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Abstract

We study the relative best-case performance of DPLL-based
structure-aware SAT solvers in terms of the power of the un-
derlying proof systems. The systems result from (i) vary-
ing the style of branching and (ii) enforcing dynamic restric-
tions on the decision heuristics. Considering DPLL both with
and without clause learning, we present a relative efficiency
hierarchy for refinements of DPLL resulting from combina-
tions of decision heuristics (top-down restricted, justification
restricted, and unrestricted heuristics) and branching styles
(typical DPLL-style and ATPG-style branching). An an ex-
ample, for DPLL without clause learning, we establish a
strict hierarchy, with the ATPG-style, justification restricted
branching variant as the weakest system.

Introduction

Modern complete satisfiability (SAT) solvers provide an ef-
ficient way of solving various real-world problems as propo-
sitional satisfiability. Typical SAT solvers aimed at solving

pattern generation (ATPG), and automated planning. Mo-
tivated by this, there is a wide body of work on lifting the
DPLL procedure to work directly on circuits, see (Junttila
and Niemeh 2000; Kuehlmann, Ganai, and Paruthi 2001;
Ganai et al. 2002; Thiffault, Bacchus, and Walsh 2004)
for instance. A way for circuit-level solvers to exploit the
structural knowledge is to use it for guiding the branching
rule. One applied heuristic idea is to apply branching in a
top-downfashion, starting from the constraints imposed on
the output gates of the circuit, and to searchjfstification

for the currently imposed values (Kuehlmann et al. 2002;
Lu et al. 2003). A modification to the actustlyle of branch-

ing in DPLL-based algorithms, aiming at eagerly justify-
ing the currently unjustified gates, has also been consid-
ered (Kuehlmann, Ganai, and Paruthi 2001).

This work studies the relative best-case performance of
such variations of DPLL-based structure-aware Boolean cir-
cuit level SAT and ATPG solvers in terms pfoof complex-
ity (Beame and Pitassi 1998). In more detail, we study these
solvers through the relative power of their underlying infer-

such structured problems are based on the conjunctive nor- ence systems (qroof systems) in terms of the shortest ex-

mal form (CNF) levelDavis-Putham-Logemann-Loveland
procedure (DPLL) (Davis and Putnam 1960; Davis, Loge-

isting proofs in the systems. For two proof systeisignd
S’, we say thatS’” (polynomially) simulate$' if, for all infi-

mann, and Loveland 1962), and often incorporate clause nite families{,} of unsatisfiable CNF formulas, there is a
learning (Marques-Silva and Sakallah 1999; Beame, Kautz, polynomial that bounds for alf,, the length of the shortest

and Sabharwal 2004) for boosting the efficiency of search.
A problem with CNF, however, is that as problems are
translated into this low-level format, structure of the mod-

proofs in S’ w.r.t. the length of the shortest proofs $h If
S’ simulatesS and vice versa, thef and S’ are (polyno-
mially) equivalent. IfS’ cannot simulates' and vice versa,

elled problem domain is lost, and thus the SAT solver cannot thenS andS’ areincomparable. From the practical point of
make use of this structural knowledge. Indeed, in SAT based view, if S’ cannot simulates, we know that&anyimplemen-
approaches, direct CNF encodings of a problem domain are tation of S’ can suffer a substantial decrease in efficiency
rarely used, but rather, more natural representations for ar- compared to implementations 6t For example, through

bitrary propositional formulas are used during modelling.
Boolean circuits, see e.g. (Papadimitriou 1995), provide a
natural, structure-preserving representation form for mod-
elling many typical SAT problems—e.g., bounded model
checking of hardware, EDA applications like automated test
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a formal characterizatio6L of DPLL with clause learning,
Beame, Kautz, and Sabharwal (2004) show €@atan pro-
vide superpolynomially shorter proofs thexLL, and thus
DPLL cannot simulaté&L.

We present a relative efficiency hierarchy for variations of
circuit level DPLL (with and without clause learning) result-
ing from combinations of branching heuristics and branch-
ing styles. Motivated by ideas for solver development, we
study the variations (i) DPLL-style top-down restricted, (ii)
DPLL-style justification restricted (Kuehlmann et al. 2002;
Lu et al. 2003), and (iii) ATPG-style justification re-
stricted (Kuehlmann, Ganai, and Paruthi 2001) branching



DPLL. For example, for DPLL without clause learning, we
establish a strict hierarchy, with the ATPG-style branching,
justification restricted DPLL variant being the weakest sys-
tem. Perhaps the most surprising result obtained in this pa-
per is that clause learning DPLL with justification restricted
decisions heuristics cannot even simulate the top-down re-
stricted variantwithout clause learning. Thus, although
the idea of eagerly and locally justifying the values of cur-
rently unjustified constraints is an intuitively appealing one,
it can lead to dramatic losses in the best-case efficiency of a
structure-aware SAT solver even when the powerful search
space pruning technique of clause learning is applied.

Preliminaries
Boolean Circuits and SAT

A Boolean circuit over a finite sef; of gatesis a set
C of equations of formg f(g1,...,9n), where
9,91,---,9n € Gandf : {f;t}" — {f t} is a Boolean
function, with the additional requirements that (i) each
g € G appears at most once as the left hand side in the
equations inC, and (ii) the underlying directed graph
(G.EC)={(g/.9) €GxG | g:=[(....q....) €C})
is acyclic. If (¢, g) € E(C), theng’ is achild of g andg
is aparentof ¢'. If g := f(¢g1,...,9n) iSINC, theng is an
f-gate (or of typef), otherwise it is annput gate. A gate
with no parents is anutput gate.

A (partial) assignment fo€ is a (partial) functionr :
G — {f,t}. An assignmentr is consistent withC if
7(9) = f(r(g1),...,7(gn)) for eachg := f(g1,...,9n)
in C. Under a (possibly partial) assignment (i) a gate
g is assignedif 7(g) is defined, and (ii) an assigned gate
is justifiedif it is an input gate oy := f(g1,...,9,) and
V' D1 :7(9) = f(7'(g1),-..,7 (9n)) holds. That is, the
current values of the children of a justified gate are enough
for the gate to evaluate to its value.

A constrained Boolean circuitC,7) is a pair (C, ),
whereC is a Boolean circuit and is a partial assignment for
C. With respect to dC, ), each(g,v) € 7 is aconstraint,
andg is constrainedto v if (g,v) € 7. An assignment’
satisfies(C, ) if (i) 7’ is consistent witlC, and (i) 7' D 7.
If some assignment satisfi¢S, 7) then(C, 7) is satisfiable
and otherwiseinsatisfiable.

For convenience, we restrict the set of Boolean functions
that can be used as gate types to the following.

e NOT(v) istiff visf.
e OR(v1,..

.,vy) istiff at least one ofvy, ..., v, ist.

e AND(vy,...,v,)istiffall vy,... v, aret.

Example 1 A constrained Boolean circuit is shown
in Fig. 1. One satisfying assignment for it is
{<gl7t>7 <925t>v <g37f>7 <g4’t>7 <g57t>.7 <967f>a <g7at>7 <987t>}'
Under the partial assignment
and

{<glvt>7 <92,t>, <g47t>7 <98at>}' the gates g1, 9o,
gs are justified while the gatg, is assigned but unjustified.

We apply the standard “Tseitin translation” to map each
constrained Boolean circuilC, 7) into an equi-satisfiable
CNF formulacnf({(C,7)). First, introduce a variablg for
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C = {g1:=0OR(g2,93)
g2 = AND(g1, gs)
92 93
() (o o
9/1 95 g4 = OR(96797)
3‘ gs := AND(g7,gs) }
g6 g7 gs
7= {{g1,1)}

Figure 1: A constrained Boolean circyd, 7).

each gate in the circuit. Then, describe the functionality of
each gate and the constraints with clauses (Table 1). When
convenient, we view a clause as a finite set of literals and a
CNF formula as a finite set of clauses.

Table 1: The CNF translatiomf((C, 7))

gate or constraint ifC, 7) clauses irenf((C, 7))

g := NOT(g1) {~§,-91},{3, 91}

g :=OR(g1,---,9n) {“gagly ~~-7§TL}7 {g ﬁgl}v {gv —Gn }
g = AND(g1,---,gn) {=9,91}-{=9,9n}, 13, 21, - - -, 2Gn}
(g, e {g}

(g.f)er {~g}

Any CNF formulafF' = {C4,...,C\} can be seen as a
CNF circuit circ(F'). Take an input gatg, for each vari-
ablez in F. Now circ(F) is {gr := AND(gcy, -, 9c, )

U {g9c, =O0R(g1,,-q1,) | Ci={l1,....,ln} € F} U
{g-0 :=NOT(g,) | ~& € UL, C;}. Theconstrained CNF
circuit ccirc(F):=(circ(F), {(gr, 1) }) is satisfiable iffF is.

Resolution

The well-known Resolution proof system (RES) is based on
theresolution rule. LetC, D be clauses, and a Boolean
variable. The resolution rule lets us derive the cladise D
from the clausegz} U C and{—z} U D by resolving on

z. A RES proof (for the unsatisfiability) of a CNF formula
F is a sequence of clauses= (Cy,Cs,...,Cp, = 0),
where eaclC;, 1 < ¢ < m, is either (i) a clause i’ (an
initial clause), or (ii) derived with the resolution rule from
two clauses”;, Cj, wherel < j, k < ¢ (aderived clause).
Thelengthof 7 is m, the number of clauses occurring in it.

Many refinements oResolution, in which the structure of
RES proofs is restricted, have been studied. Here of particu-
lar interest isTree-like ResolutioiT-RES) that requires the
refutations to be representable as trees.

Superpolynomial lower bounds on proof lengthRES
have been shown for various families of CNF formulas. One
such family is thepigeon-hole principlem pigeons cannot
sitinn holes so that every pigeon has its own hole i m.

We consider the case = n+1 encoded as the CNF formula

n+1 n n n n+l
PHP ! = A\ (\/ Pm)/\/\ N N\ Gpisvopi ),
i=1  j=1 j=1li=14¢=i+1

where eaclp; ; is a Boolean variable with the interpretation
“p; ; istif and only if thei*® pigeon sits in thg'" hole”.

Theorem 1 (Haken (1985))There are no polynomial
lengthRES proofs for the family{ PHP”*}.



It is also known thaf-RES is aproperrefinement oRES.

Corollary 1 (Ben-Sasson, Impagliazzo, and Wigderson)
T-RES cannot polynomially simulatRES.

DPLL and Clause Learning

Most modern complete SAT solvers are basedDdpiL
(Davis and Putnam 1960; Davis, Logemann, and Loveland
1962). Given a CNF formul&’, DPLL is a depth-first search
procedure building a partial assignment for the variables in
F through (i) branchingand (ii) unit propagation(UP). In
branching, the current assignment is extended with the as-
signment (decisionjz, v), wherev € {f, t}, for some unas-
signed variablez. Unit propagation refers to applying the
unit clause rule: if thereisaclaugé v --- Vip Vi) € F
and assignment§;, f) for eachl < ¢ < k, the current par-
tial assignment can be extended wjtht).

An assignment is extended until (i) some variablgould
be assigned bothandt (a conflictis reached, with: as the
conflict variable) or (ii) the current assignment satisfiés
(in which caseDPLL terminates). In case (i), non-clause
learningDPLL solversbacktrackto the last branching de-
cision which has not been backtracked upon, undoing all
assignments made by UP after the particular decision, and
flip the decision.DPLL terminates on an unsatisfiable CNF
formula when there are no untried branches left.

It is well-known thatDPLL andT-RES can polynomially
simulate each other.

Fact 1 DPLL andT-RES are polynomially equivalent.

Clause learnindPLL algorithms differ from non-clause
learning algorithms in what happens when reaching a con-
flict. If a conflict is reached without any branching, the
formula F' is determined unsatisfiable. Otherwise, the con-
flict is analyzedbased on aonflict graph, and dearned
clause(or conflict clause), which describes the “cause” of
the conflict, is added té'. After this the search is contin-
ued typically by applyinghon-chronological backtracking
(or conflict-driven backjumping) for backtracking to an ear-
lier decision level that “caused” the conflict. Conflict-driven
backjumping results in the fact that, as opposed to the ba-
sic backtracking irDPLL, the other branch (opposite value)
of decision variables is not necessary forced systematically
when backtracking. In other words, branchindinis seen

simply as assigning values to unassigned variables, rather

than as a branching rule in which by branching on a variable
x the current branch is always extended into two branches,
one withz and the other with-z.

For investigating the efficiency of clause learniD§LL
in proof complexity theoretic terms, we apply the charac-
terization of Beame, Kautz, and Sabharwal (2004), referred
to as theCL proof system. A clause learning proof @t
proof) induced by a learning scherfgs constructed by ap-
plying branching, applying unit propagation whenever pos-
sible, and usingS to learn conflict clauses when conflicts

cannot be simulated by any refinementRES that cannot
itself simulateRES.

Corollary 2 (Beame, Kautz, and Sabharwal (2004))
DPLL cannot simulateL.

On the other hand, even with unlimited restafis js at most
as powerful aRRES.

Theorem 2 (Beame, Kautz, and Sabharwal (2004)RES
can simulateCL even ifCL is allowed unlimited restarts.

Notice thatCL does not include restarts as such. In the fol-
lowing, we explicitly mention when results hold even when
restarts are allowed.

Circuit Level DPLL and CL. From the viewpoint of
DPLL based search, there is a tight correspondence between
a constrained Boolean circUif, ) and its CNF translation
cnf({C, 7)) in Table 1. The CNF translation has a one-to-one
correspondence between the gates and the CNF variables,
and encodes in a natural way the semantics of the gates; thus
circuit level Boolean constraint propagation (see (Junttila
and Niemeh 2000; Kuehlmann, Ganai, and Paruthi 2001;
Ganai et al. 2002; Thiffault, Bacchus, and Walsh 2004)) on
(C, ) corresponds to unit clause propagatioreof((C, 7)).

For example, consider the gaje:= AND(g1, g2) and its
CNF translation—g V g1) A (—g V g2) A (G V —g1 V —g2).

Now whenever the gat® is assigned té, the gatey can be
propagated td by the semantics ofND. On the CNF level,

we can equivalently propagate the variable® f by apply-

ing the unit clause rule whenever the variafpjas assigned

tof. Due to this correspondence, clause learning can also be
equivalently applied in circuit level SAT solvers for learning
conflict clauses. Therefore, here we consider proof systems
like DPLL andCL to work on circuit level and write, e.g., “a

CL proof of (C, 7)" instead of “aCL proof of cnf((C, 7))".

Top-Down Branching DPLL

One often applied heuristic idea is to branch on variables
top-downwith respect to the circuit structure, starting from
the constraints imposed on the output gates of the circuit,
and searching fgustificationfor the currently assigned val-
ues. We characterize the variants of this idea through two
dynamic branching restrictions:

Top-down restriction: Branching is allowed on gaigif ¢
has a currently assigned parent. These varianB3RifL
andCL are denoted b{pPLL.y andCL.

Justification-based restriction: Branching is allowed on
gateg if ¢ has a currently assigned and unjustified par-
ent. These variants @PLL andCL areDPLLj andCLj.

A modification to the actuadtyle of branching in DPLL-
based algorithm, heuristically aiming at justifying the cur-
rent unjustified assignments on gates, has been considered
especially in Boolean circuit level SAT solvers for ATPG.
The underlyingDPLLJZ“ftpg system using ATPG-style branch-

are reached, so that in the end, a conflict can be reached ating is a variation of the justification-based restricted branch-

decision level zero. While the efficiency gains obtained in
practice by implementing clause learning in DPLL based al-
gorithms are well-established, (Beame, Kautz, and Sabhar-
wal 2004) provides the first formal study on its pow€i:
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ing DPLL;. The difference between original DPLL-style
branching and ATPG-style branching is illustrated in Fig. 2
with an OR-gateg := OR(g1,92,93). Where original
DPLL-style branching is based on branching on a variable



(Fig. 2 left), in ATPG-style branching (Fig. 2 right) each  F'is associated with the root @f. Each internal nodein T,
branch will have a unique justification for the currently as- with the associated set of claus€s has exactly: children,

signed value of the parent {gt in the example). and the set of clauses associated withithechild v; is F,, U
{(;)}, whereaC; = (I{ v ...V 1)) € F, definesk and the
(9,1) literals i1, ..., (Cy is decomposed A branch (path) in

/\ /’\ the tableau is closed if some variable occurs both positively

and negatively in the set of unit clauses associated with the

{g1,)  (g1,f) {g1,1)  {g2,1) (g3,1) leaf node of the branch. Any clausal tableau for a set of

DPLL-style ATPG-style clauses?” in which all branches in the tableau are closed, is
branching branching a clausal tableau proof (for the unsatisfiability) 6f The

proof systenCT consists of all clausal tableau proofs.
It is known thatCT is not as powerful a$-RES.

Proof Complexity Theo_rem 4 (Arai, Pitassi, and Urquhart (2001)) CT can-
In this section we present the main results of this work. not S|mulateT;tRpES. ) .
First we study the relative efficiency &@PLL.y, DPLLy, Now, DPLL;™ andCT are equivalent in the sense that,

and DPLL® w.r.t. DPLL. After this, we turn to the case glr\ég;sigr fcri ?(':t(r;r)yinsgfp?_fl_act!g“:f’ ;P%oﬂgmaéclﬁggg]d
of clause learning. The results are summarized in Fig. 3. In P if poly y

Figure 2: Styles of branching; OR-gaje= OR(g1, g2, 93)

the hierarchy, a systerfi cannot simulates’ if there is an in the minimal length proofs fof" in ST’ and vice versa.
arrow from S to S” with a line crossed over. A plain ar- Lemma 2 For sets of clauseHPLL;"® and CT are equiv-
row from S to S’ means thatS can simulateS’. Arrows alent.

labelled withx are known results from (Beame, Kautz, and  pygof sketch. Given an arbitrary set of clausés, notice
Sabharwal 2004;a]V|Sa|0, Juntt|!a, and N|em2005), the that after unit propagation on the Output gatecofC(F),
unlabeled ones are results of this paper. The arrows induced branching inDPLL2¢ and extending a branch i&T are
by the transitivity of negative/positive simulation results are effectively equivaléfnt on the clausesin

left out for clarity. Now assume that unit propagation IDPLLJ.aftpg assigned

" _ * agatey; tot. Therethenisaclauseé = {ly,...,l;,l} € F
' —— DPLLy l_‘<_—>| DPLL: I:‘_—»I* DPLL | such that alk;'s and(g;,, f)'s are in the branch fo€ T and
1A 1A LS DPLL:™#, respectively. To simulate unit propagationGif,
if . o
Y Y Y decompos& to its literals. Due to the opposite literatg;
cL |—¢<—_>| cL, cL in the branch, each branch withis now closed. O
| ! : | Theorem 4 and Fact 1 imply th&T cannot simulate
Figure 3: Summary of results DPLL. Thus by Lemma 2, together with the fact that
DPLL andDPLLjs are equivalent on constrained CNF cir-
DPLL vs DPLLq vs DPLL;f vs DPLLJf“‘ftpg cuits (Lemma 1), Wte have the following.
atpg i .
The relative efficiency oDPLL.q andDPLL has been stud- Corollary 3 DPLL;™ cannot simulat®PLLj.
ied in (Jrvisalo, Junttila, and Nien#&2005): whileDPLL To the other direction, however, we have a positive results.
trivially simulatesDPLL.4, DPLL:y cannot simulat®PLL. Theorem 5 DPLLj can simulatd)PLLJ?’f‘pg.
Theorem 3 (JBrvisalo, Junttila, and Niemek (2005)) Proof sketch. Assume thatDPLLY™ branches with ex-
DPLLy cannot p.olynom|ally_5|r_nulatBPI._L. B tensions(gi, v), ..., (gs, v), where we have a gatg :—
We now consider the pairwise relative efficiency of the f(g1,...,gx) (f f = AND (f = OR) thenv = f (v = t,
other variations oDPLL. First, we observe that when re-  respectively)). Simulate this iBPLL;¢ by branching with
stricting to con_stramed CNF circuit§PLL, DPLLy, and g1 and consecutively op; from¢ = 2to k — 1 in the branch
DPLL; are equivalent. having(g;, —v) for all j < i. Unit propagate to gefy, v)
Lemma 1 For constrained CNF circuitsDPLL, DPLL,q, in the branch havindg;, —v) for all i < k. o
andDPLL; are equivalent. We still have to consider whethé@PLL;s can simulate

: . . — DPLL.y. This turns out not to be the case. In order to con-
Proof sketch.leen an arbitrary constrained CNF circuit,  stryct a witness for this separation, we modify a construc-
after unit propagation on the output g&€LL andDPLL.q tion from (&rvisalo and Junttila 2007). The construction is
can branch on all of the input gates. If there is an input gate pased orirc(PHP*!). Cook (1976) introduces a polyno-
on whichDPLL;js cannot branch on, all of its parents have mial number of clauses which, interpreted as adding gates
already been justified, and hence branching on such gate into ccirc(PHP"*!), enable polynomial length proofs RES
any of the systems would be redundant. O for the resulting circuit. As a circuit structure, théstension

To separat®PLLj; andDPLL™, we use a known result s defined a&XT,, = Uy, EXT', where

on the efficiency otlausal tableaux. Aclausal tableaul’ P a
for a set of clause$’ is a tree in which a set of clauses is 7t .— U UHelsi=oRr(elt! of 1Ly

l
> ] i i ,044),0; ;*=AND(e; | , el
associated with each nodeTh The original set of clauses Dt bo T vl
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and eache ; is the input gatey,,, ; associated with the vari-

ablep; ; in PHP”*!. By (Cook 1976) we immediately have
a polynomial lengthRES proof 7 = (C4,...,Cp, = 0)

for cnf (ccirc(PHP” ) UEXT),,). In (&rvisalo and Junttila
2007), in order to guarantee shdHRES (and hence short
DPLL) proofs for the construction, an additional structure
(calledE(7r), see (arvisalo and Junttila 2007) for details)
is added to the circuit. We apply a slightly modified version
(basically, the direction of the; AND-gate chain is reversed)
of E(r) to ensure shoDPLL.4 proofs as well:

P(r) = UZ*{hi = AND(gc,, hit1)} U
Uz.z_ll{gci = OR(g1,---,95,0j+1,---,Jk) |
Ci ={G1,- 1G5, Gj+1,---, Gk} U
U g :== NoT(g) | =g € Ci},

whereh,, 1 is the gatege
illustrated in Fig. 4(left).

To get our final construcPPHP”*! (see Fig.4(center)
for clarity), we will add to the construatirc(PHP” ™) U
EXT, UP(r) the gateg := OR(hq, z) andz := AND(y, z),
where: is the output gate ofirc(PHP” '), and constrain
the output gater to t. The idea behinPHP" ' is that
P(w) encodesr in a way that allows polynomial length
DPLLy proofs forPPHPZ:“, while the additional structure
on top ofcirc(PHP?™!) U EXT,, U P(r) preventsDPLLj
from having polynomial proofs foPPHP" .

Theorem 6 DPLLj; cannot simulat®PLLyg.

Proof sketch. DPLL.y has polynomial length proofs for
PPHP”*! w.rt. n. After unit propagation, botly and z
aret. Then branch orh;. The branch withh,,t) propa-
gates to(h;, t) for all i < m. At the latest, when assigning
(hm-1,1), unit propagation gives a conflict, sinbér) en-
codes the two contradictory unit clausesrinConsecutively
fromi = 1 to m — 2, branch ongc, in the branch hav-
ing (hg,f) for all & < i and(gc;,t) forall j < i. The
branch with(gc;,t) for all j < i and(gc,,f) propagates to
a conflict, sinceC; has been derived fromy;,, C; € © with
k,l < i and we havégc, ,t) and(gc,,t) (for the base case,
for eachC € PHP!™! we have(gc,t)). The branch with
(hi, ) forall k < m—1and{gc,,t) foralli < m—1 prop-
agates tdgc,,_,,f), and again we have a conflict as above.
This concludes the polynomial length proof 10PLL.q.

Now consideDPLLj. Propagation givegy,t) and(z, t)
from (z,t), and(z,t) justifies (y,t). Now we can branch
on the inputs ifPHP”** only. Moreover,h; is redundant
in the sense that it is not constrained and thus cannot con-
tribute to conflicts based on values propagated bottom-up
from the input gates. Thus amyPLLj proof of PPHP" !
must effectively include a proof afcirc(PHP” ™). Since
DPLL simulatesDPLL;¢, Theorem 1 and Fact 1 imply that
DPLLj has no polynomial length proofs fePHP2 . O

The upper part of Fig. 3 summarizes the results this far.

The structure ofP(r) is

m—1"

On the Relative Efficiency ofCL, CLy, and CL;¢

We now turn to the case of clause learning solvers, and study
the relative efficiency o€Lj; andCLyg w.r.t. CL andDPLL.
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Before detailed results, we use the constructionafdalo,
Junttila, and Niemé 2005) in the proof of Theorem 3 to
explain why a separation @PLL andDPLL.4 does not di-
rectly imply a separation betweéh. andCL4.

Example 2 Define a circuit gadget

TD,, :={v:=0R(v1,w1)} U{vi:=AND(z3,2;) | 1 <i<n}U
{wiZ:AND(yi,ZZ'),ZZ'3:OR(U7;+1,’LU¢+1) | 1<i< TL}

and [etUNSAT? := {{_‘IL'l, _\1‘2}, {_\1‘17 I’Q}, {1'1, _h’L'Q},
{z1,x2}}. Now take the unsatisfiable constrained circuit

TDU,, := (TD,, U circ(UNSAT®) U circ(UNSAT?), { (v, ) })

with the output gates afirc(UNSAT®) andcirc(UNSAT®)
identified withv,,.1 and w, 1, respectively, as illustrated

in Fig. 4(right). Since unit propagation sets values to all the
other gates once the input gates are assigned, branching on
the input gates corresponding &9, as, b1, b gives a linear
sizeDPLL proof for TDU,,. One can similarly construct a
small CL proof. For DPLLy, DPLLj, and DPLLfftpg, the
minimal proofs are of exponential length; the structure of
TD,, forces them to branch os or w; for each: from1 to

n + 1. This results in an exponential number of branches as
a contradiction can be reached only in thec(UNSAT®)
andcirc(UNSAT?) parts.

However,CL.q and CLj both have proofs of linear length
w.r.t.n for TDU,,. First, consecutively from= 1ton + 1
branch with(v;,t). Next branch witKa,,t). This propa-
gates to a conflict, the clause-C,, —C5, —a, } is learned
(C1 and Cy, are theoRr-gates corresponding to the clauses
{—a1,-as} and {—ay,as} in UNSAT®), the search back-
jumps to the previous decision level, and propagation on the
learned clause give&, f). This in turn produces a conflict,
the unit clause{—wv, 11} is learned, and the search back-
jumps to decision level 0. The same process is repeated for
the right part of the circuit (replace with w anda with b).
Finally, a conflict with the output constraint is reached at de-
cision level 0 by propagating—v,,11 } and{—w,1} up the
circuit structure. Hence, whil@DU,, separate®©PLL from
DPLLy, DPLLj, and DPLLJf'}‘pg, it does not do the same for
the corresponding clause learning extensions.

Lemma 3 CLjy has no polynomial length proofs for
{PPHP""!}. This holds even if restarts are allowed.

Proof sketch. Through a similar argument as in the
case of DPLLj in the proof of Theorem 6, anyLj
proof of PPHP”* must effectively include a proof of
ccirc(PHP” ™). Hence Theorems 1 and 2 now imply that
CLjs has no polynomial length proofs f@PHPZ“. O
Corollary 4 CLj cannot simulateDPLLyy. This holds re-
gardless of whether restarts are allowed.

Through a similar argument as in LemmaCl, CL4, and
CLjr are equivalent for constrained CNF circuits.

Lemma 4 For constrained CNF circuitCL, CLyq, andCLj
are equivalent. This holds even if each system is allowed
unlimited restarts.

By Fact 1, Corollary 2, and Lemmas 1 and 4, we arrive at:
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Figure 4: From left to right: high-level views for the consttsiP (), PPHP” !, andTDU,,.

Corollary 5 DPLL.y cannot simulateLj.
ThusCLjs andDPLL.4 are polynomially incomparable.
Theorem 7 CLjs andDPLL.4 are incomparable.

Finally, we end up with the relative efficiency hierarchy
shown in Fig. 3. The only remaining open question in the
hierarchy is whethe€L.y can simulateCL.

Related Work

Arai, Pitassi, and Urquhart (2001) present a relative effi-
ciency study of variations of analytic tableaux (Smullyan
1968) based on restrictions on the decomposition strat-
egy for formulas (clausalgeneralized clausal, ankinary
tableaux). The effect of adding branching (resulting in
the tableau method KE) to analytic tableaux is studied in
(D’Agostino and Mondadori 1994).advisalo, Junttila, and
Niemeh (2005) study the effect of a variety of static (in-
cludinginput-restricted branching) and dynamic branching
restrictions (includingDPLL.y but excludingDPLLj) for
DPLL without clause learning, whileddvisalo and Junt-
tila (2007) study the case of input-restricted branching
Finally, Hwang and Mitchell (2005) study typical branching
schemes in CSP solving (2-wapdd-way branching).
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