
Extended ASP Tableaux and
Rule Redundancy in Normal Logic Programs

Matti Järvisalo and Emilia Oikarinen

Laboratory for Theoretical Computer Science
P.O. Box 5400, FI-02015 Helsinki University of Technology (TKK), Finland

Abstract. We introduce an extended tableau calculus for answer set program-
ming (ASP). The proof system is based on the ASP tableaux defined in [Geb-
ser&Schaub, ICLP 2006], with an added extension rule. We investigate the power
of Extended ASP Tableaux both theoretically and empirically. We study the rela-
tionship of Extended ASP Tableaux with the Extended Resolution proof system
defined by Tseitin for clause sets, and separate Extended ASP Tableaux from
ASP Tableaux by giving a polynomial length proof of a family of normal logic
programs {Πn} for which ASP Tableaux has exponential length minimal proofs
with respect to n. Additionally, Extended ASP Tableaux imply interesting insight
into the effect of program simplification on the length of proofs in ASP. Closely
related to Extended ASP Tableaux, we empirically investigate the effect of redun-
dant rules on the efficiency of ASP solving.

1 Introduction

Answer set programming (ASP) is a declarative problem solving paradigm which has
proven successful for a variety of knowledge representation and reasoning tasks. The
success has been brought forth by efficient solver implementations bringing the theo-
retical underpinnings into practice. However, there has been an evident lack of theoret-
ical studies into the reasons for the efficiency of current ASP solvers (e.g. [1,2,3,4]).
Solver implementations and their inference techniques can be seen as determinisations
of the underlying rule-based proof systems. Due to this strong interplay between theory
and practice, the study of the relative efficiency of these proof systems reveals impor-
tant new viewpoints and explanations for the successes and failures of particular solver
techniques. While such proof complexity [5] studies are frequent in the closely related
field of propositional satisfiability (SAT), where typical solvers have been shown to be
based on refinements of the well-known Resolution proof system [6], this has not been
the case for ASP. Especially, the inference techniques applied in current state-of-the-art
ASP solvers have been characterised by a family of tableau-style ASP proof systems
for normal logic programs only very recently [7], with some related preliminary proof
complexity theoretic investigations [8]. The close relation of ASP and SAT and the re-
spective theoretical underpinning of practical solver techniques has also received little
attention up until recently [9,10], although the fields could gain much by further studies
on these connections.

This paper continues in part bridging the gap between ASP and SAT. Influenced
by Tseitin’s Extended Resolution proof system [11] for clausal formulas, we introduce

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 134–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 135

Extended ASP Tableaux, an extended tableau calculus based on the proof system in [7].
The motivations for Extended ASP Tableaux are many-fold. Theoretically, Extended
Resolution has proven to be among the most powerful known proof systems, equivalent
to, e.g., extended Frege systems; no exponential lower bounds for the lengths of proofs
are known for Extended Resolution. We study the power of Extended ASP Tableaux,
showing a tight correspondence with Extended Resolution.

The contributions of this paper are not only of theoretical nature. Extended ASP
Tableaux is in fact based on adding structure into programs by introducing additional
redundant rules. On the practical level, structure of problem instances has an important
role in both ASP and SAT solving. Typically, it is widely believed that redundancy
can and should be removed for practical efficiency. However, the power of Extended
ASP Tableaux reveals that this is not generally the case, and such redundancy removing
simplification mechanism can drastically hinder efficiency. In addition, we contribute
by studying the effect of redundancy on the efficiency of a variety of ASP solvers.
The results show that the role of redundancy in programs is not as simple as typically
believed, and controlled addition of redundancy may in fact prove to be relevant in
further strengthening the robustness of current solver techniques.

The paper is organised as follows. After preliminaries on ASP and SAT (Sect. 2),
the relationship of Resolution and ASP Tableaux proof systems and concepts related
to the complexity of proofs are discussed (Sect. 3). By introducing the Extended ASP
Tableaux proof system (Sect. 4), proof complexity and simplification are then studied
w.r.t. Extended ASP Tableaux (Sect. 5). Experimental results related to Extended ASP
Tableaux and redundant rules in normal logic programs are presented in Sect. 6.

2 Preliminaries

As preliminaries we review basic concepts related to answer set programming (ASP) in
the context of normal logic programs, propositional satisfiability (SAT), and translations
between ASP and SAT.

2.1 Normal Logic Programs and Stable Models

We consider normal logic programs (NLPs) in the propositional case. The symbol “∼”
denotes default negation. A default literal is an atom, a, or its default negation, ∼a. We
define shorthands L+ = {a | a ∈ L} and L− = {a | ∼a ∈ L} for a set of default
literals L, and ∼A = {∼a | a ∈ A} for a set of atoms A. A program Π over the set of
propositional atoms atoms(Π) consists of a finite set of rules r of the form

h ← a1, . . . , an, ∼b1, . . . , ∼bm, (1)

where h ∈ atoms(Π) ∪ {⊥} and ai, bj ∈ atoms(Π). A rule consists of a head,
head(r) = h, and a body, body(r) = {a1, . . . , an, ∼b1, . . . , ∼bm}. This allows the
shorthand head(r) ← body(r)+ ∪ ∼body(r)− for (1). A rule r is a fact if |body(r)| =
0. We define head(Π) =

⋃
r∈Π{head(r)} and body(Π) =

⋃
r∈Π{body(r)}. The set

of default literals of a program Π is dlits(Π) = {a, ∼a | a ∈ atoms(Π)}.

136 M. Järvisalo and E. Oikarinen

In ASP, we are interested in stable models [12] (or answer sets) of a program Π . An
interpretation M ⊆ atoms(Π) defines which atoms of Π are true (a ∈ M) and which
are false (a �∈ M). An interpretation M ⊆ atoms(Π) is a (classical) model of Π if
and only if body(r)+ ⊆ M and body(r)− ∩ M = ∅ imply head(r) ∈ M for each rule
r ∈ Π . A model M is a stable model of a program Π if and only if there is no model
M ′ ⊂ M for ΠM , where

ΠM = {head(r) ← body(r)+ | r ∈ Π and M ∩ body(r)− = ∅}

is called the Gelfond-Lifschitz reduct of Π with respect to M . We say that a program
Π is satisfiable if it has a stable model, and unsatisfiable otherwise.

Given a, b ∈ atoms(Π), we say that b depends directly on a, denoted a ≤1 b,
if and only if there is a rule r ∈ Π such that b = head(r) and a ∈ body(r)+.
The positive dependency graph of Π , denoted by Dep+(Π), is a directed graph with
atoms(Π) and {〈b, a〉 | a ≤1 b} as the sets of vertices and edges, respectively. A
NLP is tight if and only if its positive dependency graph is acyclic. We denote by
loop(Π) the set of all loops in Dep+(Π). Furthermore, the external bodies of a set
of atoms A in Π is eb(A) = {body(r) | r ∈ Π, head(r) ∈ A, body(r)+ ∩ A = ∅}. A
set U ⊆ atoms(Π) is unfounded if eb(U) = ∅. We denote the greatest unfounded set,
i.e., the union of all unfounded sets, of Π by gus(Π).

2.2 Propositional Satisfiability

Let X be a set of Boolean variables. Associated with every variable x ∈ X there are
two literals, the positive literal, denoted by x, and the negative literal, denoted by x̄. A
clause is a disjunction of distinct literals. We adopt the standard convention of viewing
a clause as a finite set of literals and a CNF formula as a finite set of clauses. The sets of
variables and literals appearing in a set of clauses C are denoted by vars(C) and lits(C).

A truth assignment τ associates a truth value τ(x) ∈ {false, true} with each vari-
able x ∈ X . A truth assignment satisfies a set of clauses if it satisfies every clause in
it. A clause is satisfied if it contains at least one satisfied literal, where a literal x (re-
spectively, x̄) is satisfied if τ(x) = true (respectively, τ(x) = false). A clause set is
satisfiable if there is a truth assignment that satisfies it, and unsatisfiable otherwise.

2.3 SAT as ASP

There is a natural linear-size translation from sets of clauses to normal logic programs
so that the stable models of the encoding represent the satisfying truth assignments of
the original clause set [13] faithfully, i.e., there is a bijective correspondence between
the satisfying truth assignments and stable models of the translation. Given a clause set
C, this translation nlp(C) introduces a new atom c for each clause C ∈ C, and atoms ax

and âx for each variable x ∈ vars(C). The resulting NLP is then

nlp(C) :=
⋃

x∈vars(C)
{{ax ← ∼âx} ∪ {âx ← ∼ax}} ∪

⋃

C∈C
{⊥ ← ∼c} ∪ (2)

⋃

C∈C
{{c ← ax | x ∈ lits(C)} ∪ {c ← âx | x̄ ∈ lits(C)}}. (3)

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 137

The rules (2) encode the facts that (i) each variable is assigned an unambiguous truth
value and that (ii) each clause in C must be satisfied, while (3) encodes that each clause
is satisfied if at least one of its literals is satisfied.

2.4 ASP as SAT

Contrarily to the case of translating SAT into ASP, there is no modular1 and faith-
ful translation from normal logic programs to propositional logic [13]. Moreover, any
faithful translation is potentially of exponential size when additional variables are not
allowed[14] 2. However, if a program Π satisfies the syntactic tightness condition, the
answer sets of Π can be characterised faithfully by the classical models of a linear-size
propositional formula called Clark’s completion [19,20] of Π , defined using a Boolean
variable xa for each a ∈ atoms(Π) as

C(Π) =
∧

h∈atoms(Π)

(

xh ⇔
∨

B∈body(h)

(
∧

b∈B+

xb ∧
∧

b∈B−

x̄b

))

, (4)

where body(h) = {body(r) | head(r) = h}. For simplicity, we have the special cases
that (i) if xh is ⊥ then the equivalence becomes the negation of the right hand side, and
(ii) if h ∈ facts(Π) then the equivalence reduces to the clause {xh}.

As in this paper, often one needs to consider the clausal representation of Boolean
formulas. For a linear-size clausal translation of C(Π), introduce additionally a new
Boolean variable xB for each B ∈ body(Π) \ {∅}. Using these new variables, we
arrive at the clausal completion

comp(Π) :=
⋃

B∈body(Π)\{∅}

{

xB ≡
∧

b∈B+

xb ∧
∧

b∈B−

x̄b

}

∪
⋃

B∈body(⊥)

{x̄B} (5)

∪
⋃

h∈head(Π)\{⊥}
h �∈facts(Π)

{

xh ≡
∨

B∈body(h)

xB

}

∪
⋃

h∈facts(Π)

{xh} (6)

∪
⋃

a∈atoms(Π)\head(Π)

{x̄a}, (7)

where the shorthands x ≡
∧

xi∈X xi and x ≡
∨

xi∈X xi stand for the sets of clauses
{x̄1, . . . x̄n, x} ∪

⋃
xi∈X{xi, x̄} and {x1, . . . xn, x̄} ∪

⋃
xi∈X{x̄i, x}, respectively. For

an example of a logic program’s clausal completion, see Fig. 1(left).

1 Intuitively, for a modular translation, adding an atom to a program leads to a local change not
involving the translation of the rest of the program [13].

2 However, polynomial size propositional encodings using extra variables are known,
e.g. [15,16]. Also, ASP as Propositional Satisfiability approaches for solving normal logic pro-
grams have been developed, e.g., ASSAT [17] (based on incrementally adding loop formulas)
and ASP-SAT [18] (based on generating a classical model and testing its minimality).

138 M. Järvisalo and E. Oikarinen

3 Proof Systems for ASP and SAT

In this section we review concepts related to proof complexity (see, e.g., [5]) in the
context of this paper, and discuss the relationship of Resolution and ASP Tableaux [7].

3.1 Propositional Proof Systems and Complexity

Formally, a (propositional) proof system is a polynomial-time computable predicate S
such that a propositional expression E is unsatisfiable if and only if there is a proof p
for which S(E, p). A proof system is thus a polynomial-time procedure for checking
the correctness of proofs in a certain format. While proof checking is efficient, finding
short proofs may be difficult, or, generally, impossible since short proofs may not exist
for a too weak proof system. As a measure of hardness of proving unsatisfiability of an
expression E in a proof system S, the (proof) complexity of E in S is the length of the
shortest proof of E in S. For a family {En} of unsatisfiable expressions over increasing
number of variables, the (asymptotic) complexity of {En} is measured with respect to
the sizes of En.

For two proof systems S,S′, we say that S′ (polynomially) simulates S if for all
families {En} it holds that CS′(En) ≤ p(CS(En)) for all En, where p is a polynomial,
and CS and CS′ are the complexities in S and S′, respectively. If S simulates S′ and
vice versa, then S and S′ are polynomially equivalent. If there is a family {En} for
which S′ does not polynomially simulate S, we say that {En} separates S from S′,
and S is stronger than S′.

3.2 Resolution

The well-known Resolution proof system (RES) for clause sets is based on the resolu-
tion rule. Let C, D be clauses, and x a Boolean variable. The resolution rule states that
we can directly derive C ∪ D from {x} ∪ C and {x̄} ∪ D by resolving on x.

A RES derivation of a clause C from a clause set C is a sequence of clauses π =
(C1, C2, . . . , Cn), where Cn = C and each Ci, where 1 ≤ i < n, is either (i) a clause
in C (an initial clause), or (ii) derived with the resolution rule from two clauses Cj , Ck

where j, k < i (a derived clause). The length of π is n, the number of clauses occurring
in it. Any derivation of the empty clause ∅ from C is a RES proof of C.

Any RES proof π = (C1, C2, . . . , Cn) can be presented as a directed acyclic graph,
in which the leafs are initial clauses, inner nodes are derived clauses, and the root is the
empty clause. There are edges from Ci and Cj to Ck iff Ck has been directly derived
from Ci and Cj using the resolution rule. Many Resolution refinements, in which the
structure of the graph representation is restricted, have been proposed and studied. Of
particular interest here is Tree-like Resolution (T-RES), in which it is required that
proofs are represented by trees. This implies that a derived clause, if subsequently used
multiple times in the proof, must be derived anew each time from initial clauses.

T-RES is a proper RES refinement, i.e., RES is stronger than T-RES [21]. On the
other hand, it is well known that the DPLL method [22], the basis of most state-of-
the-art SAT solvers, is polynomially equivalent to T-RES. However, conflict-learning
DPLL is stronger than T-RES, and polynomially equivalent to RES under a slight
generalisation [6].

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 139

3.3 ASP Tableaux

Although ASP solvers for normal logic programs have been available for many years,
the deduction rules applied in such solvers have only recently been formally defined as
a proof system, which we will here refer to as ASP Tableaux [7] (ASP-T).

An ASP tableau for a NLP Π is a binary tree of the following structure. The root
of the tableau consists of the rules Π and the entry F⊥ for capturing that ⊥ is always
false. The non-root nodes of the tableau are single entries of the form Ta or Fa, where
a ∈ atoms(Π) ∪ body(Π). As typical for tableau methods, entries are generated by
extending a branch (a path from the root to a leaf node) by applying one of the rules in
Fig.2; if the prerequisites of a rule hold in a branch, the branch can be extended with the
entries specified by the rule. For convenience, we have the shorthand tl (f l) for literals,
defined as Tl if l is positive (negative), and Fl if l is negative (positive).

A branch is closed under the deduction rules (b)-(i) if the branch cannot be extended
using the rules. A branch is contradictory if there are entries Ta,Fa for some a. A
branch is complete if it is contradictory or if there is the entry Ta or Fa for each
a ∈ atoms(Π)∪body(Π) and the branch is closed under the deduction rules. A tableau
is complete if all its branches are complete. A complete tableau from Π in which all
branches are contradictory is an ASP-T proof of the unsatisfiability of Π . The length of
an ASP-T proof is the number of entries in it. In Fig. 1 an ASP-T proof is presented for
the program Π given on the left of the proof, with the rule applied for deducing each
entry given in parenthesis.

Π = {a ← ∼a, b. b ← c. c ← ∼b}
comp(Π) = {{x̄{∼a,b}, x̄a}, {x̄{∼a,b}, xb},

{x{∼a,b}, xa, x̄b}, {x̄{c}, xc},

{x{c}, x̄c}, {x̄{∼b}, x̄b},

{x{∼b}, xb}, {x̄a, x{∼a,b}},

{xa, x̄{∼a,b}}, {x̄b, x{c}},

{xb, x̄{c}}, {x̄c, x{∼b}}, {xc, x̄{∼b}}}

Ta Fa

F{∼a, b}
Fb
T{∼b}
Tc
T{c}
Tb

×

(e)
(c)
(b)
(d)
(b)
(d)

T{∼a, b} (i§)
Fa (g)

×

c ← ∼b
F⊥

a ← ∼a, b
b ← c

Fig. 1. A logic program Π , its clausal completion comp(Π), and an ASP-T proof for Π

Any branch B describes a partial assignment A on atoms(Π) in a natural way, i.e.,
if there is an entry Ta (Fa, respectively) in B for a ∈ atoms(Π), then (a, true) ∈ A
((a, false) ∈ A, respectively). ASP-T is a sound and complete proof system for nor-
mal logic programs [7], i.e., there is a complete non-contradictory ASP tableau from
Π if and only if Π is satisfiable. Thus the assignment A described by a complete non-
contradictory branch gives a stable model M = {a ∈ atoms(Π) | (a, true) ∈ A}. As
argumented in [7], current ASP solver implementations are tightly related to ASP-T,
with the intuition that the cut rule is determinised with decision heuristics, while the
deduction rules describe the propagation mechanism in ASP solvers. For instance,
the noMore++ system [2] is a determinisation of the rules (a)-(g),(h§),(h†),(i§), while
smodels [1] applies the same rules with the cut rule restricted to atoms(Π).

140 M. Järvisalo and E. Oikarinen

Tφ Fφ (�)

(a) Cut

h← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}
(b) Forward True Body

F{l1, . . . , li, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li
(c) Backward False Body

h← l1, . . . , ln
T{l1, . . . , ln}

Th
(d) Forward True Atom

h← l1, . . . , ln
Fh

F{l1, . . . , ln}
(e) Backward False Atom

h← l1, . . . , li, . . . , ln
f li

F{l1, . . . , li, . . . , ln}
(f) Forward False Body

T{l1, . . . , li, . . . , ln}
tli

(g) Backward True Body

FB1, . . . , FBm

Fh
(�)

(h)

Th
FB1, . . . , FBi−1, FBi+1, . . . , FBm

TBi
(�)

(i)

(�): φ ∈ atoms(Π) ∪ body(Π)
(�): § (Forward False Atom) or † (Well-Founded Negation) or ‡ (Forward Loop)
(�): § (Backward True Atom) or † (Well-Founded Justification) or ‡ (Backward Loop)
(§): body(h) = {B1, . . . , Bm}
(†): {B1, . . . , Bm} ⊆ body(Π) and h ∈ gus({r ∈ Π | body(r) �∈ {B1, . . . Bm}})
(‡): h ∈ L, L ∈ loop(Π), eb(L) = {B1, . . . , Bm}

Fig. 2. Rules in ASP Tableaux

Interestingly, ASP-T and T-RES are polynomially equivalent under the translations
comp and nlp. Although the similarity of DPLL’s unit propagation and propagation in
ASP solvers is discussed in [9,10], here we want to stress the direct connection between
ASP-T and T-RES.

Theorem 1. Considering tight programs, T-RES under the translation comp can poly-
nomially simulate ASP-T.

The intuitive idea of the proof of Theorem 1 is the following. Consider again the tight
NLP Π and the ASP-T proof T in Fig. 1. The completion comp(Π) is also shown
in Fig. 1. We transform T into a binary cut tree T ′ where every entry generated by a
deduction rule in T is replaced by an application of the cut rule on the corresponding
entry. See Fig. 3 (left) for the cut tree corresponding to the ASP-T proof in Fig. 1. Now
there is a T-RES proof of comp(Π) such that for any prefix p of an arbitrary branch B
in T ′ there is a clause C ∈ π contradictory to the partial assignment in p, i.e., there is
the entry Fa (Ta) in p for each corresponding positive literal xa (negative literal x̄a)
in C. Furthermore, each such C has a Tree-like Resolution derivation from comp(Π)
of polynomial length w.r.t. the postfix of B starting directly after p. When reaching the
root of T ′, we must have derived ∅ since it is contradictory with the empty assignment.
The T-RES proof resulting from the cut tree in Fig. 3 (left) is shown in Fig. 3 (right).

The reverse direction, as stated by Theorem 2, follows from a similar argument.

Theorem 2. Considering clause sets, ASP-T under the translation nlp can polynomi-
ally simulate T-RES.

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 141

Ta Fa

T{∼b}

F{∼a, b}

Tb

F{∼b}

Fb

FcTc

F{c}T{c}

T{∼a, b}

F{∼a, b} T{∼a, b}

{xa}

{xb} {x{∼a,b}, xa, x̄b}

{xb, x̄{∼b}}

{x̄c, xb}

{x̄c, x{c}}

{xb, x{∼b}}

{xc, x̄{∼b}}

{x̄{c}, xb}

{x̄{∼a,b}, xa}

∅

{x̄a}

{x̄{∼a,b}, x̄a} {x{∼a,b}, xa}{x{∼a,b}, x̄a}

Fig. 3. Left: cut tree based on the ASP-T proof in Fig. 1. Right: resulting T-RES proof

4 Extended ASP Tableaux

We will now introduce an extension rule to ASP-T, which results in Extended ASP
Tableaux (E-ASP-T), an extended tableau proof system for ASP. The idea is that one
can define names for conjunctions of default literals, i.e., given two l1, l2 ∈ dlits(Π),
the (elementary) extension rule allows adding the rule p ← l1, l2 to Π , where p �∈
atoms(Π) ∪ {⊥}. It is essential that p is a new atom for preserving satisfiability.

When convenient, we will apply a generalisation of the elementary extension. By
allowing one to introduce multiple bodies for p, the general extension rule3 is

Π := Π ∪
⋃

i

{p ← li,1, . . . , li,ki | lj,k ∈ dlits(Π), p �∈ atoms(Π) ∪ {⊥}}.

An E-ASP-T proof of program Π is an ASP-T proof T of Π ∪ E, where E is a set of
extending rules generated with the extension rule. The length of an E-ASP-T proof is
the length of T plus the number of rules in E.

Since head(r) �∈ atoms(Π) ∪ {⊥} for all extending rules r ∈ E, the extension rule
does not affect the existence of stable models, i.e., for each stable model M of Π , there
is a unique N ⊆ atoms(E) \ atoms(Π) such that M ∪ N is a stable model of Π ∪ E.
Thus E-ASP-T is a sound and complete proof system.

5 Proof Complexity

In this section we study proof complexity theoretic issues related to E-ASP-T from
several viewpoints: we (i) consider the relationship between E-ASP-T and Tseitin’s
Extended Resolution, (ii) give an explicit separation of E-ASP-T from ASP-T, and (iii)
relate the extension rule to the effect of program simplification on proof lengths.

3 Notice equivalent constructs can be introduced with the elementary rule. For example, using
additional new atoms, bodies with more than two literals can be decomposed with balanced
parentheses.

142 M. Järvisalo and E. Oikarinen

5.1 Relationship with Extended Resolution

E-ASP-T is motivated by Extended Resolution (E-RES), a proof system by Tseitin [11].
E-RES consists of the resolution rule and an extension rule which allows one to intro-
duce equivalences of the form x ≡ l1 ∧ l2, where x is a new variable and l1, l2 literals
in the clause set. In other words, given a clause set C, one application of the exten-
sion rule adds the clauses {x̄, l1}, {x̄, l2}, and {x, l̄1, l̄2} to C. E-RES is known to be
more powerful than RES; in fact, E-RES is polynomially equivalent with, e.g., extended
Frege systems, and no superpolynomial proof complexity lower bounds are known for
E-RES. We will now relate E-ASP-T with E-RES, and show that they are polynomially
equivalent under the translations comp and nlp.

Theorem 3. E-RES and E-ASP-T are polynomially equivalent proof systems in the
sense that

(i) considering tight normal logic programs, E-RES under the translation comp poly-
nomially simulates E-ASP-T, and

(ii) considering clause sets, E-ASP-T under the translation nlp polynomially simulates
E-RES.

Proof. (i): Let T be an E-ASP-T proof for a tight NLP Π , i.e., T is an ASP-T proof
of Π ∪ E, where E is the extension of Π . We use the shorthand xl for the variable
corresponding to default literal l in comp(Π), i.e., xl = xa (xl = x̄a) if l = a (l = ∼a)
for a ∈ atoms(Π). By Theorem 1 there is a polynomial T-RES proof for comp(Π ∪
E). Since head(E) ∩ (atoms(Π) ∪ {⊥}) = ∅, the clauses introduced for head(E) in
comp(Π ∪ E) can be seen as extensions in E-RES, i.e., for each h ← l1, l2 ∈ E there
are the clauses xh ≡ xl1 ∧ xl2 in comp(Π ∪ E). Thus there is an extension E′ for
comp(Π) such that the T-RES proof of comp(Π ∪ E) is an E-RES proof of comp(Π).

(ii): Let π = (C1, . . . , Cn = ∅) be an E-RES proof of a set of clauses C. Let E be the
set of clauses generated with the extension rule in π. We introduce shorthands for atoms
corresponding to literals, i.e., al = ax (al = ∼ax) if l = x (l = x̄) for x ∈ atoms(C).
We add the following rules to nlp(C) with the ASP extension rule: ax ← al1 , al2 for
each extension x ≡ l1 ∧ l2; c ← al for each l ∈ C in π such that C �∈ C; and p1 ← c1
and pi ← ci, pi−1 for each Ci ∈ π and 2 ≤ i < n.

An E-ASP-T proof for nlp(C) is generated as follows. From i = 1 to n − 1 apply
the cut rule on pi in the branch with Tpj for all j < i. We notice that each branch with
Fpi and Tpj for all j < i closes without further application of the cut. We can deduce
Fci from Fpi. Now either (i) Ci ∈ C, (ii) Ci is a derived clause, or (iii) Ci ∈ E. For
instance, if Ci = {x̄, l1} from the extension x ≡ l1 ∧ l2, then from ci ← ∼ax and
ci ← al1 we deduce Tax and Fal1 . The branch closes as T{al1 , al2} and Tal1 are
deduced from ax ← al1 , al2 . Other cases are similar.

Now, consider the branch with Tpi for all i = 1 . . . n − 1. The empty clause Cn is
obtained by resolving Cj = {x} and Ck = {x̄}, j, k < n. Thus we can deduce Tcj

and Tck from pj ← cj , pj−1 and pk ← ck, pk−1, respectively, and furthermore, Tax

and Fax from cj ← l and ck ← l̄ (l = x or l = x̄), closing the branch. The obtained
contradictory ASP tableau is of linear length w.r.t. π. ��

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 143

5.2 Pigeonhole Principle Separates Extended ASP Tableaux from ASP Tableaux

As an example, we now consider a family of normal logic programs {Πn} which sep-
arates E-ASP-T from ASP-T, i.e., we give an explicit polynomial length proof of Πn

for which ASP-T has exponential length minimal proofs with respect to n. We will
consider this family also in the experiments of this paper.

The program family {PHPn+1
n } in question is the following typical encoding of the

pigeon-hole principle as a normal logic program:

PHPn+1
n :=

⋃

1≤i≤n+1

{⊥ ← ∼pi,1, . . . , ∼pi,n} ∪
⋃

1≤i<j≤n+1
1≤k≤n

{⊥ ← pi,k, pj,k} (8)

∪
⋃

1≤i≤n+1
1≤j≤n

{{pi,j ← ∼p′i,j} ∪ {p′i,j ← ∼pi,j}} (9)

In the above, pi,j has the interpretation that pigeon i sits in hole j. The rules in (8)
require that (i) each pigeon must sit in some hole and that (ii) no two pigeons can sit in
the same hole. The rules in (9) enforce that for each pigeon and each hole, the pigeon
either sits in the hole or does not sit in the hole. Each PHPn+1

n is unsatisfiable since
there is no bijective mapping from an (n + 1)-element set to an n-element set.

Theorem 4. The complexity of {PHPn+1
n } with respect to n is polynomial in E-ASP-T

and exponential in ASP-T

Proof. (i): Following Cook’s extension [23] for achieving a polynomial-length E-RES
proof of a clausal encoding of the pigeonhole principle4, we define the polynomial size
program extension

EXTl :=
⋃

1≤i≤l
1≤j≤l−1

{{el
i,j ← el+1

i,j } ∪ {el
i,j ← el+1

i,l , el+1
l+1,j}} (10)

for 1 ≤ l ≤ n, where each en+1
i,j is interpreted as pi,j .

Although not explicitly given by Cook, the extension given in [23] does not seem
to yield a polynomial length tree-like proof of the clausal representation, so Theorem 3
does not directly imply a polynomial length ASP-T proof for PHPn+1

n ∪
⋃

1≤l≤n EXTl.
However, given the polynomial length E-RES proof5 π = (C1, C2, . . . , Cn = ∅) of
the clausal representation, we can follow the general strategy given in the proof of
Theorem 3 for defining an additional extension E(π) which allows a polynomial length
ASP-T proof for the resulting program

EPHPn+1
n := PHPn+1

n ∪
⋃

1≤l≤n

EXTl ∪ E(π).

(ii): comp(PHPn+1
n) consists of the clausal encoding of the pigeon-hole principle

and additional clauses (tautologies) for rules of the form a ← ∼a′, a′ ← ∼a. Assume

4 The particular encoding is
⋃

1≤i≤n+1{
∨n

j=1 xi,j} ∪
⋃

1≤i<i′≤n+1,1≤j≤n{¬xi,j ∨ ¬xi′,j}.
5 The intuitive idea is that the extension allows for reducing PHPn+1

n to PHPn
n−1 with a poly-

nomial number of Resolution steps. Due to space constraints we do not give π explicitly here.

144 M. Järvisalo and E. Oikarinen

now that there is a polynomial ASP-T proof for PHPn+1
n . By Theorem 1 there is a

polynomial T-RES of comp(PHPn+1
n). It is easy to see that the additional tautologies

in comp(PHPn+1
n) do not help in the resolution proof. Thus there is a polynomial

length T-RES proof for the clausal pigeonhole encoding. However, this contradicts the
fact that the complexity of the clausal pigeonhole principle is exponential w.r.t. n for
(Tree-like) Resolution [24]. ��
In fact, Theorem 4 is also witnessed by non-tight programs. Consider the family
{PHPn+1

n ∪ {pi,j ← pi,j | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n}}, which is non-tight with
the additional self-loops {pi,j ← pi,j}, but preserves (un)satisfiability of PHPm

n for
all n, m. Since the self-loops do not contribute to the proofs of PHPn+1

n , ASP-T still
has exponential length minimal proofs for these programs, while the E-ASP-T proof
presented in the proof of Theorem 4 is still valid.

5.3 Program Simplification and Complexity

We will now give an interesting corollary of Theorem 4, addressing the effect of pro-
gram simplification on the length of proofs.

Tightly related to the development of efficient solver implementations for resolv-
ing ASP programs arising from practical applications is the development of techniques
for simplifying programs. Efficient program simplification through local transformation
rules becomes especially important as practically relevant programs are often produced
automatically, because often a high number of redundant constraints is produced in the
process. While various satisfiability-preserving local transformation rules for simplify-
ing logic programs have been introduced (see, e.g., [25]), the effect of applying such
transformations on the lengths of proofs has not received attention.

Taking a first step into this direction, we now show that even simple transformation
rules may have a drastic negative effect on proof complexity. Consider the local trans-
formation rule red(Π) := Π \ {r ∈ Π | head(r) �∈ body(Π)}. The rules removed
by red are redundant with respect to satisfiability of the program in the sense that red
preserves visible equivalence [16]. The visible equivalence relation takes the interfaces
of programs into account: atoms(Π) is partitioned into v(Π) and h(Π) determining
the visible and the hidden atoms in Π , respectively. Programs Π1 and Π2 are visibly
equivalent, denoted by Π1 ≡v Π2, if and only if v(Π1) = v(Π2) and there is a bijective
correspondence between the stable models of Π1 and Π2 mapping each a ∈ v(Π1) onto
itself. Defining v(Π) = v(red(Π)) = atoms(red(Π)), one can see that red(Π) ≡v Π .

A polynomial time, satisfiability-preserving simplification algorithm red∗(Π) is ob-
tained by closing program Π under red. However, notice that, in the worst case when we
define v(EPHPn+1

n) = v(PHPn+1
n) = atoms(PHPn+1

n), we have red∗(EPHPn+1
n) =

PHPn+1
n . Thus, by Theorem 4, red∗ transforms a program family having polynomial

complexity in ASP Tableaux into one with exponential complexity with respect to n.

6 Experiments

We evaluate empirically how well current state-of-the-art ASP solvers can make use
of the additional structure introduced to programs using the extension rule. We run
the solvers smodels [1] (version 2.32, a widely used lookahead solver), clasp [4] (rc4,

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 145

with many techniques—including conflict learning—adopted from DPLL-based SAT
solvers), and cmodels [18] (version 3.66, a SAT-based ASP solver running the conflict-
learning SAT solver zChaff version 2004.11.15 as the back-end). The experiments are
run on standard PCs with 2-GHz AMD 3200+ processors under Linux.

First, we investigate whether ASP solvers are able to benefit from the extension in
EPHPn+1

n . We compare the number of decisions and running times of each of the
solvers on PHPn+1

n , CPHPn+1
n := PHPn+1

n ∪
⋃

1≤l≤n EXTl, and EPHPn+1
n . By

Theorem 4 the solvers should in theory be able to exhibit polynomially scaling number
of decisions for EPHPn+1

n . In fact with conflict-learning this might also be possible
for CPHPn+1

n due to the tight correspondence with conflict-learning SAT solvers and
Resolution. The results for n = 10 . . .12 are shown in Table 1. While the number
of decisions for the conflict-learning clasp and cmodels is somewhat reduced by the
extensions, the solvers do not seem to be able to reproduce the polynomial size proofs,
and we do not observe a dramatic change in the running times. With a timeout of 2
hours, smodels gives no answer for n = 12 on PHPn+1

n or CPHPn+1
n . However, for

EPHPn+1
n smodels returns without any branching, which should be due to the fact that

smodels’s complete lookahead notices that by branching on the critical extension atoms
(as in part (ii) of the proof of Theorem 4) the false branch closes immediately. With
this in mind, an interesting further study out of the scope of this paper would be the
possibilities of integrating conflict learning techniques with (partial) lookahead.

In the second experiment, we study the effect of having a modest number of redun-
dant rules on the behaviour of ASP solvers. For this we apply the following procedure
ADDRANDOMREDUNDANCY(Π, n, p):

1. For i = 1 to 	 p
100n
:

1a. Randomly select l1, l2 ∈ dlits(Π) such that l1 �= l2.
1b. Π := Π ∪ {ri ← l1, l2}, where ri �∈ atoms(Π)

2. Return Π

Given a program Π , the procedure iteratively adds rules of the form ri ← l1, l2 to Π ,
where l1, l2 are random default literals currently in the program and ri is a new atom.
The number of introduced rules is p% of the integer n.

In Fig. 4, the median, minimum, and maximum number of decisions and running
times for the solvers on ADDRANDOMREDUNDANCY(PHPn+1

n , n, p) are shown for
p = 50, 100 . . . , 450 over 15 trials at each data point. The mean number of decisions
(left) and running times (right) on the original PHPn+1

n are presented by the horizontal

Table 1. Results on PHPn+1
n , CPHPn+1

n , and EPHPn+1
n with timeout (-) of 2 hours

Time (s) Decisions
Solver n PHPn+1

n CPHPn+1
n EPHPn+1

n PHPn+1
n CPHPn+1

n EPHPn+1
n

smodels 10 32.28 120.24 9.28 158878 141177 0
smodels 11 471.54 1828.40 23.07 1885949 1619703 0
smodels 12 - - 52.20 - - 0

clasp 10 8.60 7.78 19.26 197982 114840 38842
clasp 11 72.78 62.74 97.23 1072358 574874 116534
clasp 12 900.33 1046.86 881.90 7787578 4964309 646278

cmodels 10 1.91 2.23 27.42 9455 9916 20615
cmodels 11 7.99 10.28 70.39 23058 26283 38648
cmodels 12 48.36 56.70 270.63 87864 98994 97745

146 M. Järvisalo and E. Oikarinen

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

(a) clasp decisions (left), time in seconds (right)

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

(b) cmodels decisions (left), time in seconds (right)

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

(c) smodels decisions (left), time in seconds (right)

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 1.8e+06

 0 100 200 300 400 500

D
ec

is
io

ns

p

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 1.8e+06

 0 100 200 300 400 500

D
ec

is
io

ns

p

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

(d) smodels without lookahead: decisions (left), time in seconds (right)

Fig. 4. Effects of adding randomly generated redundant rules to PHPn+1
n

lines. Notice that the number of added atoms and rules is linear to n, which is negligible
to the number of atoms (in the order of n2) and rules (n3) in PHPn+1

n . For similar
running times, the number of holes n is 10 for clasp and smodels and 11 for cmodels.
The results are very interesting: each of the solvers seems to react individually to the
added redundancy. For cmodels (b), only a few added redundant rules are enough to
worsen its behaviour. For smodels (c), the number of decisions decreases linearly with

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 147

the number of added rules. However, the running times grow fast at the same time,
most probably due to smodels’s lookahead. We also ran the experiment for smodels (d)
without using lookahead. This had a visible effect on the number of decisions, showing
a benefit from the added rules compared to smodels on PHPn+1

n .
The most interesting effect is seen for clasp; clasp benefits from the added rules w.r.t.

the number of decision, while the running times stay similar on the average, contrarily
to the other solvers. In addition to this robustness against redundancy, we believe that
this shows promise for further exploiting redundancy added in a controlled way dur-
ing search; the added rules give new possibilities to branch on definitions which were
not available in the original program. However, for benefiting from redundancy with
running times in mind, optimised lightweight propagation mechanisms are essential.

As a final remark, an interesting observation is that the effect of the transforma-
tion presented in [8], which enables smodels to branch on the bodies of rules, having
an exponential effect on the proof complexity of a particular program family, can be
equivalently obtained by applying the ASP extension rule. This may in part explain the
effect on adding redundancy on the number of decision made by smodels.

7 Conclusions

We introduce Extended ASP Tableaux, an extended tableau calculus for normal logic
programs under the stable model semantics. We study the strength of the calculus, show-
ing a tight correspondence with Extended Resolution, which is among the most power-
ful known propositional proof systems. This sheds further light on the relation of ASP
and propositional satisfiability solving and their underlying proof systems, something
which we believe is for the benefit of both of the communities.

Furthermore, this work shows the intricate nature of the interplay of structure and
the hardness of solving ASP instances. We anticipate that controlled use of the exten-
sion rule is possible and will yield performance gains by considering in more detail
the structural properties of programs in particular problem domains. One could also
consider implementing branching on any possible formula inside a solver. However,
this would require novel heuristics, since choosing the formula to branch on from the
exponentially many alternatives is nontrivial and is not applied in current solvers. We
find this an interesting future direction of research. Another important research direc-
tion set forth by this study is a more in-depth investigation into the effect of program
simplification on the hardness of solving ASP instances.

Acknowledgements. Financial support from Academy of Finland (grant #211025),
Helsinki Graduate School in Computer Science and Engineering, Emil Aaltonen Foun-
dation, the Finnish Cultural Foundation (EO), the Technological Foundation TES, and
the Nokia Foundation (EO) is gratefully acknowledged.

References

1. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

2. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ approach to an-
swer set solving. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS(LNAI), vol. 3835,
pp. 95–109. Springer, Heidelberg (2005)

148 M. Järvisalo and E. Oikarinen

3. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM TOCL 7(3), 499–562 (2006)

4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
IJCAI, pp. 286–392 (2007)

5. Beame, P., Pitassi, T.: Propositional proof complexity: Past, present, and future. Bulletin of
the EATCS 65, 66–89 (1998)

6. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of
clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)

7. Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg
(2006)

8. Anger, C., Gebser, M., Janhunen, T., Schaub, T.: What’s a head without a body? In: ECAI,
pp. 769–770. IOS Press, Amsterdam (2006)

9. Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT procedures (or,
between cmodels and smodels). In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 37–51. Springer, Heidelberg (2005)

10. Gebser, M., Schaub, T.: Characterizing ASP inferences by unit propagation. In: LaSh ICLP
Workshop, pp. 41–56 (2006)

11. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Automation of
Reasoning 2: Classical Papers on Computational Logic, pp. 466–483. Springer, Heidelberg
(1983)

12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP, pp.
1070–1080. MIT Press, Cambridge (1988)

13. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

14. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on
Computational Logic 7(2), 261–268 (2006)

15. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals
of Mathematics and Artificial Intelligence 12(1-2), 53–87 (1994)

16. Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16(1-2), 35–86 (2006)

17. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1–2), 115–137 (2004)

18. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

19. Clark, K.: Negation as failure. In: Readings in nonmonotonic reasoning, pp. 311–325. Mor-
gan Kaufmann Publishers, San Francisco (1987)

20. Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of Meth-
ods of Logic in Computer Science 1, 51–60 (1994)

21. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-like and
general resolution. Combinatorica 24(4), 585–603 (2004)

22. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-
nications of the ACM 5(7), 394–397 (1962)

23. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT
News 8(4), 28–32 (1976)

24. Haken, A.: The intractability of resolution. TCS 39(2-3), 297–308 (1985)
25. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and

strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) Logic Programming and Nonmono-
tonic Reasoning. LNCS (LNAI), vol. 2923, pp. 87–99. Springer, Heidelberg (2003)

	Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs
	Introduction
	Preliminaries
	Normal Logic Programs and Stable Models
	Propositional Satisfiability
	SAT as ASP
	ASP as SAT

	Proof Systems for ASP and SAT
	Propositional Proof Systems and Complexity
	Resolution
	ASP Tableaux

	Extended ASP Tableaux
	Proof Complexity
	Relationship with Extended Resolution
	Pigeonhole Principle Separates Extended ASP Tableaux from ASP Tableaux
	Program Simplification and Complexity

	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

