
Equivalence checking hardware multiplier designs

Matti Järvisalo∗

Abstract

We generate SAT benchmarks encoding the
problem of equivalence checking two different
industrial hardware designs for integer multipli-
cation.

1 Problem

Our goal is to generate interesting SAT bench-
marks based on real-life hardware designs. We
consider the problem of checking whether two
different hardware designs for integer multipli-
cation are equivalent in the sense that both pro-
duce the same output on all inputs.

The designs we use are the adder tree and
Braun multipliers [1]. For a fixed n, both multi-
pliers take as input two integers a = (a1, . . . , an)
and b = (b1, . . . , bn) in binary, and output
the product o = (o1, . . . , o2n). Both designs
consist of O(n2) gates, using nots and binary
ands, ors, and xors. The propagation delays
(max max height from inputs to outputs) are
O(n) for Braun, and O(log(n log n)) for adder
tree. While Braun consists of a grid of full-
adders, adder tree applies adders in a tree-like
fashion, summing up partial products.

We will construct a Boolean circuit describ-
ing an instance of the equivalence checking prob-
lem for given n-bit adder tree (output bits
oa = (oa

1, . . . , o
a
2n)) and Braun multipliers (out-

put bits ob = (ob
1 , . . . , ob

2n)) as follows:

• The inputs of the multipliers are made
equivalent by sharing the input gates
a1, . . . , an, b1, . . . , bn.

• No other gates are shared between the
multiplier circuits.

• Bit-wise equivalence of the outputs oa and
∗Address: Helsinki University of Technology,

Laboratory for Theoretical Computer Science,
P.O. Box 5400, FI-02015 TKK, Finland. Email:
matti.jarvisalo@tkk.fi.

ob is enforced by introducing gates

oeq
i = equiv(oa

i , o
b
i)

for i = 1 . . . 2n.

• As a single output gate introduce

out = and(oeq
1 , . . . , oeq

2n).

• Constrain out to 0 (false).

Since the multiplier designs produce equivalent
results for any two multiplicants, we arrive at an
unsatisfiable equivalence checking instance.

The Boolean circuit descriptions of the mul-
tiplier designs are produced by the genfacbm
generator [7] for SAT benchmarks based on in-
teger factoring in the BCSat Boolean circuit for-
mat [3], see [6] for details.

2 CNF Encoding

For the CNF encoding, we apply the bc2cnf
Boolean circuit simplifier/clausifier [4]. The
bc2cnf tool applies structure sharing and simpli-
fication (Boolean propagation, cone-of-influence
reduction, monotone input gate rule) techniques
to the circuit, and translates the simplified cir-
cuit into CNF in a standard way a la Tseitin [8]
(however, nots are interpreted as negated liter-
als). This results in a linear translation with
respect to the simplified circuit.

3 Instances

The following set of benchmarks are available at

http://www.tcs.hut.fi/~mjj/benchmarks/.

• eq.atree.braun.[n].unsat.cnf
unsatisfiable instances for multiplicant
bit-widths n = 7 . . . 13

1

SAT Competition 2007 - benchmark description

4 Some Experiments

The following experiments were run using a De-
bian Linux based PC with a 2-GHz AMD pro-
cessor and 2 GB of memory. The running time
and number of decisions/branches for the CNF
solvers Satz [5] (version 2.15) and Minisat [2]
(version 2.0 with preprocessing) are shown in
Figures 1 and 2, respectively. Notice that the in-
put bit-widths are rather small; e.g. for n = 11
the number of CNF variables and clauses are
1400 and 4732, respectively.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 3 4 5 6 7 8 9 10 11 12
 0.01

 0.1

 1

 10

 100

 1000

 10000

N
um

be
r

of
 b

ra
nc

he
s

T
im

e
(s

)

Multiplicant bit width

#branches
time (s)

Figure 1: Results for Satz 2.15

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 3 4 5 6 7 8 9 10 11 12
 0.01

 0.1

 1

 10

 100

 1000

 10000

N
um

be
r

of
 d

ec
is

io
ns

T
im

e
(s

)

Multiplicant bit width

#decisions
time (s)

Figure 2: Results for Minisat 2.0 with prepro-
cessing

References

[1] S. Brown and Z. Vranesic. Fundamentals of
digital logic with VHDL design. McGraw-
Hill, 2000.

[2] N. Eén and N. Sörensson. An extensible
SAT-solver. In Theory and Applications of

Satisfiability Testing, 6th International Con-
ference, volume 2919 of Lecture Notes in
Computer Science, pages 502–518. Springer,
2004.

[3] T. Junttila. The BCSat file format,
2001. Available at http://www.tcs.hut.
fi/~tjunttil/bcsat/.

[4] T. Junttila. The bc2cnf Boolean cir-
cuit simplifier/clausifier, 2006. Soft-
ware, available at http://www.tcs.hut.
fi/~tjunttil/bcsat/ as part of the BC-
Tools package.

[5] C.M. Li. A constraint-based approach to
narrow search trees for satisfiability. In-
formation Processing Letters, 71(2):75–80,
1999.

[6] T. Pyhälä. Factoring benchmarks for SAT-
solvers, 2004. Available at http://www.
tcs.hut.fi/Software/genfacbm/.

[7] T. Pyhälä. genfacbm — a benchmark gen-
erator based on factoring for SAT and ASP
solvers, 2004. Software, available at http:
//www.tcs.hut.fi/Software/genfacbm/.

[8] G.S. Tseitin. On the complexity of deriva-
tion in propositional calculus. In A.O.
Slisenko, editor, Studies in Constructive
Mathematics and Mathematical Logic, Part
II, volume 8 of Seminars in Mathematics,
V.A. Steklov Mathematical Institute, Lening
rad, pages 115–125. Consultants Bureau,
1969. [Translated from Russian. Reprinted
in J. Siekmann and G. Wrightson, e di-
tors, Automation of Reasoning 2: Classical
Papers on Computational Logic 1967–1970,
pages 466–483. Springer, 1983.].

2

