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Abstract

We consider causal structure estimation from time series data in which mea-
surements are obtained at a coarser timescale than the causal timescale of the
underlying system. Previous work has shown that such subsampling can lead to
significant errors about the system’s causal structure if not properly taken into
account. In this paper, we first consider the search for system timescale causal
structures that correspond to a given measurement timescale structure. We
provide a constraint satisfaction procedure whose computational performance
is several orders of magnitude better than previous approaches. We then con-
sider finite-sample data as input, and propose the first constraint optimization
approach for recovering system timescale causal structure. This algorithm op-
timally recovers from possible conflicts due to statistical errors. We then apply
the method to real-world data, investigate the robustness and scalability of
our method, consider further approaches to reduce underdetermination in the
output, and perform an extensive comparison between different solvers on this
inference problem. Overall, these advances build towards a full understanding
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of non-parametric estimation of system timescale causal structures from sub-
sampled time series data.

Keywords: causality, causal discovery, graphical models, time series,
constraint satisfaction, constraint optimization.

1. Introduction1

Time-series data has long constituted the basis for causal modeling in many2

fields of science (Granger, 1969; Hamilton, 1994; Lütkepohl, 2005). These data3

often provide very precise measurements at regular time points, but the underly-4

ing causal interactions that give rise to those measurements can occur at a much5

faster timescale than the measurement frequency. As just one example: fMRI6

experiments measure neural activity (given various assumptions) roughly once7

per two seconds, but the underlying neural connections clearly operate much8

more quickly. Time order information can simplify causal analysis since it can9

provide directionality, but time series data that undersamples the generating10

process can be especially misleading about the true direct causal connections11

(Dash and Druzdzel, 2001; Iwasaki and Simon, 1994).12

For example, Figure 1a shows the causal structure of a process unrolled over13

discrete time steps, and Figure 1b shows the corresponding structure of the14

same process, obtained by marginalizing every second time step. If we do not15

take into account the possibility of subsampling, then we would conclude that16

Figure 1b gives the correct structure — and thus totally miss the presences of17

all true edges. This drastic structure misspecification may lead us to perform a18

possibly costly intervention on Z to control Y , when the influence of Z on Y is,19

in fact, completely mediated by X and so, intervening on X would be a more20

effective choice. Also, a (parametric) model with the structure in Figure 1b21

gives inaccurate predictions when intervening on both X and Z: the value of Y22

would be predicted to depend on Z and not on X, when in reality Y depends23

on X and not on Z.24

Standard methods for estimating causal structure from time series either fo-25

cus exclusively on estimating a transition model at the measurement timescale26

(e.g., Granger causality (Granger, 1969, 1980)) or combine a model of measure-27

ment timescale transitions with so-called “instantaneous” or “contemporane-28

ous” causal relations that aim to capture interactions that are faster than the29

measurement process (e.g., SVAR (Lütkepohl, 2005; Hamilton, 1994; Hyvärinen30

et al., 2010)), though only very specific types of interactions can be captured31

with these latter models. In contrast, we follow Plis et al. (2015a,b) and Gong32

et al. (2015), and explore the possibility of identifying (features of) the causal33

process at the true timescale from data that subsample this process.34

Plis et al. (2015a,b) developed algorithms that can learn the set of causal35

timescale structures that could yield a given measurement timescale graph, ei-36

ther at a known or unknown undersampling rate. While these algorithms show37

that the inference problem is solvable, they face a number of computational38
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Figure 1: (a) The structure of the causal system-scale time series. (b) The structure of the
corresponding measurement scale time series if only every second sample is observed i.e. nodes
at time slice t − 1 are marginalized. If subsampling is ignored and (b) is thought to depict
the true causal structure, all direct causal relationships among {X,Y, Z} are misspecified.

challenges that limit their use. They do, however, show the importance of con-39

straints for this problem, and so suggest that a constraint satisfaction approach40

might be more effective and efficient. Gong et al. (2015) consider finding a41

linear SVAR from subsampled data. They show that if the error variables are42

non-Gaussian, the true causal effects matrix can be discovered even from sub-43

sampled data. However, their method is highly restricted in terms of numbers44

of variables and parametric form.45

In this paper, we provide an exact discovery algorithm based on using a46

general-purpose Boolean constraint solver (Biere et al., 2009; Gebser et al.,47

2011), and demonstrate that it is orders of magnitudes faster than the current48

state-of-the-art method by Plis et al. (2015b). At the same time, our approach is49

much simpler and, as we show, it allows inference in more general settings. We50

then develop the approach to integrate possibly conflicting constraints obtained51

from the data. In addition to an application of the method to the real-world52

data, we investigate the robustness and scalability of our method, consider fur-53

ther approaches to reduce underdetermination in the output, and perform an54

extensive comparison between different solvers on this inference problem. More-55

over, unlike the method by Gong et al. (2015), our approach does not depend56

on a particular parameterization of the underlying model and scales to a more57

reasonable number of variables.58

The code implementing the approach presented in this article, including the59

answer set programming and Boolean satisfiability encodings, is available at60

http://www.cs.helsinki.fi/group/coreo/subsampled/.61

This article considerably extends a preliminary version presented at the Inter-62

national Conference on Probabilistic Graphical Models 2016 (PGM 2016) (Hyt-63

tinen et al., 2016). Most noticeably, Sections 6–9 of this article provide entirely64

new contents, including a real-world case study (Section 6), an evaluation of65

the impact of the choice of constraint satisfaction and optimization solvers on66

the efficiency of the approach (Section 7), and a discussion on learning from67

mixed frequency data (Section 8). Furthermore, new simulations on accuracy68

and robustness (Section 5, Figures 7-9) are now included.69
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2. Representation70

We assume that the system of interest relates a set of variables Vt =71

{Xt, Y t, Zt, . . .} defined at discrete time points t ∈ Z with continuous (∈ Rn)72

or discrete (∈ Zn) values (Entner and Hoyer, 2010). We distinguish the repre-73

sentation of the true causal process at the system or causal timescale from the74

time series data that are obtained at the measurement timescale. Following Plis75

et al. (2015b), we assume that the true between-variable causal interactions at76

the system timescale constitute a first-order Markov process; that is, that the77

independence Vt ⊥⊥ Vt−k|Vt−1 holds for all k > 1. The parametric models for78

these causal structures are structural vector autoregressive (SVAR) processes or79

dynamic (discrete/continuous variable) Bayes nets. Since the system timescale80

can be arbitrarily fast (and causal influences take time), we assume that there81

is no “contemporaneous” causation of the form Xt → Y t (Granger, 1988). We82

also assume that Vt−1 contains all common causes of variables in Vt. These83

assumptions jointly express the widely used causal sufficiency assumption (see84

Spirtes et al. (1993)) in the time series setting. In this non-parametric setting,85

we consider surgical interventions (on the observed variables in V) that keep86

variables fixed at the selected values through the (causal timescale) time steps.87

The system timescale causal structure can thus be represented by a causal88

graph G1 (as in a dynamic Bayes net) with edges only of the form Xt−1 → Y t,89

where X = Y is permitted (see Figure 2a for an example). Since the causal90

process is time-invariant, the edges repeat through t. In accordance with Plis91

et al. (2015b), for any G1 we use a simpler, rolled graph representation, denoted92

by G1, where for all X,Y : X → Y ∈ G1 iff Xt−1 → Y t ∈ G1. That is, the rolled93

graph represents time only implicitly in the edges, rather than through variable94

duplication. Both the unrolled and rolled representations contain exactly the95

same structural information. Figure 2b shows the rolled graph representation96

G1 of G1 in Figure 2a.97

Time series data are obtained from the above process at the measurement98

timescale, defined by some (possibly unknown) integral sampling rate u. The99

measured time series sample Vt is at times t, t− u, t− 2u, . . .; we are interested100

in the case of u > 1, i.e., the case of subsampled data. A different route101

to subsampling would use continuous-time models as the underlying system102

timescale structure. However, some series (e.g., transactions such as salary103

payments) are inherently discrete-time processes (Gong et al., 2015), and many104

continuous-time systems can be approximated arbitrarily closely as discrete-105

time processes. Thus, we focus here on discrete-time causal structures as a106

justifiable, yet simple, basis for our non-parametric inference procedure.107

The (causal) structure of this subsampled time series can be obtained (leav-108

ing aside sampling variation) from G1 by marginalizing the intermediate time109

steps. Figure 2c shows the measurement timescale structure G2 corresponding110

to subsampling rate u = 2 for the system timescale causal structure in Figure 2a.111

Each directed edge in G2 corresponds to a directed path of length 2 in G1. For112

arbitrary u,X, Y , the formal relationship between Gu and G1 edges is113

Xt−u → Y t ∈ Gu ⇔ Xt−u Y t ∈ G1,
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Figure 2: Graph (a) shows the unrolled system timescale structure, where edges repeat
through time steps. Graph (b) shows the rolled representation of the same structural infor-
mation. Graph (c) shows the measurement timescale structure for subsampling rate u = 2,
i.e. nodes at time slice t − 1 in graph (a) are marginalized. Graph (d) depicts the rolled
representation of the same structural information as in graph (c).

where  denotes a directed path.114

Gu must also represent “direct” connections between variables in the same115

time step (Wei, 1994). The bi-directed arrow Xt ↔ Y t in Figure 2c is an116

example: Xt−1 is an unobserved (in the data) common cause of Xt and Y t in117

G1 (Figure 2a). Formally, the system timescale structure G1 induces bi-directed118

edges in the measurement timescale Gu as follows:119

Xt ↔ Y t ∈ Gu ⇔ ∃Z, l < u : (Xt  Zt−l Y t) ∈ G1, where X 6= Y.

Just as G1 represents the rolled version of G1, Gu represents the rolled version120

of Gu: X → Y ∈ Gu iff Xt−u → Y t ∈ Gu and X ↔ Y ∈ Gu iff Xt ↔ Y t ∈ Gu.121

The relationship between G1 and Gu—that is, the impact of subsampling—122

can be concisely represented using only the rolled graphs:123

X → Y ∈ Gu ⇔ X
u
 Y ∈ G1, (1)

X ↔ Y ∈ Gu ⇔ ∃Z, l < u : (X
l
 Z

l
 Y ) ∈ G1, where X 6= Y. (2)

Here
l
 denotes a path of length l. Using the rolled graph notation, the logical124

encodings in Section 3 are considerably simpler.125
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Subsampling can also be interpreted as a transitive operation applied to126

graphs. For example, G6 is the graph that results from subsampling G2 by a127

further factor of 3. More generally, Gu·k can be obtained by subsampling Gk by128

(another) u steps according to:129

X → Y ∈ Gu·k ⇔ X
u
 Y ∈ Gk,

X ↔ Y ∈ Gu·k ⇔ ∃Z, l < u : (X
l
 Z

l
 Y ) ∈ Gk ∨

∃Z,W, l < u : (X
l
 Z ↔W

l
 Y ) ∈ Gk, where X 6= Y.

Notice that in the latter equation, the bidirected edges in Gk may induce addi-130

tional bidirected edges in Gu·k. These equations yield Equations 1 and 2 when131

k = 1, since there are no bidirected edges in G1.132

In order to obtain a correspondence between the underlying causal struc-133

ture and the distribution that gives rise to the observed data at measurement134

timescale, we assume for a given subsampling rate u that specific conditional135

independences correspond to the absence of specific causal connections:136

Xt−u ⊥⊥ Y t | Vt−u \Xt−u ⇔ X → Y /∈ Gu (3)

Xt ⊥⊥ Y t | Vt−u ⇔ X ↔ Y /∈ Gu (4)

These assumptions are analogous to the combination of the Markov and faith-137

fulness assumptions in the standard setting of causal discovery from cross-138

sectional data. However, here the assumptions are restricted to the particular139

(in)dependence relations we require to determine the causal structure, i.e., we140

allow, for example, for canceling pathways, which would otherwise constitute a141

violation of faithfulness, at subsampling rates that we do not consider.142

Danks and Plis (2013) demonstrated that, in the infinite sample limit, the143

causal structure G1 at the system timescale is in general underdetermined, even144

when the subsampling rate u is known and small. Consequently, even when145

ignoring estimation errors, the most we can learn is an equivalence class of causal146

structures at the system timescale. We define H to be the estimated version of147

Gu, a graph over V obtained or estimated at the measurement timescale (with148

possibly unknown u). Due to underdetermination, multiple 〈G1, u〉 pairs can149

imply H, and so search is particularly challenging when u is unknown. At the150

same time, if H is estimated from data, it is possible, due to statistical errors,151

that no Gu has the same structure as H. With these observations, we are ready152

to define the computational problems focused on in this work.153

Task 1 Given a measurement timescale structure H (with possibly unknown154

u), infer the (equivalence class of) causal structures G1 consistent with H (i.e.155

Gu = H by Eqs. 1 and 2) if such a G1 exists.156

We also consider the corresponding problem when the subsampled time series157

is directly provided as input, rather than Gu.158

Task 2 Given a dataset of measurements of V obtained at the measurement159

timescale (with possibly unknown u), infer the (equivalence class of) causal160
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structures G1 (at the system timescale) that are (optimally) consistent with the161

data.162

Section 3 provides a solution to Task 1. Section 4 provides a solution to Task 2,163

including an explanation on how H can be estimated from sample data in Sec-164

tion 4.2. Later sections further consider generalizations of these two basic tasks.165

3. Finding Consistent System Timescale Structures166

We first focus on Task 1. We discuss the computational complexity of the167

underlying decision problem, and present a practical Boolean constraint satis-168

faction approach that empirically scales up to significantly larger graphs than169

previous state-of-the-art algorithms.170

3.1. On Computational Complexity171

Consider the task of finding even a single G1 consistent with a given H. A172

variant of the associated decision problem is related to the NP-complete problem173

of finding a matrix root.174

Theorem 1. Deciding whether there is a G1 that is consistent with the directed175

edges of a given H is NP-complete for any fixed u ≥ 2.176

Proof. Membership in NP follows from a guess and check: guess a candidate177

G1, and deterministically check whether the length-u paths of G1 correspond to178

the edges of H (Plis et al., 2015b). For NP-hardness, for any fixed u ≥ 2, there179

is a straightforward reduction from the NP-complete problem of determining180

whether a Boolean B matrix2 has a uth root (Kutz, 2004): for a given n × n181

Boolean matrix B, interpret B as the directed edge relation of H, i.e., H has182

the edge (i, j) iff Au(i, j) = 1. It is then easy to see that there is a G1 that is183

consistent with the obtained H iff B = Au for some binary matrix A (i.e., a uth184

root of B). �185

If u is unknown, then membership in NP can be established in the same186

way by guessing both a candidate G1 and a value for u. Theorem 1 ignores187

the possible bi-directed edges in H (whose presence/absence is also harder to188

determine reliably from practical numbers of samples; see Section 5). Knowledge189

of the presences and absences of such edges in H can restrict the set of candidate190

G1s. For example, in the special case where H is known to not contain any191

bi-directed edges, the possible G1s have a fairly simple structure: in any G1192

that is consistent with H, every node has at most one successor.3 Whether this193

knowledge can be used to prove a more fine-grained complexity result for special194

cases is an open question.195

2Multiplication of two values in {0, 1} is defined as the logical-or, or equivalently, the
maximum operator.

3To see this, assume X has two successors, Y and Z, s.t. Y 6= Z in G1. Then Gu will
contain a bi-directed edge Y ↔ Z for all u ≥ 2, which contradicts the assumption that H has
no bi-directed edges.
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3.2. A SAT-Based Approach196

Recently, the first exact search algorithm for finding the G1s that are con-197

sistent with a given H for a known u was presented by Plis et al. (2015b); it198

represents the current state of the art. Their approach implements a specialized199

depth-first search procedure for the problem, with domain-specific polynomial200

time search-space pruning techniques. As an alternative, we present here a201

Boolean satisfiability based approach. First, we represent the problem exactly202

using a rule-based constraint satisfaction formalism. Then, for a given input H,203

we employ an off-the-shelf Boolean constraint satisfaction solver for finding a204

G1 that is guaranteed to be consistent with H (if such G1 exists). Our approach205

is not only simpler than the approach of Plis et al. (2015b), but as we will show,206

it also significantly improves the current state-of-the-art in runtime efficiency207

and scalability.208

We present our approach using answer set programming (ASP) as the con-209

straint satisfaction formalism4 (Niemelä, 1999; Simons et al., 2002; Gebser et al.,210

2011). It offers an expressive declarative modeling language, in terms of first-211

order logical rules, for various types of NP-hard search and optimization prob-212

lems. To solve a problem via ASP, one first needs to develop an ASP program (in213

terms of ASP rules/constraints) that models the problem at hand; that is, the214

declarative rules implicitly represent the set of solutions to the problem in a pre-215

cise fashion. Then one or multiple (optimal, in case of optimization problems)216

solutions to the original problem can be obtained by invoking an off-the-shelf217

ASP solver, such as the state-of-the-art Clingo system (Gebser et al., 2011)218

used in this work. The search algorithms implemented in the Clingo system219

are extensions of state-of-the-art Boolean satisfiability and optimization tech-220

niques which can today outperform even specialized domain-specific algorithms,221

as we show here.222

We proceed by describing a simple ASP encoding of the problem of finding223

a G1 that is consistent with a given H. The input—the measurement timescale224

structure H—is represented as follows. The input predicate node/1 represents225

the nodes of H (and all graphs), indexed by 1 . . . n. The presence of a di-226

rected edge X → Y between nodes X and Y is represented using the predicate227

edgeh/2 as edgeh(X,Y). Similarly, the fact that an edge X → Y is not present228

is represented using the predicate no edgeh/2 as no edgeh(X,Y). The presence229

of a bidirected edge X ↔ Y between nodes X and Y is represented using the230

predicate confh/2 as confh(X,Y) (X < Y ), and the fact that an edge X ↔ Y is231

not present is represented using the predicate no confh/2 as no confh(X,Y).232

If u is known, then it can be passed as input using u(U); alternatively, it can233

be defined as a single value in a given range (here set to 1, . . . , 5 as an example):234

urange(1..5). % Define a range of u:s

1 { u(U): urange(U) } 1. % u(U) is true for only one U in the range

4Note the comparison to other solvers using the propositional SAT formalism in Section 7.
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Here the cardinality constraint 1 { u(U): urange(U) } 1 states that the pred-235

icate u is true for exactly one value U chosen from those for which urange(U) is236

true.237

Solution G1s are represented via the predicate edge1/2, where edge1(X,Y) is238

true iff G1 contains the edge X → Y . In ASP, the set of candidate solutions (i.e.,239

the set of all directed graphs over n nodes) over which the search for solutions240

is performed, is declared via the so-called choice construct within the following241

rule, stating that candidate solutions may contain directed edges between any242

pair of nodes. If we have prior knowledge about edges that must (or must not)243

be present in G1, then that content can straightforwardly be encoded here.244

{ edge1(X,Y) } :- node(X), node(Y).

This is a so-called choice rule in the ASP syntax, which here states that edge1245

can be true or false for any pair of nodes X,Y , as given by the predicate node.246

The implied measurement timescale structure Gu for a candidate solution G1247

is represented using the predicates edgeu/2 and confu/2, which are derived in the248

following way. First, we declare the mapping from a given G1 to the correspond-249

ing Gu by declaring the exact length-L paths in a non-deterministically chosen250

candidate solution G1. For this, we declare rules that compute the length-L251

paths inductively for all L ≤ U , using the predicate path(X,Y,L) to represent252

that there is a length-L path from X to Y .253

% Derive all directed paths up to length U

path(X,Y,1) :- edge1(X,Y).

path(X,Y,L) :- path(X,Z,L-1), edge(Z,Y), L <= U, u(U).

The first rule states that an edge X → Y implies the existence of the (corre-254

sponding) path of length one. The second rule declares inductively, that the255

existence of a path of length L− 1 from X to Z, and an edge Z → Y , together256

imply the existence of a path of length L from X to Y .257

Second, to obtain Gu, we encode Equations 1 and 2 with the following rules258

that form predicates edgeu and confu describing the edges G1 induces on the259

measurement timescale structure Gu. The first rule derives induced directed260

edges in Gu from the length-U paths, and the second the bidirected edges based261

on the existence of pairs of confounding paths of length up to U − 1.262

% Paths of length U, correspond to measurement timescale edges

edgeu(X,Y) :- path(X,Y,L), u(L).

% Paths of equal length (<U) from a single node result in bi-directed edges

confu(X,Y) :- path(Z,X,L), path(Z,Y,L), node(X;Y;Z), X < Y, L < U, u(U).

Finally, we declare constraints that require that the Gu represented by the263

edgeu and confu predicates is consistent with the input H. This is achieved with264

the following integrity rules, which enforce that the edge relations of Gu and H265
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are exactly the same for any solution G1. In other words, the first two rules266

derive a contradiction in case the directed edge relations of Gu and H do not267

match; the third and fourth rules do the same for the bidirected edge relations268

of Gu and H. For example, if the edgeh is true in the input for some X and Y269

and the corresponding edgeu is not derived, the set of edges defined by edge1270

does not constitute a consistent graph for the input H according to the first rule271

below.272

:- edgeh(X,Y), not edgeu(X,Y).

:- no_edgeh(X,Y), edgeu(X,Y).

:- confh(X,Y), not confu(X,Y).

:- no_confh(X,Y), confu(X,Y).

Our ASP encoding of Task 1 consists of the rules just described. The set of273

solutions of the encoding correspond exactly to the G1s consistent with the274

input H. Note that before solving, these first-order rules are grounded for all275

possible instantiations of X,Y, Z and L relevant to the input.276

3.3. Runtime Comparison277

Both our proposed SAT-based approach and the recent specialized search278

algorithm MSL of Plis et al. (2015b) are correct and complete, so we focus279

on differences in efficiency, using the implementation of MSL by the original280

authors. Our approach allows for searching simultaneously over a range of281

values of u, but Plis et al. (2015b) focused on the case u = 2; hence, we restrict282

the comparison to u = 2.283

The MSL algorithm starts by noting that every measurement timescale edge284

corresponds to a path of length u in G1, where that path must be through an-285

other measured variable. MSL thus creates u− 1 “virtual” mediating nodes for286

Figure 3: Running times for 10-node rolled graphs as a function of graph density for the state
of the art (MSL) and our method (SAT). We used 100 graphs per density and a timeout of
100 seconds; both methods enumerate up to 1000 solutions.
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Figure 4: Running times as function of the number of nodes for the state of the art (MSL)
and our method (SAT). Left: 10%-dense graphs. Right: 15%-dense graphs. In both plots
we use 100 graphs per size and a timeout of 1 hour; both methods enumerate up to 1000
solutions.

each measurement timescale edge, and then finds all ways of identifying virtual287

nodes with actual nodes such that all-and-only the measurement timescale edges288

are implied. Exhaustive search of all possible virtual to actual identifications is289

computationally intractable, so MSL employs a branch-and-bound search pro-290

cedure, where a branch is bounded whenever it implies a “false positive” (i.e.,291

implies an edge that does not actually occur in the measurement timescale in-292

put). Because each edge requires u− 1 virtual nodes, each of which must later293

be identified with an actual node, MSL scales quite poorly as a function of u.294

For the comparison, we simulated system timescale rolled graphs with vary-295

ing density and number of nodes (see Section 5 for exact details), and then296

computed the implied measurement timescale structures for subsampling rate297

u = 2. This structure was given as input to the inference procedures (including298

the subsampling rate u = 2). Note that the input consisted here of graphs for299

which there always is a G1, so all instances were satisfiable. The task of the300

algorithms was to output up to 1000 (system timescale) graphs in the equiva-301

lence class. The ASP encoding was solved by Clingo using the flag -n 1000 for302

the solver to enumerate 1000 solution graphs (or all, in cases where there were303

fewer than 1000 solutions).304

The running times of the MSL algorithm and our approach (SAT) on 10-305

node (rolled) input graphs with different edge densities are shown in Figure 3.306

Figure 4 shows the scalability of the two approaches in terms of increasing num-307

ber of nodes in the rolled input graphs and fixed 10% or 15% edge density. Our308

declarative approach clearly outperforms MSL. 10-node rolled input graphs,309

regardless of edge density, are essentially trivial for our approach, while the per-310

formance of MSL deteriorates noticeably as the density increases. For varying311

numbers of nodes in 10% density input graphs, our approach scales up to 65312
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Figure 5: Left: Influence of input graph density on running times of our approach when the
subsamping rate u = 2 is given as input and all solutions are enumerated. Right: Scalability
of our approach when u is left to be determined by the method from interval 1, . . . , 5. All
solutions over the range of us are enumerated.

nodes with a one hour time limit; even for 70 nodes, 25 graphs finished in one313

hour. In contrast, MSL reaches only 35 nodes; our approach uses only a few sec-314

onds for those graphs. The scalability of our algorithm allows for investigating315

the influence of edge density for larger graphs. Figure 5 (left) plots the running316

times of our approach (when enumerating all solutions) for u = 2 (u = 2 was317

given as input) on 20-node input graphs of varying densities. Note that here318

the instances are sorted by the running time for each individual density (curve).319

With a time limit of 1000 seconds we can solve 80% of the instances with 26%320

density, almost all of the instances with 25% density and all of the instances321

with 24% density. Thus, the running time is increased for denser graphs: in322

addition to more constraints, there are also more members in the equivalence323

classes. Finally, Figure 5 (right) shows the scalability of our approach in the324

more challenging task of enumerating all solutions over the range u = 1, . . . , 5325

simultaneously. This also demonstrates the generality of our approach: it is not326

restricted to solving for individual values of u separately.327

4. Learning System Timescale Structures from Data328

Due to statistical errors in estimating H and the sparse distribution of im-329

plied Gu in the space of possible undersampled graphs, the estimated H will330

often have no G1s with Gu = H. Given such an H, neither the MSL algorithm331

nor our approach in the previous section can output a solution, and they simply332
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conclude that no solution G1 exists for the input H.5 In terms of our constraint333

declarations, this is witnessed by conflicts among the constraints and the under-334

lying model space for any possible solution candidate. Given the inevitability335

of statistical errors, we should not simply conclude that no consistent G1 ex-336

ists for such an H. Rather, we should aim to learn G1s that, in light of the337

underlying conflicts, are “optimally close” (in some well-defined sense of “opti-338

mal”) to being consistent with H. We now turn to this more general problem339

setting, and propose what (to the best of our knowledge) is the first approach340

to learning, by employing constraint optimization, from undersampled data un-341

der conflicts. In fact, we can use the ASP formulation already discussed—with342

minor modifications—to address this problem.343

In this more general setting, the input consists of both the estimated graph344

H, and also (i) weights w(e ∈ H) indicating the reliability of edges present in H;345

and (ii) weights w(e 6∈ H) indicating the reliability of edges absent in H. Since346

Gu is G1 subsampled by u, the task is to find a G1 that minimizes the objective347

function348

f(G1, u) =
∑
e∈H

I[e 6∈ Gu] · w(e ∈ H) +
∑
e6∈H

I[e ∈ Gu] · w(e 6∈ H),

where the indicator function I(c) = 1 if the condition c holds, and I(c) = 0349

otherwise. Thus, edges that differ between the estimated input H and the350

Gu corresponding to the solution G1 are penalized by the weights representing351

the reliability of the measurement timescale estimates. In the following, we first352

outline how to generalize the ASP encoding from the preceding section to enable353

search for optimal G1 with respect to this objective function. We then describe354

two alternatives for determining the weights w. In the following section, we355

present simulation results on the relative performance of the different weighting356

schemes.357

4.1. Learning by Constraint Optimization358

To model the objective function for handling conflicts, only simple modifi-359

cations are needed to our ASP encoding: instead of declaring hard constraints360

that require that the paths induced by G1 exactly correspond to the edges in361

H, we soften these constraints by declaring that the violation of each individual362

constraint incurs the associated weight as penalty. In the ASP language, this363

can be expressed by augmenting the input predicates edgeh(X,Y) with weights:364

edgeh(X,Y,W) (and similarly for no edgeh, confh and no confh), and by using365

weighted soft rules syntactically represented via :~ instead of :-. Here the ad-366

ditional argument W represents the weight w((X → Y ) ∈ H) given as input.367

The following expresses that each conflicting presence of an edge in H and Gu is368

penalized with the associated weight W . The additional [W,X,Y,v] for v = 1, 2369

5For these cases, Plis et al. (2015b) ran MSL on graphs close to H to try to find an input
for which there is a G1, but this strategy is not guaranteed to find an optimal solution, nor
does it scale computationally.
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syntactically enforce that a cost of W is incurred in case the corresponding rule370

is violated for a specific pair of nodes X,Y . The numbers v ∈ {1, 2} at the371

end of the brackets enable the solver to distinguish the cost incurred due to372

bidirected and directed edges respectively.373

:~ edgeh(X,Y,W), not edgeu(X,Y). [W,X,Y,1]

:~ no_edgeh(X,Y,W), edgeu(X,Y). [W,X,Y,1]

:~ confh(X,Y,W), not confu(X,Y). [W,X,Y,2]

:~ no_confh(X,Y,W), confu(X,Y). [W,X,Y,2]

This modification provides an ASP encoding for Task 2; that is, the optimal374

solutions to this ASP encoding correspond exactly to the G1s that minimize the375

objective function f(G1, u) for given u and input H with weighted edges.376

4.2. Weighting Schemes377

We use two different schemes for weighting the presences and absences of378

edges in H according to their reliability. To determine the presence or absence379

of a specific edge X → Y in H, we simply test the corresponding independence380

Xt−1 ⊥⊥ Y t | Vt−1\Xt−1. To determine the presence/absence of an edge X ↔ Y381

in H, we test the independence: Xt ⊥⊥ Y t | Vt−1.382

The simplest approach is to use uniform weights for the estimated H:383

w(e ∈ H) = 1 ∀e ∈ H,
w(e 6∈ H) = 1 ∀e 6∈ H.

Uniform edge weights resemble the search on the Hamming cube of H that384

Plis et al. (2015b) used to address the problem of finding G1s when H did not385

correspond to any Gu, though our approach is much superior computationally.386

A more intricate approach is to use pseudo-Bayesian weights following Mar-387

garitis and Bromberg (2009); Hyttinen et al. (2014); Sonntag et al. (2015).388

They used Bayesian model selection to obtain reliability weights for indepen-389

dence tests. Instead of a p-value and a binary decision, these types of tests give390

a measurement of reliability for an independence/dependence statement as a391

Bayesian probability. We can directly incorporate their approach of using log-392

probabilities as the reliability weights for the edges. For details, see Section 4.3393

of Hyttinen et al. (2014). Again, we only compute weights for the independence394

tests mentioned above in the estimation of H.395

5. Simulations396

We use simulations to explore the accuracy and runtime efficiency of our397

approach in various different settings. For the simulations, system timescale398

structures G1 and the associated data generating models were constructed in399

the following way. To guarantee connectedness of the graphs, we first formed400

a cycle of all nodes in a random order (following Plis et al. (2015b)). We401

then randomly sampled additional directed edges until the required density was402
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Figure 6: Accuracy of the optimal solutions when subsampling rate u = 2 is given as input (200
instances and 250 samples). The x-axis shows the different prior probabilities of independence
in the utilized independence test. The two left columns give the accuracy of the estimation
of the measurement timescale structure H. The next two colums give the accuracy of our
method with the two different weighting schemes. The rightmost column shows the accuracy
of the baseline estimate that does not take subsamping into account (the directed edges of H
are directly interpreted as the system timescale edges).

obtained. Recall that there are no bidirected edges in G1. We used Equations 1403

and 2 to generate the measurement timescale structure Gu for a given u. When404

sample data were required, we used linear Gaussian structural autoregressive405

processes (order 1) with structure G1 to generate data at the system timescale,406

where coefficients were sampled from the two intervals ±[0.2, 0.8]. We then407

discarded intermediate samples6 to get the particular subsampling rate.7408

5.1. Accuracy409

Figure 6 shows the accuracy of the different methods in one setting: subsam-410

pling rate u = 2 (given as input), network size n = 6, average degree 3 (density411

25%), N = 250 samples, and 200 datasets in total. The positive predictions412

correspond to presences of edges; when the method returned several solutions413

with equal cost, we used the mean solution accuracy to measure the output414

accuracy. The x-axis numbers correspond to the adjustment parameter for the415

statistical independence tests (prior probability of independence). The two left416

6All sample counts refer to the number of samples after subsampling.
7Clingo only accepts integer weights; we multiplied weights by 1000 and rounded to the

nearest integer.
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Figure 7: Accuracy of the optimal solutions when subsampling rate u = 2 is given as input (200
instances and 500 samples). The x-axis shows the different prior probabilities of independence
in the utilized independence test. The two left columns give the accuracy of the estimation of
the measurement timescale structure H. The third column gives the accuracy of our method
with the pseudo-Bayesian weighting scheme. The rightmost column shows the accuracy of the
baseline estimate that does not take subsamping into account.

columns (black and red) show the true positive rate and false positive rate of417

the H estimation (compared to the true G2), for the different types of edges,418

using different statistical tests. Given 250 samples, we see that the structure419

of G2 can be estimated with a good tradeoff of TPR and FPR with the mid-420

dle parameter values, but not perfectly. The presence of directed edges can be421

estimated more accurately. More importantly, the two rightmost columns in422

Figure 6 (green and blue) show the accuracy of the G1 estimation. Both weight-423

ing schemes produce good accuracy for the middle parameter values, although424

there are some outliers. The pseudo-Bayesian weighting scheme (“psbayesw”,425

shown in green) still outperforms the uniform weighting scheme (“uniformw”,426

shown in blue), as it produces high TPR with low FPR for a range of thresh-427

old parameter values (especially for 0.3). Both weighting schemes are superior428

to the “baseline” shown in magenta on the right. This baseline G1 estimate429

is formed by the directed edges of the estimated H, and thus corresponds to430

estimating G1 without taking subsampling into account.431

Figure 7 shows the accuracy when u = 3 (given as input), n = 6, average432

degree 3 (density 25%), N = 500, and 200 datasets. The accuracy for edge433

presences in the measurement timescale graph H is lower than for u = 2, even434

though we have twice the number of samples (Figure 7, black, red). The problem435

is that measurement timescale edges here correspond to 3-edge paths, whose436
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Figure 8: Accuracy of the optimal solutions when subsampling rate u = 2 is given as input
(200 instances and 250 samples), some samples are obtained at the adjacent timepoints. Due
to previous simulations we used the prior probability of 0.3 for all methods. In more detail,
the x-axis gives the probability that the sample was obtained at the correct time t, otherwise
the sample was obtained either at the previous or the next time point, splitting the remaining
probability. The two left columns give the accuracy of the estimation of the measurement
timescale structure H. The third column gives the accuracy of our method with the pseudo-
Bayesian weighting scheme. The rightmost column shows the accuracy of the baseline estimate
that does not take subsamping into account.

causal effects will be smaller (on average) than 2-edge paths for a fixed interval437

of system timescale edge coefficients (±[0.2, 0.8]), and so are harder to detect.438

Nevertheless, the constraint optimization procedure achieves a good tradeoff439

between TPR and FPR for system timescale edges (Figure 7, green). Larger440

subsampling rates (u) require more samples for accurate G1 structure discovery,441

but not several orders of magnitude more data.442

5.2. Robustness of the subsampling rate443

Figure 8 shows the accuracy of this method when some of the samples are not444

obtained at the exact time assumed by the measurement timescale. Specifially,445

the x-axis specifies the probability with which we obtain the correct sample446

(for the given u = 2, which is given as input); otherwise, we take either the447

sample before or the sample after (synchronously for all variables), splitting the448

remaining probability. The results with probability 1 equal the result in Figure 6449

with prior probability of independence 0.3 and N = 250 samples. These values450

were used in all runs in this plot. Unsurprisingly, as the “jitter” in the sampling451

process increases, the results deteriorate in terms of TPR and FPR. However, at452

least for the models and subsampling rate of u = 2 tested here, the inference is453
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Figure 9: Accuracy when the true u is unknown. Two left boxplots show accuracy of the
H estimate as before. The next three boxplots show the accuracy of our approach (pseudo-
Bayesian weights) when, regardless of the true u, u is fixed to 2, or to 3, or left for the
procedure decision, respectively. In the second from right boxplot the true u was given as
input, the rightmost boxplot shows the baseline that does not take subsampling into account.

not overly sensitive. When the probability of a correct sample is 0.9, the results454

are still quite good, alleviating somewhat the dependence on the assumption455

of an exact subsampling rate. Naturally, there are many further permutations456

one could explore: jitter could affect variables independently of one another,457

jitter could be represented by a more complex distribution, we could explore458

the effect of jitter for different subsampling rates or when the subsampling rate459

is unknown. Moreover, jitter could have a persistent, rather than a local effect,460

in shifting subsequent measures as well. We have here only explored the simple461

case mimicking the situation where the measurement device as a whole (i.e.462

simultaneously for all variables) comes out of synch with the system at random463

points without consequences for subsequent samples.464

Figure 9 further examines the possibility to distinguish between different465

subsampling rates. We generated 500 samples of data from 200 models (average466

degree 3) with equal numbers of cases with u = 2 or u = 3. The two leftmost467

boxplots show the accuracy of the estimated H, which, given the mixture of u =468

2 and u = 3, is between the accuracy ofH obtained in previous simulations. The469

next two boxplots show the accuracy of the G1 estimate, when the subsampling470

rate u for the search procedure is fixed to 2 or 3, respectively, regardless of the471

true u. As expected, the accuracy is mediocre in this case, since the method472

assumes the incorrect subsampling rate u in half of the runs. But when the473

method is left to determine the correct u by itself, the accuracy improves again,474

as shown in the boxplots second form the right (the method was run with475

u = 2...3). In fact, the accuracy comes close to that of the rightmost boxplots,476

where the correct u was given as input to the procedure. Thus the procedure477

18



0 20 40 60 80 100

0
50

10
0

15
0

20
0

instances (sorted for each line)

so
lv

in
g 

tim
e 

pe
r 

in
st

an
ce

 (
s)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●
●●●

●●
●●

●
●●

●●

●●
●●

●
●

●

●●

●

psbayesw n= 7 N= 200
uniform n= 7 N= 200
psbayesw n= 8 N= 200
uniform n= 8 N= 200
psbayesw n= 9 N= 200
psbayesw n= 9 N= 500

0 20 40 60 80 100

0
50

0
15

00
25

00
35

00

instances (sorted for each line)

so
lv

in
g 

tim
e 

pe
r 

in
st

an
ce

 (
s)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●

● psbayesw n= 10 N= 500
psbayesw n= 10 N= 1000
psbayesw n= 11 N= 1000
psbayesw n= 12 N= 1000

Figure 10: Scalability of our constraint optimization approach (using Clingo) for different
graph sizes, numbers of samples and weighting schemes. For each setting there are 100 in-
stances that are sorted according to the solving time on each line.

is often able to recognize the correct u. The longer tails indicate that at times478

the determination of u is not perfect.479

5.3. Scalability480

Finally, the running times of our approach are shown in Figure 10 with481

different weighting schemes, network sizes (n), and numbers of samples (N).482

The subsampling rate was again fixed to u = 2 (and given as input), and483

average node degree was 3. Figure 10 (left) shows that the pseudo-Bayesian484

weighting scheme allows for much faster solving: for n = 7, it finishes all runs485

in a few seconds (black line), while the uniform weighting scheme (red line)486

takes several minutes in the longest runs. Thus, the pseudo-Bayesian weighting487

scheme provides the best performance in terms of both computational efficiency488

and accuracy. The number of samples has a significant effect on the running489

times: larger number of samples take less time. Runs for n = 9, N = 200 (blue490

line) take longer than for n = 9, N = 500 (Figure 10 left, magenta vs. cyan491

lines). Intuitively, statistical tests should be more accurate with larger number492

of samples, resulting in fewer conflicting constraints. For N = 1000, the global493

optimum is found here for up to 12-node graphs (Figure 10 right), though in a494

considerable amount of time.495

6. Case Study: House data of Peters et al. (2013)496

In order to demonstrate the applicability to real-world data, we analyzed497

the house temperature and humidity data of Peters et al. (2013). The data498

includes 7265 samples of hourly temperature and humidity measurements of499

six sensors placed in a house (SHED=in the shed, OUT=outside, KIT=kitchen500

19



OUT

vv

		

##

��

SHED

		

::

KIT

uu ��

��

LIV

//

UU
//

$$

WC

EE

BATH

;;

OUT

vv

		

##
SHED

		

::

KIT

uu
LIV
UU

//

$$

WC

OO

uu
BATH

DD

;;

OUT

zz

		

##

�� ��

��

SHED

		
//

�� ))

��

KIT

		

oo
��

{{

LIV

55

UU
//

��

WC

EE

ii UU

uu
BATH

;;

WW
22

UU

a) Temperature at u = 2 b) Temperature at u = 3 c) Temperature at u = 10..12

OUT

		

##
SHED //

��

��

KIT

		

uu ��
LIV

EE

WC
UU

BATH

;;

UU

OUT

		

��

SHED

		

��

KIT

uu ��
LIV
UU

//

$$

WC
UU

BATH

DD

OUT

		

##

�� ��

SHED //

�� ))

��

KIT

		

ooLIV

55

UU
WC
UU

BATH

;;

UU

d) Humidity at u = 2 e) Humidity at u = 3 f) Humidity at u = 10..12

Figure 11: Results of the House data analysis for different subsampling rates (u) and mea-
surement type. Edges with full lines are found to be present, absent edges are found to be
absent, edges with dotted lines may be present or absent.

boiler, LIV=living room, WC=wc, BATH=bathroom) in the Black Forest. The501

house has heating, but the house is not in use for most of the year. This data was502

also partly analyzed by Gong et al. (2015). The measurements of this system503

were obtained at coarser intervals than the process of temperature and humidity504

changes are thought to take place. Since the data includes outside temperature505

and humidity measurements, the assumption of causal sufficiency at the system506

timescale seems a good approximation.507

We analyzed the temperature and humidity components separately, and ex-508

amined the differences of sequential measurements,8 as this removed trends from509

each univariate time series. The temperature measurement timescale graph (ob-510

tained at 0.9 prior probability of independence) includes a total of 20 (out of511

36) directed edges, and 8 (out of 15) bidirected edges, with varying pseudo-512

Bayesian weights. The humidity measurement timescale graph had the same513

total numbers of edges, although not the exact same edges.514

As explained earlier, subsampling introduces underdetermination of the sys-515

tem timescale graph. Thus, we determined the presence of individual system516

timescale edges in the following way (Magliacane et al., 2016). For each edge in517

8This may take out some of the influences of self-loops.
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G1, we ran the inference procedure first enforcing its presence and then enforcing518

its absence.9 The difference in objective function values for the two outputs—519

the optimal G1s that do or do not contain the edge, respectively—indicates the520

support for the presence (absence) of the edge.521

For the estimated H, we computed G1s edgewise for subsampling rates of522

u = 2, 3. (Since the measurements were hourly, these correspond to time steps523

of 30 and 20 minutes, respectively.) The two temperature graphs for u = 2524

and u = 3 (Figure 11a,b) differ substantially from one another, as do the two525

humidity graphs (Figure 11d,e). These results provide empirical demonstrations526

of the impact of subsampling, as different choices of u imply different structures.527

At the same time, timesteps of 20 and 30 minutes arguably do not correspond528

to realistic time steps for the temperature and humidity changes measured by529

these data.530

We thus considered larger subsampling rates u = 10..12, which correspond to531

more realistic time steps of 5-6 minutes. As expected, there is more underdeter-532

mination for these u, but the results are also more plausible. Figure 11c suggests533

that the temperature outside is not directly influenced by the temperature in534

any of the rooms, but it directly influences the temperature in the shed. The535

data do not, however, uniquely determine how the outside temperature directly536

affects the temperatures in the rooms inside the house, nor the system timescale537

causal dependencies between temperatures in the rooms. The algorithm output538

is both intuitively sensible, and also points towards future targeted experiments539

if the remaining underdetermination is to be resolved.540

Similarly, the humidity structures for larger u are more plausible. Figure 11f541

suggests that the humidity level in the WC is driven by both bathroom and542

outside humidity, which is sensible since the WC is located next to the bathroom543

and has a window, according to Peters et al. (2013). Similarly as Peters et al.544

(2013), we find that the shed humidity affects bathroom humidity — for both545

analyses this may be due to an inability to distinguish the shed humidity from546

the outside humidity (they are particularly strongly correlated). The living547

room and kitchen boiler humidities seem to depend on each other directly, so548

the data suggest that the rooms may be adjacent, though that information was549

not provided by Peters et al. (2013). The algorithm thus points to testable550

predictions about the spatial house layout, and the mechanisms for humidity551

transfer.552

Overall, the processes controlling the temperature and humidity have dif-553

ferences and similarities. Determining the placement of sensors thus seems to554

require data from both measurement types. More importantly for our present555

paper, this case study shows that this algorithm can be applied to real-world556

data, provide intuitively sensible outputs, and provide novel experiments and557

measurements that would resolve remaining underdetermination.558

9This can be done by adding a simple clause to the input code “edge(X,Y).” to enforce
the presence and “:-edge(X,Y).” to enforce the absence of X → Y .
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7. Solver Performance Comparison559

Thus far in this article we have considered Clingo as the only solver to560

find solutions to a declarative constraint encoding of the computational prob-561

lems considered here. This raises the question to what extent the choice of562

the constraint solver affects the runtime performance of our approach. While563

the high-level ASP syntax is relatively easy to understand and modify, our ap-564

proach can also be represented via propositional logic. The benefit of using565

propositional logic is that various SAT solvers, as well as MaxSAT solvers (as566

the Boolean optimization generalization of SAT), can be applied directly. In567

this section we evaluate the impact of the choice of SAT and MaxSAT solvers568

on the runtime efficiency of our approach.569

7.1. Direct Propositional SAT Encoding570

A direct propositional SAT encoding for finding a system timescale causal571

structure G1 consistent with a measurement timescale graph H for a known u572

is presented in Eqs. 5–12.573

�
hX,Y ∀X,Y ∈ V : X → Y ∈ H (5)

¬
�
hX,Y ∀X,Y ∈ V : X → Y 6∈ H (6)
↔
hX,Y ∀X,Y ∈ V : X < Y,X ↔ Y ∈ H (7)

¬
↔
hX,Y ∀X,Y ∈ V : X < Y,X ↔ Y 6∈ H (8)
�
hX,Y ⇔

∨
Z∈V

(pu−1X,Z ∧ p1Z,Y ) ∀X,Y ∈ V (9)

pl+1
X,Y ⇔

∨
Z∈V

(plX,Z ∧ p1Z,Y ) ∀X,Y ∈ V, l ∈ {1..u− 2} (10)

↔
hX,Y ⇔

u−1∨
l=1

↔
hl

X,Y ∀X,Y ∈ V : X < Y (11)

↔
hl

X,Y ⇔
∨

Z∈V

(plZ,X ∧ plZ,Y ) ∀X,Y ∈ V : X < Y, l ∈ {1..u− 1} (12)

Essentially, Eqs. 5–8 enforce the input constraints imposed by H. Following the574

ASP encoding presented earlier, Eqs. 9–12 encode the mapping from the G1’s—575

the edge relation of which is encoded as the length-1-path variables p1X,Y —that576

are consistent with H.577

7.2. Solver Comparison: Finding Consistent System Timescale Structures578

The results of a runtime performance comparison between Clingo and two579

state-of-the-art SAT solvers, Glucose (Audemard and Simon, 2009) and Lin-580

geling (Biere, 2016), is presented in Figure 12 for u = 3 (given as input), edge581

density of 10% and the numbers of nodes ranging from 27 (on left) to 30 (on582
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Figure 12: Comparison of running times for different solvers finding a single graph in the
equivalence class, when the subsampling rate u = 3 is given as input. Left: easier instances
with 27 nodes. Right: harder instances with 30 nodes. Clingo uses the ASP encoding
presented in Section 3.2, all others use the propositional SAT encoding in Section 7.1.

right). Note that the plots give the running times of each of the three solvers583

sorted individually for each solver. In terms of runtime performance, the SAT584

solvers Glucose and Lingeling, both working directly on the propositional SAT585

encoding, exhibit noticeably improved performance over Clingo as the num-586

ber of nodes is increased (right plot). Thus, in terms of runtime efficiency587

of our approach, it can be beneficial to apply current and future advances in588

state-of-the-art SAT solvers directly on the propositional level for improved per-589

formance. In these simulations the ASP paradigm does not show any particular590

computational advantage.591

7.3. Solver Comparison: Learning System Timescale Structures from Data592

As with the ASP encoding given earlier, the SAT encoding given as Eqs. 5–593

12 is easily extended to solve the optimization problem underlying the task of594

learning system timescale structure from undersampled data. In the language of595

MaxSAT, the only change required is to make the constraints in Eqs. 5–8 soft,596

and to declare that the cost incurred from not satisfying these individual con-597

straints equals that of w(e ∈ H) (for Eqs. 5,7) or w(e /∈ H) (for Eqs. 6,8) for the598

corresponding edge e. This enables a comparison of the runtime performance599

of Clingo’s default branch-and-bound based search for an optimal solution to600

those of other MaxSAT solvers implementing alternative algorithmic approaches601

on the direct propositional MaxSAT encoding. Results comparing the perfor-602

mance of Clingo to that of the modern MaxSAT solvers Eva500a (Narodyt-603

ska and Bacchus, 2014), LMHS (Saikko et al., 2016), MSCG (Morgado et al.,604

2015), Open-WBO (Martins et al., 2014), PrimalDual (Bjørner and Narodyt-605

ska, 2015), and QMaxSAT (Koshimura et al., 2012), as well as the commercial606

23



0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

35
0

instances (sorted for each line)

so
lv

in
g 

tim
e 

pe
r 

in
st

an
ce

 (
s)

6 nodes, av. degree 3, fixed u=3

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●
●
●●●

●●●
●●●

●
●●

●●
●

●
●

●
●●

●

●

Clingo
QMaxSAT
LMHS
CPLEX
PrimalDual
Eva500a
Open−WBO
MSCG

0 20 40 60 80 100

0
50

0
15

00
25

00
35

00

instances (sorted for each line)

so
lv

in
g 

tim
e 

pe
r 

in
st

an
ce

 (
s)

7 nodes, av. degree 3, fixed u=3

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●

●

●
●
●

●

●

●
●

● Clingo
QMaxSAT
LMHS
CPLEX

Figure 13: Comparison of running times for different solvers finding the optimal graph, when
the subsampling rate u = 3 is given as input. Left: easier instances with 6 nodes. Right:
harder instances with 7 nodes. Clingo uses the ASP encoding presented in Sections 3.2
and 4.1, all others use the propositional SAT encoding in Section 7.1.

integer programming (IP) solver CPLEX run on a standard IP translation of607

MaxSAT (Davies and Bacchus, 2013; Ansótegui and Gabàs, 2013), are shown608

in Figure 13. Here we observe that Clingo’s branch-and-bound approach is609

among the best performing solvers (with the considered problem parameters).610

However, the results also suggest that QMaxSAT, and so-called model-based611

approaches using a SAT solver to search for an optimal solution over the ob-612

jective function range with a top-down strategy, can improve on the runtime613

efficiency of our approach. These results clearly show that the choice of the614

underlying Boolean optimization solver can indeed have a noticeable influence615

on the practical efficiency of the approach. There is at least some potential for616

further improving the runtime performance of our approach by making use of617

advances in MaxSAT solver technology.618

8. Learning from Mixed Frequency Data619

In some contexts we may have obtained data from the same system at dif-620

ferent subsampling frequencies. Two cases can be distinguished here: First, the621

subsampled time series may be anchored to the same underlying process such622

that one may know about the offset between the two.10 For approaches to this623

case see Tank et al. (2016), who treat this issue as a missing data problem in624

a parametric setting. The second case we consider here is one where the sub-625

sampled time series are taken at different times and cannot be coordinated to626

10For example, in the special case with two simultaneously measured data sets with u = 2
and 1 time step offset, we can combine the time series to give a dataset with no subsampling.
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Figure 14: Example graphs for learning form mixed frequency data. Graph (a) shows the true
system timescale causal structure. When this is subsampled by u = 2 or by u = 3, the result
is also the structure (a) (this time in measurement timescale). System timescale structure
(b) gives measurement timescale structure (a) when subsampling by u = 2. System timescale
structure (c) gives measurement timescale structure (a) when subsampling by u = 3. However,
if measurement timescale structures for u = 2 and u = 3 are given as (a) respectively, the true
system timescale structure can in fact be identified as (a).

the same instance of an underlying time series. A natural question is how much627

more can be learned by integrating information from multiple sampling rates.628

If one sampling rate is an integer multiple of the other, then (provably) noth-629

ing additional can be learned. A more interesting situation arises when neither630

sampling rate is an integer multiple of the other. For example, suppose the631

causal system operates at a 1-second timescale. If the system is measured every632

2 seconds in one dataset, and every 3 seconds in another dataset, then we have633

u1 = 2/3 · u2. More generally, if u1/u2 is non-integer, then when (if ever) is the634

equivalence class of G1 that satisfies both H1 & H2 smaller than the equivalence635

class for either H individually? We can start to answer this question using the636

constraint satisfaction approach of this paper with only minor modifications.637

For example, suppose the true system timescale structure is given in Fig-638

ure 14a. That is, the system includes four independent time series with self639

loops. Undersampling does not change this graph, so the measurement timescale640

structures for u = 2 and for u = 3 will also be the graph in Figure 14a. For this641

measurement timescale graph, the system timescale structure is not uniquely642

determined for either u = 2 or u = 3: for example, the system timescale struc-643

ture in Figure 14b produces Figure 14a with u = 2, and Figure 14c produces644

Figure 14a with u = 3. In fact, any system timescale edge can be present or645

absent given either of the measurement timescale graphs alone.11 However, if646

this measurement timescale graph is found at both u = 2 and u = 3, then the647

system timescale structure can be uniquely determined: Figure 14b produces648

a different measurement timescale graph for u = 3 and Figure 14c produces649

a different measurement timescale graph for u = 2. And of course, the same650

observations hold if the us are multiplied by a constant (e.g., if u = 4 and u = 6).651

To examine the prevalence of this phenomenon, we exhaustively considered652

all 65536(= 24·4) different 4-variable G1s, and compared the number of equiv-653

11The node labels in Figure 14b and c can be permuted.
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alence classes given input at a single subsampling rate, versus given inputs at654

two subsampling rates. A greater number of equivalence classes means a higher655

chance that a random graph will be uniquely identifiable, and so the number of656

equivalence classes is an approximate (inverse) measure of the extent of under-657

determination.658

For input at a single undersampling rate, for u = 2 we have 24265 equiv-659

alence classes; 7544 for u = 3; and 3964 equivalence classes for u = 4. These660

results with a single undersampled input graph thus replicate the known result661

that underdetermination is a significant problem, and it rapidly worsens as u662

increases (Plis et al., 2015a,b).663

If we instead have measurement timescale graphs for both u = 2, 3, then664

we have 26720 equivalence classes, which is only slightly more than the number665

for u = 2 by itself. That is, underdetermination is not substantially reduced666

if we additionally measure at u = 3 when we already have measurements at667

u = 2. Similarly, for u = 3, 4 we have 7814 equivalence classes; again, there is668

a reduction in underdetermination compared to u = 3 by itself, but it is quite669

small. This analysis assumes that all G1 are equally likely, and it is an open670

question whether measurements at different undersampling rates would have671

more impact for certain classes of G1 (e.g., connected graphs).672

9. Discussion673

We have assumed that all common causes of measured variables are them-674

selves measured, but this assumption is frequently violated in real-world data.675

Constraint satisfaction methods have elsewhere been used with success to iden-676

tify causal relations in the presence of unobserved common causes or latent677

variables (Hyttinen et al., 2014; Magliacane et al., 2016). For time series data,678

dropping the assumption of causal sufficiency (in the system timescale) generates679

complications. Even if the system timescale process including latent variables680

is assumed to be first order Markov, the Markov order of the measurement681

timescale (naturally without the latent variables) can be arbitrarily larger.12682

That is, variables arbitrarily far in the past can (directly, in the measurement683

timescale) cause variables at the current timestep. We would thus need to both684

enrich the notation for Gu to encode the time lags of direct causal effects, and685

also modify the statistical tests used to estimate these connections.686

Moreover, there can be more information contained in the pattern of time687

lags (i.e., which past variables directly cause the present) than is given by the688

Markov order of the system. As just one example, suppose {Xt−2, Xt−4, . . .} →689

Y t. The simplest (in terms of number of latents) structure that explains these690

influences (i) has a latent L through which X influences Y (i.e., Xt−2 → Lt−1 →691

Y t); and (ii) L is part of a 2-loop with another latent M (i.e., Lt−1 →M t and692

Lt ←M t−1). In contrast, if we have {Xt−2, Xt−3, . . .} → Y t, then the simplest693

structure has only a single latent L through which X influences Y , but where L694

12This complication is independent of undersampling, and arises even if u = 1.
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has a self-loop (i.e., Lt−1 → Lt). The pattern of time lags for direct causes—in695

particular, the absence of certain time lags—thus contains information about696

the number and causal structure of the latent variables. Estimation of this697

pattern, however, can be quite complex statistically.698

Subsampled time series data can be also particularly prone to violations699

of faithfulness. For example, the underlying process unrolled over time may700

include directed paths over many time steps that do not result in significant701

statistical dependence in the observed data. In addition, variables observed702

over subsequent time steps might be almost deterministically related. If Xt−1 ≈703

Xt−2, then conditioning on Xt−2 may render the statistical dependence through704

Y t ← Xt−1 → Zt undetectable from any realistic numbers of samples. In the705

current framework, both of these situations are treated as estimation errors706

in H. Further modeling of these complications may help to achieve improved707

accuracy. Another option could be to develop parametric approaches instead of708

the non-parametric one presented in this paper.709

10. Conclusion710

In this paper, we introduced a constraint optimization based solution for the711

problem of learning causal timescale structures from subsampled measurement712

timescale graphs and data. Our approach considerably improves the state-of-713

art; in the simplest case (subsampling rate u = 2), we extended the scalability714

by several orders of magnitude. Moreover, our method generalizes to handle715

different or unknown subsampling rates in a computationally efficient manner.716

Unlike previous methods, our method can operate directly on finite sample in-717

put, and we presented approaches that recover, in an optimal way, from conflicts718

arising from statistical errors. We demonstrated the accuracy, robustness and719

scalability of the approach through a series of simulations and applied it to720

real-world time series data. We expect that this considerably simpler approach721

will allow for the relaxation of additional model space assumptions in the fu-722

ture. In particular, we plan to use this framework to learn the system timescale723

causal structure from subsampled data when latent time series confound our724

observations.725
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