchronous anonymous
networks. Mathematical Systems Theory, 29(4):331–356,
1996.

[26] Masafumi Yamashita and Tsunehiko Kameda.
Computing on anonymous networks: Part I—
characterizing the solvable cases. IEEE Trans. Parallel
Distrib. Systems, 7(1):69–89, 1996.

[27] Masafumi Yamashita and Tsunehiko Kameda.
Computing on anonymous networks: Part II—decision
and membership problems. IEEE Trans. Parallel
Distrib. Systems, 7(1):90–96, 1996.

[28] Masafumi Yamashita and Tsunehiko Kameda. Leader
election problem on networks in which processor
identity numbers are not distinct. IEEE Trans. Parallel
Distrib. Systems, 10(9):878–887, 1999.

http://dx.doi.org/10.1007/978-3-642-24100-0_3
http://dx.doi.org/10.1007/978-3-642-24100-0_3
http://dx.doi.org/10.1007/978-3-642-24100-0_3
http://dx.doi.org/10.1007/978-3-642-24100-0_3
http://dx.doi.org/10.1007/978-3-642-24100-0_3
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/1810479.1810533
http://dx.doi.org/10.1145/1810479.1810533
http://dx.doi.org/10.1145/1810479.1810533
http://dx.doi.org/10.1145/1810479.1810533
http://dx.doi.org/10.1145/48014.48247
http://dx.doi.org/10.1145/48014.48247
http://dx.doi.org/10.1145/48014.48247
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1016/0304-3975(94)00178-L
http://dx.doi.org/10.1016/0304-3975(94)00178-L
http://dx.doi.org/10.1016/0304-3975(94)00178-L
http://dx.doi.org/10.1305/ndjfl/1093890715
http://dx.doi.org/10.1305/ndjfl/1093890715
http://arxiv.org/abs/1205.2051
http://arxiv.org/abs/1205.2051
http://arxiv.org/abs/1205.2051
http://arxiv.org/abs/1205.2051
http://arxiv.org/abs/1205.2051
http://dx.doi.org/10.1145/1146381.1146387
http://dx.doi.org/10.1145/1146381.1146387
http://dx.doi.org/10.1145/1146381.1146387
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1137/S0097539793254571
http://www.cs.helsinki.fi/local-survey/
http://www.cs.helsinki.fi/local-survey/
http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1007/3-540-51687-5_52
http://dx.doi.org/10.1007/3-540-51687-5_52
http://dx.doi.org/10.1007/3-540-51687-5_52
http://dx.doi.org/10.1007/3-540-51687-5_52
http://dx.doi.org/10.1007/BF01192691
http://dx.doi.org/10.1007/BF01192691
http://dx.doi.org/10.1007/BF01192691
http://dx.doi.org/10.1007/BF01192691
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481600
http://dx.doi.org/10.1109/71.481600
http://dx.doi.org/10.1109/71.481600
http://dx.doi.org/10.1109/71.481600
http://dx.doi.org/10.1109/71.798313
http://dx.doi.org/10.1109/71.798313
http://dx.doi.org/10.1109/71.798313
http://dx.doi.org/10.1109/71.798313

	Introduction
	Distributed Algorithms
	Port Numbering
	Execution of an Algorithm
	Graph Problems
	Algorithm Classes
	Problem Classes

	Contributions
	Motivation and Related Work
	Stronger Models
	Port-Numbering Model
	Weaker Models
	Distributed Algorithms and Modal Logic

	Connections with Modal Logic
	Logics ML, GML, MML, and GMML
	Bisimulation and Definability
	Characterising Constant Time Classes

	Relations between the Classes
	Equality MV = SV
	Equalities VB = MB and VV = MV
	Separating the Classes

	Acknowledgements
	References

