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Abstract

Many inductive logic programming approaches struggle to
learn programs from noisy data. To overcome this limitation,
we introduce an approach that learns minimal description
length programs from noisy data, including recursive pro-
grams. Our experiments on several domains, including drug
design, game playing, and program synthesis, show that our
approach can outperform existing approaches in terms of pre-
dictive accuracies and scale to moderate amounts of noise.

1 Introduction
The goal of inductive logic programming (ILP) (Muggleton
1991) is to induce a logic program (a set of logical rules) that
generalises training examples and background knowledge.
A common criticism of ILP is that it cannot handle noisy
data (Evans and Grefenstette 2018; Cucala, Grau, and Motik
2022). This criticism is unfounded: most ILP approaches can
learn from noisy data (Cropper and Dumancic 2022). For
instance, set-covering approaches (Muggleton 1995; Srini-
vasan 2001; Ahlgren and Yuen 2013; Zeng, Patel, and Page
2014; De Raedt et al. 2015) search for rules that generalise a
subset of the examples.

Although most ILP approaches can learn from noisy data,
they struggle to learn recursive programs and perform predi-
cate invention, two important features when learning complex
algorithms (Lin et al. 2014; Cropper and Muggleton 2019).
Moreover, they are not guaranteed to learn optimal programs,
such as textually minimal programs, and tend to overfit.

Recent approaches overcome these limitations and can
learn recursive and textually minimal programs (Corapi,
Russo, and Lupu 2011; Kaminski, Eiter, and Inoue 2019)
and perform predicate invention (Muggleton, Lin, and
Tamaddoni-Nezhad 2015; Purgal, Cerna, and Kaliszyk 2022).
However, these approaches struggle to learn from noisy data
because they search for a program that strictly generalises all
the positive and none of the negative examples.

In this paper, our goal is to learn recursive programs and
support predicate invention in a noisy setting. Following
Cropper and Hocquette (2023), we first search for small
programs that generalise a subset of the examples. We then
search for a combination of these smaller programs to form
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a larger program. Cropper and Hocquette (2023) search for
a combination that strictly generalises all the positive and
none of the negative examples, i.e. they cannot learn from
noisy data. By contrast, we relax this condition to learn from
noisy data. To avoid overfitting, we search for a combination
that trades off model complexity (program size) and data fit
(training accuracy). To do so, we use the minimal description
length (MDL) principle (Rissanen 1978). In other words, we
introduce an approach that learns MDL programs from noisy
data.

To explore our idea, we build on learning from failures
(LFF) (Cropper and Morel 2021). LFF frames the ILP prob-
lem as a constraint satisfaction problem (CSP), where each
solution to the CSP represents a program (a hypothesis). The
goal of a LFF learner is to accumulate constraints to restrict
the hypothesis space (the set of all hypotheses) and thus con-
strain the search. We use LFF to explore our idea because it
can learn recursive programs and perform predicate invention.
We build on LFF by learning MDL programs from noisy ex-
amples. We introduce constraints which are optimally sound
in that they do not prune MDL programs. To find an MDL
combination, we use a maximum satisfiability (MaxSAT)
solver (Bacchus, Järvisalo, and Martins 2021).

Novelty and contributions The main novelty of this paper
is the idea of learning small programs from noisy examples
and using a MaxSAT solver to find an MDL combination.
The benefits, which we show on diverse domains, are (i) the
ability to learn complex programs from noisy examples, and
(ii) improved performance compared to existing approaches.

Overall, our contributions are:

1. We introduce MAXSYNTH, which learns MDL programs
from noisy examples, including recursive programs.

2. We introduce constraints for this noisy setting and prove
that they are optimally sound (Propositions 1 and 2).

3. We prove the correctness of MAXSYNTH, i.e. that it al-
ways learns an MDL program (Theorem 1).

4. We experimentally show on multiple domains, includ-
ing drug design, game playing, and program synthesis,
that MAXSYNTH can (i) substantially improve predictive
accuracies compared to other systems, and (ii) scale to
moderate amounts of noise (30%). We also show that our
noisy constraints can reduce learning times by 99%.



2 Related Work
ILP. Most ILP approaches support noise (Quinlan 1990;
Muggleton 1995; McCreath and Sharma 1997; Blockeel and
De Raedt 1998; Srinivasan 2001; Oblak and Bratko 2010;
Ahlgren and Yuen 2013; Zeng, Patel, and Page 2014; De
Raedt et al. 2015). However, these approaches do not sup-
port predicate invention, struggle to learn recursive programs,
and are not guaranteed to learn an MDL program. Recent
approaches can learn textually minimal and recursive pro-
grams but are not robust to noisy examples (Corapi, Russo,
and Lupu 2011; Muggleton, Lin, and Tamaddoni-Nezhad
2015; Kaminski, Eiter, and Inoue 2019; Cropper and Morel
2021; Dai and Muggleton 2021; Purgal, Cerna, and Kaliszyk
2022). There are two notable exceptions. δILP (Evans and
Grefenstette 2018) frames the ILP problem as a differentiable
neural architecture and is robust to noisy data. NOISYPOPPER
(Wahlig 2022) can learn MDL and recursive programs from
noisy examples. However, these approaches can only learn
programs with a small number of small rules. For instance,
δILP cannot learn programs with more than a few rules and
can only use binary relations. By contrast, MAXSYNTH can
learn MDL programs with many rules and any arity relation.

Rule selection. Many systems formulate the ILP problem
as a rule selection problem (Corapi, Russo, and Lupu 2011;
Kaminski, Eiter, and Inoue 2019; Si et al. 2019; Raghothaman
et al. 2020; Evans et al. 2021; Bembenek, Greenberg, and
Chong 2023). These approaches precompute every possible
rule in the hypothesis space and then search for a subset that
entails all the positive and no negative examples. Some ap-
proaches relax this requirement to find a subset with the best
coverage using solver optimisation (Law 2022; Evans et al.
2021) or numerical methods (Si et al. 2019). Precomputing all
possible rules prevent these approaches from learning rules
with a large number of literals. By contrast, our approach
does not rely on exhaustive precomputation.

Sampling. Sampling can mitigate noise. Raychev et al.
(2016) pair a data sampler which selects representative sub-
sets of the data with a regularised program generator to avoid
overfitting. METAGOLnt (Muggleton et al. 2018) finds hy-
potheses consistent with randomly sampled subsets of the
training examples and evaluates each resulting program on
the remaining training examples. METAGOLnt needs as input
a parameter about the noise level. By contrast, MAXSYNTH
does not need a user-provided noise level parameter and is
guaranteed to learn an MDL program.

Rule mining. AMIE+ (Galárraga et al. 2015) learns rules
from noisy knowledge bases. However, AMIE+ can only use
unary and binary relations, so it cannot be used on most of
the datasets in our experiments, which require relations of
arity greater than two. By contrast, MAXSYNTH can learn
programs with relations of any arity.

MDL. Several approaches use cost functions based on
MDL (Quinlan 1990; Muggleton 1995; Srinivasan 2001;
Huang and Pearce 2007). However, they are not guaran-
teed to find a program that minimises this cost function be-
cause they greedily learn a single rule at a time. By contrast,
MAXSYNTH learns a global MDL program. Jain et al. (2021)
learn propositional CNF using MDL. By contrast, we learn
first-order theories.

3 Problem Setting
We describe our problem setting. We assume familiarity with
logic programming (Lloyd 2012) but have included a sum-
mary in the appendix.

3.1 Learning From Failures
We use the LFF setting. A hypothesis is a definite program
with the least Herbrand model semantics. A hypothesis space
H is a set of hypotheses. LFF uses hypothesis constraints
to restrict the hypothesis space. Let L be a meta-language
that defines hypotheses. For instance, consider a language
with two literals h lit/3 and b lit/3 which represent head
and body literals respectively. With this language, we denote
the rule last(A,B)← tail(A,C), head(C,B) as the set of liter-
als {h lit(0,last,(0,1)), b lit(0,tail,(0,2)), b lit(0,head,(2,1))}.
The first argument of each literal is the rule index, the second
is the predicate symbol, and the third is the literal variables,
where 0 represents A, 1 represents B, etc. A hypothesis con-
straint is a constraint (a headless rule) expressed in L. Let
C be a set of hypothesis constraints written in a language
L. A hypothesis is consistent with C if when written in L it
does not violate any constraint in C. We denote as HC the
subset of the hypothesis spaceH which does not violate any
constraint in C.

We define a LFF input:
Definition 1 (LFF input). A LFF input is a tuple
(E,B,H, C, cost) where E = (E+, E−) is a pair of sets of
ground atoms denoting positive (E+) and negative (E−) ex-
amples, B is a definite program denoting background knowl-
edge,H is a hypothesis space, C is a set of hypothesis con-
straints, and cost is a function that measures the cost of a
hypothesis.
We define a solution to a LFF input in the non-noisy setting:
Definition 2 (Non-noisy solution). Given a LFF input
(E,B,H, C, cost), where E = (E+, E−), a hypothesis
h ∈ HC is a non-noisy solution when h is complete (∀e ∈
E+, B ∪ h |= e) and consistent (∀e ∈ E−, B ∪ h ̸|= e).
A hypothesis that is not a non-noisy solution is a failure. A
LFF learner builds constraints from failures to restrict the
hypothesis space. For instance, if a hypothesis h is inconsis-
tent (entails a negative example), a generalisation constraint
prunes generalisations of h as they are also inconsistent.

In the non-noisy setting, a cost function only takes as input
a hypothesis, i.e. they are of the type cost : H 7→ N. For
instance, the cost of a hypothesis is typically measured as its
size (the number of literals in the hypothesis). An optimal
non-noisy solution minimises the cost function:
Definition 3 (Optimal non-noisy solution). Given a LFF
input (E,B,H, C, cost), a hypothesis h ∈ HC is an optimal
non-noisy solution when (i) h is a non-noisy solution, and
(ii) ∀h′ ∈ HC , where h′ is a non-noisy solution, cost(h) ≤
cost(h′).

3.2 Noisy Learning From Failures
A non-noisy solution must entail all the positive and none
of the negative examples. To tolerate noise, we relax this re-
quirement. We generalise a LFF input to allow a cost function



to also take as input background knowledge B and examples
E, i.e. cost functions of the type costB,E : H 7→ N. In our
noisy setting, any hypothesis h ∈ H is a noisy solution. An
optimal noisy solution minimises the cost function:

Definition 4 (Optimal noisy solution). Given a noisy input
(E,B,H, C, costB,E), a hypothesis h ∈ HC is an optimal
noisy solution when ∀h′ ∈ HC , costB,E(h) ≤ costB,E(h

′).

3.3 Minimal Description Length
Our noisy LFF setting generalises the LFF setting to allow
for different cost functions. A challenge in machine learning
is choosing a suitable cost function. According to complexity-
based induction, the best hypothesis is the one that minimises
the number of bits required to communicate the examples
(Conklin and Witten 1994). This concept corresponds to the
hypothesis with minimal description complexity (Rissanen
1978)1, where the idea is to trade off the complexity of a hy-
pothesis (its size) with the fit to the data (training accuracy).

We use MDL as our cost function. To define it, we use the
terminology of Conklin and Witten (1994). The MDL princi-
ple states that the most probable hypothesis h for the data E
is the one that minimises the complexity L(h|E) of the hy-
pothesis given the data. The MDL principle can be expressed
as finding a hypothesis that minimises L(h)+L(E|h), where
L(h) is the syntactic complexity of a hypothesis h and
L(E|h) is the complexity of the examples when coded using
h. We evaluate L(h) with the function size : H 7→ N, which
measures the size of a hypothesis h as the number of literals
in it. In a probabilistic setting, L(E|h) is the log-likelihood
of the data with respect to the hypothesis h. However, there
is debate about how to interpret L(E|h) in a logical setting.
For instance, Muggleton, Srinivasan, and Bain (1992) use
an encoding based on Turing machines (a proof complexity
measure). We evaluate L(E|h) as the cost of sending the
exceptions to the hypothesis, i.e. the number of false posi-
tives fpE,B(h) (simply fp(h)) and false negatives fnE,B(h)
(simply fn(h)). We define our MDL cost function:

Definition 5 (MDL cost function). Given examples E and
background knowledge B, the MDL cost of a hypothesis
h ∈ H is costB,E(h) = size(h) + fnE,B(h) + fpE,B(h).

In other words, the MDL cost of a hypothesis h is the number
of literals in h plus the number of false positives and false
negatives of h on the training data2.

In this paper, an optimal noisy solution refers to an optimal
noisy solution with our MDL cost function.

3.4 Noisy Constraints
A LFF learner builds constraints from failures to restrict the
hypothesis space. The existing constraints for LFF are intoler-
ant to noise. For instance, if a hypothesis h is inconsistent, a

1Selecting an MDL hypothesis is equivalent to selecting a hy-
pothesis with the maximum Bayes’ posterior probability (Muggleton
and De Raedt 1994).

2It is straightforward to extend our MDL cost function to
αsize(h) + βfnE,B(h) + γfpE,B(h) where α, β, and γ are posi-
tive integer weights. Our constraints easily generalise to this setting,
as does our MaxSAT encoding.

non-noisy generalisation constraint prunes generalisations of
h as they are also inconsistent. However, in a noisy setting, a
generalisation of h might have a lower MDL cost. Therefore,
the existing constraints can prune optimal noisy solutions
from the hypothesis space.

To overcome this limitation, we introduce constraints that
tolerate noise. These constraints are optimally sound for the
noisy setting because they do not prune optimal noisy solu-
tions from the hypothesis space. Due to space limitations,
we only describe one specialisation and one generalisation
constraint. The appendix contains a description of three other
constraints. All the proofs are in the appendix.

Let h1 be a hypothesis with tp(h1) true positives and h2

be a specialisation of h1. Then h2 has at most tp(h1) true
positives. Therefore, if size(h2) > tp(h1) then the size of
h2 is greater than the number of positive examples it covers
so h2 cannot be in an optimal noisy solution:
Proposition 1 (Noisy specialisation constraint). Let h1 be
a hypothesis, h2 be a specialisation of h1, and size(h2) >
tp(h1). Then h2 cannot be in an optimal noisy solution.
Similarly, let h1 be a hypothesis with fp(h1) false positives
and h2 be a generalisation of h1. Then h2 has at least fp(h1)
false positives and a cost of at least fp(h1) + size(h2). We
show that the cost of h2 is greater than the cost of the empty
hypothesis when size(h2) ≥ |E+| − fp(h1):
Proposition 2 (Noisy generalisation constraint). Let h1 be
a hypothesis, h2 be a generalisation of h1, and size(h2) ≥
|E+| − fp(h1). Then h2 cannot be in an optimal noisy solu-
tion.
In the next section, we introduce MAXSYNTH which uses
these optimally sound noisy constraints to learn programs.

4 Algorithm
We now describe our MAXSYNTH algorithm. We first de-
scribe POPPER (Cropper and Morel 2021; Cropper and Hoc-
quette 2023), which MAXSYNTH builds on.

POPPER. POPPER takes as input background knowledge,
positive and negative training examples, and a maximum hy-
pothesis size. POPPER starts with an answer set programming
(ASP) program P . Each model (answer set) of P corresponds
to a hypothesis (a definite program). POPPER uses a generate,
test, combine, and constrain loop to find a textually mini-
mal non-noisy solution. In the generate stage, POPPER uses
Clingo (Gebser et al. 2014), an ASP system, to search for
a model of P for increasing hypothesis sizes. If there is no
model, POPPER increments the hypothesis size and loops
again. If there is a model, POPPER converts it to a hypoth-
esis h. In the test stage, POPPER uses Prolog to test h on
the examples. If h is a non-noisy solution, POPPER returns
it. If h covers at least one positive example and no negative
examples, POPPER adds h to a set of promising programs.
In the combine stage, POPPER searches for a combination (a
union) of promising programs that covers as many positive
examples as possible and is minimal in size. If POPPER finds
a combination, it sets the combination as the best solution so
far and updates the maximum hypothesis size. A combina-
tion may not cover all the positive examples (POPPER allows



Algorithm 1: MAXSYNTH

1 def maxsynth(bk, pos, neg):
2 cons, promising, best_solution = {}, {}, {}
3 size, max_mdl = 1, len(pos)
4 while size ≤ max_mdl:
5 h = generate(cons, size)
6 if h == UNSAT:
7 size += 1
8 continue
9 tp, fn, fp = test(pos, neg, bk, h)

10 h_mdl = fn+fp+size(h)
11 if h_mdl < max_mdl:
12 best_solution = h
13 max_mdl = h_mdl-1
14 if tp>0 and not_rec(h) and not_pi(h):
15 promising += h
16 combi = combine(promising, max_mdl)
17 if combi != UNSAT:
18 best_solution = combi
19 tp, fn, fp = test(pos, neg, bk, combi)
20 max_mdl = fn+fp+size(combi)-1
21 cons += constrain(h, fn, fp)
22 return best_solution

false positives) but it cannot cover any negative examples
(POPPER is intolerant to false negatives). In the constrain
stage, POPPER uses h to build hypothesis constraints (repre-
sented as ASP constraints). POPPER adds these constraints to
P to prune models and thus prune the hypothesis space. For
instance, if h is inconsistent, POPPER builds a generalisation
constraint to prune the generalisations of h. POPPER repeats
this loop until it finds a textually minimal non-noisy solution
or there are no more hypotheses to test.

MAXSYNTH
MAXSYNTH (Algorithm 1) is similar to POPPER except for
a few key differences. POPPER searches for the smallest
hypothesis that entails all the positive and none of the nega-
tive examples, i.e. it is intolerant to noisy data. By contrast,
MAXSYNTH returns an MDL hypothesis, i.e. it is tolerant to
noisy data. To find an MDL hypothesis, MAXSYNTH differs
by (i) also saving inconsistent programs as promising pro-
grams, (ii) finding an MDL combination in the combine stage,
and (iii) using noise-tolerant constraints to prune non-MDL
programs. We describe these differences in turn.

Promising Programs POPPER only saves consistent pro-
grams as promising programs. POPPER is, therefore, intol-
erant to false negative training examples. To handle noise,
MAXSYNTH relaxes this requirement and saves programs
which cover at least one positive example as promising pro-
grams (line 15), even if they are inconsistent. MAXSYNTH
does not save a program if it is recursive or has predicate
invention. The reason is that a combination of recursive
programs or programs with invented predicates can cover
more examples than the union of the examples covered by
each individual program. For instance, consider the examples
{f([1, 3]), f([3, 0]), f([3, 1])} and the hypotheses h1 and h2:

h1 =
{

f(A)← head(A,1)
}

h2 =

{
f(A)← head(A,0)
f(A)← tail(A,B),f(B)

}

The hypothesis h1 covers the first example and h2 covers
the second example but the hypothesis h1 ∪ h2 covers all
three examples. Therefore, in the combine stage, we cannot
simply reason about the coverage of a combination of pro-
grams using the union of coverage of the individual programs
in the combination. However, MAXSYNTH can learn MDL
programs with recursion or predicate invention as they can
be output by the generate stage and evaluated (lines 5-9).

Combine In the combine stage, POPPER searches for a
combination of promising programs that covers as many pos-
itive examples as possible and is minimal in size. By contrast,
MAXSYNTH searches for a combination of promising pro-
grams with MDL cost (line 16). The initial maximum MDL
cost is the number of positive examples which is the cost
of the empty hypothesis. If we find a combination in the
combine stage, we update the maximum MDL cost (line 20).

We formulate the search for an MDL combination of pro-
grams as a MaxSAT problem (Bacchus, Järvisalo, and Mar-
tins 2021). In MaxSAT, given a set of hard clauses and a
set of soft clauses with an associated weight, the task is to
find a truth assignment which satisfies each hard clause and
minimises the sum of the weights of falsified soft clauses.

Our MaxSAT encoding is as follows. For each promising
program h, we use a variable ph to indicate whether h is
in the combination. For each example e ∈ E+ ∪ E−, we
use a variable ce to indicate whether the combination covers
e. For each positive example e ∈ E+, we include the hard
clause ce →

∨
B∪h|=e ph to ensure that, if the combination

covers e, then at least one of the programs in the combination
covers e. For each negative example e ∈ E−, we include
the hard clause ¬ce →

∧
B∪h|=e ¬ph to ensure that, if the

combination does not cover e, then none of the programs in
the combination covers e. We encode the MDL cost function
as follows. For each promising program h we include the
soft clause (¬ph) with weight size(h). For each positive
example e ∈ E+, we include the soft clause (ce) with weight
1. For each negative example e ∈ E−, we include the soft
clause (¬ce) with weight 1. We use a MaxSAT solver on
this encoding. The MaxSAT solver finds an optimal solution
which corresponds to a combination of promising programs
that minimises the MDL cost function.

Constrain In the constrain stage (line 21), MAXSYNTH
uses our optimally sound constraints (Section 3.4) to prune
the hypothesis space. For instance, given a hypothesis h1,
MAXSYNTH prunes all generalisations of h1 with size greater
than |E+| − fp(h1) (Proposition 2). By contrast, POPPER
prunes all generalisations of an inconsistent hypothesis.

Correctness We show that MAXSYNTH returns an optimal
noisy solution.

Theorem 1 (Correctness). MAXSYNTH returns an optimal
noisy solution if one exists.

Proof. The proof is in the appendix. We first show that
MAXSYNTH without any noisy constraints returns an op-
timal noisy solution, and then that our noise-tolerant con-
straints are optimally sound (Propositions 1 and 2).



5 Experiments
To test our claim that MAXSYNTH can learn programs from
noisy data, our experiments aim to answer the question:
Q1 Can MAXSYNTH learn programs from noisy data?
To answer Q1, we evaluate MAXSYNTH on a variety of tasks
with noisy data. We compare MAXSYNTH against ALEPH
(Srinivasan 2001), POPPER, and NOISYPOPPER (Wahlig
2022)3. We use these systems because they can learn def-
inite recursive programs. ALEPH is a set covering approach
that supports noise. NOISYPOPPER can handle noisy data but
can only learn small programs. Because of space limitations
and its poor performance, the results for NOISYPOPPER are
in the appendix.

To evaluate how MAXSYNTH handles different amounts
of noise, our experiments aim to answer the question:
Q2 How well does MAXSYNTH handle progressively more

noise?
To answer Q2, we evaluate the performance of MAXSYNTH
on domains where we can progressively increase the amount
of noise. For an increasing noise amount p, we randomly
change the label of a proportion p of the training examples.

We claim that our noisy constraints (Section 3.4) can im-
prove learning performance by pruning non-MDL programs
from the hypothesis space. To evaluate this claim, our experi-
ments aim to answer the question:
Q3 Can noisy constraints reduce learning times compared

to unconstrained learning?
To answer Q3, we compare the learning time of MAXSYNTH
with and without noisy constraints.

Our approach should improve learning performance when
learning programs from noisy data. However, it is often un-
known whether the data is noisy. To evaluate the overhead of
handling noise, our experiments aim to answer the question:
Q4 What is the overhead of MAXSYNTH on noiseless prob-

lems?
To answer Q4, we compare the performance of MAXSYNTH
and POPPER on standard benchmarks which are not noisy.

Domains We briefly describe our five domains. The ap-
pendix includes more details.

IGGP. The goal of inductive general game playing (Crop-
per, Evans, and Law 2020) (IGGP) is to induce rules to ex-
plain game traces from the general game playing competition
(Genesereth and Björnsson 2013).

Program synthesis. We use a program synthesis dataset
(Cropper and Morel 2021). These tasks are list transformation
tasks which involve learning recursive programs.

Zendo. Zendo is an inductive game where the goal is to
find a rule by building structures of pieces. The game interests
cognitive scientists (Bramley et al. 2018).

3We considered other systems. Rule selection approaches
(Corapi, Russo, and Lupu 2011; Evans and Grefenstette 2018;
Kaminski, Eiter, and Inoue 2019; Law 2022) precompute every
possible rule which is infeasible on our datasets. Metarule-based
approaches (Muggleton, Lin, and Tamaddoni-Nezhad 2015) are
unusable in practice (Cropper et al. 2022). Rule learning systems
(Galárraga et al. 2015) can only use unary and binary relations.

Alzheimer. These real-world tasks (King, Sternberg, and
Srinivasan 1995) involve learning rules describing four prop-
erties desirable for drug design against Alzheimer’s disease.

Wn18RR. Wn18rr (Bordes et al. 2013) is a real-world
knowledge base with 11 relations from WordNet.

Systems MAXSYNTH, POPPER, and NOISYPOPPER use
identical biases so the comparison between them is fair.
MAXSYNTH uses the UWrMaxSat solver (Piotrów 2020)
in the combine stage. To perform a direct comparison, we
modify POPPER to also use the UWrMaxSat solver in its
combine stage. We use the default cost function (coverage)
for ALEPH. We have tried to make a fair comparison with
ALEPH but, since it has many additional settings, it is natu-
rally plausible that further parameter tuning could improve
its performance (Srinivasan and Ramakrishnan 2011). The
appendix contains more details about the systems.

Experimental Setup We measure predictive accuracy (the
proportion of correct predictions on unseen test data) and
learning time given a maximum learning time of 20 minutes.
We repeat all the experiments 10 times and calculate the mean
and standard error. We use an 8-Core 3.2 GHz Apple M1 and
a single CPU.

5.1 Experimental Results
Experiment 1: Comparison against SOTA Table 1 shows
the predictive accuracies of the systems on the datasets. It
shows that MAXSYNTH (i) consistently achieves high accu-
racy on most tasks, and (ii) comprehensively outperforms
existing systems in terms of predictive accuracy. A paired
t-test shows MAXSYNTH significantly (p < 0.01) outper-
forms POPPER on 25/42 tasks, achieves similar accuracies on
13/42 tasks, and is significantly outperformed by POPPER on
4/42 tasks. For instance, MAXSYNTH has high accuracy (at
least 94%) on all zendo tasks while POPPER struggles when
there is noise. While POPPER searches for a hypothesis that
entails as many positive examples as possible and no negative
examples, MAXSYNTH tolerates both misclassified positive
and negative examples.

MAXSYNTH outperforms ALEPH on the recursive tasks
because ALEPH struggles to learn recursive programs.
MAXSYNTH also outperforms ALEPH on some non-recursive
tasks. For instance, on iggp-coins, MAXSYNTH achieves
100% predictive accuracy on the testing examples even with
20% noise in the training examples. One reason is that ALEPH
does not consider the size of a hypothesis in its (default) cost
function and thus often overfits. ALEPH also sometimes time-
outs on wn18rr tasks and does not return any hypothesis.

MAXSYNTH does not always achieve 100% predictive
accuracy despite learning an MDL hypothesis, such as on
the iggp-md tasks. The reason is that an MDL hypothesis
is not necessarily the hypothesis with the highest predictive
accuracy (Domingos 1999; Zahálka and Zelezný 2011).

MAXSYNTH and POPPER are anytime systems. If the
search time exceeds a timeout, MAXSYNTH and POPPER
return the best hypothesis found thus far. MAXSYNTH termi-
nates on all iggp, zendo, and alzheimer tasks, which means it
learns an MDL solution. MAXSYNTH returns the best solu-
tion found within timeout for most program synthesis tasks



Task MAXSYNTH POPPER ALEPH

iggp-md (0) 75 ± 0 100 ± 0 100 ± 0
iggp-md (10) 65 ± 4 76 ± 6 85 ± 6
iggp-md (20) 58 ± 4 68 ± 6 73 ± 7
iggp-buttons (0) 80 ± 0 100 ± 0 100 ± 0
iggp-buttons (10) 79 ± 1 79 ± 3 50 ± 0
iggp-buttons (20) 77 ± 1 63 ± 1 50 ± 0
iggp-coins (0) 100 ± 0 100 ± 0 50 ± 0
iggp-coins (10) 100 ± 0 54 ± 1 50 ± 0
iggp-coins (20) 100 ± 0 50 ± 0 50 ± 0
iggp-rps (0) 100 ± 0 100 ± 0 100 ± 0
iggp-rps (10) 100 ± 0 63 ± 2 73 ± 3
iggp-rps (20) 100 ± 0 59 ± 2 50 ± 0

zendo1 (0) 99 ± 0 100 ± 0 100 ± 0
zendo1 (10) 99 ± 0 82 ± 1 82 ± 1
zendo1 (20) 99 ± 0 74 ± 1 76 ± 1
zendo2 (0) 100 ± 0 100 ± 0 100 ± 0
zendo2 (10) 100 ± 0 64 ± 1 65 ± 1
zendo2 (20) 100 ± 0 58 ± 1 60 ± 1
zendo3 (0) 98 ± 0 99 ± 0 99 ± 0
zendo3 (10) 98 ± 0 72 ± 1 72 ± 1
zendo3 (20) 97 ± 1 68 ± 1 70 ± 1
zendo4 (0) 98 ± 0 99 ± 0 99 ± 0
zendo4 (10) 96 ± 0 81 ± 1 82 ± 1
zendo4 (20) 94 ± 1 74 ± 1 77 ± 1

dropk (0) 100 ± 0 100 ± 0 55 ± 5
dropk (10) 100 ± 0 54 ± 1 50 ± 0
dropk (20) 100 ± 0 54 ± 1 50 ± 0
evens (0) 100 ± 0 100 ± 0 57 ± 3
evens (10) 100 ± 0 52 ± 1 52 ± 1
evens (20) 100 ± 0 51 ± 0 51 ± 0
reverse (0) 100 ± 0 100 ± 0 50 ± 0
reverse (10) 100 ± 0 52 ± 0 50 ± 0
reverse (20) 100 ± 0 52 ± 0 50 ± 0
sorted (0) 100 ± 0 100 ± 0 68 ± 5
sorted (10) 100 ± 0 64 ± 2 63 ± 2
sorted (20) 100 ± 0 58 ± 1 56 ± 2

alzheimer acetyl 68 ± 1 56 ± 0 50 ± 0
alzheimer amine 76 ± 1 69 ± 1 73 ± 1
alzheimer mem 63 ± 1 51 ± 0 61 ± 1
alzheimer toxic 74 ± 1 64 ± 1 83 ± 1

wn18rr1 98 ± 0 95 ± 1 50 ± 0
wn18rr2 79 ± 1 78 ± 1 50 ± 0

Table 1: Predictive accuracies. Numbers in parentheses in-
dicate the amount of noise added. The amount of noise is
unknown when unspecified.

and wn18rr2. To understand how accuracy varies with learn-
ing time, we set a timeout of t seconds for increasing values
of t. Figure 1 shows the accuracies of the best hypothesis
found when increasing the timeout. This result shows that
MAXSYNTH can often quickly find an optimal (MDL) hy-
pothesis. For instance, on alzheimer-toxic, MAXSYNTH takes
only 13s to find an optimal hypothesis but needs 48s to prove
that this hypothesis is optimal. Likewise, on zendo2 (20),
MAXSYNTH takes only 60s to find an optimal hypothesis but
needs 151s more to prove this hypothesis is optimal.

Overall, these results suggest that the answer to Q1 is
that MAXSYNTH can (i) learn programs, including recursive
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Figure 1: Predictive accuracy with larger timeouts on
alzheimer toxic (left) and zendo2 (20) (right).

0 10 20 30 40

50

60

70

80

90

100

Noise amount (%)

A
cc

ur
ac

y
(%

)

0 10 20 30 40

50

60

70

80

90

100

Noise amount (%)

A
cc

ur
ac

y
(%

)

Figure 2: Predictive accuracy versus the noise amount on
iggp-rps (left) and dropk (right).

programs, with high accuracy from noisy data, and (ii) out-
perform existing systems in terms of predictive accuracies.

Experiment 2: Noise Tolerance Figure 2 shows the predic-
tive accuracies of the systems on two tasks when increasing
the amount of noise. These results show that the performance
of MAXSYNTH degrades slower with increasing amounts of
noise compared to POPPER. MAXSYNTH can scale to prob-
lems with up to 30% of noise while POPPER struggles from
10% of noise. For instance, on iggp-rps with 30% of noise,
POPPER and ALEPH have less than 55% accuracy, whereas
MAXSYNTH has over 90% accuracy. POPPER is not robust to
false negatives. It returns a hypothesis which is consistent but
may only cover a fraction of the positive examples. ALEPH
typically overfits the data. Overall, these results suggest that
the answer to Q2 is that MAXSYNTH can scale to moderate
amounts of noise.

Experiment 3: Noisy Constraints Table 2 shows the learn-
ing times of MAXSYNTH with and without noisy constraints
(Section 3.4). It shows that our constraints can drastically re-
duce learning times. A paired t-test confirms the significance
of the difference for all tasks (p < 0.01). The appendix shows
the predictive accuracies, which are equal or higher with
noisy constraints. This result shows that our noisy constraints
are highly effective at soundly pruning the hypothesis space.
For instance, on iggp-md (10), MAXSYNTH considers 21,025
programs without constraints and only 136 programs with
constraints, a 99% reduction. Similarly, MAXSYNTH consid-
ers 176,453 programs for zendo2 (20) without constraints and
only 5,503 programs with constraints, a 97% reduction. The
overhead of analysing hypotheses and imposing constraints
is small. For instance, on iggp-md (10), MAXSYNTH spends
0.7s building constraints but this pruning reduces the total



Task Without With Difference

iggp-md (0) 14 ± 0 1 ± 0 -92%
iggp-md (10) 109 ± 2 2 ± 0 -98%
iggp-md (20) 103 ± 1 2 ± 0 -98%
iggp-buttons (0) 61 ± 0 7 ± 0 -88%
iggp-buttons (10) 61 ± 1 9 ± 0 -85%
iggp-buttons (20) 57 ± 0 10 ± 0 -82%
iggp-coins (0) 615 ± 5 138 ± 1 -77%
iggp-coins (10) 631 ± 14 141 ± 2 -77%
iggp-coins (20) 596 ± 2 144 ± 2 -75%
iggp-rps (0) 195 ± 1 50 ± 1 -74%
iggp-rps (10) 197 ± 1 60 ± 2 -69%
iggp-rps (20) 193 ± 1 66 ± 1 -65%

zendo1 (0) 33 ± 9 13 ± 3 -60%
zendo1 (10) 648 ± 3 77 ± 4 -88%
zendo1 (20) 688 ± 7 100 ± 13 -85%
zendo2 (0) 603 ± 4 48 ± 1 -92%
zendo2 (10) 611 ± 1 48 ± 3 -92%
zendo2 (20) 766 ± 70 118 ± 36 -84%
zendo3 (0) 613 ± 2 49 ± 3 -92%
zendo3 (10) 626 ± 2 62 ± 2 -90%
zendo3 (20) 834 ± 66 190 ± 112 -77%
zendo4 (0) 594 ± 4 43 ± 3 -92%
zendo4 (10) 616 ± 3 58 ± 2 -90%
zendo4 (20) 767 ± 36 122 ± 32 -84%

dropk (0) 541 ± 5 7 ± 1 -98%
evens (0) 770 ± 2 7 ± 0 -99%
reverse (0) timeout 45 ± 7 -96%
sorted (0) 1182 ± 8 31 ± 3 -97%

alzheimer acetyl timeout 133 ± 5 -88%
alzheimer amine timeout 73 ± 3 -93%
alzheimer mem timeout 79 ± 3 -93%
alzheimer toxic timeout 61 ± 6 -94%

wn18rr1 timeout 534 ± 14 -55%

Table 2: Learning time for MAXSYNTH with and without
noisy constraints. We show tasks where approaches differ.
The full table is in the appendix.

learning time from 109s to 2s. Overall, these results suggest
that the answer to Q3 is that noisy constraints can drastically
reduce learning times.

Experiment 4: Overhead Table 1 shows the predictive
accuracies of MAXSYNTH and POPPER on noiseless prob-
lems. These results show that MAXSYNTH often can find a
non-noisy solution. However, MAXSYNTH may return a sim-
pler hypothesis than POPPER. For instance, on iggp-md (0),
MAXSYNTH returns a hypothesis of size 5. This hypothesis
misclassifies 2 training positive examples and therefore has a
cost of 7. Its predictive accuracy is 75%. By contrast, POP-
PER finds a hypothesis of size 11 with maximal predictive
accuracy (100%) on the test data. As Vitányi and Li (2000)
discuss, MDL interprets perfect data as data obtained from a
simpler hypothesis subject to measuring errors.

Table 3 shows the learning times. It shows that
MAXSYNTH often has similar learning times to POPPER.
For instance, both systems require 7s on iggp-buttons (0) and
around 50s on iggp-rps (0). MAXSYNTH can be faster than

Task MAXSYNTH POPPER

iggp-md (0) 1 ± 0 11 ± 0
iggp-buttons (0) 7 ± 0 7 ± 0
iggp-coins (0) 138 ± 1 147 ± 2
iggp-rps (0) 50 ± 1 53 ± 1

zendo1 (0) 13 ± 3 23 ± 4
zendo2 (0) 48 ± 1 102 ± 2
zendo3 (0) 49 ± 3 85 ± 3
zendo4 (0) 43 ± 3 79 ± 4

dropk (0) 7 ± 1 4 ± 1
evens (0) 7 ± 0 8 ± 0
reverse (0) 45 ± 7 65 ± 9
sorted (0) 31 ± 3 19 ± 2

Table 3: Learning times on non-noisy tasks.

POPPER. A paired t-test shows MAXSYNTH significantly out-
performs POPPER on 7/12 tasks (p < 0.01). For instance, on
zendo2 (0), MAXSYNTH takes 48s whilst POPPER takes 102s.
The pruning by MAXSYNTH can be effective. For instance,
given any hypothesis h, MAXSYNTH prunes specialisations
of size greater than fp(h), whereas POPPER only prunes
specialisations of consistent hypotheses. Also, MAXSYNTH
sometimes returns a smaller hypothesis than POPPER and
thus searches up to a smaller depth, such as for iggp-md (0).

Overall, these results suggest that the answer to Q4 is that
unnecessarily tolerating noise is not prohibitively expensive
and often leads to similar performance.

6 Conclusions and Limitations
We have introduced an ILP approach that learns MDL pro-
grams from noisy examples, including recursive programs.
Our approach first learns small programs that generalise a sub-
set of the positive examples and then combines them to build
an MDL program. We implemented our idea in MAXSYNTH,
which uses a MaxSAT solver to find an MDL combination of
programs. Our empirical results on multiple domains show
that MAXSYNTH can (i) substantially improve predictive
accuracies compared to other systems, and (ii) scale to mod-
erate amounts of noise (30%). Our results also show that our
noisy constraints can reduce learning times by 99%. Over-
all, this paper shows that MAXSYNTH can learn accurate
hypotheses for noisy problems that other systems cannot.

Limitations. We use MDL as our criterion for optimality.
Our experiments show that an MDL hypothesis does not
necessarily have the lowest generalisation error, as discussed
by Domingos (1999). To overcome this limitation, future
work should investigate alternative cost functions (Lavrac,
Flach, and Zupan 1999). For instance, Hernández-Orallo and
Garcı́a-Varea (2000) discuss creative alternatives to MDL.

7 Appendices, Code, and Data
A longer version of this paper with the appendices is
available at https://arxiv.org/pdf/2308.09393.pdf. The exper-
imental code and data are available at https://github.com/
celinehocquette/aaai24-maxsynth.
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