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Abstract.
efficient in solving hard randomly generated propositiosetisfia-
bility (SAT) problem instances, a major challenge is to ioyar SLS
on structured problems. Motivated by heuristics appliedamplete
circuit-level SAT solvers in electronic design automatiae develop
novel SLS techniques by harnessing the concept of justiiciton-
tiers. This leads to SLS heuristics which concentrate thecbeinto
relevant parts of instances, exploit observability doafes and allow
for an early stopping criterion. Experiments with a propetymple-
mentation of the framework presented in this paper show agfeor
orders of magnitude decrease in the number of moves on i@édw

While stochastic local search (SLS) techniques are verygeneral propositional formulas [14, 6, 12]. Common to tI&is8 ap-

proaches is that they attempt to explicitly exploit vareabdependen-
cies throughindependen{or inpuf) variables i.e., sets of variables
such that a truth value assignment for them uniquely detersiihe
truth values of all other variables, by focusing the seancttrath
assignments of input variables.

Inthis paper we develop a novel non-clausal SLS methodffac-st
tural SAT problems from a different starting point. Our aimto
bring structure-exploiting techniques into local sea@hSAT in or-
der to lift the performance of local search SAT solving esglcon
structural real-world problem domains. We employ Booleiacuits

bounded model checking instances when compared to WalkBAT oas the representation of general propositional formulastivsited
the standard CNF encodings of the instances. by justification frontierheuristics (see e.g. [9]) applied in complete
circuit-level SAT solvers in electronic design automatioar search
technique looks for gustificationfor the Boolean circuit instead of

1 INTRODUCTION

Advances in propositional satisfiability (SAT) testing bagstab-

focusing on finding a satisfying truth assignment. The idetibe
able to drive local search more top-down in the overall $tngcof

lished SAT based methods as a Competitive way of So|ving comb the circuit rather than in a bottom-up mode as is done in Iseaich

natorial problems in various domains. Stochastic localcteéSLS)
methods, such as [16, 15, 10, 3], are very efficient espgdiatiolv-
ing randomly generated SAT instances. However, for stratteal-
world SAT instancexompleteDPLL based SAT solvers seem to
dominate SLS solvers (see, e.g., results of the latest SATpet-
tions atht t p: / / www. sat conpeti tion. or g/ ). Further work
on improving SLS techniques for structural problems is eeeghd,
in particular, developing techniques for handling varadépenden-
cies efficiently has been identified a major challenge [7].

One problem in developing efficient techniques for handliag-
able dependencies is that typically the most efficient SLSes®

techniques focusing on input variables. This is achieveduigling
the search using justification frontiers that enable etiplgiobserv-

ability don't cares(see e.g. [13]), drive the search to relevant parts

of the circuit, and offer early stopping criteria which ali¢o end the
search when the circuit e facto satisfiableven if no concrete sat-
isfying truth assignment has been found. Experiments wijiho#o-
type implementation of the framework presented in this papew

up to a four orders of magnitude decrease in the number of snove

on real-world bounded model checking instances when cosdpar
WalkSAT on the standard CNF encodings of the instances.
The rest of this paper is organized as follows. First, Baoleia-

work on the flat CNF input format. Some techniques for CNF Cuits and related central concepts are defined (Sect. 2).pfte

level SLS solvers have been developed to utilize propagatio-
ing search [2]. However, there seems to be room for novettire-
based SLS techniques exploiting variable dependencie® mlier
rectly. Indeed, in SAT based approaches, direct CNF engedirf

posed justification-based non-clausal SLS method is theeorited
(Sect. 3) and analyzed w.r.t. both CNF level and previousaiansal
methods (Sect. 4). Initial experiments are presented it Sec

a problem domain are rarely used: the problem at hand is typi2 CONSTRAINED BOOLEAN CIRCUITS

cally encoded with a structure-preserving general prajposil for-

mula ¢ which can then be translated into an equi-satisfiable CNFBOOIean circuits offer a natural non-clausal represefor propo-

formula by introducing additional variables for the sulpfiolas of

sitional formulas in a compact DAG-like structure wighbformula

¢. There are also SAT solvers which—instead of demanding CNI-_sharing Rather than translating circuits to CNF for solving the re-

translation before solving—work directly on general foftesus Such

solvers useBoolean circuitg11] as the compact representation for

a general propositional formula in a DAG-like structure.wéwer,
such solvers are typically complete DPLL style non-clawagb-
rithms [5, 8, 9, 17]. Only a few SLS methods have been propfized

1 Helsinki University of Technology, Dept. Information and@p. Sci., Fin-
land. Emails: {matti.jarvisalo,tommi.junttila,ilkka.niemej@tkk.fi. Re-
search supported by Academy of Finland (#122399 (MJ,IN)#2016
(TJ)). MJ additionally acknowledges support from the HeGB&duate
school, Emil Aaltonen Foundation, Jenny and Antti WihuriuRdation,
Nokia Foundation, and Foundation for Technology Promoti&s.

sulting SAT instance by local search, in this work we will Wati-
rectly on the Boolean circuit representation.

A Boolean circuit over a finite seff of gatesis a setC of equa-
tions of formg := f(¢1,...,9n), whereg,¢1,...,9» € G and
f - A{f,t}" — {f,t} is a Boolean function, with the additional re-
quirements that (i) each € G appears at most once as the left hand
side in the equations i@, and (ii) the underlying directed graph

(GIC),EC)={(d,9) eGxG | g:=f(....q,...) €C})

is acyclic. The set of gates in a circ(itis denoted byG(C). If
{¢',9) € E(C), theng’ is achild of g andg is aparentof g'. The



descendanandancestorrelations are defined in the usual way as thel. All constrained gates belong to the cone. That iggifv) € a,

transitive closures of the child and parent relations, eetpely. If
g := f(g1,-..,9n) isinC, theng is an f-gate (or of typef), oth-
erwise it is aninput gate The set of input gates ifi is denoted by
inputs(C). A gate with no parents is asutput gate

An assignment folC is a (possibly partial) function : G —
{f,t}. A total assignmentr is consistent withC if 7(g)
f(r(g1),...,7(gn)) for eachg := f(g1,...,9n)InC.

A constrained Boolean circui€® is a pair(C, o), whereC is a
circuit anda is an assignment fof€. Each(g,v) € « is called a
constraintwhereg is constrainedto v (typically used for setting an
output gate to a truth value). A total assignmerfor C satisfiesC”
if (i) 7 is consistent withC, and (ii) respects the constraints: 2
a. If some total assignment satisfi€s, thenC® is satisfiableand
otherwiseunsatisfiableIn this work we consider Boolean circuits in
which the following Boolean functions are available as ggpes.

NOT(v) istiff visf.

OR(v1,...,vy) istiff at least one ofvy, . ..
AND(v1,...,vy)istiffall vq,..., v, aret.
XOR(v1, v2) ist iff exactly one ofvi, vs ist.

°
° ,Un iSt.
.
°

However, notice that the techniques developed in this peperbe
adapted for a wider range of types such as equivalence aduhabr
ity gates. In order to keep the presentation and algorittimgler, we
assume that constraints only appear in the output gatesisfrained
circuits. Any circuit can be rewritten into such a normalnfoby us-
ing the rules in [5].

Example 1 Figure 1 shows a Boolean circuit for a full-adder with
the constraint that the carry-out bit; is t. One satisfying total as-
signment for the circuit is

{(c1,1), (t1,1), (00, T), (t2,1), (t3,1), (a0, 1), (bo, ), (co, ) }. (1)
C = {Cl = OR(thtz)
t1 := AND(¢s3, co)
0o = XOR(t:;,Co)
ta := AND(ao, bo)
ts = XOR(ao,bo)}
a={(c,t)}

Figure 1. A constrained Boolean circudt®.

The restriction of an assignment to a setG’ C G of gates is
defined as usual:|¢r = {{g,v) € 7 | g € G'}. Given a non-input
gateg := f(g1,...,9») and a valuev € {f,t}, ajustificationfor
the pair(g,v) is a partial assignment : {g1,...,gn} — {f,t} to
the children ofg such thatf(7(g1),...,7(g»)) = v holds for all
extensionsr D o. That is, the values assigned byto the children
of g are enough to force to have the value. A gateg is justified
in an assignment if it is assigned, i.er(g) is defined, and (i) it is
an input gate, or (iily := f(g1,...,9n) € Candr|(,,,. . 4.} 5@
justification for(g, 7(g)). For example, consider the gatein Fig. 1.
The possible justifications fofti, f) are {(ts,f)}, {{ts,f), (co,t)},
{(ts, ), (co, )}, {{co, )}, and{(ts,1), (co, f)}; the first and fourth
are subset minimal ones. Gateis justified in the assignment (1).

Given a constrained circuit® and an assignment O « for C,
thejustification coneof C* underr, denoted bycone(C%, 7), is the
minimal set of gates satisfying the following requirements

theng € jeone(C*, 7).

2. If ajustified gate belongs to the cone, then all the gatasghr-
ticipate in some subset minimal justification for the gaie aso
in the cone. Formally, if € jcone(C*, 7) and (i)g is a non-input
gate, (ii) g is justified inT, and (iii) (gi, vi) € o for some sub-
set minimal justificatiors for (g, 7(g)), theng; € jcone(C%, 7).
In principle it would be sufficient to consider only one, araiily
chosen subset minimal justification. However, such a foaal
tion would makejcone(C*, 7) ambiguously defined.

Thejustification frontierof C* underr is the “bottom edge” of the
justification cone, i.e. those gates in the cone that areustifipd:

jfront(C*, 1) = {g € jeone(C*,7) | g is not justified inr}.

A gate g is interesting in 7 if it belongs to the frontier
jfront(C*,7) or is a descendant of a gate in it; the set of
all gates interesting in- is denoted byinterest(C*,7). A gate

g is an QEbservability don't care if it is neither interesting
nor in the justification conejcone(C®, 7). For instance, con-
sider the constrained circut® in Fig. 1. Under the assignment
T = {<Clvt>7 <t17t>7 <007 f>7 <t27f>7 <t37t>7 <a07f>7 <b07f>7 <607t>}1
the justification congcone(C*, 1) is {c1, t1,t3,co}, the justifica-
tion frontier jfront(C*, 7) is {ts}, interest(C*,7) = {t3,a0,bo},
and the gates, andoy are don't cares.

Proposition 1 If the justification frontiejfront(C<, 7) is empty for
some total assignment, then the constrained circu® is satisfi-
able.

When jfront(C%, 7) is empty, a satisfying assignment can be ob-
tained by (i) restricting- to the input gates appearing in the justifica-
tion cone, i.e. to the gate sebne(C<, 7) Ninputs(C), (ii) assigning
other input gates arbitrary values, and (iii) recursivelgleating the
values of non-input gates. Thus, whenejfeont(C*, ) is empty,
we say thatr de facto satisfie€“. As an example, the assignment
T = {<Clvt>7 <t17f>7 <007f>7 <t27t>7 <t37t>7 <a07t>7 <b07t>7 <007 t>} de
facto satisfies the constrained circgit in Fig. 1. Also note that if a
total truth assignment satisfie<C”, thenjfront(C<, 7) is empty.

Translating Circuits to CNF. Each constrained Boolean circuit
C“ can be translated into an equi-satisfiable CNF fornuaC*)

by applying the standard “Tseitin translation”. In orderdbtain

a small CNF formula, the idea is to introduce a variapldor
each gateg in the circuit, and then to describe the functional-
ity of each gate with a set of clauses. For instanceasn-gate

g := AND(g1,...,9n) is translated into the clausésg Vv g1),...,
(mg V gn),and(g vV g1 V ...V —gn). The constraints are trans-
lated into unit clausegy, t) € « introduces the unit claudg) and
(g,f) € a the negated unit claugeq).

A Note on Negations. As usual in many SAT algorithms, we will
implicitly ignore NOT-gates of formg := NOT(g1); g and g are
always assumed to have the opposite values. Tlarsgates are, for
instance, (i) “inlined” in thecnf translation by substituting.g; for
g, and (i) never counted in an interest geterest(C~, 7).

3 JUSTIFICATION-BASED NON-CLAUSAL SLS

In contrast to typical local search algorithms for SAT, whieork on
CNF formulas, we develop justification-based non-clausalrastic



local search techniques. As typical in clausal SLS, a cordiipn is

described by a total truth assignment. However, our methaidksv
directly on general propositional formulas representedaslean
circuits, and hence a configuration is a total assignmenhemates
of the Boolean circuit at hand. In contrast to typical locdih for
SAT, we exploit—motivated by successful implementatiohsam-

plete circuit SAT solving techniques (see, e.g., [9])-teghes for
detectingjustification-based don't carewithin our Boolean circuit
SAT local search (BC SLS) framework. This is based on justiioe

frontiers, which guide the search heuristics to conceatoat rele-
vant parts of the instance and, moreover, provide an alieenaarly
stopping criterion for the search.

We demonstrate the novel approach by developM@GiSAT type
algorithm [15] that exploits justification frontiers in gling search.
In the clausal WalkSAT local moves are based on randomlysete
a clause falsified by the current truth assignment. In ouorétlym
the role of the falsified clauses is played by the gates inubifica-
tion front, i.e., the gates in the justification cone notified by the
current assignment. WalkSAT flips one of the variables irctigsen
clause in the greedy move to maximize the decrease in the eumb
of falsified clauses. In our case a greedy move selects digasion
for the chosen gate to minimize the number of interestinggat

The resulting method is presented as Algorithm 1. Given a con
straint circuitC* and a noise parametgre [0, 1] (with p = 0 only
greedy moves are made), the algorithm performs local seareh
the assignment space alf the gates it (inner loop on lines 3-13).

Algorithm 1 BC SLS
Input: constrained Boolean circuit*, parametep € [0, 1]
Output: ade factosatisfying assignment far or “don’t know
Explanations:
7: current truth assignment on all gates withd «
d: next move (a partial assignment)

1: for try := 1to MAXTRIES(C®) do
2 7 := pick an assignment over all gatesdrs.t.7 O «
3 for move := 1 to MAXMOVES(C®) do
4 if jfront(C*, ) = 0 then return 7
5 Select a random gatee jfront(C*, 7)
6 with probability (1 — p) do %greedy move
7 0 := arandom justification from those justifications
for (g, v) € 7 that minimizecost(r, -)
8: otherwise %non-greedy move (with probabiligy)
9: if g is unconstrained in
10: 6 := {(g,—w)} where{(g,v) € 7
11 else
12: ¢ := arandom justification fofg, v) € 7
13 7= (r\ {{g,~w) | (g,w) €})US

14: return “don’t know

We will next describe the inner loop of BC SLS in more detail.

3.1 Stopping Criterion

Similar to typical CNF level SLS methods, one could terméntte
search in BC SLS by applying ttetandardstopping criterion: when
all gates are justified in the current configuratigrihenr is in itself
a satisfying truth assignment for the circuit. However, jirifica-
tion frontier allows for an early stopping criterion by Pogition 1:
when the current fronifront(C*, 7) is empty (line 4), the current

configurationr de factosatisfiesC*. Thus we can obtain from a
satisfying assignment after the search is terminated bplgieval-
uating the unconstrained gatesdfi by using the values for input
gates in7. This is astronger stopping criterion than the standard
one, since the front is empty whenever the standard one ,holdis
the opposite does not necessarily hold: the front can beyeaven

if there are gates in the circuit which are not justified-in

3.2 Making Moves

For each of the MXTRIES(C®) runs of the inner loop,
MaxMovES(C®) moves are made. The moves exploit structural in-
formation and semantics of individual gates for findirjg<tification
for the currently assigned value of a chosen gate (lines)6-12

Given the current configuratiom, we concentrate on making
moves on gates ijfront(C*, 7) by randomly picking a gatg from
this set. For a gatg and its current value in 7, the possiblgreedy
movesare induced by the justifications f¢g, v). The idea is to min-
imize thesize of the interest sen other words, the value of the cost
function for a move (justification) is

cost(7,8) = |interest(C*, )|,

wherer’ = (7\ {{(g9,~w) | {g,w) € §}) U 4. Thatis, the cost of a
moves is given by the size of the interest set in the configuration
where for the gates mentioneddrwe use the values ifiinstead of
those inr. The move is then selected randomly from those justifica-
tions g for (g,v) for which the valuecost(r, d) is smallest over all
justifications for(g, v).

During anon-greedy movéines 9-12, executed with probability
p), we invert the value ofhe gatey itself whenever this is possible,
i.e., wheng is not constrained ia. The idea here is to try to escape
from possible local minima by more radically changing thetifica-
tion front, most likely upwards in the circuit structure the case that
we may not invert the value gf(since it is constrained), the move is
chosen randomly from the set of all justifications {grv) € .

4  ANALYSIS
4.1 Interest Set Size Driven Greedy Moves

Considering greedy moves, the objective function underimiiza-
tion in BC SLS iscost(r, -). Alternatively, one could use the ob-
jective of minimizing |jfront(C*,7")|, since (i) flipping is con-
centrated on gates ijfront(C*,7) and (ii) the stopping criterion
jfront(C*,7) = 0 is used. The reasoning behind choosing to mini-
mize the number of gates interest(C®, 7’) is that it gives ebetter
progress measurthan minimizing the number of gates in the justi-
fication front. First, notice that the justification frontrcet become
empty before it reaches a subset of the input gates, singargnit
gates are justified by default. Now, the size of the interesgives
an upper bound on the number of gates that still need to hifi¢dst
(the descendants of the gates in the front). Following thigiion,
by minimizing the size of the interest set the greedy mova®dhe
search towards the input gates.

4.2 Comparison with Clausal Methods

One of the main advantages of the proposed BC SLS method over
clausal local search methods is that BC SLS can exploit sabi+

ity don't cares. As an example, consider the circuit in F{@) 2where
the gatey: is constrained to true and the othiemdf symbols depict



the current configuration. All the gates, excepjs, in the complex  any flip under any configuration. Such a cost function doeofiet

subcircuit rooted at the gate are don’t cares under. Therefore BC ~ much direction for the greedy flips towards a satisfyinghtragsign-
SLS can ignore the subcircuit and terminate after flippirggittput ~ ment. Our cost function appears to be less sensitive to thdbariof
gategs as the justification front becomes empty. However, assumeutput gates or their distance from the input gates. Thietabse
that we translate the circuit into a CNF formula by using tiseifin the search is based on the concept of a justification fromtiech is

translationenf given in Sect. 2. If we apply a clausal SLS algorithm able to distribute the requirements implied by the consgeioutput
such as WalkSAT on the CNF formula, observability don't saaee  gates deeper in the circuit.

no longer available in the sense that the algorithm must fitudad

truth assignment that simultaneously satisfies all theselgoriginat- 5 EXPERIMENTS

ing from the subgcircuit. This can be a very complex task. In order to evaluate the ideas behind the BC SLS framework, we

t’y1 have implemented a prototype on top of the bc2cnf Boolean cir
cuit simplifier/CNF translator [4]. The computation of jifisation
Jz gz
and random moves, justifications are selected from the sstilwf

set minimal justifications for the gate value; for a tror-gate and
false AND-gate, the value of a single child is inverted, and for a
9o 9130914 true or-gate and false\ND-gate the values of all children are in-

verted. As structural benchmarks we use a set of Booleanitsrc
(a) Exploiting don’t cares. (b) A CNF circuit. encoding bounded model checking of asynchronous systems fo
deadlocks [1], available dttt p: / / www. t¢cs. hut . fi/~njj/
benchmar ks/ . Although rather easy for current DPLL solvers,
these benchmarks are challenging for typical SLS methods.

Since our implementation is at present a very preliminaon-
incrementalone, we will compare the number of moves made by
WalkSAT and our prototypé.We use WalkSAT, since the current
prototype—as explained also in Sect. 3—can be basically ase
a justification-based variation of WalkSAT. For running WBAT,
we apply exactly the same Boolean circuit level simplificatin
bc2cenf to the circuits as in our prototype (including, egreuit
level propagation that is equivalent to unit propagati@ngd then
translate the simplified circuit to CNF with the Tseitindstyrans-
lation implemented in bc2cnf for running WalkSAT. We run oot
WalkSAT and our prototype implementation with the defauise
valuep = 0.5 (that is, 50%). To make a fair evaluation (not favor-
ing our prototype), we allow WalkSAT0® moves and limit our im-
plementation to a maximum dfo® moves. Each instance is run 9
times without restarts. The number of gates in the simplifieclits
(column #gate9, and the number of variableg\ars) and clauses
(#clause$ resulting from the standard CNF translation, are given
in Table 1. Furthermore, the minimunmin), median (ned), and
4.3 Comparison with Non-Clausal Methods maximum (ax) number of moves for each instance is presented.

The number of runs without a satisfying truth assignmentiverg
SLS techniques working directly on non-clausal problemsest to  jn the columnmax in parentheses. Additionally, we give the ratio
ourwork include [14, 6, 12]. They are all based on the ideantitihg  of the number of moves made by our prototype and WalkSAT for
flipping to input (independent) variables whereas we alloppthg  the minimum, median, and maximum number of moves done by the
all gates (subformulas) of the problem instance. Morednethese  solvers. For example, theax/max ratio of 533.43 for the instance
approaches the greedy part of the search is driven by a austidn  speed1.fsa-b10-s means that the maximum number of moves made
which is substantially different from the justificationdsal cost func- by WalkSAT over the nine runs was 533.43 times as large as &ixe m
tion that we employ. Sebastiani [14] generalizes the GSATIBEC  jmum number of moves done by our implementation on the imstan
to general propositional formulas and defines the cost fomdiy To sum up, the experiments demonstrate potential of ourlnove
(implicitly) considering the CNF fornenf(¢) of the general formula  approach when solving structural (non-clausal) SAT instan A
¢: the cost for a truth assignment is the number of clausesfi®)  promising observation is that our justification frontiersbd tech-
falsified by the assignment. The approaches of Kautz and8elé}  nique seems to keep the search rather focused when the gize of
and Pham et al. [12] both use a Boolean circuit represen’[afithe instance gI’OWS as withessed by the modest|y increasing @uofb
problem and employ a cost function which, given a truth assignt  moves. In particular, this compares favorably to WalkSATakttyp-
for the input gates, counts the number of constrained optés  ically exceeds the cutoff afo® moves as the instance sizes grow.
falsified by the assignment. This cost function providestéohguid-
ance to greedy moves in cases where there are few constraitpd > The prototype computes the justification front and cone atuily in a

. g . global, non-incremental way. This naive implementatiorkesaaround 80-
gates or they are far from the input gates. A worst-case sceoer 250 times fewer flips per second (fps) than WalkSAT on instangith

curs when the Boolean circuit given as input hasngle output gate 1000-2500 gates. By careful re-implementation a very suitistl increase
implying that the cost function can only have the values 0 ¢orl is expected in the fps rate by incrementally computing thatfand cone.

‘ mmplox

t cone is implemented directly by the definition. When makineegly
\ /

Figure 2. Example circuits

We can also analyze how BC SLS behaves on flat clausal in*
put. To do this, we associate a CNF formWla= C; A ... ACy
with a constrained CNF circuitccirc(F) = (C,«) as fol-
lows. Take an input gate, for each variabler occurring in F'.
Now C = {gc, :==OR(giy, -, 91m) | Ci=(l1V...Vin)} U
{g-2 1= NOT(gs) | =z € U{_,Ci} and the constraints force each
“clause gate’yc, to true:a = {{gc;,t) | 1 <14 < k}. Thisisillus-
trated in Flg Z(b) foll’ = (1’1 Vv ﬁl’Q) AN (ﬁl’Q VxsV :E4).

When BC SLS is run on a CNF circuit, it can only flip input vari-
ables. Ifinput gates were excluded from theisedrest(C*, 7) of in-
teresting gates, theinterest(C*, 7)| would equal to the number of
unjustified clause gates in the configuratiaThus the greedy move
cost functioncost (7, -) would equal to that applied in WalkSAT mea-
suring the number of clauses fixed/broken during a flip. Sinpat
gates are included iimterest(C“, 7), the BC SLS cost function also
measures, in CNF terms, the number of variables occurring$at-
isfied clauses.




Table 1. Comparison of a prototype implementation of BC SLS with V&K

[ CNF Il BC SLS #moves Il WalkSAT #moves Il relative gain in #moves
Instance [FFoategfvarsfclauseg] min | med ]| max_ ] min_J med ]| max [ min/min | med/med | max/max
speedl.fsa-b6-s|[ 836] 688 208 965 965 4358 2252 5805 11368 233 6.02 261
speedl.fsa-b7-s || 1142| 943 2875 2266 2578 5077 6255 20915 38237 2.76 8.11 7.53
speedl.fsa-b8-s | 1448 1198 3660|| 1633 1849 5518 9266 62497 95837 5.67 33.80 17.37
speedl.fsa-b9-s | 1754/ 1453  4444f| 5029 6695 12616 25911 330321 1643032 5.15 49.34 130.23
speedl.fsa-b10-§| 2060/ 1708 5226 5089 11313 28423 1511045 4376285 | 15161778 296.92 386.84 533.43
speedl.fsa-b12-4| 2672/ 2218 6786 6899 41379 | 141700 - - - >14494.85 >2416.68 >705.72
speedl.fsa-b13-g| 29782473  7563|| 31384 | 139921 | 415601 - - - >3186.34 >714.69 >240.62
speedl.fsa-b14-4| 3284{ 2728 8338|| 43690 | 179967 | 587184 - - - >2288.85 >555.66 >170.30
speedl.fsa-b15-g| 35902983 9111|| 33647 | 321554 - (1) - - - >2972.03 >310.99 -
speedl.fsa-b6-p 687 577 1e6g|| 1129 1129 1129 1342 1851 7706 1.19 1.64 6.83
speedl.fsa-b7-p | 1022/ 863 2528| 2148 2777 7614 4636 10916 25955 2.16 3.93 3.41
speedl.fsa-b8-p || 1359 1149  3387|| 4338 8248 22294 10991 40833 278042 2.53 4.95 12.47
speedl.fsa-b9-p || 1696|1435 4245 5176 10610 27500 33752 76864 288506 6.52 7.24 10.49
speedl.fsa-b10-p 20331721 5101f| 7249 30846 60009 2043613 4638369 | 10800631 281.92 150.37 179.98
speedl.fsa-b12-p 27032289  6793|| 45304 | 144787 | 735228 - - -(9 >2207.31 >690.67 >136.01
speedl.fsa-b13-p| 3040/ 2575 7643|| 34363 | 328346 | 709696 - - -(9 >2910.11 >304.56 >140.91
dp-1Zfsa-b5-s T57971339 4148 8880 | 27519 | 36421 14469 37361 81102 163 1.36 2.23
dp-12.fsa-b6-s 2060/ 1748 5418| 23740 52975 | 106542 123249 790190 2299552 5.19 14.92 21.58
dp-12.fsa-b7-s 2541 2157| 6688/| 28289 69029 | 170824 397887 | 28360757 -(1 14.07 410.85 >585.40
dp-12.fsa-b8-s 3022 2566| 7958 33935 91764 | 461459 - - -(9 >2946.81 >1089.75 >216.70
dp-12.fsa-b9-s 3503/ 2975 9228)| 83107 | 162137 | 446453 - - - (9 >1203.27 >616.76 >223.99
dp-IZfsa-b5-p || 12671111 32I0| 4838 | 85808 | 411793 4619 12545 46037 0.95 0.15 0.1
dp-12.fsa-b6-p 184411616 4673|| 38563 | 118477 | 221461 17961 85344 145830 0.47 0.72 0.66
dp-12.fsa-b7-p 24212121 6136|| 22545 69040 | 214360 113932 244863 406876 5.05 3.55 1.90
dp-12.fsa-b8-p 2998/ 2626| 7599|| 73826 | 132431 | 576672 379112 | 14101664 | 69496990 5.14 106.48 120.51
dp-12.fsa-b9-p 3575/3131] 9062 50227 | 148409 | 425594 - - -(9) >1990.96 >673.81 >234.97
elevatorl-b4-p 2647 230 649 171 171 171 1176 3041 10801 6.88 17.78 63.16
elevatorl-b4-s 534 447 1363 869 869 1723 2450 51226 270317 2.82 58.95 156.89
elevatorl-b5-s 841 704 2163| 2543 3632 4788 19472 202139 391216 7.66 55.66 81.71
elevatorl-b6-s 1307/ 1093  3388| 5073 57305 | 116572 305888 1317650 | 4433915 60.30 22.99 38.04
elevator2-b6-p 896 775 2308 1789 4376 15621 16898 1134779 2824590 9.45 259.32 180.82
elevator2-b7-p 1606 1379 4214|| 6221 18601 91691 492869 2756750 | 13232933 79.23 148.20 144.32
elevator2-b6-s 158211339 4157|| 6776 16702 - (1) 13576544 - -(8 2003.62 >5987.31 -
elevator2-b7-s 24482070  6495| 7940 28524 72247 - - -(9 >12594.46 >3505.82 | >1384.14
mmgt2fsa-b6-p[[ 903 777] 2285 1220 1220 [ 34132 170454 620821 1260101 139.72 508.87 36.92
mmgt2.fsa-b7-p (| 12831113  3278|| 5671 32236 86944 873901 4289501 | 16896746 154.10 133.07 194.34
mmgt2.fsa-b6-s || 1421/ 1188  3722| 3051 10831 38780 8586379 | 67686412 -(3 2814.28 6249.32 | >2578.65
mmgt3.fsa-b7-p(| 19531692 5034f| 5136 7264 48315 6886854 - -(6 1340.90 | >13766.52 | >2069.75
mmgt3.fsa-b7-s|| 3079 2600 8260|] 39796 | 178191 | 833128 - - -(9 >2512.82 >561.20 >120.03
Considering the input flipping SLS methods in the literafueeall REFERENCES
Sect. 4.3), we were, unfortunately, unable at the momenbtaim ] ‘ B ] ] -
implementations of these methods for comparison. Comganiput [1] K. Heljanko, ‘Bounded reachability checking with presesemantics’,

flipping methods to our current framework remains thus aroirtgmt

aspect of future work. We did also investigate the perforreaof g
AdaptNovelty+ [3] on the benchmarks. We omit the preciseltes
here due to space reasons. On the whole, although Adaptitevel (3]
does find satisfying truth assignments for more instancas Walk- 4]
SAT using the cutoff ofl0® moves, our prototype shows typically a
one-to-three orders of magnitude reduction in the numbenmfes [5]
compared to AdaptNovelty+ — rather similarly as when coragar
to WalkSAT.
[6]
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6 CONCLUSIONS "
Motivated by techniques applied in circuit-level SAT sobvén elec- (9]
tronic design automation, we present a novel approach tongpl
structural SAT problems with local search on non-clausatlle
By incorporating justification frontiers, we develop SLSulistics (10]
which concentrate the search into relevant parts of insgrexploit
- R [11]
observability don't cares and allow for an early stoppinijecion. [12]
Encouraged by the potential witnessed by low move countgoba
totype implementation, we see various directions for fertwork.  [13]
We plan to replace the prototype with a proper solver impleme [14]
tation with specialized data structures. For achievingrtssiing of
the greediness parameter for effectively escaping froml lminima,  [15]
developing adaptive noise mechanisms [3] for non-claus& 8
a topic for further work. Another aspect is to investigate #ffect  [16]
of adding local consistency checking (on the circuit leestending [17]

studies on adding propagation to CNF level SLS [2]) into tlaenfe-
work, and possibly even conflict learning.
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