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tWe introdu
e an extended tableau 
al
ulus for answer set programming (ASP). The proofsystem is based on the ASP tableaux de�ned in [Gebser&S
haub, ICLP 2006℄, with anadded extension rule. We investigate the power of Extended ASP Tableaux both theo-reti
ally and empiri
ally. We study the relationship of Extended ASP Tableaux with theExtended Resolution proof system de�ned by Tseitin for sets of 
lauses, and separate Ex-tended ASP Tableaux from ASP Tableaux by giving a polynomial-length proof for a familyof normal logi
 programs {Πn} for whi
h ASP Tableaux has exponential-length minimalproofs with respe
t to n. Additionally, Extended ASP Tableaux imply interesting insightinto the e�e
t of program simpli�
ation on the lengths of proofs in ASP. Closely relatedto Extended ASP Tableaux, we empiri
ally investigate the e�e
t of redundant rules onthe e�
ien
y of ASP solving.KEYWORDS: Answer set programming, tableau method, extension rule, proof 
omplexity,problem stru
ture 1 Introdu
tionAnswer set programming (ASP) (Marek and Trusz
zy«ski 1999; Niemelä 1999;Gelfond and Leone 2002; Lifs
hitz 2002; Baral 2003) is a de
larative problem solvingparadigm whi
h has proven su

essful for a variety of knowledge representation andreasoning tasks (see (Soininen et al. 2001; Nogueira et al. 2001; Erdem et al. 2006;Brooks et al. 2007) for examples). The su

ess has been brought forth by e�
ientsolver implementations su
h as smodels (Simons et al. 2002), dlv (Leone et al. 2006),
noMore++ (Anger et al. 2005), cmodels (Giun
higlia et al. 2006), assat (Lin andZhao 2004), and clasp (Gebser et al. 2007). However, there has been an evident la
kof theoreti
al studies into the reasons for the e�
ien
y of ASP solvers.Solver implementations and their inferen
e te
hniques 
an be seen as determinis-ti
 implementations of the underlying rule-based proof systems. A solver implements
∗ This is an extended version of a paper (Järvisalo and Oikarinen 2007) presented at the 23rdInternational Conferen
e on Logi
 Programming (ICLP 2007) in Porto, Portugal.



2 M. Järvisalo and E. Oikarinena parti
ular proof system in the sense that the propagation me
hanisms applied bythe solver apply the deterministi
 dedu
tion rules in the proof system, whereas thenondeterministi
 bran
hing/splitting rule of the proof system is made deterministi
through bran
hing heuristi
s present in typi
al solvers. From the opposite point ofview, a solver 
an be analyzed by investigating the power of an abstra
tion of thesolver as the proof system the solver implements. Due to this strong interplay be-tween theory and pra
ti
e, the study of the relative e�
ien
y of these proof systemsreveals important new viewpoints and explanations for the su

esses and failuresof parti
ular solver te
hniques.A way of examining the best-
ase performan
e of solver algorithms is providedby (propositional) proof 
omplexity theory (Cook and Re
khow 1979; Beame andPitassi 1998), whi
h 
on
entrates on studying the relative power of the proof sys-tems underlying solver algorithms in terms of the shortest existing proofs in thesystems. A large (superpolynomial) di�eren
e in the minimal length of proofs avail-able in di�erent proof systems for a family of Boolean expressions reveals that solverimplementations of these systems are inherently di�erent in strength. While su
hproof 
omplexity theoreti
 studies are frequent in the 
losely related �eld of propo-sitional satis�ability (SAT), where typi
al solvers have been shown to be based onre�nements of the well-known Resolution proof system (Beame et al. 2004), this hasnot been the 
ase for ASP. Espe
ially, the inferen
e te
hniques applied in 
urrentstate-of-the-art ASP solvers have been 
hara
terized by a family of tableau-styleASP proof systems for normal logi
 programs only very re
ently (Gebser and S
haub2006b), with some related proof 
omplexity theoreti
 investigations (Anger et al.2006) and generalizations (Gebser and S
haub 2007). The 
lose relation of ASPand SAT and the respe
tive theoreti
al underpinning of pra
ti
al solver te
hniqueshas also re
eived little attention up until re
ently (Giun
higlia and Maratea 2005;Gebser and S
haub 2006a), although the �elds 
ould gain mu
h by further studieson these 
onne
tions.This work 
ontinues in part bridging the gap between ASP and SAT. In�uen
edby Tseitin's Extended Resolution proof system (Tseitin 1969) for 
lausal formu-las, we introdu
e Extended ASP Tableaux, an extended tableau 
al
ulus based onthe proof system in (Gebser and S
haub 2006b). The motivations for ExtendedASP Tableaux are many-fold. Theoreti
ally, Extended Resolution has proven tobe among the most powerful known proof systems, equivalent to, for example, ex-tended Frege systems; no exponential lower bounds for the lengths of proofs areknown for Extended Resolution. We study the power of Extended ASP Tableaux,showing a tight 
orresponden
e with Extended Resolution.The 
ontributions of this work are not only of theoreti
al nature. Extended ASPTableaux is in fa
t based on adding stru
ture into programs by introdu
ing addi-tional redundant rules. On the pra
ti
al level, the stru
ture of problem instan
es hasan important role in both ASP and SAT solving. Typi
ally, it is widely believed thatredundan
y 
an and should be removed for pra
ti
al e�
ien
y. However, the powerof Extended ASP Tableaux reveals that this is not generally the 
ase, and su
hredundan
y removing simpli�
ation me
hanisms 
an drasti
ally hinder e�
ien
y.In addition, we 
ontribute by studying the e�e
t of redundan
y on the e�
ien
y of
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 Programming 3a variety of ASP solvers. The results show that the role of redundan
y in programsis not as simple as typi
ally believed, and 
ontrolled addition of redundan
y may infa
t prove to be relevant in further strengthening the robustness of 
urrent solverte
hniques.The rest of this arti
le is organized as follows. After preliminaries on ASP andSAT (Se
tion 2), the relationship of Resolution and ASP Tableaux proof systemsand 
on
epts related to the 
omplexity of proofs are dis
ussed (Se
tion 3). By in-trodu
ing the Extended ASP Tableaux proof system (Se
tion 4), proof 
omplexityand simpli�
ation are then studied with respe
t to Extended ASP Tableaux (Se
-tion 5). Experimental results related to Extended ASP Tableaux and redundantrules in normal logi
 programs are presented in Se
tion 6.2 PreliminariesAs preliminaries we review basi
 
on
epts related to answer set programming (ASP)in the 
ontext of normal logi
 programs, propositional satis�ability (SAT), andtranslations between ASP and SAT.2.1 Normal Logi
 Programs and Stable ModelsWe 
onsider normal logi
 programs (NLPs) in the propositional 
ase. In the followingwe will review some standard 
on
epts related to NLPs and stable models.A normal logi
 program Π 
onsists of a �nite set of rules of the form
r : h← a1, . . . , an,∼b1, . . . ,∼bm, (1)where ea
h ai and bj is a propositional atom, and h is either a propositional atom,or the symbol ⊥ that stands for falsity. A rule r 
onsists of a head, head(r) = h,and a body, body(r) = {a1, . . . , an,∼b1, . . . ,∼bm}. The symbol �∼� denotes defaultnegation. A default literal is an atom a, or its default negation ∼a.The set of atoms o

urring in a program Π is atom(Π), and
dlit(Π) = {a,∼a | a ∈ atom(Π)}is the set of default literals in Π. We use the shorthands L+ = {a | a ∈ L} and

L− = {a | ∼a ∈ L} for a set L of default literals, and ∼A = {∼a | a ∈ A} for aset A of atoms. This allows the shorthand
head(r)← body(r)+ ∪∼body(r)−for (1). A rule r is a fa
t if body(r) = ∅. Furthermore, we use the shorthands

head(Π) = {head(r) | r ∈ Π} and
body(Π) = {body(r) | r ∈ Π}.In ASP, we are interested in stable models (Gelfond and Lifs
hitz 1988) (or answersets) of a program Π. An interpretation M ⊆ atom(Π) de�nes whi
h atoms of Πare true (a ∈ M) and whi
h are false (a 6∈ M). An interpretation M ⊆ atom(Π) isa (
lassi
al) model of Π if and only if body(r)+ ⊆M and body(r)− ∩M = ∅ imply
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head(r) ∈ M for ea
h rule r ∈ Π. A model M of a program Π is a stable modelof Π if and only if there is no model M ′ ⊂M of ΠM , where

ΠM = {head(r)← body(r)+ | r ∈ Π and body(r)− ∩M = ∅}is 
alled the Gelfond-Lifs
hitz redu
t of Π with respe
t to M . We say that a pro-gram Π is satis�able if it has a stable model, and unsatis�able otherwise.The positive dependen
y graph of Π, denoted by Dep+(Π), is a dire
ted graphwith atom(Π) and
{〈b, a〉 | ∃r ∈ Π su
h that b = head(r) and a ∈ body(r)+}as the sets of verti
es and edges, respe
tively. A non-empty set L ⊆ atom(Π) is aloop in Dep+(Π) if for any a, b ∈ L there is a path of non-zero length from a to bin Dep+(Π) su
h that all verti
es in the path are in L. We denote by loop(Π) theset of all loops in Dep+(Π). A NLP is tight if and only if loop(Π) = ∅. Furthermore,the external bodies of a set A of atoms in Π is

eb(A) = {body(r) | r ∈ Π, head(r) ∈ A, body(r)+ ∩A = ∅}.A set U ⊆ atom(Π) is unfounded if eb(U) = ∅. We denote the greatest unfoundedset, that is, the union of all unfounded sets, of Π by gus(Π).A splitting set (Lifs
hitz and Turner 1994) for a NLP Π is any set U ⊆ atom(Π)su
h that for every r ∈ Π, if head(r) ∈ U , then body(r)+ ∪ body(r)− ⊆ U . Thebottom of Π relative to U is
bottom(Π, U) = {r ∈ Π | atom({r}) ⊆ U},and the top of Π relative to U is

top(Π, U) = Π \ bottom(Π, U).The top 
an be partially evaluated with respe
t to an interpretation X ⊆ U . Theresult is a program eval(top(Π, U), X) that 
ontains the rule
head(r)← (body(r)+ \ U),∼(body(r)− \ U)for ea
h r ∈ top(Π, U) su
h that body(r)+ ∩ U ⊆ X and (body(r)− ∩ U) ∩X = ∅.Given a splitting set U for a NLP Π, a solution to Π with respe
t to U is a pair 〈X, Y 〉su
h that X ⊆ U , Y ⊆ atom(Π) \ U , X is a stable model of bottom(Π, U), and Yis a stable model of eval(top(Π, U), X). In this work we will apply the splitting settheorem (Lifs
hitz and Turner 1994) that relates solutions with stable models.Theorem 2.1 ((Lifs
hitz and Turner 1994)) Given a normal logi
 program Πand a splitting set U for Π, an interpretation M ⊆ atom(Π) is a stable model of Πif and only if 〈M ∩ U, M \ U〉 is a solution to Π with respe
t to U .2.2 Propositional Satis�abilityLet X be a set of Boolean variables. Asso
iated with every variable x ∈ X thereare two literals, the positive literal, denoted by x, and the negative literal, denoted



Theory and Pra
ti
e of Logi
 Programming 5by x̄. A 
lause is a disjun
tion of distin
t literals. We adopt the standard 
onventionof viewing a 
lause as a �nite set of literals and a CNF formula as a �nite set of
lauses. The set of variables appearing in a 
lause C (a set C of 
lauses, respe
tively)is denoted by var(C) (var(C), respe
tively).A truth assignment τ asso
iates a truth value τ(x) ∈ {false, true} with ea
hvariable x ∈ X . A truth assignment satis�es a set of 
lauses if and only if it satis�esevery 
lause in it. A 
lause is satis�ed if and only if it 
ontains at least one satis�edliteral, where a literal x (x̄, respe
tively) is satis�ed if τ(x) = true (τ(x) = false,respe
tively). A set of 
lauses is satis�able if there is a truth assignment that satis�esit, and unsatis�able otherwise. 2.3 SAT as ASPThere is a natural linear-size translation from sets of 
lauses to normal logi
 pro-grams so that the stable models of the en
oding represent the satisfying truthassignments of the original set of 
lauses faithfully, that is, there is a bije
tive
orresponden
e between the satisfying truth assignments and stable models of thetranslation (Niemelä 1999). Given a set C of 
lauses, this translation nlp(C) in-trodu
es a new atom c for ea
h 
lause C ∈ C, and atoms ax and âx for ea
hvariable x ∈ var(C). The resulting NLP is then
nlp(C) = {ax ← ∼âx. âx ← ∼ax | x ∈ var(C)} ∪ (2)

{⊥ ← ∼c | C ∈ C} ∪ (3)
{c← ax | x ∈ C, C ∈ C, x ∈ var(C)} ∪ (4)
{c← ∼ax | x̄ ∈ C, C ∈ C, x ∈ var(C)}. (5)The rules (2) en
ode that ea
h variable must be assigned an unambiguous truthvalue, the rules in (3) that ea
h 
lause in C must be satis�ed, while (4) and (5)en
ode that ea
h 
lause is satis�ed if at least one of its literals is satis�ed.Example 2.2 The set C = {{x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}} of 
lauses is representedby the normal logi
 program

nlp(C) = { ax ← ∼âx. âx ← ∼ax. ay ← ∼ây. ây ← ∼ay.

⊥ ← ∼c1. ⊥ ← ∼c2. ⊥ ← ∼c3. ⊥ ← ∼c4.

c1 ← ax. c1 ← ay. c2 ← ax. c2 ← ∼ay.

c3 ← ∼ax. c3 ← ay. c4 ← ∼ax. c4 ← ∼ay }.2.4 ASP as SATContrarily to the 
ase of translating SAT into ASP, there is no modular1 and faith-ful translation from normal logi
 programs to propositional logi
 (Niemelä 1999).
1 Intuitively, for a modular translation, adding a set of fa
ts to a program leads to a lo
al 
hangenot involving the translation of the rest of the program (Niemelä 1999).



6 M. Järvisalo and E. OikarinenMoreover, any faithful translation is potentially of exponential size when additionalvariables are not allowed (Lifs
hitz and Razborov 2006)2. However, for any tightprogram Π it holds that the answer sets of Π 
an be 
hara
terized faithfully by thesatisfying truth assignments of a linear-size propositional formula 
alled Clark's
ompletion (Clark 1978; Fages 1994) of Π, de�ned using a Boolean variable xa forea
h a ∈ atom(Π) as
C(Π) =

∧

h∈atom(Π)∪{⊥}

(

xh ↔
∨

r∈rule(h)

(

∧

b∈body(r)+

xb ∧
∧

b∈body(r)−

x̄b

))

, (6)where rule(h) = {r ∈ Π | head(r) = h}. Noti
e that there are the spe
ial 
ases(i) if h is ⊥ then the equivalen
e be
omes the negation of the right hand side,(ii) if h is a fa
t, then the equivalen
e redu
es to the 
lause {xh}, and (iii) if anatom h does not appear in the head of any rule then the equivalen
e redu
es to the
lause {x̄h}.In this work, we will 
onsider the 
lausal representation of Boolean formulas.A linear-size 
lausal translation of C(Π) is a
hieved by introdu
ing additionally anew Boolean variable xB for ea
h B ∈ body(Π). Using the new variables for thebodies, we arrive at the 
lausal 
ompletion
comp(Π) =

⋃

B∈body(Π)

{

xB ≡
∧

a∈B+

xa ∧
∧

b∈B−

x̄b

}

∪
⋃

B∈body(rule(⊥))

{{x̄B}} (7)
∪

⋃

h∈head(Π)\{⊥}

{

xh ≡
∨

B∈body(rule(h))

xB

} (8)
∪

⋃

a∈atom(Π)\head(Π)

{{x̄a}}, (9)where the shorthands x ≡
∧

xi∈X xi and x ≡
∨

xi∈X xi stand for the sets of 
lauses
{x, x̄1, . . . , x̄n} ∪

⋃

xi∈X{x̄, xi} and ⋃xi∈X{x, x̄i} ∪ {x̄, x1, . . . , xn}, respe
tively.Example 2.3 For the normal logi
 program Π = {a← b,∼a. b← c. c← ∼b}, the
lausal 
ompletion is
comp(Π) = {{x{b,∼a}, xa, x̄b}, {x̄{b,∼a}, x̄a}, {x̄{b,∼a}, xb},

{x{c}, x̄c}, {x̄{c}, xc}, {x{∼b}, xb}, {x̄{∼b}, x̄b}, {xa, x̄{b,∼a}},

{x̄a, x{b,∼a}}, {xb, x̄{c}}, {x̄b, x{c}}, {xc, x̄{∼b}}}, {x̄c, x{∼b}}.

2 However, polynomial-size propositional en
odings using extra variables are known, see (Ben-Eliyahu and De
hter 1994; Lin and Zhao 2003; Janhunen 2006). Also, ASP as PropositionalSatis�ability approa
hes for solving normal logi
 programs have been developed, for example,
assat (Lin and Zhao 2004) (based on in
rementally adding�possibly exponentially many�loopformulas) and asp-sat (Giun
higlia et al. 2006) (based on generating a supported model (Brassand Dix 1995) of the program and testing its minimality�thus avoiding exponential spa
e
onsumption).
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 Programming 73 Proof Systems for ASP and SATIn this se
tion we review 
on
epts related to proof 
omplexity (Cook and Re
k-how 1979; Beame and Pitassi 1998) in the 
ontext of this work, and dis
uss therelationship of Resolution and ASP Tableaux (Gebser and S
haub 2006b).3.1 Propositional Proof Systems and ComplexityFormally, a (propositional) proof system is a polynomial-time 
omputable predi-
ate S su
h that a propositional expression E is unsatis�able if and only if thereis a proof P for whi
h S(E, P ) holds. A proof system is thus a polynomial-timepro
edure for 
he
king the 
orre
tness of proofs in a 
ertain format. While proof
he
king is e�
ient, �nding short proofs may be di�
ult, or, generally, impossiblesin
e short proofs may not exist for a too weak proof system. As a measure ofhardness of proving unsatis�ability of an expression E in a proof system S, the(proof) 
omplexity of E in S is the length of the shortest proof for E in S. For afamily {En} of unsatis�able expressions over in
reasing number of variables, the(asymptoti
) 
omplexity of {En} is measured with respe
t to the sizes of En.For two proof systems S and S′, we say that S′ polynomially simulates S iffor all families {En} it holds that CS′(En) ≤ p(CS(En)) for all En, where p is apolynomial, and CS and CS′ are the 
omplexities in S and S′, respe
tively. If Ssimulates S′ and vi
e versa, then S and S′ are polynomially equivalent. If there isa family {En} for whi
h S′ does not polynomially simulate S, we say that {En}separates S from S′. If S simulates S′, and there is a family {En} separating Sfrom S′, then S is more powerful than S′.3.2 ResolutionThe well-known Resolution proof system (RES) for sets of 
lauses is based on theresolution rule. Let C, D be 
lauses, and x a Boolean variable. The resolution rulestates that we 
an dire
tly derive C ∪ D from {x} ∪ C and {x̄} ∪ D by resolvingon x.A RES derivation of a 
lause C from a set C of 
lauses is a sequen
e of 
lauses
π = (C1, C2, . . . , Cn), where Cn = C and ea
h Ci, where 1 ≤ i < n, is either(i) a 
lause in C (an initial 
lause), or (ii) derived with the resolution rule from two
lauses Cj , Ck, where j, k < i (a derived 
lause). The length of π is n, the numberof 
lauses o

urring in it. Any derivation of the empty 
lause ∅ from C is a RESproof for (the unsatis�ability of) C.Any RES proof π = (C1, C2, . . . , Cn = ∅) 
an be represented as a dire
ted a
y
li
graph, in whi
h the leafs are initial 
lauses and other nodes are derived 
lauses.There are edges from Ci and Cj to Ck if and only if Ck has been dire
tly derivedfrom Ci and Cj using the resolution rule. Many Resolution re�nements, in whi
hthe stru
ture of the graph representation is restri
ted, have been proposed andstudied. Of parti
ular interest here is Tree-like Resolution (T-RES), in whi
h it isrequired that proofs are represented by trees. This implies that a derived 
lause,



8 M. Järvisalo and E. Oikarinenif subsequently used multiple times in the proof, must be derived anew ea
h timefrom initial 
lauses.
T-RES is a proper RES re�nement, that is, RES is more powerful than T-RES (Ben-Sasson et al. 2004). On the other hand, it is well known that the DPLL method (Davisand Putnam 1960; Davis et al. 1962), the basis of most state-of-the-art SAT solvers,is polynomially equivalent to T-RES. However, 
on�i
t-learning DPLL is more pow-erful than T-RES, and polynomially equivalent to RES under a slight generaliza-tion (Beame et al. 2004). 3.3 ASP TableauxAlthough ASP solvers for normal logi
 programs have been available for many years,the dedu
tion rules applied in su
h solvers have only re
ently been formally de�nedas a proof system, whi
h we will here refer to as ASP Tableaux or ASP-T (Gebserand S
haub 2006b).An ASP tableau for a NLP Π is a binary tree of the following stru
ture. Theroot of the tableau 
onsists of the rules Π and the entry F⊥ for 
apturing that ⊥is always false. The non-root nodes of the tableau are single entries of the form Taor Fa, where a ∈ atom(Π) ∪ body(Π). As typi
al for tableau methods, entries aregenerated by extending a bran
h (a path from the root to a leaf node) by applyingone of the rules in Figure 1; if the prerequisites of a rule hold in a bran
h, thebran
h 
an be extended with the entries spe
i�ed by the rule. For 
onvenien
e, weuse shorthands tl and f l for default literals:

tl =

{

Ta, if l = a is positive,
Fa, if l = ∼a is negative; and

f l =

{

Ta, if l = ∼a is negative,
Fa, if l = a is positive.A bran
h is 
losed under the dedu
tion rules (b)�(i) if the bran
h 
annot beextended using the rules. A bran
h is 
ontradi
tory if there are the entries Taand Fa for some a. A bran
h is 
omplete if it is 
ontradi
tory, or if there is theentry Ta or Fa for ea
h a ∈ atom(Π) ∪ body(Π) and the bran
h is 
losed underthe dedu
tion rules (b)�(i). A tableau is 
ontradi
tory, if all its bran
hes in are
ontradi
tory, and non-
ontradi
tory otherwise. A tableau is 
omplete if all itsbran
hes are 
omplete. A 
ontradi
tory tableau from Π is an ASP-T proof for (theunsatis�ability of) Π. The length of an ASP-T proof is the number of entries in it.Example 3.1 An ASP-T proof for the NLP Π = {a ← b,∼a. b ← c. c ← ∼b} isshown in Figure 2, with the rule applied for dedu
ing ea
h entry given in paren-theses. For example, the entry Fa has been dedu
ed from a ← b,∼a in Π and theentry T{b,∼a} in the left bran
h by applying the rule (g) Ba
kward True Body. Onthe other hand, T{b,∼a} has been dedu
ed from a← b,∼a in Π and the entry Tain the left bran
h by applying the rule (i§), that is, rule (i) by the fa
t that the
ondition § �Ba
kward True Atom� is ful�lled (in Π, the only body with atom a in
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Tφ Fφ

(♮)(a) Cut
h← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}(b) Forward True Body F{l1, . . . , li, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li(
) Ba
kward False Body
h← l1, . . . , ln
T{l1, . . . , ln}

Th(d) Forward True Atom h← l1, . . . , ln
Fh

F{l1, . . . , ln}(e) Ba
kward False Atom
h← l1, . . . , li, . . . , ln

f li

F{l1, . . . , li, . . . , ln}(f) Forward False Body T{l1, . . . , li, . . . , ln}

tli(g) Ba
kward True Body
FB1, . . . ,FBm

Fh

(♭)(h) FB1, . . . ,FBi−1, FBi+1, . . . ,FBm

Th

TBi

(♯)(i)(♮): Appli
able when φ ∈ atom(Π) ∪ body(Π).(♭): Appli
able when one of the following 
onditions holds:
§ (�Forward False Atom�), † (�Well-Founded Negation�), or ‡ (�Forward Loop�).(♯): Appli
able when one of the following 
onditions holds:
§ (�Ba
kward True Atom�), † (�Well-Founded Justi�
ation�), or ‡ (�Ba
kward Loop�).(§): Appli
able when body(rule(h)) = {B1, . . . , Bm}.(†): Appli
able when
{B1, . . . , Bm} ⊆ body(Π) and h ∈ gus({r ∈ Π | body(r) 6∈ {B1, . . . Bm}}).(‡): Appli
able when h ∈ L, L ∈ loop(Π), and eb(L) = {B1, . . . , Bm} all hold.Fig. 1. Rules in ASP Tableaux.the head is {b,∼a}). The tableau in Figure 2 has two 
losed bran
hes:

(Π ∪ {F⊥},Ta,T{b,∼a},Fa) and
(Π ∪ {F⊥},Fa,F{b,∼a},Fb,T{∼b},Tc,T{c},Tb).These bran
hes share the 
ommon pre�x (Π ∪ {F⊥}).Any bran
h B des
ribes a partial assignment A on atom(Π)∪body(Π) in a naturalway, that is, if there is an entry Ta (Fa, respe
tively) in B for a ∈ atom(Π) ∪

body(Π), then (a, true) ∈ A ((a, false) ∈ A, respe
tively). ASP-T is a sound and
omplete proof system for normal logi
 programs, that is, there is a 
omplete non-
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Ta Fa

F{b,∼a}
Fb
T{∼b}
Tc
T{c}
Tb
×

(e)(
)(b)(d)(b)(d)Fa (g)
×

F⊥

a← b,∼a
b← c

T{b,∼a} (i�)c← ∼b

Fig. 2. An ASP-T proof for Π = {a← b,∼a. b← c. c← ∼b}.
ontradi
tory ASP tableau from Π if and only if Π is satis�able (Gebser and S
haub2006b). Thus the assignment A des
ribed by a 
omplete non-
ontradi
tory bran
hgives a stable model M = {a ∈ atom(Π) | (a, true) ∈ A} of Π.As argued in (Gebser and S
haub 2006b), 
urrent ASP solver implementationsare tightly related to ASP-T, with the intuition that the 
ut rule is made determin-isti
 with de
ision heuristi
s, while the dedu
tion rules des
ribe the propagationme
hanism in ASP solvers. For instan
e, the noMore++ system (Anger et al. 2005)is a deterministi
 implementation of the rules (a)�(g),(h§),(h†), and (i§), while
smodels (Simons et al. 2002) applies the same rules with the 
ut rule restri
tedto atom(Π).Interestingly, ASP-T and T-RES are polynomially equivalent under the trans-lations comp and nlp. Although the similarity of unit propagation in DPLL andpropagation in ASP solvers is dis
ussed in (Giun
higlia and Maratea 2005; Gebserand S
haub 2006a), here we want to stress the dire
t 
onne
tion between ASP-Tand T-RES. In detail, T-RES and ASP-T are equivalent in the sense that (i) given anarbitrary NLP Π, the length of minimal T-RES proofs for comp(Π) is polynomiallybounded in the the length of minimal ASP-T proofs for Π, and (ii) given an arbi-trary set C of 
lauses, the length of minimal ASP-T proofs for nlp(C) is polynomiallybounded in the length of minimal T-RES proofs for C.Theorem 3.2 T-RES and ASP-T are polynomially equivalent proof systems in thesense that(i) 
onsidering tight normal logi
 programs, T-RES under the translation comp polyno-mially simulates ASP-T, and(ii) 
onsidering sets of 
lauses, ASP-T under the translation nlp polynomially simulates
T-RES.In the following we give detailed proofs for the two parts of Theorem 3.2 followedby illustrating examples.In the proof of the �rst part of Theorem 3.2, we use a 
on
ept of a (binary) 
uttree 
orresponding to an ASP-T proof. Given an ASP-T proof T for a normal logi
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 Programming 11program Π, the 
orresponding 
ut tree is obtained as follows. Starting from theroot of T , we repla
e ea
h non-leaf entry generated by a dedu
tion rule in T by anappli
ation of the 
ut rule on the 
orresponding entry. For example, the 
ut tree T ′
orresponding to the ASP-T proof T in Figure 2 is given in Figure 3 (left).Proof of Theorem 3.2 (i)Let T be an ASP-T proof for a tight normal logi
 program Π. Without loss ofgenerality, we will assume that bran
hes in T have not been extended further afterthey have be
ome 
ontradi
tory. We now show that we 
an 
onstru
t a T-RESproof π for comp(Π) using the 
ut tree T ′ 
orresponding to T . Furthermore, weshow that for su
h a proof π it holds that, given any pre�x p of an arbitrarybran
h B in T ′ there is a 
lause C ∈ π 
ontradi
tory to the partial assignmentin p, that is, there is the entry Fa (Ta) for a ∈ atom(Π) ∪ body(Π) in p for ea
h
orresponding positive literal xa (negative literal x̄a) in C.Consider �rst the partial assignment in an arbitrary (full) bran
hB in T ′. Assumethat there is no 
lause in comp(Π) 
ontradi
tory to the partial assignment in B,that is, we 
an obtain a truth assignment τ based on the entries in B su
h that every
lause in comp(Π) is satis�ed in τ . But this leads to 
ontradi
tion sin
e comp(Π) issatis�ed if and only if Π is satis�ed. Thus there is a 
lause C ∈ comp(Π) 
ontradi
-tory to the partial assignment in B, and we take the 
lause C into our resolutionproof π.Assume that we have 
onstru
ted π su
h that for any pre�x p of length n for anybran
h B in T ′, there is a 
lause C ∈ π 
ontradi
tory to the partial assignment in p.Consider an arbitrary pre�x p of length n− 1. Now, in T ′ we have the pre�xes p′and p′′ of length n whi
h have been obtained through extending p by applying the
ut rule on some a ∈ atom(Π)∪ body(Π). In other words, p′ is p with Ta appendedin the end (p′′ is p with Fa appended in the end). Sin
e p′ (p′′, respe
tively) isof length n, there is a 
lause C (D, respe
tively) in π 
ontradi
tory to the partialassignment in p′ (p′′, respe
tively). Now there are two possibilities. If C = {x̄a}∪C′and D = {xa} ∪ D′, we 
an resolve on xa adding C′ ∪ D′ to π. Thus we have a
lause C′∪D′ ∈ π 
ontradi
tory to the partial assignment in the pre�x p. Otherwisewe have that x̄a 6∈ C or xa 6∈ D, and hen
e either C ∈ π or D ∈ π is 
ontradi
toryto the partial assignment in the pre�x p.When rea
hing the root of T ′, we must have derived ∅ sin
e it is the only 
lause
ontradi
tory with the empty assignment. Furthermore, the T-RES derivation π isof polynomial length with respe
t to T ′ (and T ).The following example illustrates the RES proof 
onstru
tion used above in theproof of Theorem 3.2 (i).Example 3.3 Consider again the tight NLP Π = {a ← b,∼a. b ← c. c ← ∼b}from Example 2.3 and the ASP-T proof T for Π in Figure 2. We now 
onstru
ta T-RES proof for the 
ompletion comp(Π) (see Example 2.3 for details) usingthe strategy from the proof of Theorem 3.2 (i). First, T is transformed into a 
uttree T ′ given in Figure 3 (left). Consider now the two leftmost bran
hes in T ′. Thepartial assignment in the bran
h with entries Ta and F{b,∼a} is 
ontradi
tory
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Ta Fa

T{∼b}

F{b,∼a}

Tb

F{∼b}

Fb

FcTc

F{c}T{c}

T{b, ∼a}

T{b, ∼a}F{b,∼a}

{xa}

{xb} {x{b,∼a}, xa, x̄b}

{xb, x̄{∼b}} {x{∼b}, xb}

{xc, x̄{∼b}}

{x{c}, x̄c}

{xa, x̄{b,∼a}}

∅

{x̄a}

{x̄a, x{b,∼a}} {x{b,∼a}, xa}

{xb, x̄{c}}

{x̄{b,∼a}, x̄a}

{xb, x̄c}Fig. 3. Left: 
ut tree based on the ASP-T proof in Figure 2. Right: resulting T-RES proof.to 
lause {x̄a, x{b,∼a}} in comp(Π), and the partial assignment in the bran
h withentries Ta and T{b,∼a} is 
ontradi
tory to 
lause {x̄{b,∼a}, x̄a} in comp(Π). Thuswe resolve on x{b,∼a} and obtain the 
lause {x̄a}, whi
h is 
ontradi
tory to thesingle entry Ta in the pre�x of the two leftmost bran
hes in T ′. Similarly, we 
an
onstru
t a resolution tree for 
lause {xa} 
orresponding to the right side of T ′. We�nish the proof by resolving on xa. The 
omplete T-RES proof 
orresponding to the
ut tree T ′ is shown in Figure 3 (right).Proof of Theorem 3.2 (ii)Let π = (C1, . . . , Cn = ∅) be a T-RES refutation of a set C of 
lauses. Re
all thatea
h derived 
lause Ci in π is obtained by resolving on x from Cj = C ∪ {x} and
Ck = D ∪ {x̄} for some j, k < i.An ASP-T proof T for nlp(C) is obtained from π as follows. We start from Cn,whi
h is obtained from 
lauses Cj = {x} and Ck = {x̄} by resolving on x ∈ var(C),and apply in T the 
ut rule on ax 
orresponding to x. Then we re
ursively 
ontinuethe same way with Cj (Ck, respe
tively) in the generated bran
h with Fax (Tax,respe
tively). Sin
e π is tree-like, ea
h 
lause in the pre�x (C1, . . . , Cmax{j,k}) of πis either used in the derivation of Cj or Ck, but not in both. By 
onstru
tion whenrea
hing C1 the bran
hes of T 
orrespond one-to-one to the paths in π (seen as atree) from Cn to the leaf 
lauses of π. For a parti
ular leaf 
lause C, we have forea
h literal l ∈ C (l = x or l = x̄) 
ontradi
ting entries for ax in the 
orrespondingbran
h of T , that is, Fax if l = x and Tax if l = x̄. Now we 
an dire
tly dedu
efor ea
h Fax the entry F{ax} and for ea
h Tax the entry F{∼ax}. These entriestogether will allow us to dire
tly dedu
e Fc (all the bodies of rules with atom c asthe head are false). Sin
e we have ⊥ ← ∼c ∈ nlp(C), we 
an dedu
e Tc, and thebran
h be
omes 
ontradi
tory.The following example illustrates the strategy used in the proof of Theorem 3.2 (ii).
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 Programming 13Example 3.4 Re
all the set C = {{x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}} of 
lauses and the
orresponding normal logi
 program nlp(C) presented in Example 2.2. The set C of
lauses has a T-RES refutation π = ({x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}, {y}, {ȳ}, ∅). Nowwe 
onstru
t an ASP-T proof T for nlp(C) from π as done in the proof of Theo-rem 3.2 (ii). The resulting ASP-T proof T is presented in Figure 4. In the tableauwe have omitted entries of the form T{l} and F{l} for bodies 
onsisting of a singledefault literal. The empty 
lause is obtained resolving on y from {y} and {ȳ}, andthus we start with applying the 
ut rule on ay. The 
lause {ȳ} is obtained resolvingon x from {x, ȳ} and {x̄, ȳ}. We 
ontinue in the bran
h with Tay by applying the
ut rule on ax. Consider now the bran
h with Tay and Tax in the tableau. Thebran
h 
orresponds to the 
lause {x̄, ȳ} in C. Thus we arrive in a 
ontradi
tionby dedu
ing Fc4 from c4 ← ∼ax and c4 ← ∼ay, and Tc4 from ⊥ ← ∼c4. Otherbran
hes be
ome 
ontradi
tory similarly.
Fc1

Tc1

×

Fay

nlp(C)
F⊥

Fax

Tay

Tax Fax
Tax

×
Tc3

×

Fc3Fc2

Tc2

×

Fc4

Tc4Fig. 4. An ASP-T proof for nlp(C) resulting from a T-RES proof
π = ({x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}, {y}, {ȳ}, ∅) for C in Example 3.4.4 Extended ASP TableauxWe will now introdu
e an extension rule3 to ASP-T, whi
h results in Extended ASPTableaux (E-ASP-T), an extended tableau proof system for ASP. The idea is thatone 
an de�ne names for 
onjun
tions of default literals.De�nition 4.1 Given a normal logi
 program Π and two literals l1, l2 ∈ dlit(Π),the (elementary) extension rule in E-ASP-T adds the rule p ← l1, l2 to Π, where

p 6∈ atom(Π) ∪ {⊥}.It is essential that p is a new atom for preserving satis�ability. After an appli
ationof the extension rule one 
onsiders the program Π′ = Π∪{p← l1, l2} instead of theoriginal programΠ. Noti
e that atom(Π′) = atom(Π)∪{p}. Thus when the extensionrule is applied several times, the atoms introdu
ed in previous appli
ations of therule 
an be used in de�ning further new atoms (see the forth
oming Example 4.2).
3 Noti
e that the extension rule introdu
ed here di�ers from the one proposed in (Hai et al. 2003)in the 
ontext of theorem proving.
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onvenient, we will apply a generalization of the elementary extension rule.By allowing one to introdu
e multiple bodies for p, the general extension rule addsa set of rules
⋃

i

{p← li,1, . . . , li,ki
| p 6∈ atom(Π) ∪ {⊥} and li,k ∈ dlit(Π) for all 1 ≤ k ≤ ki}into Π. Noti
e that equivalent 
onstru
ts 
an be introdu
ed with the elementaryextension rule. For example, bodies with more than two literals 
an be de
omposedwith balan
ed parentheses using additional new atoms.Example 4.2 Consider a normal logi
 program Π su
h that atom(Π) = {a, b}.We apply the general extension rule and add a de�nition for the disjun
tion ofatoms a and b, resulting in a program Π ∪ {c← a. c← b}. An equivalent 
onstru
t
an be introdu
ed by applying the elementary extension rule twi
e: add �rst a rule

d← ∼a,∼b, and then add a rule c← ∼d,∼d.An E-ASP-T proof for (the unsatis�ability of) a program Π is an ASP-T proof
T for Π ∪ E, where E is a set of extending (program) rules generated with theextension rule in E-ASP-T. The length of an E-ASP-T proof is the length of T plusthe number of program rules in E.A key point is that appli
ations of the extension rule do not a�e
t the existen
eof stable models.Theorem 4.3 Extended ASP Tableaux is a sound and 
omplete proof system fornormal logi
 programs.ProofLet T be an E-ASP-T proof for normal logi
 program Π with the set E of extend-ing rules, that is, an ASP-T proof for Π ∪ E. Sin
e ASP-T is sound and 
omplete,there is a 
omplete non-
ontradi
tory bran
h in T if and only if Π ∪ E is satis�-able. The set atom(Π) is a splitting set for Π ∪ E, sin
e head(r) 6∈ atom(Π) ∪ {⊥}for every extending rule r ∈ E. Furthermore, bottom(Π ∪ E, atom(Π)) = Π and
top(Π ∪ E, atom(Π)) = E. By Theorem 2.1, Π ∪E is satis�able if and only if thereis a solution to Π ∪ E with respe
t to atom(Π), that is, there is a stable model
M ⊆ atom(Π) for Π and a stable model N for eval(E, M). Sin
e the rules in E aregenerated using the extension rule (re
all also⊥ 6∈ head(E)), there is a unique stablemodel for eval(E, M) for ea
h M ⊆ atom(Π). Thus there is a solution to Π∪E withrespe
t to atom(Π) if and only if Π is satis�able, and moreover, Π∪E is satis�ableif and only if Π is satis�able, and E-ASP-T is sound and 
omplete.4.1 The Extension Rule and Well-Founded Dedu
tionAn interesting question regarding the possible gains of applying the extension rulein E-ASP-T with the ASP tableau rules is whether the additional extension ruleallows one to simulate well-founded dedu
tion (rules (h†),(h‡),(i†), and (i‡)) with
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tion rules ((b)�(g),(h§),(i§))4. We now show that this is not the 
ase;the extension rule does not allow us to simulate reasoning related to unfoundedsets and loops. This is implied by Theorem 4.4, whi
h states that, by removingrules (h†),(h‡),(i†), and (i‡) from E-ASP-T, the resulting tableau method be
omesin
omplete for NLPs.Theorem 4.4 Using only tableau rules (a)�(g), (h§) and (i§), and the extensionrule does not result in a 
omplete proof system for normal logi
 programs.ProofConsider the NLP Π = {⊥ ← ∼a. a ← b. b ← a}. Although Π is unsatis�able,in the proof system having only the tableau rules (a)�(g),(h§), and (i§), we 
an
onstru
t a 
omplete and non-
ontradi
tory tableau with a single bran
h
T = (Π ∪ {F⊥},F{∼a} (e),Ta (
),T{b} (i§),Tb (g),T{a} (i§))for Π.Consider an arbitrary set E of extending rules generated using the extension rulein E-ASP-T. Re
all that head(E) ∩ (atom(Π) ∪ {⊥}) = ∅. We 
an form a 
ompletenon-
ontradi
tory tableau T ′ for Π ∪ E as follows.First, de�ne H0 = atom(Π) ∪ {⊥} and
Hi = {h ∈ head(E) |

⋃

r∈rule(h)

(body(r)+ ∪ body(r)−) ⊆
⋃

j<i

Hj}.Thus the sets Hi are used to de�ne a level numbering for the atoms de�ned in theextension E. Furthermore, we de�ne
Ei = {r ∈ Π ∪ E | head(r) ∈

⋃

j≤i

Hj}for all i ≥ 0. Noti
e that E0 = Π, and Π ∪ E =
⋃

i≥0 Ei. We now show usingindu
tion that for ea
h i ≥ 0, the only bran
h B in T 
an be extended into a
omplete non-
ontradi
tory bran
h for Ei using tableau rules (b)�(g), (h§), and (i§).The base 
ase (i = 0) holds by de�nition. Assume that the 
laim holds for i− 1,that is, B 
an be extended into a 
omplete non-
ontradi
tory bran
h B′ for Ei−1.Consider now arbitrary r ∈ Ei. By de�nition body(r)+∪body(r)− ⊆ atom(Ei−1) forea
h r ∈ Ei. Sin
e B′ is 
omplete, it 
ontains entries for ea
h a ∈ atom(Ei−1), andwe 
an dedu
e an entry for body(r) using ASP tableau rule (b) or (f) (dependingon the entries in B′). If the entry T(body(r)) has been dedu
ed, we 
an dedu
e Thfor h = head(r) using (d). Otherwise, we have dedu
ed the entries F(body(r′)) forevery r′ ∈ Ei su
h that h = head(r′), and we 
an dedu
e Fh using (h§). Thuswe have dedu
ed entries for all a ∈ atom(Ei) ∪ body(Ei) and the bran
h is non-
ontradi
tory. Furthermore it is easy to 
he
k that the bran
h is 
losed under thetableau rules (b)�(g),(h§), and (i§).
4 Noti
e that the proof system 
onsisting of tableau rules (a)�(g),(h§), and (i§) amounts to 
om-puting supported models (Gebser and S
haub 2006b).
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omplete and non-
ontradi
tory tableau for Π ∪ E. Sin
e we
annot generate a 
ontradi
tory tableau for Π with tableau rules (a)�(g),(h§), and(i§), we 
annot generate one for Π∪E either. This is in 
ontradi
tion with the fa
tthat Π is unsatis�able. 5 Proof ComplexityIn this se
tion we study proof 
omplexity theoreti
 issues related to E-ASP-T fromseveral viewpoints: we will
• 
onsider the relationship between E-ASP-T and the Extended Resolution proofsystem (Tseitin 1969),
• give an expli
it separation of E-ASP-T from ASP-T, and
• relate the extension rule to the e�e
t of program simpli�
ation on prooflengths in ASP-T.5.1 Relationship with Extended ResolutionThe system E-ASP-T is motivated by Extended Resolution (E-RES), a proof systemoriginally introdu
ed in (Tseitin 1969). The system E-RES 
onsists of the resolutionrule and an extension rule that allows one to expand a set of 
lauses by iterativelyintrodu
ing equivalen
es of the form x ≡ l1 ∧ l2, where x is a new variable, and l1and l2 are literals in the 
urrent set of 
lauses. In other words, given a set C of
lauses, one appli
ation of the extension rule adds the 
lauses {x, l̄1, l̄2}, {x̄, l1},and {x̄, l2} to C. The system E-RES is known to be more powerful than RES; infa
t, E-RES is polynomially equivalent to, for example, extended Frege systems, andno superpolynomial proof 
omplexity lower bounds are known for E-RES. We willnow relate E-ASP-T with E-RES, and show that they are polynomially equivalentunder the translations comp and nlp.Theorem 5.1 E-RES and E-ASP-T are polynomially equivalent proof systems inthe sense that(i) 
onsidering tight normal logi
 programs, E-RES under the translation comp polyno-mially simulates E-ASP-T, and(ii) 
onsidering sets of 
lauses, E-ASP-T under the translation nlp polynomially simu-lates E-RES.Proof(i): Let T be an E-ASP-T proof for a tight NLP Π, that is, T is an ASP-T prooffor Π ∪ E, where E is the set of extending rules generated in the proof. We usethe shorthand xl for the variable 
orresponding to default literal l in comp(Π∪E),that is, xl = xa (xl = x̄a, respe
tively) if l = a (l = ∼a, respe
tively) for a ∈

atom(Π ∪ E). By Theorem 3.2 there is a polynomial RES proof for comp(Π ∪ E).Now 
onsider comp(Π). We apply the extension rule in E-RES in the same orderin whi
h the extension rule in E-ASP-T is applied when generating the set E of
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 Programming 17extending rules. In other words, we apply the extension rule in E-RES as follows forea
h rule r = h ← l1, l2 in E. If body(r) = {l1, l2} ∈ body(Π), then there are the
lauses x{l1,l2} ≡ xl1 ∧ xl2 in comp(Π). If this is the 
ase, we generate the 
lauses
xh ≡ x{l1,l2} with the extension rule in E-RES. Otherwise, that is, if body(r) doesnot have a 
orresponding propositional variable in comp(Π), we generate the 
lauses
xh ≡ x{l1,l2} and x{l1,l2} ≡ xl1 ∧ xl2 . Denote the resulting set of extending 
lausesby E′. Now we noti
e that comp(Π) ∪ E′ = comp(Π ∪ E), and therefore the RESproof for comp(Π ∪ E) is an E-RES proof for comp(Π) in whi
h the extension rulein E-RES is applied to generate the 
lauses in E′.(ii): Let π = (C1, . . . , Cn = ∅) be an E-RES proof for a set C of 
lauses. Let E bethe set of 
lauses in π generated with the extension rule. We introdu
e shorthandsfor atoms 
orresponding to literals, that is, al = ax (al = ∼ax) if l = x (l = x̄) for
x ∈ var(C ∪E). Now, an E-ASP-T proof for nlp(C) is generated as follows. First, weadd the following rules to nlp(C) with the extension rule in E-ASP-T:

ax ← al1 , al2 for ea
h extension x ≡ l1 ∧ l2; (10)
c← al for ea
h literal l ∈ C for a 
lause C ∈ π su
h that C 6∈ C; and (11)
p1 ← c1 and pi ← ci, pi−1 for ea
h Ci ∈ π and 2 ≤ i < n. (12)Then, from i = 1 to n − 1 apply the 
ut rule on pi in the bran
h with Tpj forall j < i. We now show that for ea
h i the bran
h with Fpi and Tpj for all j < ibe
omes 
ontradi
tory without further appli
ation of the 
ut rule. First, dedu
e Fcifrom Fpi using the rule (12) for i. One of the following holds for Ci ∈ π: either(a) Ci ∈ C, (b) Ci is a derived 
lause, or (
) Ci ∈ E.(a) If Ci ∈ C we 
an dedu
e Tci from ⊥ ← ∼ci ∈ nlp(C), and the bran
h be
omes
ontradi
tory.(b) If Ci is a derived 
lause, that is, Ci is obtained from Cj and Ck for j, k < i resolvingon x, then Ci = (Ck ∪Cj)\{x, x̄}. For all the literals l ∈ Ci we dedu
e fal from therules (11) in the extension. From Tpj and Tpk we dedu
e Tcj and Tck using therule (12) in the extension for j and k, respe
tively. Furthermore be
ause we haveentries fal for ea
h l in (Ck ∪Cj) \ {x, x̄}, we dedu
e Tax and Fax and the bran
hbe
omes 
ontradi
tory. Re
all that there is a rule c← al for ea
h 
lause C ∈ π andliteral l ∈ C either in nlp(C) or in the extension (rules in (11)).(
) If Ci ∈ E, then Ci is of the form {x, l̄1, l̄2}, {x̄, l1}, or {x̄, l2} for x ≡ l1 ∧ l2.For instan
e, if Ci = {x̄, l1}, then from ci ← ∼ax and ci ← al1 we dedu
e Taxand fal1 . The bran
h be
omes 
ontradi
tory as T{al1 , al2} and tal1 are dedu
edfrom a rule (10) in the extension. The bran
h be
omes 
ontradi
tory similarly, if Ciis of the form {x, l̄1, l̄2} or {x̄, l2}.Finally, 
onsider the bran
h with Tpi for all i = 1 . . . n−1. The empty 
lause Cn in πis obtained by resolving Cj = {x} and Ck = {x̄} in π for some j, k < n. Thus we 
andedu
e Tcj and Tck from rules (12) for j and k, respe
tively, and furthermore, Taxand Fax from cj ← ax and ck ← ∼ax, resulting in a 
ontradi
tion in the bran
h.The obtained 
ontradi
tory ASP tableau is of linear length with respe
t to π.
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iple Separates Extended ASP Tableaux from ASPTableauxTo exemplify the strength of E-ASP-T, we now 
onsider a family of normal logi
programs {Πn} whi
h separates E-ASP-T from ASP-T, that is, we give an expli
itpolynomial-length proof for Πn for whi
h ASP-T has exponential-length minimalproofs with respe
t to n. We will 
onsider this family also in the experiments re-ported in this arti
le.The program family {PHPn+1
n } in question is the following typi
al en
oding ofthe pigeonhole prin
iple as a normal logi
 program:

PHPn+1
n = {⊥ ← ∼pi,1, . . . ,∼pi,n | 1 ≤ i ≤ n + 1} ∪ (13)

{⊥ ← pi,k, pj,k | 1 ≤ i < j ≤ n + 1, 1 ≤ k ≤ n} ∪ (14)
{pi,j ← ∼p′i,j . p′i,j ← ∼pi,j | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n}. (15)In the program above, pi,j has the interpretation that pigeon i sits in hole j. Therules in (13) require that ea
h pigeon must sit in some hole, and the rules in (14)require that no two pigeons 
an sit in the same hole. The rules in (15) enfor
e thatfor ea
h pigeon and ea
h hole, the pigeon either sits in the hole or does not sit inthe hole. Ea
h PHPn+1

n is unsatis�able sin
e there is no bije
tive mapping from an
(n + 1)-element set to an n-element set.Theorem 5.2 The 
omplexity of {PHPn+1

n } with respe
t to n is(i) polynomial in E-ASP-T, and(ii) exponential in ASP-T.Proof(i): In (Cook 1976) an extending set of 
lauses is added to a 
lausal en
oding CPHP ofthe pigeonhole prin
iple5 so that RES has polynomial-length proofs for the resultingset of 
lauses. By Theorem 5.1 (ii) there is a polynomial-length E-ASP-T proof for
nlp(CPHP) = {pi,j ← ∼p′i,j. p′i,j ← ∼pi,j | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n} ∪

{⊥ ← ∼ci | 1 ≤ i ≤ n + 1} ∪

{⊥ ← ∼cijk | 1 ≤ i < j ≤ n + 1, 1 ≤ k ≤ n} ∪

{ci ← pi,j | 1 ≤ j ≤ n, 1 ≤ i ≤ n + 1} ∪

{cijk ← ∼pi,k. cijk ← ∼pj,k | 1 ≤ i < j ≤ n + 1, 1 ≤ k ≤ n}.For simpli
ity, we keep the names of the atoms pi,j un
hanged in the translation.In more detail, let π = (C1, C2, . . . , Cm = ∅) be the polynomial-length E-RES

5 The parti
ular en
oding, for whi
h there are no polynomial-length RES proofs (Haken 1985), is
CPHP =

S

1≤i≤n+1
{{

Wn
j=1

pi,j}} ∪
S

1≤i<j≤n+1,1≤k≤n{{¬pi,k ∨ ¬pj,k}}.
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 Programming 19proof6 for the 
lausal representation CPHP. Let
EXTl = {el

i,j ← el+1
i,j . el

i,j ← el+1
i,l , el+1

l+1,j | 1 ≤ i ≤ l and 1 ≤ j ≤ l − 1}for 1 < l ≤ n, where ea
h en+1
i,j is pi,j . The extension EXTl 
orresponds the set ofextending 
lauses in (Cook 1976) similarly to the set of rules (10) in part (ii) of theproof of Theorem 5.1. Furthermore, E(π) 
onsists of the sets of rules (11) and (12)de�ned in the proof of Theorem 5.1 (ii). By applying the strategy from the proofof Theorem 5.1 (ii), we obtain a polynomial-length ASP-T proof for

nlp(CPHP) ∪
⋃

1<l≤n

EXTl ∪ E(π).Now, we use the same strategy to 
onstru
t a polynomial ASP-T proof for theprogram
EPHPn+1

n = PHPn+1
n ∪

⋃

1<l≤n

EXTl ∪ E′(π),where E′(π) 
onsists of rules c← al for ea
h literal l ∈ C for ea
h 
lause C ∈ π (thatis, rules as in (11) but without the restri
tion C 6∈ CPHP) together with the rulesin (12). The only di�eren
e 
omes in step (a) in the proof of Theorem 5.1 (ii), thatis, when we have dedu
ed Fc 
orresponding to C ∈ CPHP. Sin
e we do not have therule ⊥ ← ∼c in EPHPn+1
n , we 
annot dedu
e Tc to obtain a 
ontradi
tion. Instead,we 
an dedu
e a 
ontradi
tion without using the ASP-T 
ut rule through a programrule in PHPn+1

n that 
orresponds to the 
lause C. For instan
e, if C = {¬pi,k,¬pj,k},we have the rules c ← ∼pi,k and c ← ∼pj,k in E′(π) and the rule ⊥ ← pi,k, pj,k in
PHPn+1

n . From Fc, we dedu
e Tpi,k and Tpj,k. From F⊥ and ⊥ ← pi,k, pj,k, we de-du
e F{pi,k, pj,k}, and furthermore, from Tpi,k and F{pi,k, pj,k}, we dedu
e Fpj,k.This results in a polynomial-length E-ASP-T proof for PHPn+1
n .(ii): Assume now that there is a polynomial ASP-T proof for PHPn+1

n . By The-orem 3.2, there is a polynomial T-RES proof for comp(PHPn+1
n ). Noti
e that the
ompletion comp(PHPn+1

n ) 
onsists of the 
lausal en
oding CPHP of the pigeonholeprin
iple and additional 
lauses (tautologies) for rules of the form pi,j ← ∼p′i,j,
p′i,j ← ∼pi,j . It is easy to see that these additional tautologies do not a�e
t thelength of the minimal T-RES proofs for comp(PHPn+1

n ). Thus there is a polynomial-length T-RES proof for the 
lausal pigeonhole en
oding. However, this 
ontradi
tsthe fa
t that the 
omplexity of the 
lausal pigeonhole prin
iple is exponential withrespe
t to n for (Tree-like) Resolution (Haken 1985).We 
an also easily obtain a non-tight program family to witness the separationdemonstrated in Theorem 5.2. Consider the family
{PHPn+1

n ∪ {pi,j ← pi,j | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n}},

6 The polynomial-length E-RES proof for CPHP is not des
ribed in detail in (Cook 1976). Detailson the stru
ture of the RES proof 
an be found in (Järvisalo and Junttila 2008). The intuitiveidea is that the extension allows for redu
ing PHP
n+1
n to PHP

n
n−1 with a polynomial numberof resolution steps.
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h is non-tight with the additional self-loops {pi,j ← pi,j}, but preserves (un)satis-�ability of PHPn+1
n for all n. Sin
e the self-loops do not 
ontribute to the proofsfor PHPn+1

n , ASP-T still has exponential-length minimal proofs for these programs,while the polynomial-length E-ASP-T proof presented in the proof of Theorem 5.2is still valid.The generality of the arguments used in the proof of Theorem 5.2 is not limited tothe spe
i�
 family PHPn+1
n of NLPs. For understanding the general idea behind theexpli
it 
onstru
tion of EPHPn+1

n , it is informative to noti
e the following. Insteadof 
onsidering PHPn+1
n , one 
an apply the argument in the proof Theorem 5.2using any tight NLP Π whi
h represents a set of 
lauses C for whi
h (i) there is nopolynomial-length RES proof, but for whi
h (ii) there is a polynomial-length E-RESproof . By property (ii) we know from Theorem 5.1 (ii) that there is a polynomial-length E-ASP-T proof for Π.5.3 Program Simpli�
ation and ComplexityWe will now give an interesting 
orollary of Theorem 5.2, addressing the e�e
t ofprogram simpli�
ation on the length of proofs in ASP-T.Tightly related to the development of e�
ient solver implementations for ASPprograms arising from pra
ti
al appli
ations is the development of te
hniques forsimplifying programs. Pra
ti
ally relevant programs are often generated automat-i
ally, and in the pro
ess a large number of redundant 
onstraints is produ
ed.Therefore e�
ient program simpli�
ation through lo
al transformation rules is im-portant. While various satis�ability-preserving lo
al transformation rules for sim-plifying logi
 programs have been introdu
ed (see (Eiter et al. 2004) for example),the e�e
t of applying su
h transformations on the lengths of proofs has not re
eivedattention.Taking a �rst step into this dire
tion, we now show that even simple transfor-mation rules may have a drasti
 negative e�e
t on proof 
omplexity. Consider thelo
al transformation rule

red(Π) = Π \ {r ∈ Π | head(r) 6∈
⋃

B∈body(Π)

(B+ ∪B−) and head(r) 6= ⊥}.A polynomial-time simpli�
ation algorithm red∗(Π) is obtained by 
losing pro-gram Π under red. Noti
e that we have red∗(EPHPn+1
n ) = PHPn+1

n . Thus, byTheorem 5.2, red∗ transforms a program family having polynomial 
omplexity inASP Tableaux into one with exponential 
omplexity with respe
t to n.The rules removed by red∗ are redundant with respe
t to satis�ability of theprogram in the sense that red∗ preserves visible equivalen
e (Janhunen 2006). Thevisible equivalen
e relation takes the interfa
es of programs into a

ount: atom(Π)is partitioned into v(Π) and h(Π) determining the visible and the hidden atoms in Π,respe
tively. Programs Π1 and Π2 are visibly equivalent, denoted by Π1 ≡v Π2, ifand only if v(Π1) = v(Π2) and there is a bije
tive 
orresponden
e between the stablemodels of Π1 and Π2 mapping ea
h a ∈ v(Π1) onto itself. Now if one de�nes v(Π) =

atom(red∗(Π)) = v(red∗(Π)), that is, assuming that the atoms removed by red∗ are
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 Programming 21hidden in Π, one 
an see that red∗(Π) ≡v Π. Hen
e, even though there is a bije
tive
orresponden
e between the stable models of EPHPn+1
n and red∗(EPHPn+1

n ) =

PHPn+1
n , red∗ 
auses a superpolynomial blow-up in the length of proofs in ASP-Tand the related solvers, if applied before a
tually proving EPHPn+1

n .6 ExperimentsWe experimentally evaluate how well 
urrent state-of-the-art ASP solvers 
an makeuse of the additional stru
ture introdu
ed to programs using the extension rule. Forthe experiments, we ran the solvers 7 smodels (Simons et al. 2002) (version 2.33, awidely used lookahead solver), clasp (Gebser et al. 2007) (version 1.1.0, with manyte
hniques�in
luding 
on�i
t learning�adopted from DPLL-based SAT solvers),and cmodels (Giun
higlia et al. 2006) (version 3.77, a SAT-based ASP solver runningthe 
on�i
t-learning SAT solver zCha� (Moskewi
z et al. 2001) version 2007.3.12 asthe ba
k-end). The experiments were run on standard PCs with 2-GHz AMD 3200+pro
essors under Linux. Running times were measured using /usr/bin/time.First, we investigate whether ASP solvers are able to bene�t from the extensionin EPHPn+1
n . We 
ompare the number of de
isions and running times of ea
h ofthe solvers on PHPn+1

n , CPHPn+1
n = PHPn+1

n ∪
⋃

1<l≤n EXTl, and EPHPn+1
n . ByTheorem 5.2 the solvers should in theory be able to exhibit polynomially s
alingnumbers of de
isions for EPHPn+1

n . In fa
t with 
on�i
t-learning this might alsobe possible for CPHPn+1
n due to the tight 
orresponden
e with 
on�i
t-learningSAT solvers and RES (Beame et al. 2004). The results for n = 10 . . . 12 are shownin Table 1. While the number of de
isions for the 
on�i
t-learning solvers clasp

7 We note that the detailed results reported here di�er somewhat from those reported in the
onferen
e version of this work (Järvisalo and Oikarinen 2007). This is due to the fa
t that, forthe 
urrent arti
le, we used more re
ent versions of the solvers.Table 1. Results on PHPn+1
n , CPHPn+1

n , and EPHPn+1
n with timeout (-) of 2hours.Time (s) De
isionsSolver n PHPn+1

n CPHPn+1
n EPHPn+1

n PHPn+1
n CPHPn+1

n EPHPn+1
n

smodels 10 34.02 119.69 8.65 164382 144416 0
smodels 11 486.44 1833.48 21.70 1899598 1584488 0
smodels 12 - - 49.28 - - 0
clasp 10 6.81 7.29 10.05 337818 216894 38863
clasp 11 58.48 45.00 82.07 1840605 882393 203466
clasp 12 579.28 509.43 941.23 12338982 6434939 1467623

cmodels 10 1.60 1.69 7.87 8755 8579 12706
cmodels 11 8.20 8.51 43.96 24318 23758 42782
cmodels 12 46.33 54.26 122.72 88419 94917 88499



22 M. Järvisalo and E. Oikarinenand cmodels is somewhat redu
ed by the extensions, the solvers do not seem to beable to reprodu
e the polynomial-length proofs, and we do not observe a dramati

hange in the running times. With a timeout of 2 hours, smodels gives no answer for
n = 12 on PHPn+1

n or CPHPn+1
n . However, for EPHPn+1

n smodels returns withoutany bran
hing, whi
h is due to the fa
t that smodels' 
omplete lookahead noti
esthat by bran
hing on the 
riti
al extension atoms (as in part (ii) of the proof ofTheorem 5.2) the false bran
h be
omes 
ontradi
tory immediately. With this inmind, an interesting further study out of the s
ope of this work would be thepossibilities of integrating 
on�i
t learning te
hniques with (partial) lookahead.In the se
ond experiment, we study the e�e
t of having a modest number ofredundant rules on the behavior of ASP solvers. For this we apply the pro
edureAddRandomRedundan
y(Π, n, p) shown in Algorithm 1. Given a program Π,the pro
edure iteratively adds rules of the form ri ← l1, l2 to Π, where l1, l2 arerandom default literals 
urrently in the program and ri is a new atom. The numberof introdu
ed rules is p% of the integer n.Algorithm 1 AddRandomRedundan
y(Π, n, p)1. For i = 1 to ⌊ p

100n⌋:1a. Randomly sele
t l1, l2 ∈ dlit(Π) su
h that l1 6= l2.1b. Π := Π ∪ {ri ← l1, l2}, where ri 6∈ atom(Π) ∪ {⊥}.2. Return ΠIn Figure 5, the median, minimum, and maximum number of de
isions and run-ning times for the solvers on AddRandomRedundan
y(PHPn+1
n , n, p) are shownfor p = 50, 100, . . . , 450 over 15 trials for ea
h value of p. The mean number ofde
isions (left) and running times (right) on the original PHPn+1

n are presentedby the horizontal lines. Noti
e that the number of added atoms and rules is linearto n, whi
h is negligible to the number of atoms (in the order of n2) and rules (n3)in PHPn+1
n . For similar running times, the number of holes n is 10 for clasp and

smodels and 11 for cmodels. The results are very interesting: ea
h of the solversseems to rea
t individually to the added redundan
y. For cmodels (b), only a fewadded redundant rules are enough to worsen its behavior. For smodels (
), the num-ber of de
isions de
reases linearly with the number of added rules. However, therunning times grow fast at the same time, most likely due to smodels' lookahead.We also ran the experiment for smodels without using lookahead (d). This had avisible e�e
t on the number of de
isions 
ompared to smodels on PHPn+1
n .The most interesting e�e
t is seen for clasp (a); clasp bene�ts from the addedrules with respe
t to the number of de
isions, while the running times stay similaron the average, 
ontrarily to the other solvers. In addition to this robustness againstredundan
y, we believe that this shows promise for further exploiting redundan
yadded in a 
ontrolled way during sear
h; the added rules give new possibilities tobran
h on de�nitions whi
h were not available in the original program. However,
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ts of adding randomly generated redundant rules to PHPn+1
n .



24 M. Järvisalo and E. Oikarinenfor bene�ting from redundan
y with running times in mind, optimized lightweightpropagation me
hanisms are essential.As a �nal remark, an interesting observation is that the e�e
t of the transfor-mation presented in (Anger et al. 2006), whi
h enables smodels to bran
h on thebodies of rules, having an exponential e�e
t on the proof 
omplexity of a parti
ularprogram family, 
an be equivalently obtained by applying the ASP extension rule.This may in part explain the e�e
t of adding redundan
y on the number of de
isionmade by smodels. 7 Con
lusionsWe introdu
e Extended ASP Tableaux, an extended tableau 
al
ulus for normallogi
 programs under the stable model semanti
s. We study the strength of the
al
ulus, showing a tight 
orresponden
e with Extended Resolution, whi
h is amongthe most powerful known propositional proof systems. This sheds further light onthe relation of ASP and propositional satis�ability solving and their underlyingproof systems, whi
h we believe to be for the bene�t of both of the 
ommunities.Our experiments show the intri
ate nature of the interplay between redundantproblem stru
ture and the hardness of solving ASP instan
es. We 
onje
ture thatmore systemati
 use of the extension rule is possible and may even yield perfor-man
e gains by 
onsidering in more detail the stru
tural properties of programs inparti
ular problem domains. One 
ould also 
onsider implementing bran
hing onany possible formula inside a solver. However, this would require novel heuristi
s,sin
e 
hoosing the formula to bran
h on from the exponentially many alternativesis nontrivial and is not applied in 
urrent solvers. We �nd this an interesting futuredire
tion of resear
h. Another important resear
h dire
tion set forth by this studyis a more in-depth investigation into the e�e
t of program simpli�
ation on thehardness of solving ASP instan
es.8 A
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