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Abstract
Two of the most central algorithmic paradigms im-
plemented in practical solvers for maximum sat-
isfiability (MaxSAT) and other related declarative
paradigms for NP-hard combinatorial optimization
are the core-guided (CG) and implicit hitting set
(IHS) approaches. We develop a general unifying
algorithmic framework, based on the recent notion
of abstract cores, that captures both CG and IHS
computations. The framework offers a unified way
of establishing the correctness of variants of the
approaches, and can be instantiated in novel ways
giving rise to new algorithmic variants of the core-
guided and IHS approaches. We illustrate the latter
aspect by developing a prototype implementation
of an algorithm variant for MaxSAT based on the
framework.

1 Introduction
The declarative paradigm of maximum satisfiability
(MaxSAT) [Bacchus et al., 2021] is a viable approach to
solving NP-hard optimization problems arising from AI and
other real-world settings. Much of the success of MaxSAT
is due to advances in Boolean satisfiability (SAT) based
MaxSAT algorithms capable of computing provably optimal
solutions. Two of the most popular and effective algorithmic
approaches implemented in MaxSAT solvers are variants
of the so-called core-guided (CG) [Fu and Malik, 2006;
Marques-Silva and Planes, 2007; Heras et al., 2011;
Ansótegui et al., 2013; Morgado et al., 2013;
Morgado et al., 2014; Narodytska and Bacchus, 2014;
Alviano et al., 2015; Ansótegui et al., 2016;
Ansótegui and Gabàs, 2017] and implicit hitting set
(IHS) [Davies and Bacchus, 2011; Davies and Bacchus, 2013;
Saikko et al., 2016] approaches.

Both CG and IHS are unsatisfiability-based approaches,
relying on iteratively extracting unsatisfiable cores using a
SAT solver as a core-extracting decision oracle [Eén and
Sörensson, 2003]. However, CG and IHS solvers deal with
cores extracted during search differently. CG algorithms re-
formulate the current working instance—starting with the in-
put MaxSAT instance—to take into account the so-far ex-
tracted cores in subsequent search iterations towards an op-

timal solution. The various different core-guided algorithms
differ in the way in which the reformulation steps change the
working instance. In contrast, in each iteration of IHS search,
the SAT solver is invoked on a subset of clauses of the in-
put instance, without reformulation-style modifications. The
choice of the subset of constraints to consider at each iteration
is dictated by a (minimum-cost) hitting set computer over the
so-far accumulated set of cores. In practice, state-of-the-art
core-guided and IHS MaxSAT solvers are both competitive in
terms of runtime performance. However, their relative perfor-
mance on distinct problem domains can vary noticeably, core-
guided solvers outperforming IHS on specific domains, IHS
outperforming core-guided on distinct other domains [Bac-
chus et al., 2019]. The fundamental reasons behind this are
not well understood, despite recent advances showing that for
a specific classic variant of core-guided search, the cores ex-
tracted from the reformulated working formulas during CG
search are tightly related to cores extracted in IHS search
on the original instance [Bacchus and Narodytska, 2014;
Narodytska and Bjørner, 2022].

Taking a different view, we develop a general algorith-
mic framework that captures CG and IHS computations in
a unifying way. The framework is based on the recently-
proposed notion of abstract cores originally presented as a
performance-improving technique for IHS [Berg et al., 2020]
that brings a flavor of CG reformulation into the representa-
tion of the hitting set problems solved during IHS search. Our
framework provides a unified way of establishing the correct-
ness of variants of core-guided and IHS approaches. Further,
the framework can be instantiated in novel ways giving rise
to new variants of unsatisfiability-based MaxSAT algorithms.
As an illustration of its potential for obtaining novel types of
unsatisfiability-based algorithms, we outline and implement
a prototype of a core-guided variant for MaxSAT obtained
through the framework which turns out to be promising also
from a practical perspective.

While our discussion is grounded in MaxSAT, the frame-
work is applicable also for capturing core-guided and IHS
search approaches beyond MaxSAT, including ones devel-
oped e.g. for pseudo-Boolean optimization [Devriendt et al.,
2021; Smirnov et al., 2021; Smirnov et al., 2022], finite-
domain constraint optimization problems [Delisle and Bac-
chus, 2013; Gange et al., 2020] and answer set program-
ming [Andres et al., 2012; Saikko et al., 2018; Alviano and



Dodaro, 2020]: core-guided and IHS approaches rely on a
core-extracting decision oracle, but the exact constraint lan-
guage on which the core extraction is performed does not
fundamentally influence the overall algorithmic approaches.
Our unifying framework can also be viewed as a further
development in a longer line of research developing the-
oretical frameworks that capture the underpinning of au-
tomated reasoning engines, such ones proposed for SAT
and SMT [Nieuwenhuis et al., 2006; Larrosa et al., 2011;
Järvisalo et al., 2012; Fazekas et al., 2018]

2 Maximum Satisfiability
For a Boolean variable x there are two literals, x and x̄. A
clause C = l1 ∨ . . . ∨ ln is a disjunction of literals, a con-
junctive normal form (CNF) formula F = {C1, . . . , Cm}
is a set of clauses. The set var(C) consists of the vari-
ables x for which either x ∈ C or x̄ ∈ C. An assignment
τ maps variables to 1 (true) or 0 (false). Assignments ex-
tend to a literal l, clause C and formula F in the standard
way: τ(l̄) = 1 − τ(l), τ(C) = max{τ(l) | l ∈ C} and
τ(F ) = min{τ(C) | C ∈ F}. τ satisfies F if τ(F ) = 1. We
may treat τ as the set of literals τ assigns to 1, so that l ∈ τ
denotes τ(l) = 1 and l̄ ∈ τ denotes τ(l) = 0. τ is complete
for F if it assigns each variable in F , and otherwise partial.

Cardinality constraints are linear inequalities of the form∑
i xi ≥ k, where each xi is a Boolean variable and k a pos-

itive constant. The constraint
∑

i xi ≥ k is satisfied by an
assignment τ if

∑
i τ(xi) ≥ k. We do not make assump-

tions on the CNF encoding used for cardinality constraints,
and abstractly use ASCNF(

∑
i xi ≥ k) to denote a CNF for-

mula that is satisfiable by an assignment τ iff
∑

i τ(xi) ≥ k.
Taking a name o to indicate whether a cardinality constraint
is satisfied, we also use ASCNF(

∑
i xi ≤ k ↔ o) to de-

note a CNF formula that is satisfied by any assignment τ
that sets τ(o) = 1 iff

∑
i τ(xi) ≥ k. Various CNF encod-

ings of cardinality constraints have been proposed [Bailleux
and Boufkhad, 2003; Sinz, 2005; Eén and Sörensson, 2006;
Codish and Zazon-Ivry, 2010; Ası́n et al., 2011; Abı́o et al.,
2013; Karpinski and Piotrów, 2019].

An instance F = (F,O) of maximum satisfiability
(MaxSAT) consists of a CNF formula F and an objective
function O ≡

∑
i wibi, where wi are positive constants and

bi is a variable of F . (This view on MaxSAT is equivalent to
the classical view on MaxSAT with hard and weighted soft
clauses [Berg and Järvisalo, 2019].) The set var(O) con-
sists of the variables that appear in O. A complete satisfy-
ing assignment τ to F is a solution to F with cost O(τ) =∑

i wiτ(bi). A solution is optimal if there are no solutions
with lower cost. The cost of optimal solutions is denoted by
OPT(F).

Example 1. Consider the MaxSAT instance F = (F,O) with
F = {(b1 ∨ b2 ∨ b3), (b3 ∨ b4 ∨ b5)}, O = b1 + b2 + 3b3 +
b4 + 2b5. An optimal solution to F is τ = {b̄1, b2, b̄3, b4, b̄5},
assigning all variables except b2, b4 to 0. The cost of τ is
O(τ) = τ(b1) + τ(b2) + 3τ(b3) + τ(b4) + 2τ(b5) = 2.

A clause C is a(n unsatisfiable) core of a MaxSAT instance
F = (F,O) if all literals in C are objective variables (i.e.,

Algorithm 1 Core-guided approach to MaxSAT
Input: MaxSAT instance F = (F,O).
Output: Optimal solution τ to F .

1: CONSTRS = ∅
2: O′ = O
3: while true do
4: γA = {x̄ | x ∈ var(O′)}
5: (res, C, τ) = EXTRACT-CORE(F ∪ CONSTRS, γA)
6: if res =’true’ then return τ
7: (D, out) = CREATE-CARD-CONSTR(C)
8: CONSTRS = CONSTRS ∪D
9: O′ = REFINE-OBJECTIVE(C, out,O′)

var(C) ⊆ var(O)) and every solution to F satisfies C (i.e.,
F logically entails C).

3 Core-Guided and IHS Search for MaxSAT
We develop a unifying algorithmic framework for core-
guided [Fu and Malik, 2006; Marques-Silva and Planes,
2007; Morgado et al., 2013; Morgado et al., 2014; Naro-
dytska and Bacchus, 2014; Alviano et al., 2015; Ansótegui
and Gabàs, 2017] and implicit hitting set algorithms [Davies
and Bacchus, 2011; Davies and Bacchus, 2013; Saikko et
al., 2016]. As background, we describe these approaches in
general terms; practical solver implementations employ vari-
ous heuristics and optimizations which do not affect our main
contributions.

Both core-guided and IHS algorithms use an incremental
SAT solver that determines the satisfiability of CNF formu-
las under different sets of assumptions [Eén and Sörensson,
2003]. Given a CNF formula F and partial assignment γA

(constituting a set of assumptions, as a set of literals), we
abstract the SAT solver into the subroutine EXTRACT-CORE
that returns a triplet (res, C, τ). Here res=true if there is a
satisfying assignment τ ⊇ γA of F . If there is no such as-
signment, res=false and C is a clause over a subset of the
variables in γA entailed by F for which γA(C) = 0. In-
voked on F under a set of assumptions γA such that F ∧ γA

is unsatisfiable, modern SAT solvers provide such C at termi-
nation without computational overhead. In core-guided and
IHS MaxSAT solving, EXTRACT-CORE is used for extract-
ing cores of a MaxSAT instance F = (F,O) by invoking it
on F under a subset of var(O) as the assumptions.
Core-Guided Search. Algorithm 1 details a general ab-
straction of the core-guided approach to computing an op-
timal solution to a MaxSAT instance F = (F,O). First
the algorithm initializes a set CONSTRS of cardinality con-
straints as empty and a working objective function O′ as the
objective function O (Lines 1–2). In each iteration of the
main loop (Lines 3–9) a SAT solver is queried for a solution
τ that (i) satisfies all clauses in F and all of the cardinality
constraints in CONSTRS and (ii) falsifies all objective vari-
ables of the current working objective O′, i.e., O′(τ) = 0
(Lines 4–5). If there is such a τ , it is returned as an optimal
solution to the original instance (Line 6). Otherwise a core C
of (F ∪ CONSTRS, O′) is obtained. The core is then relaxed
(Lines 7–9), transforming the current instance in a way that



Algorithm 2 IHS for MaxSAT
Input: MaxSAT instance F = (F,O).
Output: Optimal solution τ to F .

1: K = ∅
2: while true do
3: γA = {x̄ | x ∈ var(O) \ MINCOST-HS(K)}
4: (res, C, τ) = EXTRACT-CORE(F, γA)
5: if res = ’true’ then return τ
6: else K = K ∪ C

enables (at most) one variable in the core C to incur cost in
subsequent iterations. This is done by adding a new cardi-
nality constraint over the core to CONSTRS (Lines 7–8) and
updating the current working objective (Line 9).

Conceptually, modern core-guided algorithms differ
mainly in the specifics of the core relaxation step. We de-
tail the relaxation of the core-guided OLL algorithm [Mor-
gado et al., 2014; Andres et al., 2012] as arguably one
of the most successful core-guided approaches. In OLL
CREATE-CARD-CONSTR(C) returns a set of cardinality con-
straints D = {ASCNF(

∑
x∈C x ≥ j ↔ oCj ) | 2 ≤ j ≤ |C|}

and a set out = {oC2 . . . oC|C|} of output variables. Intuitively,
the new cardinality constraints define output variables that
count the number of literals in C assigned to 1 in subsequent
iterations, since enforcing oCk to 0 limits the number of literals
in C assigned to 1 to at most k − 1. The output variable with
index 1 is not introduced; since C is a core, every satisfying
assignment assigns at least one literal to 1. In the objective
reformulation step (REFINE-OBJECTIVE procedure of Algo-
rithm 1), OLL adds the new outputs to the objective in a way
that preserves the set of optimal solutions. The coefficient of
each x ∈ C is decreased by wC = minx∈Ci{O′(x)} (remov-
ing from O′ every literal whose coefficient decreases to 0).
Informally, the termination of OLL follows from observing
that at least one literal bis removed from O′ on each itera-
tion, which allows the SAT solver to assign at least one more
objective variable to true in subsequent iterations.

Example 2. Invoke OLL on F = (F,O) from Example 1.
The first call to EXTRACT-CORE is under the assumptions
γA = {b̄1, b̄2, b̄3, b̄4, b̄5}. Let the first core obtained be C1 =
(b1∨b2∨b3∨b4∨b5). Relaxing C1 introduces the cardinality
constraint ASCNF(

∑
x∈C1

x ≥ i ↔ o1i ) for i = 2, 3, 4, 5

and the new objective is O′ = 2b3+b5+o12+o13+o14+o15. The
next call to EXTRACT-CORE is under the assumptions γA =
{b̄3, b̄5, ō12, ō13, ō14, ō15}. Let the next core obtained be C2 =
(o12 ∨ b3). Relaxing C2 introduces the cardinality constraint
ASCNF(

∑
x∈C2

x ≥ 2 ↔ o22) and the new objective O′ =

b3 + b5 + o13 + o14 + o15 + o22. The assumptions in the 3rd call
to EXTRACT-CORE are γA = {b̄3, b̄5, ō13, ō14, ō15, ō22}. Now
e.g. the assignment τ = {b1, b̄2, b̄3, b4, b̄5} (that also assigns
{o12, ō13, ō14, ō15, ō22}) is returned as an optimal solution to F .

IHS Search. Algorithm 2 is a generic abstraction of the
IHS approach to MaxSAT. IHS iteratively extracts cores
of an input MaxSAT instance and stores them in the set
K. Instead of reformulating the objective, IHS invokes the
MINCOST-HS(K) procedure that computes a minimum-cost

hitting set (MCHS) over K under O. Here an MCHS is a
minimum-cost (in terms of O) subset hs of the objective vari-
ables such that the variables in hs, assigned to 1, satisfy all
cores in K. In each iteration of the main loop (Lines 2–6),
EXTRACT-CORE is queried for a solution that falsifies all ob-
jective variables that are not contained in the hs computed
over the current set of cores (Lines 3–4). If there is such a τ , it
is an optimal solution on Line 5. Otherwise a new core is ob-
tained and added to K (Line 6). The MCHS computed in each
iteration represents a way of satisfying all cores found so far
in an optimal way under O. IHS iterates until the MCHS can
be extended into a solution of F , at which point it satisfies (or
hits) all cores (not only the cores in K) of the instance implic-
itly. Note that the assumptions γA set up on Line 3 constitute
a partial assignment over the objective variables that can be
extended into a solution of K in a unique way.

Example 3. Invoke Algorithm 2 on the MaxSAT instance
F = (F,O) from Example 1. In the first iteration
there are no cores, so MINCOST-HS(K) = ∅. The first
call to EXTRACT-CORE is under the assumptions γA =
{b̄1, . . . , b̄5}. There are a number of cores that could be
returned; let the first core obtained be C1 = (b1 ∨ b2 ∨
b3 ∨ b4 ∨ b5). In iteration 2 there are three different MCHSs
over K = {C1}. Assume that MINCOST-HS returns {b1}.
Then the assumptions for the next call to EXTRACT-CORE
are γA = {b̄2, b̄3, b̄4, b̄5}. Assume that the next core is
C2 = (b3 ∨ b4 ∨ b5). In iteration 3 the only MCHS over
K = {C1, C2} is {b4}, the assumptions for the next call
to EXTRACT-CORE are γA = {b̄1, b̄2, b̄3, b̄5}. Assume that
the next core is C3 = (b1, b2, b3). In iteration 4 there are
two possible MCHSs over K = {C1, C2, C3}. Assume that
MINCOST-HS returns {b2, b4}, leading to the assumptions
γA = {b̄1, b̄3, b̄5}. Now EXTRACT-CORE returns the solu-
tion τ = {b̄1, b2, b̄3, b4, b̄5} as an optimal solution to F .

4 Unifying CG and IHS
As our main contribution we present UNIMAXSAT, a general
algorithmic framework unifying core-guided and IHS-based
MaxSAT algorithms. The framework builds on the notion of
abstract cores originally proposed as basis for a refinement of
IHS [Berg et al., 2020]. We start with defining abstraction
sets and abstract cores. On a high level, abstraction sets and
abstract cores of a MaxSAT instance capture generic proper-
ties of the instance compactly in the sense that a large num-
ber of (standard) cores would be needed to express the same
properties [Berg et al., 2020].

Definition 1. An abstraction set AB = (in,D, out) consists
of a set in of input literals, a set out of output literals, and
a satisfiable CNF formula over the literals in ∪ out, i.e.,
var(in ∪ out) ⊆ var(D). Solutions to D are uniquely de-
fined by assignments to the inputs: for any assignment τ over
in there is exactly one extension τE ⊇ τ that satisfies D.

Given an abstraction set AB = (in,D, out) we call
D the definitions of the outputs out. For a collection
AB = {(ini, Di, outi) | i = 1, . . . , n} of abstraction sets,
DEF(AB) =

⋃n
i=1 Di is the CNF formula consisting of the

definitions in AB and OUTS(AB) =
⋃n

i=1 outi is the set of
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Figure 1: Schematic overview of UNIMAXSAT

outputs occurring in AB. We say that AB is feasible for a
MaxSAT instance F = (F,O) if DEF(AB) does not change
the set of solutions to F , i.e., if every solution τ to F can be
uniquely extended into a solution τE ⊇ τ to F ∪ DEF(AB).
We will consider collections of abstractions sets that are fea-
sible for specific MaxSAT instances.

An abstract core is a clause entailed by a formula together
with the definitions of a feasible collection of abstraction set.
Importantly, an abstract core can contain both objective vari-
ables and outputs of abstraction sets.
Definition 2. Given MaxSAT instance F = (F,O) and col-
lection AB of feasible abstraction sets, a clause C is an
abstract core of F wrt AB if (i) var(C) ⊆ (var(O) ∪
var(OUTS(AB)) and (ii) τ(C) = 1 for each solution τ
of F ∪ DEF(AB).

Every (standard) core of a MaxSAT instance F is also an
abstract core wrt any collection of feasible abstraction sets.
Example 4. Consider the (F,O) from Example 1 and the
abstraction set AB = ({b1, . . . , b5}, {ASCNF(

∑5
i=1 bi ≥

j ↔ oj) | j = 2, 3, 4, 5}, {o2, . . . , o5}). Then C =
(o2 ∨ b3) is an abstract core as any satisfying assignment
of F ∪ DEF(AB) must assign either b3 = 1 or least two vari-
ables of {b1, b2, b3, b4, b5} to 1, forcing o2 = 1. Note how C
corresponds to the core C2 from Example 2.

Our general framework for core-guided and IHS search is
based on computing minimum-cost solutions to abstract cores
and extending them to a solution to the MaxSAT instance
at hand. To differentiate solutions to the input MaxSAT in-
stance from solutions to cores, we call solutions to a set of
abstract cores candidate solutions (candidates for short): for
a MaxSAT instance (F,O), a collection AB of abstraction
sets and a set K of abstract cores, a complete satisfying as-
signment δ of K ∪ DEF(AB) that assigns each variable in
var(O) is a candidate (solution) to K with cost O(δ). δ is
minimum-cost if O(δ) ≤ O(δ′) for all candidates δ′ of K.

The following observation details how abstraction sets and
abstract cores are used in our framework to compute lower
bounds (which are used to prove optimality of solutions).
Proposition 1. Let F = (F,O) be a MaxSAT instance, K a
set of abstract cores, and δ a minimum-cost candidate of K.
Then O(δ) ≤ OPT(F).

Algorithm 3 UNIMAXSAT, a unified framework for core-
guided and IHS-based MaxSAT algorithms.
Input: MaxSAT instance F = (F,O).
Output: Optimal solution τ to F .

1: AB1 = ∅, K1 = ∅
2: for i = 1 . . . do
3: γA = ABS-CANDIDATE(ABi,Ki)
4: (res, C, τ) = EX-ABSCORE(F, DEF(ABi), γA)
5: if res = ’true’ then return τ
6: Ki+1 = {C} ∪ Ki

7: ABi+1 = ABi ∪ ADD-ABSSETS(F ,Ki+1)

We will show that the correctness of IHS and core-guided
algorithms follows from the fact that, instead of ruling out
complete candidates on each iteration, it suffices to rule out
partial assignments that extend solely to minimum-cost can-
didates. The notion of a (minimum-cost) abstract candidate
is central in this respect.

Definition 3. Let F = (F,O) be a MaxSAT instance, AB
a collection of feasible abstraction sets and K a set of ab-
stract cores. A partial assignment γA over a subset of the
variables in var(K)∪var(O) is an abstract candidate of K
if (i) there is at least one extension τ ⊇ γA which is a solu-
tion of DEF(AB)∪K, i.e., a candidate of K and (ii) all such
extensions are minimum-cost candidates of K.

While each minimum-cost candidate of K is also an ab-
stract candidate, the converse need not hold.

Example 5. Consider the MaxSAT instance F = (F,O)
from Example 1 and the set K = {(b1 ∨ b2 ∨ b3), (b3 ∨
b4 ∨ b5)} of abstract cores. A minimum-cost candidate of
K is δ = {b̄1, b2, b̄3, b4, b̄5}. An abstract candidate is γA =
{b̄1, b̄3, b̄5} since the only extension of γA into a solution to
K is δ. The set {b̄1, b̄3} is not an abstract candidate since it
extends to the solution {b̄1, b2, b̄3, b̄4, b5} of K which is not
minimum-cost.

The assumptions employed during iterations of core-
guided algorithms can be seen as abstract candidates; for an
example, consider the following, specific to OLL.

Example 6. Recall the MaxSAT instance F = (F,O) from
Example 1. Consider the set of cores K = {b1 ∨ b2 ∨ b3 ∨
b4 ∨ b5}, and the abstraction set AB detailed in Example 4.
The set γA = {b̄3, b̄5, ō2, ō3, ō4, ō5} is an abstract candidate
as it can be extended into a solution to K ∪ DEF({AB})
by assigning exactly one literal in {b1, b2, b4} to 1 and the
rest to 0. Note that γA is exactly the set of assumptions that
EXTRACT-CORE is queried under in iteration 2 of OLL in
Example 2.

UNIMAXSAT
We now describe UNIMAXSAT, a general algorithmic

framework for core-guided and IHS MaxSAT algorithms.
Detailed as Algorithm 3 and Figure 1, given a MaxSAT in-
stance F = (F,O) as input, UNIMAXSAT outputs an op-
timal solution to F . The generic algorithm maintains an in-
creasing set AB and K of abstraction sets and abstract cores,



respectively. In each iteration, an abstract candidate γA of
K is computed by the ABS-CANDIDATE subroutine. The
EX-ABSCORE subroutine is invoked to check for an exten-
sion of γA into a solution to F . If one exists, the algorithm
terminates and returns the extension as an optimal solution.
Otherwise a new abstract core falsified by γA is obtained.
The core is added to K, thus blocking γA and all of its ex-
tensions from further consideration, and the ADD-ABSSETS
subroutine adds new abstraction sets to AB.

We formalize the correctness of Algorithm 3: it termi-
nates on any MaxSAT instance and outputs an optimal so-
lution of the input instance, subject to generic properties of
its three subroutines. Importantly, correctness of the gen-
eral framework allows for establishing the correctness of any
of its instantiations—which include known core-guided and
IHS algorithms for MaxSAT—by showing how each algo-
rithm can be viewed as an instantiation of the UNIMAXSAT.
Theorem 1. Let F = (F,O) be an input instance to UNI-
MAXSAT that has solutions. Assume that the following three
properties hold on every iteration i of UNIMAXSAT.

1. ABS-CANDIDATE(ABi,Ki) computes an abstract can-
didate of Ki.

2. EX-ABSCORE(F, DEF(ABi), γA) computes a solution
τ ⊇ γA of F ∪ DEF(ABi), or a core C satisfied by all
solutions to F ∪ DEF(ABi) and falsified by γA.

3. ABi is feasible for F .
Then UNIMAXSAT terminates and returns an optimal solu-
tion of F .

The proof of Theorem 1 relies the abstraction sets added
and abstract cores obtained decreasing the set of candidates
that ABS-CANDIDATE may provide on each iteration.
Lemma 1. Consider an iteration i in which UNIMAXSAT
invoked on an instance (F,O) does not terminate. Let Ki and
ABi be the set of abstract cores and abstraction sets obtained
so-far. Denote by OBJ-SOLSi the restrictions of all solutions
to Ki ∪ DEF(ABi) onto var(O). Then OBJ-SOLSi+1 ⊊
OBJ-SOLSi.

Proof of Theorem 1. By assumptions 1–2, the clause C ob-
tained from EX-ABSCORE is an abstract core of F and ABi.
Since ABi ⊆ ABi+1 holds for all i, C is also an abstract
core in all subsequent iterations. Thus all clauses in Ki are
abstract cores of F and ABi.

For optimality of returned solutions, assume that the algo-
rithm terminates on iteration i and returns a solution τ . Then
τ ⊇ γA for an abstract candidate γA of Ki. Since τ is also
a solution to DEF(ABi), τ is a minimum-cost candidate of
Ki. Thus O(τ) ≤ OPT(F) ≤ O(τ): the first inequality is by
Proposition 1 and the second by τ being a solution to F . We
conclude that O(τ) = OPT(F).

Now consider termination. As F has solutions and ABi

is feasible, F ∪ DEF(ABi) has solutions for all i. By defi-
nition of abstract cores, all solutions to F ∪ DEF(ABi) are
solutions to DEF(ABi) ∪ Ki. In each iteration, the abstract
candidate γA obtained from ABS-CANDIDATE can be ex-
tended into at least one solution to DEF(ABi) ∪ Ki. We

argue that eventually γA can also be extended into a solu-
tion to F ∪ DEF(ABi). This follows from the finite number
of possible assignments to the variables in O and Lemma 1
by which, given that the algorithm does not terminate during
specific iteration, the number of assignments to variables of
O that can be extended into candidates of the found cores will
decrease. As the solutions to F ∪ DEF(ABi) are candidates
for any sets of cores, at some iteration ABS-CANDIDATE will
return an abstract candidate that can be extended into a solu-
tion to F ∪ DEF(ABi), resulting in termination.

5 Capturing Existing Algorithms
We detail existing unsatisfiability-based MaxSAT algorithms
as instantiations of UNIMAXSAT. Specifically, we explain
how to instantiate the three subroutines of UNIMAXSAT so
that the assumptions of Theorem 1 hold to obtain IHS and
core-guided algorithms. By Theorem 1, this yields uniform
proofs of correctness for IHS (including its abstract-cores ex-
tension [Berg et al., 2020]) and modern core-guided algo-
rithms. For core-guided instantiations, we detail OLL and
more shortly explain how the further core-guided variants
MSU3 [Marques-Silva and Planes, 2007], WPM3 [Ansótegui
and Gabàs, 2017], PMRES [Narodytska and Bacchus, 2014]
and K [Alviano et al., 2015] are obtained.

The EX-ABSCORE subroutine of UNIMAXSAT is in gen-
eral a core-extracting SAT solver: given a MaxSAT instance
F = (F,O), a feasible collection AB of abstraction sets
and an abstract candidate γA, EX-ABSCORE invokes a SAT
solver on F ∪ DEF(ABi) under assumptions γA, fulfilling
assumption 2 of Theorem 1. Feasibility of abstraction sets
computed by each considered algorithm follows from that the
definitions of new abstraction sets can only intersect with the
input instance and previous abstraction sets on their inputs.
We will thus assume abstraction sets to be feasible. With
these considerations, we next argue that each of the recent
unsatisfiability-based MaxSAT algorithms can be viewed as
an instantiation of UNIMAXSAT by (i) specifying the in-
stantiations of ABS-CANDIDATE and ADD-ABSSETS, and
(ii) arguing that the instantiation of ABS-CANDIDATE cor-
rectly computes an abstract candidate.

5.1 Capturing IHS
IHS. UNIMAXSAT gives the (basic) IHS (Algorithm 2)
by instantiating ADD-ABSSETS to never add any abstrac-
tion sets and EX-ABSCORE as a procedure that–given a set
K of cores—returns the abstract candidate γA = {x̄ | x ∈
O \ MINCOST-HS(K)} that assigns all literals in the objec-
tive to 0 except the ones in a most recent minimum-cost hit-
ting set MINCOST-HS(K) over K. The correctness of Al-
gorithm 2 now follows by Theorem 1 by observing that the
only extension of γA into a candidate of K is {x̄ | x ∈
O \ MINCOST-HS(K)} ∪ {x | x ∈ MINCOST-HS(K)} and
is minimum-cost. Hence γA is an abstract candidate of K.

IHS with abstract cores. UNIMAXSAT gives IHS en-
hanced with abstract cores by instantiating EX-ABSCORE as
in basic IHS, and ADD-ABSSETS to (heuristically) compute
abstraction sets (in,D, out) the inputs in = {x1, . . . , xn}
of which are a subset of n objective variables that all have



the same coefficient in O, out = {o1, . . . , on} is a set of n
new variables, and D = {ASCNF(

∑
x∈in x ≥ i ↔ oi) |

k = 1 . . . n}, resulting in the outputs counting the number
of inputs assigned to 1 in all satisfying assignments. The
ABS-CANDIDATE subroutine first computes a minimum-cost
solution γ to K ∪ DEF(AB) that assigns all variables in
var(O) ∪ OUTS(AB), and then returns either γA

1 as the re-
striction of γ onto the objective variables, or γA

2 as the restric-
tion of γ onto the outputs of the current abstraction sets and
objective variables that are not inputs to any abstraction sets.
The correctness of IHS with abstract cores is now established
by Theorem 1 as follows. Since the only extension of it into
a solution of K∪DEF(AB) is γ, γA

1 is an abstract candidate.
Finally, γA

2 is an abstract candidate since (i) γ is an extension
of γA

2 into a solution of K∪DEF(AB) and (ii) every such ex-
tension has the same cost as the inputs to all abstraction sets
have the same coefficients in O.

5.2 Capturing Core-Guided Algorithms
Moving to core-guided algorithms, we first give a more de-
tailed description on OLL, and briefly cover other algorithms.

OLL Key to viewing OLL through UNIMAXSAT is that
the cardinality constraints introduced by OLL are seen as
abstraction sets, i.e., ADD-ABSSETS relaxing a core C in-
troduces abstraction set ABC = (C,D, out) where D =
{ASCNF(

∑
x∈C x ≥ i ↔ oi) | 2 ≤ i ≤ |C|} and

out = {o2, . . . , o|C|}. The set of assumptions used in SAT
solver calls are seen as abstract candidates. We thus assume
that ABS-CANDIDATE maintains and updates reformulated
objective O′.

In OLL, the dependencies between the output variables in-
troduced during core relaxation require extra care when in-
stantiating OLL in UNIMAXSAT. More specifically, to en-
sure that γA = {x̄ | x ∈ var(O′)} is an abstract candidate
in each iteration, we include an assumption refinement step as
part of ABS-CANDIDATE. After receiving an abstraction set
for a core C, ABS-CANDIDATE with assumption refinement
checks if γA can be extended into a solution to DEF(AB)∪K,
i.e., the definitions of the current collection AB of abstraction
sets and set K of abstract cores. If it can, it is returned as an
abstract candidate, otherwise a new core is obtained, added to
K, and relaxed as other cores.

Important for understanding assumption refinement is that
the core extraction steps performed during it do not consider
the input clauses. Even so, all cores extracted during assump-
tion refinement remain abstract cores of the input instance,
since the cores are satisfied by all solutions to the definitions
of the current abstraction sets and cores, which in turn are
satisfied by all solutions to the input instance. Each new core
discovered during assumption refinement decreases the num-
ber of literals in O′ by at least one. Thus the procedure is
guaranteed to terminate eventually.

Correctness of OLL now follows by Theorem 1 by argu-
ing that ADD-ABSSETS with assumption refinement results
in a partial assignment γA that is an abstract candidate of
DEF(AB) ∪ K. We sketch a proof of this for an arbitrary
unweighted MaxSAT instance F = (F,O) (all objective co-
efficients 1; the proof for weighted objectives is similar).

In the following, let INACTIVEi be the set of objective
variables and abstraction set outputs that have not been en-
countered in any cores during the first i − 1 iterations. Then
INACTIVEi = var(O′) where O′ is the reformulated objec-
tive (maintained by ABS-CANDIDATE) during iteration i. We
say that the literals in INACTIVEi are inactive. Now consider
an iteration i of the UNIMAXSAT instantiated as OLL and
let Ki be the set of abstract cores obtained so-far (either from
EX-ABSCORE or from assumption refinement) and ABi the
set of all abstraction sets corresponding to cardinality con-
straints introduced so-far. We show that the partial assign-
ment γA = {x̄ | x ∈ INACTIVEi} that assigns all inactive lit-
erals in INACTIVEi to 0 is an abstract candidate of Ki. The as-
sumption refinement step guarantees that there is at least one
extension of γA into a solution to DEF(ABi)∪Ki. Thus what
remains to show is that all such extensions will be minimum-
cost. For this, let τ be a solution of DEF(ABi) ∪ Ki. We
argue that: (i) O(τ) ≥ |Ki| and, (ii) O(τ) ≤ |Ki| if τ ⊇ γA.

Since the output literals of the abstraction sets are defined
by cardinality constraints, each new output literal assigned to
1 will result in one more objective variable being assigned to
1, thus incurring cost. Now (i) follows by observing that τ as-
signs at least one literal in each C ∈ Ki to 1. (ii) follows from
the fact that each new abstract core obtained during search is
always falsified when assigning the current set of inactive lit-
erals to 0. The abstraction set corresponding to a cardinality
constraint that is introduced after each core allows exactly
one more of the previously inactive literals to be assigned to
1 in subsequent iterations.

Finally, we outline instantiation of UNIMAXSAT which
exactly correspond to other modern core-guided algorithms.

MSU3 is obtained by instantiating UNIMAXSAT as fol-
lows. ADD-ABSSETS maintains a set INACTIVE of objec-
tive literals that have not appeared in any cores. Given a new
core C on iteration i all objective literals in C are removed
from INACTIVE. A new abstraction set AB = (ACTIVE,
ASCNF(

∑
x∈ACTIVE x ≥ i+1 ↔ oi), {oi}) where ACTIVE =

var(O) \ INACTIVE and oi is a fresh variable, is then in-
troduced. The instantiation of ABS-CANDIDATE returns the
abstract candidate γA = {x̄ | x ∈ INACTIVE} ∪ {ōi}.

WPM3 is obtained very similarly as MSU3. However,
instead of ADD-ABSSETS maintaining a single abstraction
set with all objective variables not in INACTIVE as inputs,
it maintains several abstraction sets with different disjoint
subsets of the variables x ∈ var(O) \ INACTIVE. When-
ever a core containing the outputs of two different ab-
straction sets AB1 = (in1, ASCNF(

∑
x∈in1

x ≥ k ↔
o1k), {o1k}) and AB2 = (in2, ASCNF(

∑
x∈in2

x ≥ t ↔
o2t ), {o2t}) is extracted by EX-ABSCORE, a new abstraction
set (in1 ∪ in2, ASCNF(

∑
x∈in1∪in2

x ≥ (k + t + 1) ↔
o3k+t+1), {o3k+t+1}) is introduced; and AB1, AB2 removed
(i.e., ignored by ABS-CANDIDATE).

PMRES is obtained by ADD-ABSSETS introducing for ev-
ery core C = (x1, . . . , xn) an abstraction set AB = (C, {xi∧
(xi+1 ∨ · · · ∨ xn) ↔ oi | 1 ≤ i ≤ n − 1}, {o1, . . . , on−1}).
The ABS-CANDIDATE simulates the objective reformulation
steps of PMRES, which are very similar to how OLL refor-



mulates the objective. In contrast to OLL, an assumption re-
finement step is not needed for simulating PMRES; this is
essentially due to fact that the abstraction sets introduced do
not introduce dependencies that could lead to cores indepen-
dent of the input clauses.

K combines the cardinality constraints used by OLL and
PMRES, and can hence be obtained from UNIMAXSAT by
the preceding discussion on OLL and PMRES.

6 Formulating New Algorithms
To highlight further the potential of the UNIMAXSAT frame-
work, we describe a novel variant ABSTCG of core-guided
search as an instantiation of UNIMAXSAT. While ABSTCG
could be designed on its own, viewing it as an instantiation
of UNIMAXSAT immediately implies that this new algorith-
mic variant is correct, highlighting the usefulness of UNI-
MAXSAT in developing correct new MaxSAT algorithms.

ABSTCG differs from OLL in how a core C containing
variables with different coefficients in the reformulated ob-
jective O′ are handled. When the literals in C contain m
distinct coefficients in O′, C is partitioned into disjoint sets
C = G1∪ . . .∪Gm so that all variables in a same set Gi have
the same coefficients and the sets are ordered by decreasing
coefficients. Starting from G1 (corresponding to the largest
coefficient in O′), ABSTCG introduces in order for each Gi

an abstraction set ABi = (ini, {ASCNF(
∑

x∈ini
x ≥ j ↔

oij) | 1 ≤ j ≤ |ini|}, outi). The inputs ini = Gi ∪ outi−1

consist of the variables in Gi and the outputs of ABi−1. Since
C is an abstract core, at least one of its variables has to be
assigned to 1 by any solution; the first output of the last ab-
straction set om1 is not be introduced.

To compute the next abstract candidate, ABSTCG updates
the reformulated objective O′ by processing each abstrac-
tion set ABi = (in,D, out) very similarly to OLL. Starting
from i = 1 the coefficient of each x ∈ in is lowered by
wi = min({O′(x) | x ∈ in}) and each output x ∈ out is in-
cluded in O′ with coefficient wi. The inputs of each abstract
set consist solely of objective variables and outputs of the pre-
vious level; hence this procedure is well-defined. Finally, the
set γA = {x̄ | x ∈ var(O′)} consisting of the negations of
literals in O′ with non-zero coefficients is returned. The cor-
rectness of the procedure follows by showing that γA is an
abstract candidate, by similar arguments as for OLL.

Example 7. Invoke ABSTCG on F = (F,O) from Exam-
ple 1 and assume the first core obtained is C1 = (b1 ∨ b2 ∨
b3 ∨ b4 ∨ b5). Core relaxation divides the variables in this
core into G1 = {b3}, G2 = {b5} and G3 = {b1, b2, b4}
and G2 = {b1}. The abstraction set over G1 has one output
variable o11 defined by ASCNF(

∑
x∈G1

x ≥ 1 ↔ o11). (Prac-
tical implementations would use the variable b3 directly as
o11.) The abstraction set over G2 has b5 and o11 as inputs and
two output variables o2i defined by ASCNF(

∑
x∈{b5,o1i }

x ≥
i ↔ o2i ) for i = 1, 2. The abstraction set over G3 has
G3 ∪ {o21, o22} as inputs, 4 output variables o3i defined by
ASCNF(

∑
x∈G3∪{o21,o22}

x ≥ i ↔ o3i ) for i = 2 . . . 5. Af-
ter reformulation, the objective O′ is O′ ≡ o11 + o21 + o22 +
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Figure 2: Runtime comparison of OLL and ABSTCG

o32 + o33 + o34 + o35 and the abstract candidate returned in the
next iteration contains the negation of all these variables.

We developed an open-source implementation (available at
https://bitbucket.org/coreo-group/cgss2/src/abstcg/) of AB-
STCG on top of CGSS2, a state-of-the-art C++ implementa-
tion of OLL when compared to solvers in the 2022 MaxSAT
Evaluations [Ihalainen, 2022]. To take advantage of the spe-
cial feature of ABSTCG, the implementation invokes AB-
STCG when an instance includes at least three different
weights on the soft clauses and the median number of soft
clauses for each weight is more than 25 (as a heuristic for in-
stances that likely to contain cores which ABSTCG can divide
into weight-sets in a meaningful way), and otherwise OLL.

We empirically compare the runtimes of this prototype to
those of CGSS2 (employing OLL) on all 607 weighted in-
stances from MaxSAT Evaluation 2022 using 2.6-GHz In-
tel Xeon E5-2670 processors under per-instance 3600-s time
and 32-GB memory limit. For the 237 instances on which
the prototype heuristically invoked ABSTCG (see Figure 2),
ABSTCG solved 125 instances, OLL 124. ABSTCG reduced
runtime by at least 2x for 13 instances, against OLL being 2x
as fast on only 4 instances. The competitiveness of the proto-
type suggests as a proof of concept that UNIMAXSAT allows
for novel algorithmic instantiations that can also be interest-
ing from the perspective of practical solvers.

7 Conclusions
We developed a general algorithmic framework that captures
in a unifying way the computations of variants of core-guided
and implicit hitting sets algorithms for MaxSAT. The cor-
rectness of the framework provides a uniform way of prov-
ing the correctness of various unsatisfiability-based MaxSAT
algorithms. The framework also suggests novel algorithmic
variants through different instantiations; we detailed one such
instantiation and showed as a proof of concept that it re-
sulted also from a practical perspective interesting solver vari-
ant for MaxSAT. Beyond MaxSAT, the framework can also
be similarly instantiated for related constraint optimization
paradigms for which core-guided and IHS style solvers can
and have been developed based on the constraint-agnostic no-
tion of unsatisfiable cores.

https://bitbucket.org/coreo-group/cgss2/src/abstcg/
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