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Abstract. The techniques for making decisions, i.e.,branching, play a central
role in complete methods for solving structured instances of propositional satisfi-
ability (SAT). Experimental case studies in specific problem domains have shown
that in, some cases, SAT solvers benefit from structure-based limitations on which
variables the solver is allowed to branch. Mainly, the focus has been on input (or
independent) variables. Moreover, existing literature sheds little light on the effect
of the restriction to the inner workings of SAT solvers, and in many cases current
state-of-the-art solver techniques are not used. In this paper we present an exten-
sive experimental evaluation on the effect of structure-based branching restric-
tions on the efficiency of solving structural SAT instances. The emphasis is on
the interplay of structure-based branching restrictions and clause learning based
search techniques found in most modern complete SAT solvers: (i) We investigate
the effect of input-branching on the effectiveness of clause learning bound heuris-
tics and conflict clauses. (ii) To study whether the robustness of input-restricted
branching can be improved, we apply controlled schemes for allowing branching
additionally on CNF variables other than inputs based on structural properties—
such as the number of occurrences of sub-formulas—of non-clausal formulas.

1 Introduction

Modern complete SAT solvers provide an efficient way of solving various real-world
problems as propositional satisfiability (SAT). Typical SAT solvers aimed at solving
such structured problems are based on the CNF-level (clausal)Davis–Putnam–Loge-
mann–Lovelandprocedure (DPLL) [1, 2]. Research on boosting the efficiency ofDPLL
solvers has concentrated on incorporating techniques such asintelligent branching heu-
ristics (e.g., [3–5]), novelpropagation mechanisms(e.g.,binary clause[6] andequiv-
alence reasoning[7, 8]), efficient propagator implementations (watched literals[5]),
randomizationandrestarts[9, 10], andclause learning[11].

Out of these concepts, clause learning can be regarded as the most important pro-
gressive step, as witnessed by a sequence of further improved solvers [9, 11, 5, 12, 13],
and by theory [14]. While new propagation mechanisms, such as equivalence reason-
ing, have been successfully implemented intoDPLL, most clause learning solvers still
rely on standardunit propagationas the sole propagator. The integration of more so-
phisticated propagators with clause learning is not trivial, and typicallyDPLL based
solvers with equivalence reasoning do not incorporate clause learning. As for intelli-
gent decision (orbranching) heuristics, while non-clause learning solvers incorporate



heuristics based on literal counting [3] and/or one-step lookahead [4, 15, 16], branch-
ing in clause learning solvers is also driven by learning. Most clause learning solvers
implement variations of—or build on top of—thevariable state independent decaying
sum(VSIDS) heuristic [5], which values the variables that have played an active role
in reaching recent conflict. Moreover, clause learning enablesnon-chronological back-
tracking (or backjumping). In fact, as noted e.g. in [17], since search space traversal is
guided tightly by clause learning in modern solvers with the help of unit propagation
and restarts, clause learning solvers can be seen as performing a process quite unlike
the search performed by implementations of the basicDPLL.

Nevertheless, since irrelevant decisions may have an exponential effect on the run-
ning times of SAT solvers, branching schemes play a central role in complete SAT
methods especially for solving typically very large real-world problem instances. In
addition to developing more effective (dynamic) branching heuristics, another comple-
mentary view on branching is provided by the concept of(static) branching restrictions.
In SAT based approaches to structured problems such as bounded model checking [18]
(of both hardware and software) and automated planning [19], the CNF encoding is
often derived from a transition relation, where the behaviour of the underlying system
is dependent on theinput—initial state, nondeterministic choices, et cetera—of the sys-
tem. Experimental case studies in specific problem domains [20–22], have shown that,
in some cases, SAT solvers benefit from restricting the variables the solver is allowed to
branch on to so calledinput variables, corresponding to the input of the underlying sys-
tem, by letting the solver then apply its own dynamic heuristics to this set of variables.
Since the system behaviour is determined by its input, input-restricted branchingDPLL
remains complete. Intuitively, this changes the worst-case behaviour ofDPLL from the
order of2N to 2I with I << N , whereI andN are the number of input variables and
all variables in the CNF encoding, respectively.

However, the case studies on restricted branching that we are aware of, includ-
ing [20–23], consider mainly input-restricted branching as the only structural way of
restricting the decision making in SAT solvers, and concentrate usually only on running
times of solvers. The existing literature sheds little light on the effect of the restriction
to the inner workings of SAT solvers, and, in many cases, current state-of-the-art solver
techniques are not used. This is important to notice due to the aforemention fundamen-
tal difference between non-clause learning and clause learning solvers.

In this paperwe present an extensive experimental evaluation on the effect of
structure-based branching restrictions on the efficiency of solving structural SAT in-
stances. The emphasis is on the interplay between structure-based branching restrictions
and typical clause learning based search techniques in modern complete SAT solvers:

(i) We perform an in-depth investigation into the effect of input-branching on the ef-
fectiveness of the clause learning based heuristic VSIDS and conflict clauses.

(ii) In order to study whether the robustness of input-restricted branching can be im-
proved, we devise and apply controlled schemes for allowing branching addition-
ally on CNF variables other than inputs based on structural properties—such as the
number of occurrences of sub-formulas—of non-clausal formulas.

The results show that by restricting the set of branchable variables to input variables, the
effectiveness of the clause learning bound VSIDS heuristic and conflict clauses weak-



ens. In addition, by selectively allowing branching on additional variables based on
structural properties, branching can be restricted rather heavily without losing the effi-
ciency of the original unrestricted solver. However, it is unlikely that restricted branch-
ing could on its own make modern clause learning solvers more efficient in general.

This study complements known experimental studies on comparing SAT solver
techniques, such as clause learning schemes [24], restarts [17], and comparisons of
branching heuristics (e.g., [3, 25]). Our aim is to provide a more coherent picture of
the effect of branching restrictions on the inner workings of modern clause learning
solvers, and to understand how important underlying structural properties of variables
are in making decisions in clause learning SAT solvers.

After a more detailed review of known results related to branching restrictions
(Sect. 1.1), in Sect. 2 we define Boolean circuits, which we use as the non-clausal
representation form for structural SAT problems, and describe the translation from cir-
cuits to CNF formulas (Sect. 2.1) we use in the experiments in order to apply to the
state-of-the-art clausal SAT solver Minisat [13]. The experiment setup, together with
an analysis of the experimental results, are presented in Sect. 4.

1.1 Related work

Experiments on Branching Restrictions. In the context of SAT based scheduling,
the possibility of restricting branching to inputs (orcontrol variables) is suggested
in [26], without empirical evaluation, however. For SAT based planning, input-restricted
branching (or branching onaction variables) is considered in [20], showing that the
DPLL solver Tableau (havingno clause learning) benefits from this restriction on the
considered instances. Considering SAT based bounded model checking (BMC), in [21]
input-restricted branching (or branching onmodel variables) is applied with the clause
learning solver Grasp, in which the decision heuristic isnot coupled withclause learn-
ing. Additionally, the work concentrates on comparing the efficiency of SAT and BDD
based BMC. In [22], the authors investigate the effect of restricting branching to inputs
(or independent variables, calling this theindependent variables set (IVS) heuristic) on
planning, BMC, and crafted SAT instances using the SAT solver Sim. The presented
results deal partly with clause learning. However, the emphasis in [22] is on comparing
different decision heuristics that arenot coupled withclause learning, as opposed to
the popular VSIDS heuristic today. Most recently, in the context of SAT based auto-
mated test pattern generation (ATPG), in [23] the authors investigate the effect of input-
restricted branching on the efficiency of a variety of modern clause learning solvers.
In addition, the authors also considerfanout-restricted branching, in which branching
is allowed additionally on variables which are associated with subformulas occurring
multiple times in the original non-clausal problem. However, it should be noted that in
all of the above-mentioned experimental research, the evaluation is based only on the
running times of the solvers; a more in-depth investigation into the real cause of the
differences in running times w.r.t. the applied solver techniques is somewhat lacking.

Related Theoretical Results. There are also theoretical results on the effect of re-
stricted branching on the efficiency of the underlying inference system ofDPLL. In [22]



it is noted that restricting to independent variables can result in exponential loss of effi-
ciency forDPLL without clause learning. Using the notion of proof complexity, again
consideringDPLL without clause learning, [27] studies the effect of input-restriction
and, additionally, a variety of other static and dynamic restrictions, such astop–down
branching, which is closely related to thejustification frontier heuristic(see e.g. [28])
used often inDPLL style Boolean circuit satisfiability solvers applied in electronic de-
sign automation (EDA). The result is a relative efficiency hierarchy for the considered
restrictions, showing that, for example, input-restricted branchingDPLL cannot polyno-
mially simulate top-down branchingDPLL, which in turn cannot simulate the standard
(unrestricted branching)DPLL. Recently, it has also been show that input–restricted
branchingDPLL with clause learningcannot simulateDPLL [29].

The complexity of making the optimal branching decision during search inDPLL
is studied in [30], with the results that, while the problem for the standardDPLL is
not on the first level of the polynomial hierarchy (∆P

2 [log n]–hard), it may be even
harder for restricted-branchingDPLL (NPPP–hard, i.e., spanning the whole polynomial
hierarchy, under a certain assumption, see [30]).

Finally, the concept of abackdoor set[31] of variables is closely related to restrict-
ing branching so that the resulting solving method is still complete. Aunit propagation
backdoor set forDPLL is a set of variables such that, once all of these variables have
values, all the other variables are set values by unit propagation. Thus one intuitive
backdoor set is the set of input variables. While deciding whether a backdoor set of a
given size exists is intractable in general, algorithms for finding small backdoor sets for
CNF formulas are developed in, e.g., [32].

2 Boolean Circuits and Propositional Satisfiability

The correspondence between system input of a real-world problem and propositional
variables in the flat CNF encoding is not evident. However, in SAT based approaches,
direct CNF encodings of a problem domain are rarely used: the problem at hand is typ-
ically encoded with a general propositional formulaφ, which is then translated into a
logically equivalent CNF formula by introducing additional variables for the subformu-
las ofφ. Boolean circuits(see e.g. [33]) offer a natural way of presenting propositional
formulas in a compact DAG-like structure withsubformula sharing, which helps in
lowering the number of additional variables needed. The system input of the original
problem is also reflected asinput gatesin Boolean circuits.

A Boolean circuit over a finite setG of gates is a setC of equations of form
g := f(g1, . . . , gn), whereg, g1, . . . , gn ∈ G andf : {f, t}n → {f, t} is a Boolean
function, with the requirements that (i) eachg ∈ G appears at most once as the left
hand side in the equations inC, and (ii) the underlying directed graph〈G,E(C) =
{〈g′, g〉 ∈ G×G | g := f(. . . , g′, . . .) ∈ C}〉 is acyclic. If 〈g′, g〉 ∈ E(C), theng′ is
a child of g andg is a parentof g′. If g := f(g1, . . . , gn) is in C, theng is anf -gate
(or of typef ), otherwise it is aninput gate. A gate with no parents is anoutput gate.
A (partial) assignment forC is a (partial) functionτ : G → {f, t}. An assignmentτ is
consistent withC if τ(g) = f(τ(g1), . . . , τ(gn)) for eachg := f(g1, . . . , gn) in C.



A constrained Boolean circuitCτ is a pair〈C, τ〉, whereC is a Boolean circuit andτ
is a partial assignment forC. With respect to a〈C, τ〉, each〈g, v〉 ∈ τ is aconstraint, and
g is constrainedto v if 〈g, v〉 ∈ τ . An assignmentτ ′ satisfiesCτ if (i) τ ′ is consistent
with C, and (ii) τ ′ ⊇ τ . If some assignment satisfiesCτ then Cτ is satisfiableand
otherwiseunsatisfiable.

Typical Boolean functions for gate types in Boolean circuits are:

– NOT(v) is t iff v is f.
– OR(v1, . . . , vn) is t iff at least one ofv1, . . . , vn is t.
– AND(v1, . . . , vn) is t iff all v1, . . . , vn aret.
– IMPLY(v1, v2) is t iff (i) v1 is f, or (ii) v2 is t.
– EQUIV(v1, . . . , vn) is t iff (i) all v1, . . . , vn aref, or (ii) all v1, . . . , vn aret.
– ITE(v1, v2, v3) is t iff (i) v1 andv2 aret, or (ii) v1 is f andv3 is t.
– EVEN(v1, . . . , vn) is t iff an even number ofv1, . . . , vn aret.
– ODD(v1, . . . , vn) is t iff an odd number ofv1, . . . , vn aret.
– CARDu

l (v1, . . . , vn) is t iff at leastl and at mostu of v1, . . . , vn aret.

These functions are also available in the input language of the Boolean circuit front-end
used in the experiments of this paper.

Example.Figure 1 shows a Boolean circuit for a full-
adder with the carry-out bitc1 constrained tot. The for-
mal definition of the graphical representation is the con-
strained circuit〈C, τ〉, where
C = {c1 := OR(t1, t2), t1 := AND(t3, c0),

o0 := ODD(t3, c0), t2 := AND(a0, b0),
t3 := ODD(a0, b0)} andτ = {〈c1, t〉}.

One satisfying truth assignment for the circuit is
{〈c1, t〉, 〈t1, t〉, 〈o0, f〉, 〈t2, f〉, 〈t3, t〉, 〈a0, t〉, 〈b0, f〉, 〈c0, t〉}.

a0 b0 c0

and odd

or

and oddt3t2

t1 o0

c1 t

Fig. 1: A constrained circuit.

2.1 Translating Boolean Circuits to CNF

In order to exploit clausal SAT solvers in solving instances of Boolean circuit satisfi-
ability, the circuits have to be translated to CNF. In this paper we apply the follow-
ing variation of the standard “Tseitin-style” translation. First, the circuit is normal-
ized as follows. Non-binaryEVEN-, ODD-, and EQUIV-gates are removed by rewrit-
ing them, e.g.,g := ODD(g1, g2, g3) is transformed intog := ODD(g1, g

′) andg′ :=
ODD(g2, g3), whereg′ is a new gate. Based on a heuristic choice, theCARDu

l -gates are
rewritten by (i) applying the equationsCARDu

l (g1, . . . , gn) ⇔ CARD∞l (g1, . . . , gn) ∧
¬CARD∞u+1(g1, . . . , gn) and CARD∞l (g1, . . . , gn) ⇔ (g1 ∧ CARD∞l−1(g2, . . . , gn)) ∨
CARD∞l (g2, . . . , gn) with dynamic programming, or (ii) substituting them with a bi-
nary adder-comparator circuits when the lower (upper) bound is close to the number of
children (close to zero). Finally, the CNF translation of the resulting constrained circuit
〈C, τ〉 is achieved by introducing a variablẽg for each each gateg. For encoding the
functionalities of gates, gates of formg := NOT(g1) are not translated; instead,¬g̃1 is
substituted for̃g. For the other gate types, the idea is to represent the logical equivalence
g ⇔ f(g1, . . . , gn) as clauses; hence for eachg := f(g1, . . . , gn) the corresponding in-
troduced clauses are as shown in Table 1.



Table 1.CNF translation for a normalized Boolean circuit

gateg clauses forg ⇒ f(g1, . . . gn) clauses forf(g1, . . . gn) ⇒ g

g := IMPLY(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ g̃2) (g̃ ∨ g̃1), (g̃ ∨ ¬g̃2)
g := EQUIV(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ g̃2), (¬g̃ ∨ g̃1 ∨ ¬g̃2) (g̃ ∨ ¬g̃1 ∨ ¬g̃2), (g̃ ∨ g̃1 ∨ g̃2)
g := EVEN(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ g̃2), (¬g̃ ∨ g̃1 ∨ ¬g̃2) (g̃ ∨ ¬g̃1 ∨ ¬g̃2), (g̃ ∨ g̃1 ∨ g̃2)
g := ODD(g1, g2) (¬g̃ ∨ ¬g̃1 ∨ ¬g̃2), (¬g̃ ∨ g̃1 ∨ g̃2) (g̃ ∨ ¬g̃1 ∨ g̃2), (g̃ ∨ g̃1 ∨ ¬g̃2)
g := OR(g1, . . . , gn) (¬g̃ ∨ g̃1 ∨ · · · ∨ g̃n) (g̃ ∨ ¬g̃1),. . . ,(g̃ ∨ ¬g̃n)
g := AND(g1, . . . , gn) (¬g̃ ∨ g̃1),. . . ,(¬g̃ ∨ g̃n) (g̃ ∨ ¬g̃1 ∨ · · · ∨ ¬g̃n)
g := ITE(g1, g2, g3) (¬g̃ ∨ ¬g̃1 ∨ g̃2), (¬g̃ ∨ g̃1 ∨ g̃3) (g̃ ∨ ¬g̃1 ∨ ¬g̃2), (g̃ ∨ g̃1 ∨ ¬g̃3)

〈g, t〉 ∈ τ (g̃)
〈g, f〉 ∈ τ (¬g̃)

3 The Anatomy of Modern SAT Solvers

Most modern complete SAT solvers are based on theDPLL procedure [1, 2]. Given
a CNF formulaF as input,DPLL is a depth-first search procedure building a par-
tial assignmentτ from the variables inF to {t, f} through (i)branchingand (ii) unit
propagation(UP). In branching, the current assignmentτ is extended withτ(x) = v,
v ∈ {f, t}, for some unassigned variablex. Variables assigned by branching in the
current assignment aredecision variables, and those assigned by UP areimplied vari-
ables. Unit propagation extends the current partial assignmentτ with τ(l) = t if there
is a clause(l1 ∨ · · · ∨ lk ∨ l) ∈ F such thatτ(li) = f for each1 ≤ i ≤ k, where
l and eachli are literals. Here we abuse notation a bit, and define for negative literals
τ(¬x) = ¬τ(x), where¬f = t and¬t = f. An assignment is extended until (i) some
variablex is assigned bothf andt (aconflict is reached, withx as theconflict variable)
or (ii) τ satisfiesF andDPLL terminates. In case (i), non-clause learningDPLL solvers
backtrackto the last branching decision whose other branch has not been tried yet, un-
doing all assignments made by UP after the particular decision, and flip the decision.
However, most complete SAT solvers aimed at solving structured instances enhance
DPLL with conflict analysis(or clause learning) [11] which is applied when a conflict
is reached. If there is a conflict at decision level zero, the formulaF is determined unsat-
isfiable. In other cases, the conflict isanalyzed, and alearned clause(or conflict clause),
which describes the “cause” of the conflict, is added toF . After this, clause learning
solvers typically applynon-chronological backtracking(or conflict driven backjump-
ing) based on the conflict clause. We will now give a more detailed intuition into the
main techniques centered around clause learning in modern SAT solvers. However, we
refer the reader to, e.g.,[11] for a more concise description of clause learning.

A clause is calledknownif it either appears in the original CNF formula or has been
learned earlier during the search. Conflict analysis is based on animplication graph,
which captures the way the current conflict has been reached. The nodes of the graph
are labeled by the assignments. There are directed edges from eachτ(li) = f to τ(l) = t
iff the assignmentτ(l) = t has been made by UP based on the assignmentsτ(li) = f
with a known clause(l1 ∨ · · · ∨ lk ∨ l). After this, a conflict clause is formed based on
aconflict cutin the implication graph.



Thedecision level of a decision variablex is one more than the number of decision
variables in the branch before branching onx. Thedecision level of an implied vari-
able x is the number of decision variables in the branch whenx is assigned a value.
The decision level ofDPLL at any stage is the number of variables currently assigned
by branching. A conflict cut is any cut in the implication graph with all the decision
variable assignments on one side (thereason side) and at least one of the assignments
on the conflict variable on the other side (theconflict side). Those nodes on the reason
side with at least one edge going to the conflict side in a conflict cut form a cause of the
conflict; with the associated assignments, UP can arrive at the conflict at hand. The lit-
erals satisfied by the negations of these assignments form theconflict clause associated
with the conflict cut. The strategy for fixing a conflict cut is called thelearning scheme.

Typically implemented clause learning schemes are based onunique implication
points(UIPs) [11]. A UIP in the implication graph is a nodeu on the current decision
level d such that all paths from the assignment on the decision variablex at leveld to
the assignments on the conflict variable go throughu. Such au always exists, sincex
satisfies this condition; intuitivelyu is asinglereason for the conflict at leveld. Thus
one can always choose a conflict cut that results in a conflict clause with a UIP as the
only variable from the maximal decision level. Such a conflict clause causes the value of
the UIP to be immediately flipped by UP when backtracking. Furthermore, UIP learning
enables (conflict driven) backjumping, in whichDPLL non-chronologically backtracks
to the maximal decision level of the variables other than the UIP in the conflict clause. A
popular version of UIP learning is the 1-UIP scheme, where a cut with the UIP “closest”
to the conflict variable assignments is chosen. Different learning schemes are evaluated
in [24], showing the robustness of the 1-UIP scheme.

In clause learning solvers, decision heuristics are also typically bound with the
clause learning scheme. One popular implementation is the VSIDS heuristic [5], which
is based on incrementing the heuristic values of variables/literals associated with the
conflict (e.g., all literals in the conflict clause [5], or all variables in the conflict clause
and on the conflict side in each conflict [13]). Furthermore, all heuristic values are
decremented by a predetermined factor regularly, typically after everynth conflict, with
the intuition that the variables causing recent conflicts are especially relevant.

Restartsare also often implemented in modern solvers. When a restart occurs, the
decisions and unit propagations made so far are undone, and the search continues from
decision level zero. Intuitively, restarts help in escaping from getting stuck in hard-
to-prove subformulas, and have shown to boost the efficiency of combinatorial search
algorithms [9, 10]. A recent evaluation of the effect of different restart strategies for
clause learning SAT solvers is [17].

4 Experiments

We now describe our experiments on structural branching restrictions. Before detailed
discussion of the results, we describe the used Boolean circuit satisfiability benchmarks
and the Boolean circuit front-end BCMinisat applied in solving the instances.



4.1 Benchmarks

Verification of superscalar processorsThese Boolean circuits encode the problem of
formally verifying the correctness of pipelined superscalar processors. The circuits
result from a translation from the logic of equality with uninterpreted functions to
propositional logic [34].

Integer factorization based on hardware multiplier designs These circuits encode the
problem of finding factors for (both divisible and prime) numbers. The problem
encodings are based on two structurally very unsimilar hardware binary multiplier
designs, theadder treeandBraunmultipliers. The circuits are obtained using the
genfacbm benchmark generator [35].

Equivalence checking of hardware multipliers These circuits encode the problem of
equivalence checking the results of the correct adder tree and Braun multipliers, as
described in [36].

Bounded model checking for deadlocks in LTSsThese circuits result from a trans-
lation scheme (using so calledinterleavingandprocess semantics) for expressing
bounded model checking (BMC) of deadlocks in a variety of asynchronous systems
modeled as labeled transition systems (LTSs) [37].

Linear temporal logic BMC of finite state systems Linear size Boolean circuit en-
codings of the BMC problem for finding bugs in finite state system designs vio-
lating properties specified in linear temporal logic (LTL) [38].

The set of Boolean circuit satisfiability benchmarks (a total of 38 instances, as detailed
in Table 2) is available athttp://www.tcs.hut.fi/˜mjj/benchmarks/ . For the
experiments, we obtain a total of 570 CNF instances from these circuits as explained
next.

4.2 Solving the Instances

For solving the Boolean circuit instances, we apply BCMinisat1 (version 0.26). BCMin-
isat is a Boolean circuit front-end for the successful clause learning SAT solver Min-
isat [13] (version 1.14). BCMinisat accepts as input Boolean circuits with various Bool-
ean functions allowed as gate types, performs circuit-level preprocessing, including
Boolean propagation, substructure sharing, and cone-of-influence reductions to the cir-
cuit, normalizing the circuit into a form which can be translated into CNF applying
the translation detailed in Sect. 2.1. Notice that, when considering structural proper-
ties of variables in the resulting CNF formula, the properties are determined by the
simplified and normalized circuit, in which gates reflect one-to-one with the CNF vari-
ables. For example, aninput variableis a variable that corresponds to an input gate in
the simplified and normalized circuit, and we will take the liberty of using the terms
“gate” and “variable” synonymously. BCMinisat feeds the resulting CNF translations
and the input-restriction to Minisat, which then solves the CNF. For each circuit, we
obtain 15 CNF instances by randomly permuting the CNF variable numbering with the
-permute cnf option of BCMinisat, making the total number of CNF instances 570.

1 Part of the BCTools package,http://www.tcs.hut.fi/˜tjunttil/bcsat/ .



Minisat implements 1-UIP clause learning and a variation of the VSIDS heuristic.
After each conflict the heuristic values of each variable on the conflict side and in the
conflict clause is incremented by one, and the values of all variables is decremented by
5%. To avoid hindering efficiency by learning massive amounts of clauses, the solver
also uses a scheme for forgetting learned clauses that have not occurred on the conflict
side in recent conflicts. Additionally, restarts are used.

We have implemented the considered structural branching restrictions to BCMin-
isat, and modified Minisat so that its branching and heuristic can be restricted to a given
set of variables. We use PCs with 2-GHz AMD 3200+ processors and 2 GBs of memory
running Debian GNU Linux, with a 1-hour timeout and a 1-GB memory limit.

4.3 Experiment 1: Effects of Input-Restriction

Table 2 gives the minimum, median, and maximum number of decisions for BCMinisat
and input-restricted BCMinisat (BCMinisatinputs) for each benchmark instance. For the
instances based on hardware multiplier designs, for which the number of unassigned in-
put variables is 2% or less out of all unassigned variables, BCMinisatinputs shows an ad-
vantage over BCMinisat w.r.t. the number of decisions. However, for the hardware veri-
fication and BMC instances, the overall performance of BCMinisatinputs is much worse,
with timeouts on all verification and half of the LTL BMC instances. The possible gains
of input-restriction seems to correlate with a very low relative number of input variables.
On the equivalence checking instances, the number of decision for BCMinisatinputs

is more than the brute-force upper bound, e.g., foreq-test.atree.braun.10
around1.4 − 1.8 × 106, compared to the brute-force bound220 ≈ 1.0 × 106. Consid-
ering that we are using a state-of-the-art clause learning solver, this surprising result is
most likely due to conflict clause forgetting; when forgetting a conflict clauseC, the
solver may have to re-examine the search space characterised as unsatisfiable byC.

In Fig. 2 we have a cumulative plot of the number of
solved instances as a function of time, showing a drastic
decrease in performance for the input-restriction. The ef-
fect of input-restriction varies depending on whether un-
satisfiable or satisfiable instances are considered (Fig. 3).
On unsatisfiable instances input-restriction results in a
clear efficiency decrease, with timed out runs shown on
the horizontal line. For satisfiable instances, there seems
to be no clear winner, although when selecting from the
relative small set of input variables, the probability of
choosing a satisfying assignment is intuitively greater. A
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Fig. 2: Solved instances

noticeable point is that, while BCMinisatinputs makes less decisions for example on
the equivalence checking instances, unrestricted BCMinisat is at least as efficient as
BCMinisatinputs when looking at running times. Interestingly, this is due to the fact that
unrestricted BCMinisat oftenmanages more decisions per second(left in Fig. 4 over
all instances solved by both BCMinisat and BCMinisatinputs).



Table 2. Minimum (min), median (med), and maximum (max) of number of decisions for
BCMinisat and BCMinisatinputs, with number of timeouts in parenthesis. Thesat column gives
the satisfiability of the instance, and#inputs gives the number of unassigned input variables in
the CNF translation (percentage in parentheses). Forud andbb, see the text body.

Number of decisions
BCMinisat BCMinisat inputs

Instance sat min med max min med max #inputs ud bb

Super-scalar processor verification
fvp.2.0.3pipe.1 no 61531 384386 1225134 - (15) - (15) - (15) 186 (8.2) - -
fvp.2.0.3pipe 2 ooo.1 no 75962 184798 426489 - (15) - (15) - (15) 305 (11.7) - -
fvp.2.0.4pipe 1 ooo.1 no 188992 209048 271982 - (15) - (15) - (15) 544 (10.4) - -
fvp.2.0.4pipe 2 ooo.1 no 103360720946175241781 - (15) - (15) - (15) 547 (9.8) - -
fvp.2.0.5pipe 1 ooo.1 no 336281 746231 1838599 - (15) - (15) - (15) 845 (8.9) - -

Equivalence checking hardware multipliers
eq-test.atree.braun.8 no 180449 285665 339805 65785 73834 82372 16 (2.3) 88.5 0.02
eq-test.atree.braun.9 no 898917 10555111317785 323688 385398 389890 18 (2.0) 106.6 0.02
eq-test.atree.braun.10 no 375537545405985089443 142895715903901787295 20 (1.8) 127.9 0.01

Integer factorization
atree.sat.34.0 yes 156733 228792 761620 24820 208880 277896 60 (0.6) 21.9 0.04
atree.sat.36.50 yes 251218 721474 937152 316590 571533 788762 64 (0.6) 18.4 0.04
atree.sat.38.100 yes 284980 1095192 - (1) 190330 498092 1082729 68 (0.6) - -
atree.unsat.32.0 no 141419 163508 180973 123502 138797 162546 57 (0.7) 15.3 0.04
atree.unsat.34.50 no 248371 287351 404418 223130 244382 301464 60 (0.6) 18.0 0.04
atree.unsat.36.100 no 527237 623889 915810 431576 480469 578331 64 (0.6) 19.4 0.03
braun.sat.32.0 yes 27480 82122 140150 5675 81269 135093 61 (2.2) 25.6 0.05
braun.sat.34.50 yes 30717 152224 353464 43924 110614 223306 65 (2.1) 25.3 0.05
braun.sat.36.100 yes 129771 447716 589449 86134 374884 752645 69 (2.0) 19.4 0.05
braun.unsat.32.0 no 107617 122550 156004 96894 119437 150121 60 (2.2) 10.4 0.06
braun.unsat.34.50 no 215624 263845 341855 213199 258446 316819 64 (2.0) 9.1 0.06
braun.unsat.36.100 no 514725 623671 807610 533575 640111 674470 68 (1.9) 8.9 0.06

BMC for deadlocks in LTSs
dp 12.i.k10 no 513935 639756 987595 2497570 - (10) - (10) 480 (16.0) - -
key 4.p.k28 no 121552 147063 169386 138361 184875 220107 967 (10.9) 3.7 0.53
key 4.p.k37 yes 56784 321552 1549271 7574 663152 - (1) 1507 (9.8) - -
key 5.p.k29 no 193139 223867 310207 230844 343255 405686 1212 (10.7) 3.9 0.54
key 5.p.k37 yes 104496 421324 1540174 19027 1041807 - (3) 1796 (9.8) - -
mmgt 4.i.k15 no 210288 287599 457009 582998 11059862170048 456 (10.9) 4.2 0.41
q 1.i.k18 no 168156 353421 507246 375493 929019 1349785 566 (13.1) 3.7 0.49

LTL BMC by linear encoding
1394-4-3.p1neg.k10 no 141822 155295 164900 138468 148545 156839 1845 (5.6) 6.6 0.34
1394-4-3.p1neg.k11 yes 72988 128708 203647 34619 55575 189434 2023 (5.5) 9.0 0.32
1394-5-2.p0neg.k13 no 125840 143928 158320 146144 156527 186468 1940 (5.0) 6.7 0.32
brp.ptimonegnv.k23 no 106338 130577 259025 193839 302930 356313 461 (6.7) 4.1 0.28
brp.ptimonegnv.k24 yes 43013 96775 162114 13699 74907 260481 481 (6.7) 5.5 0.27
csmacd.p0.k16 no 229192 316082 376280 269520 341751 381248 1794 (2.9) 4.9 0.28
dme3.ptimo.k61 no 314659 549686 1658757 - (15) - (15) - (15) 6375 (26.3) - -
dme3.ptimo.k62 yes 427100 688505 1545603 - (15) - (15) - (15) 6506 (26.3) - -
dme3.ptimonegnv.k58 no 324770 568864 962967 - (15) - (15) - (15) 5982 (26.3) - -
dme3.ptimonegnv.k59 yes 303921 480073 1136938 - (15) - (15) - (15) 6113 (26.3) - -
dme5.ptimo.k65 no 497190 735741 1839619 - (15) - (15) - (15) 10750 (26.8) - -

We can make more interesting observations by looking at statistics over all instances
solved by both BCMinisat and BCMinisatinputs. An important aspect in the effective-
ness of clause learning are the lengths of learned clauses, i.e., the number of literals in
the clauses. Since a conflict clause describes an unsatisfiable part of the search space,
shorter conflict clauses are intuitively exponentially more effective than longer ones.
On right in Fig. 4 we have a comparison of the average lengths of learned clauses in the
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Fig. 3. Scatter plots: running times on unsatisfiable (left) and satisfiable (right) instances
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solved instances. With the input-restriction the learned clause are typically evidently
longer. Longer learned clauses can also affect negatively to the efficiency of the solver,
since handling the clauses can take more time, e.g., to propagate. This would partly
explain the decrease in the number of decisions per time unit on the input-restriction.
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We also look at the maximal deci-
sion levels visited by BCMinisat and
BCMinisatinputs on the different instance
families (Fig. 5). The intuitive drop in
the worst-case behaviour ofDPLL re-
sulting from the input-restriction is re-
flected in the maximal decision levels
for the families based on multiplier de-
signs, where the number of input vari-
ables is very low (see#inputs in Ta-
ble 2). For the LTS BMC instances,
however, the decision levels are greater
for the input-restricted solver, although
the number of input variables is still
only around 10% out of all uncon-



strained variables.
We also observe that the VSIDS heuristic might not work as intended with the input-

restriction. The number of unbranchable variables which have better heuristic values
than the best branchable variable can be high per decision (median of averages:ud in
Table 2), e.g., foreq-test.atree.braun.10 on the average there are, per deci-
sion, over 100 unbranchable variables with better heuristic scores than the best branch-
able one. From another point of view, the fraction of increments on branchable variables
from the number of all increments to heuristic values during search can be in some cases
even as low as 1% (median:bb in Table 2)—running the risk of VSIDS degenerating
into a random heuristic.

These observations imply that in order to incorporate branching restrictions in
clause learning solvers, the restriction itself should be taken into account in develop-
ing suitable heuristics and learning schemes.

4.4 Experiment 2: Systematic Structural Branching Restrictions

In order to study whether the robustness of input-restricted branching can be improved
while still branching on a subset of variables, we now apply controlled schemes for
allowing branching additionally on CNF variables other than inputs based on structural
properties of Boolean circuit satisfiability instances. The general idea here is to allow—
in addition to input variables—branching consistently on the bestp% unconstrained
non-input variables according to criteria that are based on different aspects of the un-
derlying circuit structure. Input variables are always included for assuring that Minisat
remains complete under the restrictions.

For the following, letCτ be a simplified and normalized constrained circuit with the
sets of unconstrained gatesG, input gatesinputs(Cτ ), and output gatesoutputs(Cτ ).
For a gateg := f(g1, . . . , gn), the set ofg’s children ischildren(g) = {g1, . . . , gn},
and the set ofg’s parents isparents(g). For a gateg ∈ G, the fanoutfanout(g) is the
number of gates whose childg or g′ := NOT(g) is. Thedegreedegree(g) is the sum of
fanout(g) and the number ofg’s children. Additionally, let∆max

inputs(g) denote the length
of the longest path under the child relation ofCτ from g to any input gate. HereNOTs
do not contribute to the length of the paths, since they are not translated. Similarly,
∆max

outputs(g) stands for the length of the longest path under the parent relation ofCτ

from g to any output gate.
We will investigate the following criteria.

Random restriction (denoted byrnd(p)): As a reference point for the other structural
restrictions, we allow branching onp% of randomly chosen unconstrained non-
input variables. Intuitively, this results in allowing branching evenly across the un-
derlying circuit structure.

Fanout-based restrictionfan(p): Gates are ranked according to the valuesfanout(g),
with the criterion that gates with large values are preferred. This is a generalization
of the idea of restricting branching to gatesg with fanout(g) > 1 as suggested in
the context of SAT-based ATPG [23].

Degree-based restrictiondeg(p): Gates are ranked according to the valuesdegree(g),
with the criterion that gates with large values are preferred. The valuedegree(g) is



closely related to the number of occurrences of the variable corresponding to gateg
in the CNF translation ofCτ . Hence, this restriction is related to the counting based
branching heuristics such as DLIS and MOMS, in which heuristic values are based
on counting the number of occurrences of variables/literals [3].

Flow-based restrictionflow(p): Gates are ranked according to the valuesflow(g), as
defined below, with the criterion that gates with large values are preferred.

flow(g) =





1
|outputs(Cτ )| if g ∈ outputs(Cτ )

∑

g′∈parents(g)

flow(g′)
|children(g′)| otherwise

In other words, we compute a total flow value for each gate by pouring a constant
quantity of flow down from the output gates of the circuit. Notice that in the simpli-
fied and normalized circuitCτ , the output gates are always constrained byτ . Here
the intuitive idea is that, if a large total flow passes through a gateg, the gate isglob-
ally very connected with the constraints inτ , and thusg would have an important
role in the satisfiability of the circuit.

Distance-based restrictiondist(p): Complementing the other restrictions based on the
underlying DAG-structure of Boolean circuits, we also consider restricting branch-
ing based on the distances of gates from inputs to outputs:

– In minmax− dist(p) gates are ranked according tomax{∆max
inputs(g),∆max

outputs(g)},
with the criterion that gates with small values are preferred. The idea is to con-
centrate branching on variables that are close to both input and output variables.

– In maxmin− dist(p) gates are ranked according tomin{∆min
inputs(g),∆min

outputs(g)},
with the criterion that gates with large values are preferred. Branching is con-
centrated on variables that are far from both input and output variables.

In selecting the bestp% of variables according to a particular criterion, ties are
broken randomly from the set of variables having thebreak valueof the criterion. For
example, considerfan(p). Let k be the break value such that100 × |{g | fanout(g) ≥
k}|/|G| ≥ p and100 × |{g | fanout(g) ≥ k + 1}|/|G| < p hold. Now branching is
allowed on all gatesg with fanout(g) ≥ k+1 and additionally on a number of randomly
chosen gatesg with the break valuefanout(g) = k so that the percentagep is reached.

We run BCMinisat with all the above-mentioned branching restrictions and values
p = 10, 20, 40, 60, 80. The results as the cumulative number of solved instance are
shown in Fig. 6. First, as witnessed by the random restriction, by allowing branch-
ing additionally on non-input variables the robustness of Minisat increases gradually.
Considering the structural restrictions, it is interesting to see that for the fanout and
degree based restrictions only20% additional branching variables are enough for the
restrictions to reach a level of robustness very close to unrestricted branching Minisat.
For the flow-based restriction, this holds from40% on. It is very interesting to see
that the choice of the structural criteriondoes make a difference: we observe that the
distance-based restrictions result in very poor performance. In fact, the only restrictions
on which Minisat solves all the CNF instances aredeg(20), deg(40), andflow(40) (e.g.,
unrestricted Minisat time outs on one instance out of the 570 CNFs, see Table 2). From
these results we draw the conclusion that branchingcan be restrictedeven rather heav-
ily without losing much of the robustness of a clause learning SAT solver on various



instance families. On the other hand, at least the consideredstructural restrictions do
not seem to be beneficial in generalon their own, since none of them give notable gains
w.r.t. unrestricted branching.
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Fig. 6. Cumulative number of solved instances for the structural branching restrictions

5 Conclusions

We present an extensive experimental evaluation on the effect of structure-based branch-
ing restrictions on the efficiency of solving structural SAT instances. The emphasis is on
the interplay between structure-based branching restrictions and clause learning based
search techniques found in most modern complete SAT solvers. We show that by re-
stricting the set of branchable variables to input variables, the effectiveness of the clause
learning bound VSIDS heuristic and conflict clauses weakens: the best variables by the
VSIDS heuristic are typically not branchable, and the average length of conflict clauses
grows, resulting in the fact that the solver makes less decision per time unit. Applying
schemes for allowing branching additionally on CNF variables other than inputs based
on structural properties, we show that branching can by restricted rather heavily with-
out losing the efficiency of the original unrestricted branching solves. The structural
property based on which branching is restricted has an effect on efficiency. However,



it seems unlikely that restricted branching could on its own make modern clause learn-
ing solvers more efficient in general. One interesting direction of further study would
be to investigate if solver efficiency could be increased by developing structure-aware
branching restriction techniques that act dynamically in cooperation with clause learn-
ing, especially for Boolean circuit level SAT solvers such as [39].
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