
Limitations of Restricted Branching in Clause Learning

Matti Järvisalo and Tommi Junttila

Helsinki University of Technology (TKK)
Laboratory for Theoretical Computer Science

P.O. Box 5400, FI-02015 TKK, Finland
matti.jarvisalo@tkk.fi, tommi.junttila@tkk.fi

Abstract. The techniques for making decisions, i.e., branching, play a central
role in complete methods for solving structured CSP instances. In practice, there
are cases when SAT solvers benefit from limiting the set of variables the solver
is allowed to branch on to so called input variables. Theoretically, however, re-
stricting branching to input variables implies a super-polynomial increase in the
length of the optimal proofs for DPLL (without clause learning), and thus input-
restricted DPLL cannot polynomially simulate DPLL. In this paper we settle the
case of DPLL with clause learning. Surprisingly, even with unlimited restarts,
input-restricted clause learning DPLL cannot simulate DPLL (even
without clause learning). The opposite also holds, and hence DPLL and input-
restricted clause learning DPLL are polynomially incomparable. Additionally,
we analyse the effect of input-restricted branching on clause learning solvers in
practice with various structural real-world benchmarks.

1 Introduction

Modern complete satisfiability (SAT) solvers provide an efficient way of solving various
real-world problems as propositional satisfiability. Typical SAT solvers aimed at solving
such structured problems are based on the conjunctive normal form (CNF) level Davis-
Putnam-Logemann-Loveland procedure (DPLL) [1,2] and incorporate techniques such
as intelligent branching heuristics, randomisation and restarts [3], and clause learn-
ing [4] for boosting search efficiency.

In SAT based approaches to structured problems such as bounded model checking [5]
and automated planning [6], the CNF encoding is often derived from a transition rela-
tion, where the behaviour of the underlying system is dependent on the input—initial
state, nondeterministic choices, et cetera—of the system. Since irrelevant decisions may
have an exponential effect on the running times of the solver, techniques for making
decisions, i.e., branching, play a central role in complete SAT methods aimed at solv-
ing typically very large real-world problem instances. Empirical case studies [7,8,9,10]
have shown that, in some cases, SAT solvers benefit from restricting the variables the
solver is allowed to branch on to so called input (or independent) variables, correspond-
ing to the input of the underlying system. Since the system behaviour is determined by
its input, input-restricted branching DPLL remains complete. Intuitively, this drops the
search space size from 2N to 2I with I << N , where I and N are the number of input
variables and all variables in the CNF encoding, respectively.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 348–363, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Limitations of Restricted Branching in Clause Learning 349

From another point of view, one can investigate the best-case performance of SAT
algorithms through proof complexity [11], by studying the relative power of their un-
derlying inference systems (or proof systems) in terms of the shortest existing proofs in
the systems. For two proof systems S,S′, we say that S′ (polynomially) simulates S if,
for all infinite families {Fn} of unsatisfiable CNF formulas, there is a polynomial that
bounds for all Fn the length of the shortest proofs in S′ w.r.t. the length of the shortest
proofs in S. If S′ simulates S and vice versa, then S and S′ are polynomially equiva-
lent. If S′ cannot simulate S and vice versa, then S and S′ are incomparable. From the
practical point of view, if S′ cannot simulate S, we know that any implementation of
S′ can suffer a notable decrease in efficiency compared to implementations of S. For
example, through a formal characterisation CL of DPLL with clause learning, Beame
et al. [12] show that CL can provide exponentially shorter proofs than DPLL, and thus
DPLL cannot simulate CL.

Considering restricting branching in DPLL algorithms to input variables, a natural
question to ask is whether the power of the underlying inference systems of DPLL based
solvers is affected by the input-restriction. For DPLL without clause learning, this ques-
tion is answered in [13]: input-restricted DPLL cannot simulate DPLL.

In this paper we settle the case of input-restricted CL: it turns out that input-restricted
CL cannot simulate CL. This implies that all implementations of clause learning DPLL,
even with optimal heuristics, have the potential of suffering a notable efficiency de-
crease if branching is restricted to input variables. In fact, we show that even with
unlimited restarts and the ability to create conflicts at will, input-restricted CL cannot
even simulate the basic DPLL without clause learning. This is surprising, since the un-
restricted version of this variant of CL can efficiently simulate general resolution [12],
being thus very powerful compared to DPLL. Additionally, we evaluate the effect of
input-restricted branching on clause learning with various structural real-world bench-
marks, and explain why branching restrictions are difficult to apply with typical clause
learning search techniques.

As preliminaries, in Sect. 2 we define Boolean circuits, which we use for representing
structural formulas, and discuss the close relation of circuits and CNF formulas. We
then review the Resolution proof system and characterisations of DPLL and CL, and
discuss known results concerning their relative efficiency (Sect. 3). The main theoretical
and experimental contributions of this paper are presented in Sect. 4–5.

2 Boolean Circuits and Propositional Satisfiability

The correspondence between system input of a real-world problem and propositional
variables in the flat CNF encoding is not evident. However, in SAT based approaches,
direct CNF encodings of a problem domain are rarely used: the problem at hand is
typically encoded with a general propositional formula φ, which is then translated into
a CNF formula by introducing additional variables for the sub-formulas of φ. Boolean
circuits (see e.g. [14]) offer a natural way of presenting propositional formulas in a
compact DAG-like structure with sub-formula sharing, which helps in lowering the
number of additional variables needed. The system input of the original problem is also
reflected as input gates in Boolean circuits.

350 M. Järvisalo and T. Junttila

A Boolean circuit over a finite set G of gates is a set C of equations of the form g :=
f(g1, . . . , gn), where g, g1, . . . , gn ∈ G and f : {f, t}n → {f, t} is a Boolean function,
such that (i) each g ∈ G appears at most once as the left hand side in the equations in C,
and (ii) the underlying graph 〈G, E(C) = {〈g′, g〉∈G × G | g := f(. . . , g′, . . .)∈C}〉
is acyclic. When convenient, we identify C with its underlying DAG. If 〈g′, g〉 ∈ E(C),
then g′ is a child of g and g is a parent of g′. For any g ∈ G, if g := f(g1, . . . , gn)
is in C, then g is an f -gate (or of type f), otherwise it is an input gate. A gate with
no parents is an output gate. A (partial) truth assignment for C is a (partial) function
τ : G → {f, t}. A truth assignment τ is consistent with C if τ(g) = f(τ(g1), . . . , τ(gn))
for each g := f(g1, . . . , gn) in C.

A constrained Boolean circuit Cτ is a pair 〈C, τ〉, where C is a Boolean circuit and
τ is a partial truth assignment for C. With respect to a 〈C, τ〉, each 〈g, v〉 ∈ τ is a
constraint, and g is constrained to v if 〈g, v〉 ∈ τ . A truth assignment τ ′ satisfies Cτ if
(i) τ ′ is consistent with C, and (ii) τ ′ ⊇ τ . If some truth assignment satisfies Cτ then Cτ

is satisfiable and otherwise unsatisfiable.

a0 b0 c0

AND XOR

OR

AND XORt3t2

o0

c1 t

t1

Fig. 1. A constrained circuit

For notational convenience, when well-defined, the
join of constrained circuits Aτ = 〈A, τ 〉 and Bθ =
〈B, θ〉 is Aτ ∪ Bθ := 〈A ∪ B, τ ∪ θ〉. Without loss of
generality, we restrict the set of Boolean functions avail-
able as gate types to

(i) NOT(v) is t iff v is f,
(ii) OR(v1, . . . , vn) is t iff at least one of v1, . . . , vn

is t,
(iii) AND(v1, . . . , vn) is t iff all v1, . . . , vn are t, and
(iv) XOR(v1, v2) is t iff exactly one of v1, v2 is t.

As an example, Fig. 1 shows a Boolean circuit for a
full-adder with the carry-out bit c1 constrained to t. Formally, this constrained circuit is
〈C, τ〉, where C = {c1 := OR(t1, t2), t1 := AND(t3, c0), o0 := XOR(t3, c0), t2 :=
AND(a0, b0), t3 := XOR(a0, b0)} and τ = {〈c1, t〉}.

2.1 From Circuits to CNF, and CNF Formulas as Circuits

Given a Boolean variable x, there are two literals, the positive literal, denoted by x,
and the negative literal, denoted by x. As usual, we identify x with x. A clause is a
disjunction of distinct literals and a CNF formula is a conjunction of clauses. When
convenient, we view a clause as a finite set of literals and a CNF formula as a finite set
of clauses. The sets of variables appearing as positive and negative literals in a CNF
F are denoted by vars+(F) and vars−(F), respectively, and the set of variables by
vars(F); for a clause C, vars+(C), vars−(C), and vars(C) are defined similarly.

Given a CNF formula F , a (partial) assignment for F is a (partial) function τ :
vars(F) → {t, f}. With slight abuse of notation, if τ(x) = v, then τ(x) = ¬v, where
¬t = f and ¬f = t. A clause is satisfied by τ if it contains at least one literal l such
that τ(l) = t. An assignment τ satisfies F if it satisfies every clause in F . A formula
is satisfiable if there is an assignment that satisfies it, and unsatisfiable otherwise. We
apply the stardard “Tseitin translation” to map each constrained Boolean circuit 〈C, τ〉
into an equi-satisfiable CNF formula cnf(〈C, τ 〉). To obtain a small CNF formula, the

Limitations of Restricted Branching in Clause Learning 351

Table 1. Translating a constrained Boolean circuit 〈C, τ〉 to the CNF formula cnf(〈C, τ 〉)

circuit 〈C, τ〉 clauses in cnf(〈C, τ〉)
g := NOT(g1) ∈ C {x̄g, x̄g1}, {xg, xg1}
g := OR(g1, . . . , gn) ∈ C {x̄g, xg1 , . . . , xgn}, {xg, x̄g1},. . . ,{xg, x̄gn}
g := AND(g1, . . . , gn) ∈ C {x̄g, xg1},. . . ,{x̄g, xgn}, {xg, x̄g1 , . . . , x̄gn}
g := XOR(g1, g2) ∈ C {x̄g , x̄g1 , x̄g2}, {x̄g, xg1 , xg2}, {xg, x̄g1 , xg2}, {xg, xg1 , x̄g2}
〈g, t〉 ∈ τ {xg}
〈g, f〉 ∈ τ {x̄g}

idea is to introduce a variable xg for each gate g in the circuit, and then to describe the
functionality of each gate with a linear number of clauses (Table 1).

Any CNF formula F = {C1, . . . , Ck} can naturally be seen as a Boolean circuit.
Basically, F is a Boolean circuit with an AND of ORs which represent the clauses.
Formally, circuit(F) := 〈C, τ 〉 is defined by associating an input gate gx with each
x ∈ vars(F), a NOT-gate gx̄ with each x ∈ vars−(F), an OR-gate gCi with each clause
Ci ∈ F , an AND-gate gF with F , and defining τ = {〈gF , t〉} and

C = {gF := AND(gC1 , . . . , gCk
)} ∪ {

gx̄ := NOT(gx) | x ∈ vars−(F)
} ∪

{
gCi := OR(gli,1 , . . . , gli,ni

) | Ci = {li,1, . . . , li,ni} ∈ F
}
.

3 Resolution, DPLL, and CL with Variants

We now review proof systems for CNF formulas, namely, Resolution, and characterisa-
tions of DPLL and CL [12] (DPLL with clause learning). We will apply these in Sect. 4.

3.1 Resolution

The well-known Resolution proof system (RES) is based on the resolution rule. Let
C, D be clauses, and x a Boolean variable. The resolution rule lets us derive the clause
C ∪ D from the clauses {x} ∪ C and {x̄} ∪ D by resolving on x. A RES proof (for the
unsatisfiability) of a CNF formula F is a sequence of clauses π = (C1, C2, . . . , Cm =
∅), where each Ci, 1 ≤ i ≤ m, is either (i) a clause in F (an initial clause), or (ii)
derived with the resolution rule from two clauses Cj , Ck where 1 ≤ j, k < i (a derived
clause). The length of π is m, the number of clauses occurring in it.

Many refinements of Resolution, in which the structure of RES proofs is restricted,
have been proposed and studied. Here of particular interest is Tree-like Resolution
(T-RES) that requires the refutations to be representable as trees. This implies that a
derived clause, if subsequently used multiple times in the refutation, must be derived
anew each time starting from initial clauses.

Superpolynomial lower bounds on proof length in RES have been shown for various
families of CNF formulas. Among the most studied such families is the pigeon-hole
principle, which states that there is no injective mapping from an m-element set into an
n-element set if m > n (i.e., m pigeons cannot sit in less than m holes so that every
pigeon has its own hole). We consider the case m = n+1 encoded as the CNF formula

352 M. Järvisalo and T. Junttila

PHPn+1
n :=

n+1∧

i=1

(n∨

j=1

pi,j

)
∧

n∧

j=1

n∧

i=1

n+1∧

i′=i+1

(p̄i,j ∨ p̄i′,j),

where each pi,j is a Boolean variable with the interpretation “pi,j is t if and only if the
ith pigeon sits in the jth hole”.

Theorem 1 (Haken [15]). There is no polynomial length RES proof of PHPn+1
n .

It is also known that T-RES is a proper refinement of RES. This originates from the facts
that regular resolution cannot simulate RES [16], and T-RES in turn cannot simulate
regular resolution [17].

Corollary 1 (of [16,17]). T-RES cannot polynomially simulate RES.

3.2 DPLL

Most modern complete SAT solvers are based on the DPLL procedure [1,2]. Given a
CNF formula F as input, DPLL is a depth-first search procedure building a partial as-
signment τ on vars(F) through branching and unit propagation (UP). By branching
the current partial assignment τ is extended with τ(x) = v, v ∈ {f, t}, for some unas-
signed variable x. Unit propagation refers to the process of immediately applying the
unit clause rule with which the current partial assignment τ is extended with τ(l) = t
if there is a clause {l1, . . . , lk, l} ∈ F such that τ(li) = f for each 1 ≤ i ≤ k. A branch
is extended until (i) there is a clause C ∈ F for which τ(l) = f for each literal l ∈ C,
or (ii) τ satisfies F . In case (i), τ is conflicting with the particular clause, and DPLL
backtracks to the last branching decision whose other branch has not been tried yet, and
flips the particular decision in τ . A DPLL search terminates when either a satisfying
assignment is found, or when all possible branches have been covered, in which case F
is determined as unsatisfiable.

As a proof system, the strength of DPLL does not depend on whether UP is applied.
Any application of the unit clause rule on a clause C can be simulated by branching
on the remaining unassigned literal l ∈ C; assigning l a conflicting value by branching
causes immediately backtracking. It is well-known that DPLL and T-RES can polyno-
mially simulate each other; one can show that for any unsatisfiable CNF formula, with
UP seen as branching, the branches tried by DPLL correspond one-to-one with the paths
of a T-RES proof with the conflicting clauses as leafs.

Fact 1. DPLL and T-RES are polynomially equivalent.

Considering the branch at an arbitrary stage of DPLL, the variables assigned by branch-
ing are called decision variables and those assigned values by UP are implied variables,
with analogous definitions for decision literals and implied literals. The decision level
of a decision variable x is one more than the number of decision variables in the branch
before branching on x. The decision level of an implied variable x is the number of
decision variables in the branch when x is assigned a value. The decision level of DPLL
at any stage is the number of decision variables in the current branch.

Implication graphs capture naturally the ways of deriving all implied literals from
decision literals by UP.

Limitations of Restricted Branching in Clause Learning 353

Definition 1. The implication graph G at a given stage of DPLL is a directed graph
with edges labeled with sets of clauses. An implication graph is constructed as follows.

1. Create a node for each decision literal, labeled with that literal.
2. While there is a clause C = {l1, . . . , lk, l} such that l̄1, . . . , l̄k label nodes in G,

(a) Add a node labeled l if not already in G.
(b) Add edges 〈li, l〉 for 1 ≤ i ≤ k, if not already present.

3. Add a special node Λ to G. For any variable x with both labels x and x̄ in G, add
edges 〈x, Λ〉 and 〈x̄, Λ〉. Any such x, x̄ are conflict literals, and the variable x is a
conflict variable.

An implication graph contains a conflict if it contains a conflict variable; DPLL has a
conflict at a given stage if the implication graph at the stage contains a conflict.

3.3 Clause Learning

Most state-of-the-art complete SAT solvers today apply DPLL enhanced with conflict
analysis [4], resulting in Clause Learning (CL). Like the basic DPLL, CL performs
branching and UP until a conflict is reached. If this happens without any branching, CL
determines the formula F unsatisfiable. In other cases, the conflict is analyzed, and a
learned clause (or conflict clause), which describes the “cause” of the conflict, is added
to F . After this CL continues by backtracking as DPLL does, or can backjump to an
earlier decision level that “caused” the conflict (as discussed in more detail below).

At a given stage of a CL search procedure, a clause is called known if it either appears
in the original CNF formula or has been learned earlier during the search. Conflict
analysis is based on a conflict graph, which captures one way of reaching the conflict
at hand form the decision variables by using UP on known clauses.

Definition 2. Given an implication graph G containg a conflict, a conflict graph H =
(V, E) based on G is any acyclic subgraph of G having the following properties.

1. H contains Λ and exactly one conflict literal pair x, x̄.
2. All nodes in H have a path to Λ.
3. Every node l ∈ V \ {Λ} either corresponds to a decision literal or has precisely

the nodes l̄1, l̄2, . . . , l̄k as predecessors where {l1, l2, . . . , lk, l} is a known clause.

A conflict graph describes a single conflict and contains only decision and implied
literals that can be used in reaching the conflict when applying the unit clause rule in
some order. Hence the way of implementing unit propagation in a solver has an effect
on the choice of the conflict graph.

Conflict clauses are associated with cuts in a conflict graph. Fix a conflict graph
contained in an implication graph with a conflict. A conflict cut is any cut in the conflict
graph with all the decision variables on one side (the reason side) and at least one
conflict literal on the other side (the conflict side). Those nodes on the reason side with
at least one edge going to the conflict side in a conflict cut form a cause of the conflict;
with the associated literals set to t, UP can arrive at the conflict at hand. The negations
of these literals from the conflict clause associated with the conflict cut. The strategy
for fixing a conflict cut is called the learning scheme. A learning scheme which always
learns a currently unknown clause is non-redundant.

354 M. Järvisalo and T. Junttila

A clause learning proof (or CL proof) under a learning scheme is a CL search tree us-
ing that learning scheme. The length of the proof is the number of branching decisions.
The proof system CL consists of CL proofs under any learning scheme.

While the practical efficiency gains of implementing clause learning into DPLL
based algorithms are well-established, the first formal study on the power of clause
learning is [12]: CL can provide exponentially shorter proofs than T-RES, and thus

Corollary 2 (of Fact 1 and [12]). DPLL cannot polynomially simulate CL.

Typically implemented clause learning schemes are based on unique implication points
(UIPs) [4]. A UIP of a conflict graph is a node u on the maximal decision level d such
that all paths from the decision variable x at level d to Λ go through u. Such a u always
exists, since x satisfies this condition; intuitively u is a single reason for the conflict
at level d. Thus one can always choose a conflict cut that results in a conflict clause
with a UIP as the only variable from the maximal decision level. Such a conflict clause
causes the value of the UIP to be immediate flipped when backtracking. Furthermore,
UIP learning enables conflict-driven backtracking (or backjumping), in which DPLL
backtracks to the maximal decision level of the variables other than the UIP in the
conflict clause. A popular version of UIP learning is the 1-UIP scheme, where the UIP
closest to Λ is chosen. Different learning schemes are evaluated in [18].

Restarts are also often implemented in modern solvers. When a restart occurs, the
decisions and unit propagations made so far are undone, and the search continues from
decision level 0. The clauses learned so far remain known after the restart. Intuitively,
restarts help in escaping from getting stuck in hard-to-prove subformulas. In practice,
the choice of when and how often to restart is again part of the strategy of a solver.
When any number of restarts are allowed during search, CL has unlimited restarts.

Beame et al. [12] define CL-- as CL with branching allowed also on literals already
set at the current stage of DPLL. Although being non-typical in practice, this enables
creating immediate conflicts at will. Although it is not known whether CL can simulate
RES, it has been shown that this is true for CL-- using restarts.

Theorem 2 (Beame et al. [12]). RES and CL-- with unlimited restarts and any non-
redundant learning scheme are polynomially equivalent.

In the following, we will explicitly mention when restarts are allowed.

3.4 Input-Restricted Branching DPLL and CL

In structural application domains of SAT solvers, such as planning and bounded model
checking of hardware and software, Boolean circuits offer a natural presentation form
for the problem descriptions. Typically, such problems are based on a transition relation,
where the behaviour of the underlying system is dependent solely on the input of the
system. In the Boolean circuit encoding 〈C, τ〉, the input is represented by the set of
input gates (sometimes called independent variables) of the circuit, inputs(C). Since
the circuit can be evaluated when all gates in inputs(C) have values, branching in DPLL
with unit propagation can be restricted to the variables associated with inputs(C)—
denoted by DPLLinputs and CLinputs for clause learning—without losing completeness.
Intuitively, the idea is that since |inputs(C)| is often much less than the total amount |G|

Limitations of Restricted Branching in Clause Learning 355

of gates in C, search space size is reduced from 2|G| to 2|inputs(C)|, where |inputs(C)| <<
|G|. From the view of proof complexity, however, in [13] a formal study on the effect
of restricting branching in DPLL (without clause learning) to inputs reveals that this
weakens the proof system considerably.

Theorem 3 (Järvisalo et al. [13]). DPLLinputs cannot polynomially simulate DPLL.

The rest of the paper is dedicated to investigating the effect of restricting branching to
inputs in the case of clause learning, which is posed as an open question in [13].

4 Separating Input-Restricted and Unrestricted CL

We will now consider the relative power of input-restricted and unrestricted CL and
DPLL. This will result in a refined relative efficiency hierarchy of DPLL and CL (Fig. 3).

Since the cnf translation associates a variable for each gate in a circuit, when appro-
priate we will use the term “(e.g., branch on, set value to) gate g” when referring to the
variable xg associated with g in the CNF translation of the circuit. Correspondingly, a
DPLL or CL proof of a constrained circuit Cτ means a proof of the translation cnf(Cτ).

Lemma 1. There is an infinite family {Cτ
n} of constrained Boolean circuits for which

DPLL has exponentially longer minimal proofs than CLinputs.

Proof. Take any infinite family {Fn} of CNF formulas that is a witness of Corollary 2.
Define the family of Boolean circuits {circuit(F) | F ∈ {Fn}}. The formula result-
ing from UP on cnf(circuit(F)) without branching corresponds to the result of unit
propagation on F without branching. Thus DPLL will only branch on the variables in
cnf(circuit(F)) that are associated with the input gates of circuit(F). Thus CLinputs can
simulate CL on cnf(circuit(F)), and the claim follows by Corollary 2. �

Corollary 3. Neither DPLL nor DPLLinputs can polynomially simulate CLinputs.

To highlight the strength of clause learning even when branching is restricted to input
gates, we now give an example of a family {XOR-UNSATn} of Boolean circuits on
which CLinputs can simulate CL, although DPLLinputs cannot simulate DPLL on the
family. The circuit XOR-UNSATn := UNSAT∪〈XORa

n ∪ XORb
n, ∅〉 consists of two

parts: (i) the constant size circuit UNSAT := circuit({{a, b}, {a, b̄}, {ā, b}, {ā, b̄}})
and (ii) two copies (for a and b, ρ ∈ {a, b}) of the circuit structure

XORρ
n := {ρ := XOR(xρ

1,1, x
ρ
1,2)} ∪

n−1⋃

i=1

i+1⋃

j=1

{xρ
i,j := XOR(xρ

i+1,j , x
ρ
i+1,i+2)}.

XOR-UNSAT2 is shown in Fig. 2. Now, since UP will result in a conflict in the UNSAT
subcircuit for any value of the gate a, XOR-UNSATn yields a trivial (constant length)
proof in DPLL. It is also easy to see that minimal length proofs of XOR-UNSATn are
exponential w.r.t. n in DPLLinputs. Due to the structure of XORn, in order to propagate a
value for the gate a or b, DPLLinputs has to branch on all of the inputs in the correspond-
ing XORρ

n subcircuit. With the backtracking process of DPLL this implies that minimal
length DPLLinputs proofs of XOR-UNSATn are exponential w.r.t. n.

356 M. Järvisalo and T. Junttila

XORXOR xb
1,2xb

1,1

xb
2,1

xb
2,2 xb

2,3

a

xa
2,1xa

2,2

xa
1,1

XOR XORxa
1,2

xa
2,3

t
AND

b XORXOR

OR OR OR OR

NOT NOT

Fig. 2. XOR-UNSATn for n = 2

However, CLinputs can produce linear
length proofs on the family. Let CLinputs

branch according to the sequence (xa
n,1 =

f, . . . , xa
n,n = f). After this, UP cannot

still propagate any values. Then branch
with xa

n,n+1 = f. Now UP sets values
for all xa

i,j , without a conflict. The values
for xa

1,1 and xa
1,2 propagate a value for a,

which then propagates a conflict at a gate
in UNSAT. Notice that xa

1,1 and xa
1,2 are

the only reasons for the value of a. In any
conflict graph associated with the branch-
ing sequence (xa

n,1 = f, . . . , xa
n,n+1 = f),

a is an UIP, and, furthermore, constitutes
a reason for the conflict on its own. Hence
CLinputs can learn as a unit clause the opposite value of a, and backjump to the deci-
sion level zero. This opposite value will then propagate a contradiction without branch-
ing, and CLinputs terminates. It is interesting to notice how CLinputs can branch on
(xa

n,1 = f, . . . , xa
n,n+1 = f) and still avoid backtracking on these decisions since there

is the bottleneck at gate a due to the construction of XOR-UNSATn. This shows the
power of clause learning with conflict-driven backtracking due to its ability to backjump
over an exponential size search space by detecting small locally inconsistent subformu-
las. With this intuition, it is evident that the results in [13] on the power DPLLinputs w.r.t.
DPLL cannot be directly adopted for proving the analogous result for CLinputs.

Although CLinputs can simulate CL on this specific family, this is generally not the
case. In fact, it turns out that CLinputs cannot even simulate DPLL, as detailed next. We
will apply the concept of redundant gates in constraint Boolean circuits.

Definition 3. A gate g in a constrained Boolean circuit 〈〈G, E〉, τ〉 is redundant if (i)
g is unconstrained, and (ii) g is not a descendant of any constrained gate g′ in 〈G, E〉.
We will assume that circuits do not contain redundant input gates; such inputs can
always be assigned an arbitrary truth value without affecting satisfiability.

Lemma 2. Redundant gates do not occur in any conflict graph at any stage of CL--inputs

whether or not restarts are allowed.

Proof. For a constrained circuit 〈〈G, E〉, τ 〉, a subcircuit 〈〈G′, E′〉, τ ′〉 induced by
G′ ⊆ G is E′ = {〈g, g′〉 ∈ E ∩ (G′ × G′)} and τ ′ = {〈g, ε〉 ∈ τ | g ∈ G′}.

Assume that the lemma holds at a stage where CL--inputs has made m conflicts. Con-
sider the (m + 1)th conflict. We prove by induction on the structure of Cτ that no
redundant gates occur in the conflict graph at the (m + 1)th conflict. The base case,
considering a subcircuit with n = 1 gates, is trivial. Assume that the claim holds for
all subcircuits with at most n gates. Let Cτ

n+1 be any subcircuit of Cτ induced by a set
Gn+1 of n + 1 gates. Remove an arbitrary output gate g := f(g1, . . . , gk) from Cτ

n+1

to obtain a subcircuit induced by Gn+1 \ {g} with n gates. Such a g cannot be an input
gate, since else it would not be connected to the rest of the circuit Cτ . Thus g is not
branchable.

Limitations of Restricted Branching in Clause Learning 357

The case that g is not redundant is trivial. Now assume that g is redundant. Since there
are no known learned clauses containing redundant gates before the (m + 1)th conflict,
the only way to set a value for g is by UP from values set on (a subset of) {g1, . . . , gk}.
Any value for each gi can be the result of UP on values for Gn+1 \ {g}, or of branching
in the case gi is an input gate. For example, consider the case g := OR(g1, g2). If g1

has the value t, g is propagated the value t. After this, the value of g cannot propagate
a value for g2, nor can any value of g2 propagate f for g. Other cases are similar. Thus
the value of g cannot be used in propagating a value for any gate in Cτ

n+1, and therefore
g cannot occur in any conflict graph for CL--inputs. �

Redundant gates can be removed from any constrained Boolean circuit without af-
fecting its satisfiability. However, they may have an effect on the length of minimal
proofs. Cook [19] gives a way of introducing a polynomial number of clauses which
can be interpreted as redundant gates to circuit(PHPn+1

n) so that, contrarily to circuit
(PHPn+1

n), the extended circuit yields polynomial length proofs in RES. As a circuit
structure, this extension is defined as EXTn :=

⋃n
l=1 EXTl, where

EXTl :=
l⋃

i=1

l−1⋃

j=1

{el
i,j := OR(el+1

i,j , ol
i,j), ol

i,j := AND(el+1
i,l , el+1

l+1,j)},

and each en
i,j is the input gate gpi,j associated with the variable pi,j in PHPn+1

n . By [19]
we immediately have a polynomial length RES proof 1 π = (C1, . . . , Cm = ∅) of
cnf(circuit(PHPn+1

n) ∪ 〈EXTn, ∅〉). Using π, we define the construct

E(π) :=
m−1⋃

i=2

{hi := AND(gCi , hi−1)} ∪
m−1⋃

i=1

{ĝ := NOT(g) | xg ∈ vars−(Ci)}

m−1⋃

i=1

{gCi := OR(α(li,1), . . . , α(li,ki)) | Ci = {li,1, . . . , li,ki}}

where h1 is the gate gC1 , α(xg) = g, and α(x̄g) = ĝ. The construct encodes π in
a way that allows polynomial length DPLL proofs of EPHPn = circuit(PHPn+1

n) ∪
〈EXTn, ∅〉∪〈E(π), ∅〉, while there is no polynomial length CL--inputs proof of EPHPn.
Intuitively this is because E(π) allows DPLL to “verify” the resolution proof of PHPn+1

n

extended with EXTn step-by-step, while CL--inputs cannot make use of the redundant
gates of EXTn and E(π).

Lemma 3. For the infinite family {EPHPn} of constrained Boolean circuits, CL--inputs

with unlimited restarts has superpolynomially longer minimal proofs than DPLL.

Proof. A polynomial length DPLL proof of EPHPn is witnessed by the branching
sequence (h1 = f, h2 = f, . . . , hm−1 = f), as detailed next. By induction on i, we will

1 Due to space constraint, we do not give π explicitly. Intuitively, EXTl allows reducing
PHPl+1

l to PHPl
l−1 with a polynomial number of resolution steps. For more details, see

the report version [20].

358 M. Järvisalo and T. Junttila

show that, if h1 = t, . . . , hi−1 = t, then branching with hi = f results in a conflict by
UP, and hence immediately setting hi = t.

The base case. The gate h1 = gC1 represents the first clause C1 in π, and C1 must
belong to cnf(circuit(PHPn+1

n) ∪ 〈EXTn, ∅〉). As C1 is a result of applying the cnf
translation to a gate g in circuit(PHPn+1

n) ∪ 〈EXTn, ∅〉 (which is part of EPHPn),
setting h1 = f will result in a conflict after UP because the functional definition or the
constraint of the gate g is violated. For example, if g := OR(g1, g2) and C1 = {xg, x̄g1},
then h1 = gC1 := OR(g, ĝ1), ĝ1 := NOT(g1), and the assignment h1 = f will propagate
g = f and g1 = t, violating the definition of g and thus resulting in a conflict.

Now assume as the induction hypothesis that we have hi′ = t for all 1 ≤ i′ < i.
Recall that hi := AND(gCi , hi−1). By branching with hi = f, UP sets gCi = f by
the induction hypothesis. If the ith clause Ci in π belongs to cnf(circuit(PHPn+1

n) ∪
〈EXTn, ∅〉), branching on gCi = f will result in a conflict after UP as in the base case.
Otherwise Ci has been derived from two clauses, Cj = C′

j∪{xg} and Ck = C′
k∪{x̄g},

in π for 1 ≤ j, k < i, by resolving on a variable xg . By the induction hypothesis we
have hj = t and hk = t, and thus gCj = t and gCk

= t by UP. On the other hand, as
gCi = f, all the gates corresponding to the literals in C′

j ∪ C′
k are assigned to f by UP,

implying that UP will assign both g = t and g = f as gCj = gCk
= t. Thus a conflict is

reached, closing the branch hi = f, and hi = t is set by backtracking.
Finally, since Cm = ∅ ∈ π, there are unit clauses Cj = {xg} and Ck = {x̄g} in π,

where 1 ≤ j, k < m. W.l.o.g., assume j < k. By induction, at latest after branching
with hk = f and setting hk = t by backtracking, we will have gCj = gCk

= t in the
branch, and thus both g = t and g = f, a conflict. The result is a linear DPLL proof.

Now consider proofs of EPHPn in CL--inputs. The non-input gates in 〈EXTn, ∅〉 ∪
〈E(π), ∅〉 are all redundant in EPHPn, and they cannot be part of a reason for any con-
flict in CL--inputs (Lemma 2). Thus any CL--inputs proof of EPHPn contains a CL--inputs

proof of PHPn+1
n , which cannot be of polynomial length (Theorems 1 and 2). �

Directly by Lemmas 1 and 3 we have

Theorem 4. CL--inputs (with or without restarts) and DPLL are incomparable.

Corollary 4. CL--inputs with unlimited restarts cannot polynomially simulate CL.

Remark 1. We use redundant gates in the EPHPn construction for simplicity of the
proof of Lemma 3; by a simple modification of EPHPn one can construct as a witness
for Lemma 3 a constrained circuit with no redundant gates and a single output as the
only constrained gate.

Remark 2. Since redundant gates can be removed from constrained Boolean circuits
without affecting the sets of satisfying assignments, such gates are typically removed in
practice before the CNF translation by so called cone-of-influence reduction. However,
as witnessed by EPHPn in Lemma 3, applying cone-of-influence can have a drastic
negative effect on the minimal length proofs. It is especially interesting to notice that
DPLL solvers with full one-step lookahead can detect the small proofs of EPHPn wit-
nessed by the branching sequence (h1 = f, h2 = f, . . . , hn−1 = f).

Figure 3 gives a refined relative efficiency hierarchy for the proof systems considered in
this paper. An arrow without a slash from system S to S′ means that S can polynomially

Limitations of Restricted Branching in Clause Learning 359

CL--

RES

DPLLinputs

CLinputs CL--inputs

T-RES

DPLL CL

[13] [12]
[12]

Fact 1

corollary of [16, 17]

*

*

*

*

**

*

Fig. 3. A refined relative efficiency hierarchy for the proof systems considered in this paper

simulate S′, and with a slash that S cannot simulate S′. Arrows labeled with ∗ are due
to trivial subsumption. The new results, detailed in the following, are represented by
dashed arrows. Disregarding transitivity of the results, missing arrows represent ques-
tions which are open to the best of our knowledge.

5 Experiments

We evaluate the effect of input-restriction on the functionality of modern clause learning
solver techniques. The benchmark set used in the experiments consists of instances from
various application domains, for which Boolean circuits offer a natural representation
form: super-scalar processor verification [21], integer factorisation based on hardware
multipliers [22], equivalence checking of hardware multipliers [23], bounded model
checking (BMC) for deadlocks in asynchronous parallel systems as labelled transition
systems (LTS) [24], and linear temporal logic (LTL) BMC of finite state systems with a
linear encoding [25]. We use standard PCs with 2-GHz AMD 3200+ processors and 2
GBs of memory running Linux, with a timeout of 1 hour and a memory limit of 1 GB.

For solving the Boolean circuit instances, we apply BCMinisat2 (version 0.26),
which we have modified in order to restrict branching to input variables. BCMinisat is
a Boolean circuit front-end for the successful clause learning SAT solver Minisat [26]
(version 1.14). BCMinisat accepts as input Boolean circuits with various Boolean func-
tions allowed as gate types, performs circuit-level preprocessing, including Boolean
propagation, substructure sharing, and cone-of-influence reductions to the circuit, nor-
malising the circuit into a form which can be translated into CNF applying a standard
translation in the style of cnf defined in Table 1. BCMinisat feeds the resulting CNF
translations and the input-restriction to Minisat, which then solves the CNF. For each
circuit, we obtain 15 CNF instances by permuting the CNF variable numbering.

Minisat implements 1-UIP clause learning. After each conflict the heuristic value
of each variable on the conflict side and in the conflict clause is incremented by one,
and the values of all variables are decremented by 5%. To avoid hindering efficiency
by learning massive amounts of clauses, the solver also uses a scheme for forgetting
learned clauses that have not occurred on the conflict side in recent conflicts.

2 Part of the BCTools package, http://www.tcs.hut.fi/∼tjunttil/bcsat/

http://www.tcs.hut.fi/~tjunttil/bcsat/

360 M. Järvisalo and T. Junttila

Table 2. Minimum (min), median (med), and maximum (max) of number of decisions for
BCMinisat and BCMinisatinputs, with number of timeouts in parenthesis. The sat column gives
the satisfiability of the instance, and #inputs gives the number of unassigned input variables in
the CNF translation (percentage in parentheses). For ud and bb, see the text body.

Number of decisions
BCMinisat BCMinisatinputs

Instance sat min med max min med max #inputs ud bb

Super-scalar processor verification
fvp.2.0.3pipe.1 no 61531 384386 1225134 - (15) - (15) - (15) 186 (8.2) - -
fvp.2.0.3pipe 2 ooo.1 no 75962 184798 426489 - (15) - (15) - (15) 305 (11.7) - -
fvp.2.0.4pipe 1 ooo.1 no 188992 209048 271982 - (15) - (15) - (15) 544 (10.4) - -
fvp.2.0.4pipe 2 ooo.1 no 1033607 2094617 5241781 - (15) - (15) - (15) 547 (9.8) - -
fvp.2.0.5pipe 1 ooo.1 no 336281 746231 1838599 - (15) - (15) - (15) 845 (8.9) - -

Equivalence checking hardware multipliers
eq-test.atree.braun.8 no 180449 285665 339805 65785 73834 82372 16 (2.3) 88.5 0.02
eq-test.atree.braun.9 no 898917 1055511 1317785 323688 385398 389890 18 (2.0) 106.6 0.02
eq-test.atree.braun.10 no 3755375 4540598 5089443 1428957 1590390 1787295 20 (1.8) 127.9 0.01

Integer factorisation
atree.sat.34.0 yes 156733 228792 761620 24820 208880 277896 60 (0.6) 21.9 0.04
atree.sat.36.50 yes 251218 721474 937152 316590 571533 788762 64 (0.6) 18.4 0.04
atree.sat.38.100 yes 284980 1095192 - (1) 190330 498092 1082729 68 (0.6) - -
atree.unsat.32.0 no 141419 163508 180973 123502 138797 162546 57 (0.7) 15.3 0.04
atree.unsat.34.50 no 248371 287351 404418 223130 244382 301464 60 (0.6) 18.0 0.04
atree.unsat.36.100 no 527237 623889 915810 431576 480469 578331 64 (0.6) 19.4 0.03
braun.sat.32.0 yes 27480 82122 140150 5675 81269 135093 61 (2.2) 25.6 0.05
braun.sat.34.50 yes 30717 152224 353464 43924 110614 223306 65 (2.1) 25.3 0.05
braun.sat.36.100 yes 129771 447716 589449 86134 374884 752645 69 (2.0) 19.4 0.05
braun.unsat.32.0 no 107617 122550 156004 96894 119437 150121 60 (2.2) 10.4 0.06
braun.unsat.34.50 no 215624 263845 341855 213199 258446 316819 64 (2.0) 9.1 0.06
braun.unsat.36.100 no 514725 623671 807610 533575 640111 674470 68 (1.9) 8.9 0.06

BMC for deadlocks in LTSs
dp 12.i.k10 no 513935 639756 987595 2497570 - (10) - (10) 480 (16.0) - -
key 4.p.k28 no 121552 147063 169386 138361 184875 220107 967 (10.9) 3.7 0.53
key 4.p.k37 yes 56784 321552 1549271 7574 663152 - (1) 1507 (9.8) - -
key 5.p.k29 no 193139 223867 310207 230844 343255 405686 1212 (10.7) 3.9 0.54
key 5.p.k37 yes 104496 421324 1540174 19027 1041807 - (3) 1796 (9.8) - -
mmgt 4.i.k15 no 210288 287599 457009 582998 1105986 2170048 456 (10.9) 4.2 0.41
q 1.i.k18 no 168156 353421 507246 375493 929019 1349785 566 (13.1) 3.7 0.49

LTL BMC by linear encoding
1394-4-3.p1neg.k10 no 141822 155295 164900 138468 148545 156839 1845 (5.6) 6.6 0.34
1394-4-3.p1neg.k11 yes 72988 128708 203647 34619 55575 189434 2023 (5.5) 9.0 0.32
1394-5-2.p0neg.k13 no 125840 143928 158320 146144 156527 186468 1940 (5.0) 6.7 0.32
brp.ptimonegnv.k23 no 106338 130577 259025 193839 302930 356313 461 (6.7) 4.1 0.28
brp.ptimonegnv.k24 yes 43013 96775 162114 13699 74907 260481 481 (6.7) 5.5 0.27
csmacd.p0.k16 no 229192 316082 376280 269520 341751 381248 1794 (2.9) 4.9 0.28
dme3.ptimo.k61 no 314659 549686 1658757 - (15) - (15) - (15) 6375 (26.3) - -
dme3.ptimo.k62 yes 427100 688505 1545603 - (15) - (15) - (15) 6506 (26.3) - -
dme3.ptimonegnv.k58 no 324770 568864 962967 - (15) - (15) - (15) 5982 (26.3) - -
dme3.ptimonegnv.k59 yes 303921 480073 1136938 - (15) - (15) - (15) 6113 (26.3) - -
dme5.ptimo.k65 no 497190 735741 1839619 - (15) - (15) - (15) 10750 (26.8) - -

5.1 Results

Table 2 gives the minimum, median, and maximum number of decisions for BCMin-
isat and input-restricted BCMinisat (BCMinisatinputs) for each benchmark instance. For
the instances based on hardware multiplication designs, for which the number of unas-
signed input variables is 2% or less out of all unassigned variables, BCMinisatinputs

shows an advantage over BCMinisat w.r.t. the number of decisions. However for the
hardware verification and BMC instances, the overall performance of BCMinisatinputs

Limitations of Restricted Branching in Clause Learning 361

is much worse, with timeouts on all verification and half of the LTL BMC instances.
The possible gains of input-restriction seems to correlate with a very low relative num-
ber of input variables. On the equivalence checking instances, we notice that the num-
ber of decision for BCMinisatinputs is more than the brute-force upper bound, e.g., for
eq-test.atree.braun.10 around 1.4 − 1.8 × 106, compared to the brute-force
bound 220 ≈ 1.0 × 106. Considering that we are using a state-of-the-art clause learn-
ing solver, this surprising result is most likely due to conflict clause forgetting; when
forgetting a conflict clause C, the solver may have to re-examine the search space char-
acterised as unsatisfiable by C.

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000
#i

ns
ta

nc
es

 s
ol

ve
d

Time (s)

Minisat
Minisat on inputs

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000
#i

ns
ta

nc
es

 s
ol

ve
d

Time (s)

Minisat
Minisat on inputs

Fig. 4. Solved instances

Figure 4 gives a cumulative plot of the number
of solved instances, showing a drastic decrease in
performance for the input-restriction. The effect of
input-restriction varies depending on whether un-
satisfiable or satisfiable instances are considered
(leftmost and middle plots in Fig. 5). For the unsatis-
fiable instances the plot correlates well with Corol-
lary 4, with timed out runs on the horizontal line. For
satisfiable instances, there seems to be no clear win-
ner, although when selecting from the relative small
set of input variables, the probability of choosing
a satisfying assignment is intuitively greater. A no-
ticeable point is that, while BCMinisatinputs makes
less decisions, e.g, on the equivalence checking instances, unrestricted BCMinisat is at
least as efficient as BCMinisatinputs w.r.t. running times. Interestingly, this is due to the
fact that unrestricted BCMinisat often manages more decisions per second (on the right
in Fig. 5).

We also observe that the VSIDS heuristic might not work as intended with the input-
restriction. The number of unbranchable variables which have better heuristic values
than the best branchable variable can be high per decision (median of averages: ud in
Table 2), e.g., for eq-test.atree.braun.10 on the average there are, per deci-
sion, over 100 unbranchable variables with better heuristic scores than the best branch-
able one. From another point of view, the fraction of increments on branchable variables
from the number of all increments to heuristic values during search can be in some cases

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Unsatisfiable

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Unsatisfiable

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Satisfiable

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Satisfiable

 1000

 10000

 1000 10000

M
in

is
at

 o
n

in
pu

ts

Minisat

Number of decisions / second

 1000

 10000

 1000 10000

M
in

is
at

 o
n

in
pu

ts

Minisat

Number of decisions / second

Fig. 5. Scatter plots: running times on unsatisfiable (left) and satisfiable (middle) instances; num-
ber of decisions / second (right)

362 M. Järvisalo and T. Junttila

even as low as 1% (median: bb in Table 2)—running the risk of VSIDS degenerating
into a random heuristic. These observations imply that in order to incorporate branching
restrictions in clause learning solvers, the restriction itself should be taken into account
in developing suitable heuristics and learning schemes.

6 Conclusions

We investigate the effect of restricting branching in clause learning SAT solving on
the efficiency of the underlying inference system from the view of proof complexity.
Although the unrestricted version of the considered variant of clause learning can ef-
ficiently simulate general resolution, being thus very powerful compared to DPLL, we
show the surprising result that input-restricted clause learning cannot even simulate the
basic DPLL without clause learning. This implies that all implementations of clause
learning DPLL, even with optimal heuristics, have the potential of suffering a notable
efficiency decrease if branching is restricted to input variables. Notably, the results di-
rectly apply to SAT based approaches to solving Boolean combinations of more general
constraints, for example, Satisfiability Modulo Theories, where the propagation mecha-
nisms for the Boolean combinations can be seen as a form of unit propagation. The ex-
perimental evidence shows that by restricting branching the robustness of SAT solvers
can decrease, and that input-branching does not go well with clause learning based
heuristics of modern solvers.

Acknowledgements. The authors thank Ilkka Niemelä and Emilia Oikarinen for fruitful
discussions. Järvisalo gratefully acknowledges the financial support of Helsinki Gradu-
ate School in Computer Science and Engineering, Academy of Finland (grant #211025),
the Emil Aaltonen Foundation, and the Technological Foundation TES.

References

1. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7(3), 201–
215 (1960)

2. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
CACM 5(7), 394–397 (1962)

3. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through randomiza-
tion. In: AAAI, pp. 431–437. AAAI Press, Stanford, California, USA (1998)

4. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfia-
bility. IEEE Trans. Comp. 48(5), 506–521 (1999)

5. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using
SAT procedures instead of BDDs. In: DAC, pp. 317–320. ACM Press, New York (1999)

6. Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI, pp. 359–363. Wiley, Chichester
(1992)

7. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.Y.: Benefits
of bounded model checking at an industrial setting. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 436–453. Springer, Heidelberg (2001)

8. Giunchiglia, E., Massarotto, A., Sebastiani, R.: Act, and the rest will follow: Exploiting de-
terminism in planning as satisfiability. In: AAAI, pp. 948–953. AAAI Press, Stanford, Cali-
fornia, USA (1998)

Limitations of Restricted Branching in Clause Learning 363

9. Strichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson, E.A., Sistla,
A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)

10. Giunchiglia, E., Maratea, M., Tacchella, A.: Dependent and independent variables in propo-
sitional satisfiability. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS
(LNAI), vol. 2424, pp. 296–307. Springer, Heidelberg (2002)

11. Cook, S.A., Reckhow, R.: On the relative efficiency of propositional proof systems. J. Symb.
Logic 44, 36–50 (1977)

12. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential
of clause learning. JAIR 22, 319–351 (2004)

13. Järvisalo, M., Junttila, T., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for
Boolean circuits. AMAI 44(4), 373–399 (2005)

14. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1995)
15. Haken, A.: The intractability of resolution. TCS 39(2–3), 297–308 (1985)
16. Goerdt, A.: Regular resolution versus unrestricted resolution. SIAM J. Comp. 22(4), 661–

683 (1993)
17. Urquhart, A.: The complexity of propositional proofs. B. Symb. Logic 1(4), 425–467 (1995)
18. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in

boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001)
19. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT

News 8(4), 28–32 (1976)
20. Järvisalo, M.: Impact of restricted branching on clause learning SAT solving. Research Re-

port A107, Helsinki University of Technology, Laboratory for Theoretical Computer Science
(2007), See
http://www.tcs.hut.fi/Publications/

21. Velev, M., Bryant, R.: Superscalar processor verification using efficient reductions of the
logic of equality with uninterpreted functions to propositional logic. In: Pierre, L., Kropf, T.
(eds.) CHARME 1999. LNCS, vol. 1703, pp. 37–53. Springer, Heidelberg (1999)

22. Pyhälä, T.: Factoring benchmarks for SAT-solvers (2004),
http://www.tcs.hut.fi/Software/genfacbm/

23. Järvisalo, M.: Equivalence checking multiplier designs, SAT Competition 2007 benchmark
description (2007),
http://www.tcs.hut.fi/∼mjj/benchmarks/

24. Jussila, T., Heljanko, K., Niemelä, I.: BMC via on-the-fly determinization. International Jour-
nal on Software Tools for Technology Transfer 7(2), 89–101 (2005)

25. Latvala, T., Biere, A., Heljanko, K., Junttila, T.A.: Simple bounded LTL model checking.
In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 186–200. Springer,
Heidelberg (2004)

26. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

http://www.tcs.hut.fi/Publications/
http://www.tcs.hut.fi/Software/genfacbm/
http://www.tcs.hut.fi/~mjj/benchmarks/

	Limitations of Restricted Branching in Clause Learning
	Introduction
	Boolean Circuits and Propositional Satisfiability
	From Circuits to CNF, and CNF Formulas as Circuits

	Resolution, DPLL, and CL with Variants
	Resolution
	DPLL
	Clause Learning
	Input-Restricted Branching DPLL and CL

	Separating Input-Restricted and Unrestricted CL
	Experiments
	Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

