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Abstract. Given a Boolean function as input, a fundamental problem is to find
a Boolean circuit with the least number of elementary gates (AND, OR, NOT)
that computes the function. The problem generalises naturally to the setting of
multiple Boolean functions: find the smallest Boolean circuit that computes all the
functions simultaneously. We study an NP-complete variant of this problem titled
Ensemble Computation and, especially, its relationship to the Boolean satisfiability
(SAT) problem from both the theoretical and practical perspectives, under the
two monotone circuit classes: OR-circuits and SUM-circuits. Our main result
relates the existence of nontrivial algorithms for CNF-SAT with the problem of
rewriting in subquadratic time a given OR-circuit to a SUM-circuit. Furthermore,
by developing a SAT encoding for the ensemble computation problem and by
employing state-of-the-art SAT solvers, we search for concrete instances that
would witness a substantial separation between the size of optimal OR-circuits
and optimal SUM-circuits. Our encoding allows for exhaustively checking all
small witness candidates. Searching over larger witness candidates presents an
interesting challenge for current SAT solver technology.

1 Introduction

A fundamental problem in computer science both from the theoretical and practical
perspectives is program optimisation, i.e., the task of finding the most efficient sequence
of elementary operations that carries out a specified computation. As a concrete example,
suppose we have eight variables x1, x2, . . . , x8 and our task is to compute each of
the eight sums depicted in Fig. 1. What is the minimum number of SUM gates that
implement this computation?

This is an instance of a problem that plays a key role in Valiant’s study [18] of
circuit complexity over a monotone versus a universal basis; Fig. 1 displays Valiant’s
solution. More generally, the problem is an instantiation of the NP-complete Ensemble
Computation problem [8]:

(SUM-)Ensemble Computation. Given as input a collection Q of nonempty
subsets of a finite set P and a nonnegative integer b, decide (yes/no) whether
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Fig. 1. An instance of ensemble computation (right) and a circuit that solves it (left).

there is a sequence

Z1 ← L1 ∪R1, Z2 ← L2 ∪R2, . . . , Zb ← Lb ∪Rb

of union operations, where
(a) for all 1 ≤ j ≤ b the sets Lj and Rj belong to {{x} : x ∈ P} ∪
{Z1, Z2, . . . , Zj−1},

(b) for all 1 ≤ j ≤ b the sets Lj and Rj are disjoint, and
(c) the collection {Z1, Z2, . . . , Zb} contains Q.

It is also known that SUM-Ensemble Computation remains NP-complete even if the
requirement (b) is removed, that is, the unions need not be disjoint [8]; we call this
variant OR-Ensemble Computation. Stated in different but equivalent terms, each set A
in Q in an instance of SUM-Ensemble Computation specifies a subset of the variables
in P whose sum must be computed. The question is to decide whether b arithmetic
gates suffice to evaluate all the sums in the ensemble. An instance of OR-Ensemble
Computation asks the same question but with sums replaced by ORs of Boolean variables,
and with SUM-gates replaced by OR-gates. We will refer to the corresponding circuits
as SUM-circuits and OR-circuits.

Despite the fundamental nature of these two variants of monotone computation, little
seems to be known about their relative power. In particular, here we focus the following
open questions:

(Q1) Given an OR-circuit for a collection Q, how efficiently can it be rewritten as a
SUM-circuit?

(Q2) Are there collections Q that require a significantly larger SUM-circuit than an
OR-circuit?

Answering these questions would advance our understanding of the computational
advantage of, in algebraic terms, idempotent computation (e.g. the maximum of variables)
over non-idempotent computation (e.g. the sum of variables); the ability to express the
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former succinctly in terms of the latter underlies recent advances in algebraic and
combinatorial algorithms [2]. Interestingly, it turns out that the questions have strong
connections to Boolean satisfiability (SAT) both from the theoretical and practical
perspectives, as will be shown in this paper.

As the main theoretical contribution, we establish a connection between (Q1) and the
existence of non-trivial algorithms for CNF-SAT. In particular, we show (Theorem 2) that
the existence of a subquadratic-time rewriting algorithm implies a nontrivial algorithm
for general CNF-SAT (without restrictions on clause length), i.e., an algorithm for CNF-
SAT that runs in time O(2cnm2n) for a constant 0 < c < 1 that is independent of the
number of variables n and the number of clauses m. It should be noted that the existence
of such an algorithm for CNF-SAT is a question that has attracted substantial theoretical
interest recently [3,14,16,21]. In particular, such an algorithm would contradict the
Strong Exponential Time Hypothesis [11], and would have significant implications also
for the exponential-time complexity of other hard problems beyond SAT. Intuitively, our
result suggests that the relationship of the two circuit classes may be complicated and
that the difference in the circuit sizes could be large for some collectionsQ. Furthermore,
we show (Proposition 2) that our main result is tight in the sense that (Q1) admits an
quadratic-time algorithm.

Complementing our main theoretical result, we address (Q2) from the practical
perspective. While it is easy to present concrete instances for which the difference in
size between optimal SUM-circuits and OR-circuits is small, finding instances that
witness even a factor-2 separation between the number of arithmetic gates is a non-
trivial challenge. In fact, our best construction (Theorem 1) achieves this factor only
asymptotically, leaving open the question whether there are small witnesses achieving
factor 2. As the main practical contribution, we employ state-of-the-art SAT solvers for
studying this witness finding task by developing a SAT encoding for finding the optimal
circuits for a given ensemble. We show experimentally that our encoding allows for
exhaustively checking all small witness candidates. On the other hand, searching over
larger witness candidates presents an interesting challenge for current SAT solvers.

As for related earlier work, SAT solvers have been suggested for designing small
circuits [4,6,7,12,13], albeit of different types than the ones studied in this work. However,
our focus here is especially in circuits implementing an ensemble of Boolean functions.
A further key motivation that sets this work apart from earlier work is that our interest is
not only to find efficient circuits, but also to discover witnesses (ensembles) that separate
SUM-circuits and OR-circuits.

2 OR-Circuits, SUM-Circuits, and Rewriting

We begin with some key definitions and basic results related to OR- and SUM-circuits
and the task of rewriting an OR-circuit into a SUM-circuit: We show that a SUM-circuit
may require asymptotically at least twice as many arithmetic gates as an OR-circuit, and
present two rewriting algorithms, one of which rewrites a given OR-circuit with g gates
in O(g2) time into a SUM-circuit. In particular, a SUM-circuit requires at most g times
as many arithmetic gates as an OR-circuit.
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2.1 Definitions

For basic graph-theoretic terminology we refer to West’s introduction [19]. A circuit is a
directed acyclic graph C whose every node has in-degree either 0 or 2. Each node of
C is a gate. The gates of C are partitioned into two sets: each gate with in-degree 0 is
an input gate, and each gate with in-degree 2 is an arithmetic gate. The size of C is the
number g = g(C) of gates in C. We write p = p(C) for the number of input gates in C.
For example, the directed acyclic graph depicted on the left in Fig. 1 is a circuit with 26
gates that partition into 8 input gates and 18 arithmetic gates.

The support of a gate z in C is the set of all input gates x such that there is a directed
path in C from x to z. The weight of a gate z is the size of its support. All gates have
weight at least one, with equality if and only if a gate is an input gate. For example,
in Fig. 1 the five columns of gates consist of gates that have weight 1, 2, 4, 6, and 7,
respectively.

In what follows we study two classes of circuits, where the second class is properly
contained within the first class. First, every circuit is an OR-circuit. Second, a circuit
C is a SUM-circuit if for every gate z and for every input gate x it holds that there is at
most one directed path in C from x to z.

We adopt the convention of using the operator symbols “∨” and “+” on the arithmetic
gates to indicate the type of a circuit. Fig. 2 below displays an example of both types of
circuits. We observe that the circuit on the left in Fig. 2 is not a SUM-circuit because the
bottom right gate can be reached from the input x1 along two distinct directed paths.
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Fig. 2. An OR-circuit (left) and a SUM-circuit (right).

Let (P,Q) be an instance of ensemble computation, that is, let P be a finite set and let
Q be a set of nonempty subsets of P . We adopt the convention that for a SUM-ensemble
all circuits considered are SUM-circuits, and for an OR-ensemble all circuits considered
are OR-circuits. We say that a circuit C solves the instance (P,Q) if (a) the set of input
gates of C is P ; and (b) for eachA ∈ Q, there exists a gate in C whose support isA. The
size of the solution is the size of C. A solution to (P,Q) is optimal if it has the minimum
size over all possible solutions. A circuit C ′ implements a circuit C if for every gate z of
C there is a gate z′ of C ′ such that z and z′ have the same support. A circuit rewriting
algorithm takes as input a circuit C and outputs (i) a circuit C ′ that implements C; and
(ii) a mapping z 7→ z′ that identifies each gate z in C with a corresponding gate z′ in C ′.
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2.2 Bounds for Separation

The size of an optimal solution to an instance (P,Q) is dependent on whether we are
considering an OR-ensemble or a SUM-ensemble. To see this, let us consider Fig. 2.
Observe that both circuits solve the same instance (P,Q), but only the circuit on the
right is a SUM-circuit. We claim that both circuits are optimal. Indeed, observe that the
instance has five distinct sets of size at least 2. At least one arithmetic gate is required
for each distinct set of size at least 2. Thus, the circuit on the left in Fig. 2 is optimal.
Analogously, on the right in Fig. 2 at least four arithmetic gates are required to compute
the first four sets in the instance, after which at least two further SUM-gates are required
to produce the fifth set because the first four sets intersect pairwise.

The following construction shows that asymptotically (that is, by taking a large
enough h and w) at least twice the number of arithmetic gates may be required in an
optimal SUM-circuit compared with an optimal OR-circuit.

Theorem 1. For all h,w = 1, 2, . . . there exists an ensemble whose optimal OR-circuit
has (h + 1)w − 1 arithmetic gates and whose optimal SUM-circuit has (2w − 1)h
arithmetic gates.

Proof. Take P = {x0} ∪ {xi,j : i = 1, 2, . . . , h; j = 1, 2, . . . , w} and let Q consist of
the following sets. For each j = 1, 2, . . . , w and for each i = 1, 2, . . . , h, insert the set
{x0, x1,j , x2,j , . . . , xi,j} to Q. Let us say that this set belongs to chain j. Finally, insert
the set P into Q. Let us call this set the top. In total Q thus has hw + 1 sets, and the
largest set (that is, the top) has size hw + 1.

Every OR-circuit that solves (P,Q) must use one OR-gate for each element in each
chain for a total of hw gates. Excluding the element x0 which occurs in all sets in Q,
the top has size hw, and the largest sets in each chain have size h. Thus, at least w − 1
OR-gates are required to construct the top. In particular, an optimum OR-circuit that
solves (P,Q) has hw + w − 1 = (h+ 1)w − 1 arithmetic gates.

Next consider an arbitrary SUM-circuit that solves (P,Q). Observe that each chain
requires h distinct SUM-gates, each of which has x0 in its support. There are hw such
SUM-gates in total, at most one of which may be shared in the subcircuit that computes
the top. Such a shared SUM-gate has weight at most h+ 1, whereas the top has weight
hw+1. Thus the subcircuit that computes the top can share weight at most h+1 and must
use non-shared SUM-gates to accumulate the remaining weight (if any), which requires
h(w − 1) gates. Thus, the SUM-circuit requires at least hw + h(w − 1) = (2w − 1)h
arithmetic gates.

Remark 1. Traditional nonconstructive tools for deriving lower bounds to circuit size
appear difficult to employ for this type of separation between two monotone circuit
classes. Indeed, it is easy to show using standard counting arguments that most ensembles
(P,Q) with |P | = |Q| = r require Ω(r2/ log r) gates for both OR- and SUM-circuits,
but showing that there exist ensembles where the required SUM-circuit is significantly
larger than a sufficient OR-circuit appears inaccessible to such tools.
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2.3 Upper Bounds for Rewriting

Let us now proceed to study the algorithmic task of rewriting a given OR-circuit into a
SUM-circuit. In particular, our interest is to quantify the number of extra gates required.
We start with the observation that no extra gates are required if all gates in the given
OR-circuit have weight at most 4.

Proposition 1. Every OR-circuit with g gates of weight at most 4 can be rewritten into
a SUM-circuit with g gates. Moreover, there is an algorithm with running time O(g) that
rewrites the circuit.

Proof. Let C be an OR-circuit with g gates given as input. First, topologically sort the
nodes of C in time O(g). Then, compute the support of each gate by assigning unique
singleton sets at the input gates and evaluating the gates in topological order. Finally,
proceed in topological order and rewrite the gates of the circuit using the following
rules. Input gates do not require rewriting. Furthermore, every OR-gate of weight 2 can
be trivially replaced with a SUM-gate. Each OR-gate z with weight 3 either has the
property that the in-neighbours z1, z2 of z have disjoint supports (in which case we may
trivially replace z with a SUM-gate) or z1, z2 have weight at least 2. In the latter case,
if at least one of z1, z2 has weight 3 (say, z1), we may delete z and replace it with z1;
otherwise rewrite z so that one of its in-neighbours is z1 and the other in-neighbour
is the appropriate input gate. Each OR-gate z with weight 4 either has in-neighbours
z1, z2 with disjoint supports or z1, z2 have weight at least 3 and at least 2, respectively.
Again we may either delete z or rewrite z so that one of its in-neighbours is z1 and the
other in-neighbour is the appropriate input gate. It is immediate that this rewriting can
be carried out in time O(g).

Next we observe that an OR-circuit can always be rewritten into a SUM-circuit with
at most g times the number of gates in the OR-circuit.

Proposition 2. There exists an algorithm that in time O(g2) rewrites a given OR-circuit
with g gates into a SUM-circuit.

Proof. The algorithm operates as follows. Let C be an OR-circuit with g gates and p
input gates given as input. Topologically sort the nodes of C in time O(g). Suppose the
input gates of C are x1, x2, . . . , xp. Associate with each of the g gates an array of p bits.
Then, iterate through the gates of C in topological order. For each input gate xj , initialise
the bit array associated with xj so that the jth bit is set to 1 and the other bits are set to
0. For each OR-gate z with in-neighbours z1, z2, assign the bit array associated with z
to be the union of the bit arrays associated with z1 and z2. This step takes time O(gp).
Finally, iterate through the gates of C. For each arithmetic gate z, output a SUM-circuit
that computes the sum of the at most p inputs specified by the bit array associated with
z. This requires at most p− 1 SUM-gates for each z. The algorithm takes O(gp) time
and outputs a circuit with O(gp) gates. The claim follows because p ≤ g.
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3 Subquadratic Rewriting Implies Faster CNF-SAT

Complementing the quadratic-time algorithm in Proposition 2, this section studies the
possibility of developing fast (subquadratic-time) algorithms for rewriting OR-circuits
as SUM-circuits. In particular, we show that the existence of such a subquadratic-time
rewriting algorithm would, surprisingly, yield a non-trivial algorithm for general CNF-
SAT (cf. Refs. [16,21] and [20, Theorem 5]).

Theorem 2. Let 0 < ε ≤ 1. If there is an algorithm that in time O(g2−ε) rewrites a
given OR-circuit with g gates into a SUM-circuit, then there is an algorithm that solves
CNF-SAT in time O

(
2(1−ε/2)nm2−εn

)
, where n is the number of variables and m is the

number of clauses.

Proof. Let 0 < ε ≤ 1 be fixed and let A be a circuit rewriting algorithm with the
stated properties. We present an algorithm for CNF-SAT. Let an instance of CNF-SAT
given as input consist of the variables x1, x2, . . . , xn and the clauses C1, C2, . . . , Cm.
Without loss of generality (by inserting one variable as necessary), we may assume
that n is even. Call the variables x1, x2, . . . , xn/2 low variables and the variables
xn/2+1, xn/2+2, . . . , xn high variables. The algorithm operates in three steps.

In the first step, the algorithm constructs the following OR-circuit. First let us observe
that there are 2n/2 distinct ways to assign truth values (0 or 1) to the low variables. Each
of these assignments indexes an input gate to the circuit. Next, for each clause Ci, we
construct a subcircuit that takes the OR of all input gates that do not satisfy the clause
Ci, that is, the input gate indexed by an assignment a to the low variables is in the OR
if and only if no literal in Ci is satisfied by a. For each Ci, this subcircuit requires at
most 2n/2 − 1 OR-gates. Let us refer to the output gate of this subcircuit as gate Ci.
Finally, for each assignment b to the high variables, construct a subcircuit that takes
the OR of all gates Ci such that the clause Ci is not satisfied by b. Let us refer to the
output gate of this subcircuit as gate b. The constructed circuit has p = 2n/2 inputs and
g ≤ m(2n/2 − 1) + 2n/2(m − 1) = O(2n/2m) gates. The construction time for the
circuit is O(2n/2mn).

In the second step, the algorithm rewrites the constructed OR-circuit using algorithm
A as a subroutine into a SUM-circuit in timeO(g2−ε), that is, in timeO(2(1−ε/2)nm2−ε).
In particular, the number of gates in the SUM-circuit is G = O(2(1−ε/2)nm2−ε). For a
gate z in the OR-circuit, let us write z′ for the corresponding gate in the SUM-circuit.

In the third step, the algorithm assigns the value 1 to each input a′ in the SUM-circuit
(any other inputs are assigned to 0), and evaluates the SUM-circuit over the integers using
O(2(1−ε/2)nm2−ε) additions of O(n)-bit integers. If there exists a gate b′ that evaluates
to a value less than 2n/2, the algorithm outputs “satisfiable”; otherwise the algorithm
outputs “unsatisfiable”. The running time of the algorithm is O(2(1−ε/2)nm2−εn).

To see that the algorithm is correct, observe that in the OR-circuit, the input a occurs
in the support of b if and only if there is a clause Ci such that neither a nor b satisfies
Ci. Equivalently, the assignment (a, b) into the n variables is not satisfying (because it
does not satisfy the clause Ci). The rewrite into a SUM-circuit enables us to infer the
presence of an a′ that does not occur in the support of b′ by counting the number of a′

that do occur in the support of b′. SUM-gates ensure that each input in the support of b′

is counted exactly once.

7



Theorem 2 thus demonstrates that unless the strong exponential time hypothesis [11]
fails, there is no subquadratic-time algorithm for rewriting arbitrary OR-circuits into
SUM-circuits.

4 Finding Small Circuits Using SAT Solvers

We next develop a SAT encoding for deciding whether a given ensemble has a circuit of
a given size.

4.1 SAT Encoding

We start by giving a representation of an OR- or SUM-circuit as a binary matrix. This
representation then gives us a straightforward way to encode the circuit existence problem
as a propositional formula.

Let (P,Q) be an OR- or SUM-ensemble and let C be a circuit of size g that solves
(P,Q). For convenience, let us assume that |P | = p, |Q| = q and P = {1, 2, . . . , p}.
Furthermore, we note that outputs corresponding to sets of size 1 are directly provided
by the input gates, and we may thus assume that Q does not contain sets of size 1. The
circuit C can be represented as a g × p binary matrix M as follows. Fix a topological
ordering z1, z2, . . . , zg of the gates of C such that zi = i for all i with 1 ≤ i ≤ p (recall
that we identify the input gates with elements of P ). Each row i of the matrix M now
corresponds to the support of the gate zi so that for all 1 ≤ j ≤ p we have Mi,j = 1 if j
is in the support of zi and Mi,j = 0 otherwise. In particular, for all 1 ≤ i ≤ p we have
Mi,i = 1 and Mi,j = 0 for all j 6= i. Figure 3 displays an example.
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1 1 1 0 0
1 1 1 1 1


Fig. 3. An OR-circuit (left) and a matrix describing the circuit (right).

Now, C (viewed as an OR-circuit) solves (P,Q) if and only if the matrix M satisfies

(a) for all i with 1 ≤ i ≤ p it holds that Mi,i = 1 and Mi,j = 0 for all j 6= i,
(b) for all i with p+ 1 ≤ i ≤ g there exist k and ` such that 1 ≤ k < ` < i and for all

j with 1 ≤ j ≤ p it holds that Mi,j = 1 if and only if Mk,j = 1 or M`,j = 1, and
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(c) for every set A in Q there exists an i with 1 ≤ i ≤ g such that for all j with
1 ≤ j ≤ p it holds that Mi,j = 1 if j ∈ A and Mi,j = 0 otherwise.

Similarly, C (viewed as a SUM-circuit) solves (P,Q) if and only if the matrix M
satisfies conditions (a), (c), and

(b’) for all i with p+ 1 ≤ i ≤ g there exist k and ` such that 1 ≤ k < ` < i and for all
j with 1 ≤ j ≤ p it holds that Mi,j = 1 if and only if Mk,j = 1 or M`,j = 1 and
that Mk,j = 0 or M`,j = 0.

Based on the above observations, we encode an ensemble computation instance
as SAT instance as follows. Given an OR-ensemble (P,Q) and integer g as input, we
construct a propositional logic formula ϕ over variables Mi,j , where 1 ≤ i ≤ g and
1 ≤ j ≤ p, so that any assignment into variables Mi,j satisfying ϕ gives us a matrix that
satisfies conditions (a)–(c). We encode condition (a) as

α =
p∧
i=1

(
Mi,i ∧

∧
j 6=i
¬Mi,j

)
.

Similarly, we encode the conditions (b) and (c), respectively, as

β =
g∧

i=p+1

i−2∨
k=1

i−1∨
`=k+1

p∧
j=1

(
(Mk,j ∨M`,j)↔Mi,j

)
, and

γ =
∧
A∈Q

g∨
i=p+1

[(∧
j∈A

Mi,j

)
∧
(∧
j /∈A

¬Mi,j

)]
.

The desired formula ϕ is then ϕ = α ∧ β ∧ γ. For a SUM-ensemble, we replace β with

β′ =
g∧

i=p+1

i−2∨
k=1

i−1∨
`=k+1

p∧
j=1

(
((Mk,j ∨M`,j)↔Mi,j) ∧ (¬Mk,j ∨ ¬M`,j)

)
.

4.2 Practical Considerations

There are several optimisations that can be used to tune this encoding to speed up SAT
solving. The resulting SAT instances have a high number of symmetries, as any circuit
can be represented as a matrix using any topological ordering of the gates. This makes
especially the unsatisfiable instances difficult to tackle with SAT solver. To alleviate this
problem, we constrain the rows i for p + 1 ≤ i ≤ g appear in lexicographic order, so
that any circuit that solves (P,Q) has a unique valid matrix representation. Indeed, we
note that the lexicographic ordering of the gate supports (viewed as binary strings) is a
topological ordering. We insert this constraint to the SAT encoding as the formula

g∧
i=p+2

i−1∧
k=p+1

[
(Mi,1∨¬Mk,1)∧

p∧
j1=2

((j1−1∧
j2=1

(Mi,j2 ↔Mk,j2)
)
→ (Mi,j1∨¬Mk,j1)

)]
.
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We obtain further speedup by constraining the first t arithmetic gates to have small
supports. Indeed, the ith arithmetic gate in any topological order has weight at most
i+ 1. Thus, we fix t = 6 in the experiments and insert the formula

t∧
i=1

∧
S⊆P
|S|=i+2

¬
(∧
j∈S

Mp+i,j

)
.

Further tuning is possible if Q is an antichain, that is, if there are no distinct
A,B ∈ Q with A ⊆ B. In this case an optimal circuit C has the property that every
gate whose support is in Q has out-degree 0. Thus, provided that we do not use the
lexicographical ordering of gates as above, we may assume that the gates corresponding
to sets in Q are the last gates in the circuit, and moreover, their respective order is any
fixed order. Thus, if Q = {A1, A2, . . . , Aq} is an antichain, we can replace γ with

q∧
i=1

[( ∧
j∈Aj

Mg−q+i,j

)
∧
( ∧
j /∈Aj

¬Mg−q+i,j

)]
to obtain a smaller formula. Finally, we note that we can be combine this with the
lexicographic ordering by requiring that only rows i for p + 1 ≤ i ≤ g − q are in
lexicographic order.

5 Experiments

We report on two series of experiments with the developed encoding and state-of-the-art
SAT solvers: (a) an exhaustive study of small ensembles aimed at understanding the
separation between OR-circuits and SUM-circuits, and (b) a study of the scalability of
our encoding by benchmarking different solvers on specific structured ensembles.

5.1 Instance Generation and Experimental Setup

For both series of experiments, the problem instances given to SAT solvers were gener-
ated by translating the encoding in Sect. 4 into CNF. We used the symmetry breaking
constraints and antichain optimisations described in Sect. 4.2; without these, most
instances could not solved by any of the solvers.

The formula encoding an input ensemble (P,Q) and a target number of gates
g was first translated into a Boolean circuit and then into CNF using the bc2cnf
encoder (http://users.ics.tkk.fi/tjunttil/circuits/), which implements
the standard Tseitin encoding [17]. The instance generator and a set of interesting
handpicked CNF-level benchmark instances are available at

http://cs.helsinki.fi/u/jazkorho/sat2012/.

When working with an ensemble, the size of the optimal OR-circuit or optimal SUM-
circuit is not generally known. Thus, we structured the experiments for a given ensemble
(P,Q) with |P | = p and |Q| = q as a sequence of jobs that keeps the ensemble (P,Q)
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fixed and varies the target number of gates g. We start from a value of g for which a
circuit is known to exist (p(1 + q)) and then decrease the value in steps of 1 until we hit
an unsatisfiable instance at g = u; an optimal circuit then has g = u+ 1 gates.

The experiments were run on Dell PowerEdge M610 blade servers with two quad-
core 2.53-GHz Intel Xeon processors and 32 GB of memory. We report the user times
recorded via time under Linux (kernel version 2.6.38). In the timed benchmarking
runs we ran one simultaneous job on a single server, but in the explorative experiments
we ran multiple jobs per server in parallel. SAT solvers used were Minisat 2.2.0 [5]
and Lingeling 587f [1] (two CDCL solvers among the best for application instances),
Clasp 2.0.4 [9] (CDCL solver, one of the best for crafted instances), and March rw [10]
(a DPLL-lookahead solver, one of the best for unsatisfiable random instances).

5.2 Optimal Circuits for All Small Ensembles

We say that two ensembles (P,Q1) and (P,Q2) are isomorphic if there is a permutation
of P that takes Q1 to Q2. The optimal circuit size is clearly an isomorphism invariant of
an ensemble, implying that in an exhaustive study it suffices to consider one ensemble
from each isomorphism class.

We carried out an exhaustive study of all nonisomorphic ensembles (P,Q) across
the three parameter ranges (i) p = 5 and 2 ≤ q ≤ 7, (ii) p = 6 and 2 ≤ q ≤ 7, and (iii)
p = 7 and 2 ≤ q ≤ 6 subject to the following additional constraints: (a) every set in Q
has size at least 2, (b) every set in Q contains at least two points in P that each occur in
at least two sets in Q, and (c) the ensemble is connected (when viewed as a hypergraph
with vertex set P and edge set Q). We generated the ensembles using the genbg tool
that is part of the canonical labelling package nauty [15].

For all of the generated 1,434,897 nonisomorphic ensembles, we successfully deter-
mined the optimum OR-circuit size and the optimum SUM-circuit size in approximately
4 months of total CPU time using Minisat. Among the instances considered, we found
no instance where the gap between the two optima is more than one gate. The smallest
ensembles in terms of the parameters p and q where we observed a gap of one gate
occurred for p = 5 and q = 5, for exactly 3 nonisomorphic ensembles; one of the
ensembles with accompanying optimal circuits is displayed in Fig. 2. A further analysis
of the results led to Theorem 1 and Proposition 1.

After this work the next open parameters for exhaustive study are p = 7 and q = 7
with 13,180,128 nonisomorphic ensembles.

In general, the large number of isomorphism classes for larger p and q makes an
exhaustive search prohibitively time-consuming. A natural idea would be to randomly
sample ensembles with given parameters to find an ensemble witnessing a large sepa-
ration between optimal OR- and SUM-circuits. However, as highlighted in Remark 1,
most ensembles require both a large OR-circuit and a large SUM-circuit, suggesting that
random sampling would mostly give instances with small difference between optimal
OR- and SUM-circuits. This intuition was experimentally supported as follows. We gen-
erated random ensembles (P,Q) by setting P = {1, 2, . . . , p} and drawing uniformly at
random a Q consisting of q subsets of P of size at least 2. We generated 1,000 instances
for p = q = 9 and for p = q = 10. Among these instances, we found only one instance
(with p = q = 10) where the gap between the optimal OR-circuit and and the optimal
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SUM-circuit was 2, while we know that instances with larger separation do exist for
these parameters. However, there were 49 instances with p = q = 10 where the optimal
circuit sizes were not found within a 6-hour time limit.

5.3 Scaling on Structured Ensembles

To test the scalability of our encoding and to benchmark different solvers, we also studied
two parameterised families of structured ensembles for varying family parameters and
target number of gates g. The first family is illustrated by the Valiant’s construction in
Fig. 1 for p = 8. This family is parameterised by the number of inputs p, with P =
{1, 2, . . . , p} and Q = {P \ {i} : i ∈ P}. As benchmarks we generated CNF instances
for p = 8, 9, 10, 11 and g = 2p, 2p+ 1, . . . , 2p+ 20 using the SUM-encoding and the
antichain optimisation. The second family is given in Theorem 1 and is parameterised
by two parameters h and w. As benchmarks we generated CNF instances for h = 3 and
w = 5 and g = 32, 33, . . . , 52 using both the OR-encoding and the SUM-encoding.

The results for the two benchmark families are reported in Figs. 4 and 5. The solver
March rw was omitted from the second benchmark due to its poor performance on
the first benchmark family. In an attempt to facilitate finding upper bounds for even
larger instances, we also tested the local search solver SATTIME2011, which performed
notably well on satisfiable crafted instances in the 2011 SAT Competition. However, in
our experiments on instances from the satisfiable regime, SATTIME2011 was unable to
find the solution within the 3600-second time limit already for the ensembles in Fig. 4
with p = 8 and g = 26, 27, 28.

6 Conclusions

We studied the relative power of OR-circuits and SUM-circuits for ensemble computation,
and developed tight connections to Boolean satisfiability from both the theoretical and
practical perspectives. As the main theoretical contribution, we showed that, while
OR-circuits can be rewritten in quadratic-time into SUM-circuits, a subquadratic-time
rewriting algorithm would imply that general CNF-SAT has non-trivial algorithms, which
would contradict the strong exponential time hypothesis. From the practical perspective,
we developed a SAT encoding for finding smallest SUM- and OR-circuits for a given
ensemble. State-of-the-art SAT solvers proved to be a highly useful tool for studying
the separation of these two circuit classes. Using the developed encoding, we were able
to exhaustively establish the optimum OR-circuit and SUM-circuit sizes for all small
instances, which contributed to our analytical understanding of the problem and led to
the theoretical results presented in this paper. Our publicly available instance generator
may also be of independent interest as a means of generating interesting benchmarks.

Larger, structured instances provide interesting challenges for current state-of-the-art
SAT solver technology. Further developments either on the encoding or the solver level—
including tuning SAT solvers especially for this problem—would allow for providing
further understanding to the problem of separating different circuit classes.

Acknowledgment. We thank Teppo Niinimäki for insight concerning the construction in
Theorem 1.
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Fig. 4. Solution times for different SAT solvers as a function of the number of gates on SUM-
ensembles corresponding to Valiant’s construction (Fig. 1). The data points highlighted with larger
markers and a vertical dashed line indicate the smallest circuits found. The horizontal dashed line
at 3600 seconds is the timeout limit for each run. As the instance size p grows, the unsatisfiable
instances with g just below the size of the optimal circuit rapidly become very difficult to solve.
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Fig. 5. Solution times for different SAT solvers as a function of the number of gates on OR- and
SUM-ensembles from Theorem 1 with parameters w = 5 and h = 3. The data points highlighted
with larger markers and a vertical dashed line indicate the smallest circuits found. The horizontal
dashed line at 3600 seconds is the timeout limit for each run. The optimal OR circuit is small, and
SAT solvers have no difficulty in finding it.
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