
MaxSAT-Based Bi-Objective Boolean Optimization
Christoph Jabs #

HIIT, Department of Computer Science, University of Helsinki, Finland

Jeremias Berg #

HIIT, Department of Computer Science, University of Helsinki, Finland

Andreas Niskanen #

HIIT, Department of Computer Science, University of Helsinki, Finland

Matti Järvisalo #

HIIT, Department of Computer Science, University of Helsinki, Finland

Abstract
We explore a maximum satisfiability (MaxSAT) based approach to bi-objective optimization. Bi-
objective optimization refers to the task of finding so-called Pareto-optimal solutions in terms of
two objective functions. Bi-objective optimization problems naturally arise in various real-world
settings. For example, in the context of learning interpretable representations, such as decision rules,
from data, one wishes to balance between two objectives, the classification error and the size of
the representation. Our approach is generally applicable to bi-objective optimizations which allow
for propositional encodings. The approach makes heavy use of incremental Boolean satisfiability
(SAT) solving and draws inspiration from modern MaxSAT solving approaches. In particular, we
describe several variants of the approach which arise from different approaches to MaxSAT solving.
In addition to computing a single representative solution per each point of the Pareto front, the
approach allows for enumerating all Pareto-optimal solutions. We empirically compare the efficiency
of the approach to recent competing approaches, showing practical benefits of our approach in the
contexts of learning interpretable classification rules and bi-objective set covering.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Theory
of computation → Constraint and logic programming

Keywords and phrases Multi-objective optimization, Pareto front enumeration, bi-objective optimiz-
ation, maximum satisfiability, incremental SAT

Digital Object Identifier 10.4230/LIPIcs.SAT.2022.12

Supplementary Material Software (Source Code and Data): https://bitbucket.org/coreo-group/
bioptsat

archived at swh:1:dir:3bb8b3ab49f2c36cfeb99211ccd60ac0f8b9bb15

Funding Work financially supported by Academy of Finland under grants 322869, 328718 and
342145.

Acknowledgements The authors wish to thank the Finnish Computing Competence Infrastructure
(FCCI) for supporting this project with computational and data storage resources.

1 Introduction

Recent years have witnessed significant progress in Boolean satisfiability (SAT) based
optimization, maximum satisfiability (MaxSAT) solving in particular [8]. Much like the
success of SAT solvers, MaxSAT allows for succinctly encoding a wide range of NP-hard
real-world optimization problems, and modern MaxSAT solvers today can scale up to finding
provably optimal solutions to instances of very significant size.

As typical for constraint optimization solvers, MaxSAT allows for finding optimal solutions
with respect to a single cost function. However, various real-world settings give rise to multiple,

© Christoph Jabs, Jeremias Berg, Andreas Niskanen, Matti Järvisalo;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022).
Editors: Kuldeep S. Meel and Ofer Strichman; Article No. 12; pp. 12:1–12:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christoph.jabs@helsinki.fi
https://orcid.org/0000-0003-3532-696X
mailto:jeremias.berg@helsinki.fi
https://orcid.org/0000-0001-7660-8061
mailto:andreas.niskanen@helsinki.fi
https://orcid.org/0000-0003-3197-2075
mailto:matti.jarvisalo@helsinki.fi
https://orcid.org/0000-0003-2572-063X
https://doi.org/10.4230/LIPIcs.SAT.2022.12
https://bitbucket.org/coreo-group/bioptsat
https://bitbucket.org/coreo-group/bioptsat
https://archive.softwareheritage.org/swh:1:dir:3bb8b3ab49f2c36cfeb99211ccd60ac0f8b9bb15;origin=https://bitbucket.org/coreo-group/bioptsat.git
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 MaxSAT-Based Bi-Objective Boolean Optimization

often conflicting objectives [17]. In such multi-objective settings, the answer to the question of
what constitutes an optimal solution becomes less evident. A standard notion of “optimality”
in the multi-objective case is that of Pareto optimality (also called Pareto efficiency in some
contexts) [7]. Intuitively, a Pareto-optimal solution is one which cannot be improved wrt any
single objective without making it worse wrt another objective.

In this work, we focus in particular on bi-objective optimization, that is, the task of
finding the Pareto-optimal solutions—or in other words, computing a representative solution
for each point on the so-called the Pareto front—under two conflicting objectives. While the
handle on the solutions of interest can quickly become hard to grasp when the number of
objectives is increased, bi-objective problems naturally arise in the real-world. One topical
setting is that of learning interpretable classifiers [27, 37, 22, 30, 40, 21, 51, 52, 24] such
as decision rules (or other logically-oriented representations) from data. In this context,
interpretability—often understood as the size of a representation, with the intuition that the
smaller the representation, the easier it is for humans to interpret—is intrinsically conflicting
with the objective of accurately representing the data at hand; hence the two objectives of
minimizing size of the representation and minimizing classification error give naturally rise
to combinatorial bi-optimization problems.

In this work, we develop an approach to SAT-based bi-objective optimization. More
precisely, the approach we develop, which can be viewed as an instantiation of the lexicographic
method [31] via SAT solving, allows for taking advantage of advances in MaxSAT solving
algorithms. Instead of using MaxSAT solvers as black-boxes, however, we make use of
incremental SAT solving [15, 33] directly in implementing the approach. As the approach
allows for making use of a MaxSAT algorithm of choice, we study the effectiveness of different
algorithmic choices, both solution-improving (sometimes called SAT/UNSAT) [8, 11, 16]
and core-guided [34, 5, 38, 23] variants. The approach allows for computing representatives
for each point on the Pareto front in an ordered fashion, and extends naturally also to
enumerating all solutions at each point of the Pareto front. In terms of earlier work on
SAT-based multi-objective optimization, it should be noted that we go beyond the multi-
level setting [32] of lexicographic optimization which assumes a preference order among the
objectives.

What comes to competing approaches, we implement for the exact same setting two
recent approaches: enumeration of so-called P -minimal solutions [47] (as arguably the closest
one to ours) originally proposed in the context of SAT-based constraint optimization [28],
and an implicit hitting set style approach in the flavour of the recently-proposed Seesaw
approach [26] (for more discussion on related work, see Section 5). While there are no evident
standard benchmark sets in the context of multi-objective optimization, we empirically
evaluate the performance of these approaches in two problem settings, learning Pareto-
optimal interpretable decision rules (as a generalization of settings for which MaxSAT-based
solutions have been proposed [30]) and bi-objective set covering (as earlier considered in the
work presenting enumeration of P -minimal solutions [47]). The empirical results suggest that
our approach outperforms these competing approaches and that its efficiency is impacted by
the choice of the integrated MaxSAT algorithm within the approach.

2 Preliminaries

For a Boolean variable x there are two literals, the positive x and the negative ¬x. A clause
C is a set of (disjunction over) literals and a CNF formula F is a set of (conjunction over)
clauses. The set of variables and literals appearing in F are var(F) and lit(F), respectively.

C. Jabs, J. Berg, A. Niskanen, M. Järvisalo 12:3

F ={As-CNF

(∑
x∈OI∪OD

x ≥ 3

)
,

(i1 ∨ i2), (i2 ∨ i3),
(d1 ∨ d2), (d2 ∨ d3)}

OD ={d1, d2, d3}
OI ={i1, i2, i3}

0 1 2 3 4
0

1

2

3

4
τ c1τ c2

τ c3

τo1

τ c4τo2

OI

O
D

Infeasible region

Solutions

Pareto-optimal solutions

Minimize-Inc (SAT-UNSAT)

Sol-Improving-Search

isSAT

Figure 1 Left: An example CNF formula F and two objectives OI and OD. Right: the solution
space of F wrt OI and OD. The solutions τo

1 and τo
2 (solid points) are Pareto-optimal, while τ c

i for
i = 1, . . . , 4 are not.

A truth assignment τ maps Boolean variables to 1 (true) or 0 (false). The semantics of
truth assignments are extended to a negated variable ¬v, a clause C and a formula F in the
standard way: τ(¬v) = 1− τ(v), τ(C) = max{τ(l) | l ∈ C}, and τ(F) = min{τ(C) | C ∈ F}.
When convenient, we view assignments τ over a set var(F) of variables as sets of literals
τ = {l | l ∈ var(F), τ(l) = 1} ∪ {¬l | l ∈ var(F), τ(l) = 0}. An assignment τ for which
τ(F) = 1 is a solution to F . A CNF formula F is satisfiable if it has solutions, otherwise
it is unsatisfiable. In this work, wlog we assume that all CNF formulas we deal with are
satisfiable. For a set L of literals and a bound k ∈ N, As-CNF

(∑
l∈L l ≥ k

)
denotes a CNF

formula that encodes the linear inequality
∑

l∈L l ≥ k.
An objective O is a multiset of literals. The value O(τ) of a truth assignment τ under O

is O(τ) =
∑

l∈O τ(l), i.e., the number of the literals in O that τ assigns to 1. Treating O as
a multiset allows for representing objective functions with non-unit coefficients by adding a
literal multiple times.

Given a CNF formula F , two objectives O1, O2 ⊂ lit(F) and solutions τ1, τ2 to F , we
say that τ1 dominates τ2 if (i) Oi(τ1) ≤ Oi(τ2) for i = 1, 2, and (ii) either O1(τ1) < O1(τ2)
or O2(τ1) < O2(τ2). A solution τ is Pareto-optimal if no other solution dominates it. The
Pareto front of F wrt O1, O2 consists of all solutions of F that are Pareto-optimal wrt O1
and O2. When the objectives are clear from context, we will simply say that a solution τ is
a Pareto-optimal solution of F . The pair (O1(τ), O2(τ)) of a Pareto-optimal τ is a Pareto
point (of F wrt O1 and O2). Note that there may be multiple solutions that correspond to
the same Pareto point. We consider the task of computing a representative solution for each
Pareto point as well as the task of enumerating all solutions in the Pareto front.

▶ Example 1. An example CNF formula F and two objectives OI and OD are shown on the left
in Figure 1. The solution space is illustrated on the right. The two solid dots correspond to the
two Pareto points of F wrt OI and OD. Examples of Pareto-optimal solutions corresponding
to these points are τo

1 = {d1, d3, i2,¬d2,¬i1,¬i3} and τo
2 = {i1, i3, d2,¬i2,¬d1,¬d3}.

An important property of Pareto-optimal solutions to bi-objective problems is summarized
by the next observation.

▶ Observation 2 (Adapted from [20]). Sorting the Pareto-optimal solutions of F wrt increasing
values of O1 amounts to sorting them wrt decreasing values of O2, and vice-versa.

▶ Example 3. Consider the CNF formula F , the objectives OI and OD and the two
Pareto-optimal solutions τo

1 and τo
2 from Figure 1 and Example 1. By the definition of Pareto-

SAT 2022

12:4 MaxSAT-Based Bi-Objective Boolean Optimization

Algorithm 1 BiOptSat: MaxSAT-based bi-objective optimization
Input: CNF formula F , objectives OI and OD.
Output: Either one or all Pareto-optimal solution corresponding to each Pareto point of F .

1: InitSATsolver(F)
2: (res, τ)← isSAT(∅) {Invokes the SAT solver on the formula.}
3: if res = UNSAT then
4: return “no solutions”
5: bD ←∞, bI ← 0
6: while res = SAT do
7: (bI, τ)← Minimize-Inc(bD, OI(τ)) {Maintains Tot(OI) (or similar)}
8: (bD, τ)← Solution-Improving-Search(bI, OD(τ)) {Builds Tot(OD)}
9: yield τ {Optionally: yield EnumSols(bD, bI)}

10: (res, τ)← isSAT({⟨OD < bD⟩})

optimality, lowering the value of one objective of a Pareto-optimal solution has to increase
the value of the other; we have OI(τo

1) = 1 < 2 = OI(τo
2) and OD(τo

1) = 2 > 1 = OD(τo
2).

Incremental SAT Solving under Assumptions [15, 33]. When the underlying CNF formula
F is clear from context, the call isSAT(A) invokes a SAT solver on the formula under the
assumptions specified by the set A of literals. The call either returns “satisfiable” (SAT)
and a solution τ ⊃ A, or “unsatisfiable” (UNSAT) and a subset As ⊂ {¬l | l ∈ A} such that
F ∧

∧
l∈As

(¬l) is unsatisfiable, i.e., an unsatisfiable core of F .

Totalizers. Given a set L of n input literals and a bound k = 1, . . . , n, the (incremental)
totalizer encoding [9, 35] produces a CNF formula Tot(L, k) that defines a set {⟨L <

1⟩, . . . , ⟨L < k⟩} ⊂ var(Tot(L, k)) of output literals that—informally speaking—count the
number of literals in L assigned to true by solutions to Tot(L, k): If τ is an assignment that
satisfies Tot(L, k), then τ(⟨L < b⟩) = 1 if

∑
l∈L τ(l) < b. The incremental totalizer supports

both increasing the bound k and adding new input literals without having to rebuild the
whole formula: we have that Tot(L, k) ⊂ Tot(L, k′) and Tot(L, k) ⊂ Tot(L ∪ L′, k) hold
for any bound k′ > k and set L′ of literals. If the bound k is clear from context or k = |L|
we will simply write Tot(L). Additionally, we use ⟨L ≤ b⟩ as a shorthand for the literal
⟨L < b + 1⟩. We note that the assignments of the auxiliary variables of the totalizer encoding
are functionally defined by the assignment of the input and output variables. As such we will
leave them out from the solutions we describe in favour of brevity and clarity of examples.

3 The Approach

We detail the MaxSAT-based approach to bi-objective optimization developed in this work
together with its variants.

3.1 Overview of the Algorithm
Algorithm 1, which we refer to as BiOptSat, details our framework for computing the
Pareto-optimal solutions of a given CNF formula F wrt two given objectives OI and OD.
The framework is an instantiation of the general lexicographic optimization method [31]
instantiated with a SAT solver. More specifically, all subroutines of the procedure are
implemented using a single instantiation of a SAT solver that is invoked incrementally and

C. Jabs, J. Berg, A. Niskanen, M. Järvisalo 12:5

preserved (i.e., not reset) during the whole search. BiOptSat maintains the bounds bI
and bD on the two objectives OI and OD, respectively. In each iteration, the value of bI
is set to the smallest value for which there is a still-undiscovered Pareto-optimal solution
τ for which OI(τ) = bI by the Minimize-Inc procedure. The value of bD is then set to
OD(τ) by the Solution-Improving-Search procedure. In case one wishes to enumerate
all Pareto-optimal solutions (in contrast to a single representative solution for each Pareto
point), the EnumSols procedure then enumerates all Pareto-optimal solutions τo for which
OI(τo) = bI and OD(τo) = bD.

Importantly, since the value of OI is always minimized first, the value bI returned each
iteration is monotonically increasing. We therefore call OI the increasing objective. By
Observation 2, this means that the sequence of values bD is monotonically decreasing, leading
us to calling OD decreasing. By these observations, BiOptSat performs search in an ordered
fashion along the Pareto front.

In detail, given a CNF formula F and two objectives OI and OD, the search of BiOptSat
in Algorithm 1 starts by initializing a SAT solver with all clauses in F on Line 1. Satisfiability
(i.e., the existence of any Pareto-optimal solutions) is checked by invoking the SAT solver on
its internal formula without assumptions via the isSAT(∅) function (Line 2). If the formula is
unsatisfiable, there are no Pareto-optimal solutions and the algorithm terminates. Otherwise,
τ is an assignment that satisfies the formula. Before the main enumeration procedure starts,
the bounds bI and bD on OI and OD are set to 0 and ∞, respectively.

The main search loop (Lines 6–10) iterates as long as there are Pareto-optimal solutions
of F that have not been enumerated yet. This is the case if there is a solution τ for which
OD(τ) < bD, which is checked by invoking the SAT solver under the assumption ⟨OD < bD⟩
on Line 10. In the beginning of each main loop iteration, the procedure Minimize-Inc is
employed to minimize the increasing objective, i.e., to compute the smallest value bI for
which there is a solution τ for which OD(τ) < bD and OI(τ) = bI (Line 7). We assume that
Minimize-Inc maintains a way to enforce that OI(τ) < k, e.g., through a totalizer Tot(OI),
and that BiOptSat and all of its subroutines have access to a set of assumptions to enforce
this bound for any k.

Next, the algorithm employs solution-improving search [8, 11, 16] to minimize the de-
creasing objective, i.e., to compute the smallest bD for which there is a solution τ for which
OD(τ) = bD and OI(τ) = bI (Line 8). The totalizer Tot(OD, OD(τ)) is built at the first
time this subroutine is invoked. Building the totalizer at this point allows for only building
it up to bound OD(τ), since all Pareto-optimal solutions are known to have at most that
value for OD. Solution-improving search works by—starting from k = OD(τ)—iteratively
invoking the SAT solver under the assumptions {⟨OD < k⟩, ⟨OI ≤ bI⟩} for decreasing values
of k until the solver reports UNSAT, and returns bD and a solution τ for which OD(τ) = bD
and OI(τ) = bI. At this point we know that there is no solution of F that dominates τ , so
τ is returned as Pareto-optimal on Line 9. If one wants to enumerate all solutions τo that
correspond to the Pareto point (bI, bD), the EnumSols procedure repeatedly invokes the SAT
solver with the assumptions {⟨OD ≤ bD⟩, ⟨OI ≤ bI⟩} and blocks each found solution until no
more solutions are found.

▶ Example 4. Invoke BiOptSat on the CNF formula F and objectives OI, OD detailed in
Figure 1. The search starts by invoking a SAT solver on F . The call returns a solution, say
τ c

1 = {i1, i2, i3, d1, d2, d3} for which OI(τ c
1) = OD(τ c

1) = 3. The first iteration of the main
search loop starts with a call to Minimize-Inc. This returns bI = 1 and (e.g.) the solution τ c

3 =
{i2, d1, d2, d3,¬i1,¬i3, } for which OI(τ c

3) = 1 and OD(τ c
3) = 3. BiOptSat then proceeds to

the Solution-Improving-Search subroutine that initializes a totalizer Tot(OD, 3). The

SAT 2022

12:6 MaxSAT-Based Bi-Objective Boolean Optimization

first call to the SAT solver is made under the assumptions A = {⟨OI ≤ 1⟩, ⟨OD < 3⟩}. The
query is satisfiable. Say that the solver returns the solution τo

1 = {d1, d3, i2,¬i1,¬i3,¬d2}.
Then, the solver is invoked with the assumptions A = {⟨OI ≤ 1⟩, ⟨OD < 2⟩}. The query is
unsatisfiable, so the procedure returns the Pareto-optimal τo

1 and bD = OD(τo
1) = 2. At the

end of the iteration, the SAT solver is queried under the assumption {⟨OD < 2⟩}. As the
query is satisfiable, the solver returns, e.g., the solution τ c

4 = {d2, i1, i2, i3,¬d1,¬d2} and the
algorithm starts a new iteration.

The next iteration of BiOptSat proceeds similarly to the first. The procedure Minimize-
Inc returns bI = 2 and, e.g., the solution τo

2 = {i1, i3, d2,¬d1,¬d3,¬i2}. Solution-
Improving-Search cannot improve on the decreasing objective, so the solution τo

2 is proven
to be Pareto-optimal. At the end of the iteration, on Line 10 the SAT solver is invoked under
the assumption {⟨OD < 1⟩}. The solver returns unsatisfiable, terminating the algorithm.

3.2 Approaches to Minimizing the Increasing Objective

We consider five different instantiations of the Minimize-Inc procedure for minimizing the
increasing objective, inspired by MaxSAT algorithms.

SAT-UNSAT is a variant of solution-improving search that is used for minimizing OD. The
procedure gets as input the current bound bD on OD and the value OI(τ) obtained by the
solution τ computed during the last SAT solver call. Since the last call is made on Line 10
under the assumption ⟨OD < bD⟩, the solution τ will have OD(τ) < bD. As such, the value
OI(τ) is an upper bound for the smallest value of OI obtained by any solution τ ′ having
OD(τ ′) < bD.

The procedure SAT-UNSAT maintains the totalizer Tot(OI) and begins by checking, if the
current upper bound on that totalizer is at least OI(τ), extending it if not. Then the SAT
solver is iteratively invoked under the assumptions {⟨OD < bD⟩, ⟨OI < k⟩} for decreasing
values of k starting from OI(τ). The procedure terminates when the query is unsatisfiable,
after which the value of k and the solution obtained during the final satisfiable call are
returned as bI and τ .

▶ Example 5. Consider the invocation of BiOptSat detailed in Example 4. We detail
the invocation of Minimize-Inc instantiated as SAT-UNSAT. The full progression of the
search of BiOptSat with Minimize-Inc instantiated as SAT-UNSAT is illustrated in Figure 1.
In the first iteration, SAT-UNSAT is invoked with bD = ∞ and OI(τ) = 3. At this point,
the totalizer over OI has not been built, so the procedure starts by adding Tot(OI, 3) to
the solver. The first call to the SAT solver is made under the assumptions {⟨OI < 3⟩},
since bD = ∞ and therefore no assumption constraining OD is needed. The query is
satisfiable, the solver returns, e.g., the solution τ c

2 = {d1, d2, d3, i1, i2,¬i3}. In the next
iteration, the set of assumptions is {⟨OI < 2⟩}. The query is again satisfiable, returning,
e.g., the solution τ c

3 = {d1, d2, d3, i2,¬i1,¬i3}. The SAT solver is then invoked under the
assumptions {⟨OI < 1⟩}. Now the query is unsatisfiable, so the procedure terminates and
returns τ c

3 and bI = 1. In the second (and last) iteration of BiOptSat, SAT-UNSAT is
invoked with bD = 2 and OI(τ) = 3. The first call to the SAT solver is made under the
assumptions {⟨OD < 2⟩, ⟨OI < 3⟩}. The query is satisfiable and the solver returns, e.g., the
solution τo

2 = {i1, i3, d2,¬d1,¬d3,¬i2}. SAT-UNSAT invokes the SAT solver again under the
assumptions {⟨OD < 2⟩, ⟨OI < 2⟩}. The query is unsatisfiable, so the procedure returns
bI = 2 and τo

2 .

C. Jabs, J. Berg, A. Niskanen, M. Järvisalo 12:7

UNSAT-SAT takes a similar approach to SAT-UNSAT search but searches for the smallest
value by lower-bounding instead of upper-bounding. It also maintains a totalizer Tot(OI).
For finding the next solution, the bound k is set to the last known value of bI and the solver is
then iteratively queried for a new solution under the assumptions {⟨OI ≤ k + 1⟩, ⟨OD < bD⟩}.
If the query is unsatisfiable, the bound k is increased by 1 and the solver is queried again.
The search ends once the solver returns satisfiable and in this case, the solution, and the
bound are returned. Since the bound of this lower bounding search procedure will only
monotonically increase, it is enough if the totalizer Tot(OI) is at every step built up to the
bound k + 1 and extended to the next bound in the next iteration. This way, the SAT solver
is always loaded with a minimum number of clauses.

MSU3 implements a core-guided approach [34, 5], maintaining a set Act ⊂ OI of active
objective literals and a totalizer Tot(Act) built over them. Initially, Act = ∅, i.e., all
literals of OI are inactive. Informally speaking, an inactive literal l ∈ OI \ Act is assumed
to the value 0 in every invocation of the SAT solver until it is returned as part of a core.
More precisely, on input bD and OI(τ), the algorithm starts from the value bI computed
in the previous iteration and invokes the SAT solver under the assumptions A = {⟨Act ≤
bI⟩, ⟨OD < bD⟩} ∪ {¬l | l ∈ OI \ Act}. If the query is unsatisfiable, the SAT solver returns a
core As ⊂ {¬l | l ∈ A}. Next, the bound bI is increased by one, the inactive literals in As

are added to Act and the totalizer Tot(Act) is extended. The procedure continues until
the SAT solver returns satisfiable, and a solution τ which sets OI(τ) ≤ bI and OD(τ) < bD.
At that point the value bI is the minimum value of OI(τ) subject to OD(τ) < bD. This is
because the value of bI is increased monotonically, and the solver returned unsatisfiable in
the second-to-last iteration.

For enforcing ⟨OI ≤ b⟩ when employing MSU3, consider an invocation of MSU3(bD, OI(τ))
made during BiOptSat and assume it returns the tuple (bI, τ). In the next call to
Solution-Improving-Search, the number of literals in OI set to 1 needs to be restric-
ted to at most bI. Since the totalizer maintained by MSU3 only has Act ⊂ OI as inputs, we
do not have access to an output literal of form ⟨OI ≤ bI⟩. Instead, we use the assumptions
{⟨Act ≤ bI⟩} ∪ {¬l | l ∈ OI \ Act}, i.e., restrict the number of literals in Act set to 1 to bI
and assume the value of each inactive literal l ∈ OI \ Act to 0. In the following proposition,
we prove that doing so does not remove any Pareto-optimal solutions from consideration.

▶ Proposition 6. Let τ be a Pareto-optimal solution of F for which OI(τ) = bI. Then
τ(l) = 0 for all l ∈ OI \ Act.

Proof. (Sketch) Since, bI was returned by MSU3, we know that there is a Pareto-optimal τo

for which OI(τo) = bI and OD(τo) < bD. By the properties of cores, we also know that any
solution τs of F for which OD(τs) < bD assigns at least bI literals in Act to 1. Thus, any τn

that assigns τn(l) = 1 for an inactive literal l ∈ OI \ Act will have OI(τn) > bI. ◀

▶ Example 7. Consider the invocation of BiOptSat detailed in Example 4. Here we detail
the invocations of Minimize-Inc instantiated as MSU3. In the first iteration of BiOptSat,
MSU3 is invoked with bD =∞ and OI(τ) = 3. Initially, the set Act = ∅ of active literals is
empty, so the first call to the SAT solver is made under the assumptions A = {¬i1,¬i2,¬i3}.
The query is unsatisfiable and the solver returns, e.g., As = {i1, i2}. The literals in As

are marked as active and the totalizer Tot(Act) is initialized. The SAT solver is then
invoked under the assumptions A = {¬i3, ⟨Act ≤ 1⟩}. The query is satisfiable so the solver
returns (e.g.) the solution τ c

3 = {d1, d2, d3, i2,¬i1,¬i3} and bI = 1. In the next iteration of
BiOptSat, MSU3 is invoked with bD = 2 and OI(τ) = 2. The set Act = {i1, i2} is kept from

SAT 2022

12:8 MaxSAT-Based Bi-Objective Boolean Optimization

the previous iterations, so the first call to the SAT solver is made under the assumptions
A = {¬i3, ⟨Act ≤ 1⟩, ⟨OD < 2⟩}. The query is unsatisfiable. If i3 is a part of the core As

returned by the solver, it is marked as active and the totalizer Tot(Act) extended accordingly.
Next, the SAT solver is invoked under the assumptions A = {⟨Act ≤ 2⟩, ⟨OD < 2⟩}. The
call returns SAT, obtaining the solution τo

2 = {i1, i3, d2,¬d1,¬d3,¬i2} and bI = 2.

OLL is another core-guided procedure (originally proposed in the context of ASP [2] and
also successfully applied in MaxSAT [38, 23]) that handles the cardinality constraint over
the literals in OI differently to MSU3. Instead of a single totalizer over all literals in Act, a
separate totalizer is built for every core returned after the unsatisfiable SAT solver calls. In
each iteration, the assumptions given to the SAT solver consist of (i) the inactive literals
of OI, (ii) the outputs of previously built totalizers corresponding to the lowest number of
input literals that should be assigned to 1 in any possible satisfying assignment and (iii) the
bound ⟨OD < bD⟩. The procedure terminates when the SAT solver returns a solution τ .
Similarly to MSU3, the assumptions for enforcing a bound on OI in the other subroutines of
Algorithm 1 need to be adapted when using OLL.

MSHybrid is a hybrid between MSU3 and SAT-UNSAT, with the following intuition. If MSU3
reaches the stage where all literals of the objective are active, its search will become equivalent
to UNSAT-SAT. However, SAT-UNSAT search may be a significantly better approach compared
to UNSAT-SAT. If this is the case, MSU3 might have an advantage over SAT-UNSAT as long
as not all literals are active, but as soon as all literals are active, it looses its advantage.
Furthermore, if a problem instance has literals in OI that are not constrained by F , these
literals will never appear in any core making MSU3 behave like UNSAT-SAT even before the
totalizer is fully built.

With this intuition, we propose MSHybrid, a—to the best of our understanding—previously
unstudied variant that starts with MSU3 search and switches over to SAT-UNSAT as soon
as a certain percentage of the literals in OI have been added to the totalizer Tot(Act).
Before switching over to SAT-UNSAT, the remaining literals are added to the totalizer to
build Tot(OI), which is needed for SAT-UNSAT. With this, the advantages of both MSU3 and
SAT-UNSAT can in the best case be combined.

▶ Example 8. Consider the invocation of BiOptSat detailed in Example 4. We detail the
invocations of Minimize-Inc instantiated as MSHybrid. Since MSHybrid starts out as MSU3,
the first invocation starts by following the description in Example 7. Assume MSHybrid is
configured to switch as soon as 50% of the literals in OI are active. This is reached when
the core As = {i1, i2} is returned and i1, i2 become active. At this moment, MSHybrid stops
the MSU3 search procedure, finishes building Tot(OI) by adding i3 to Tot(Act), and starts
SAT-UNSAT search as in the first iteration detailed in Example 5. Since the second iteration
is after the switch to SAT-UNSAT, it will be identical to the second iteration in Example 5.

3.3 Refinements
We consider a number of refinements to BiOptSat.

Lazily building Tot(OD). Assume that BiOptSat is invoked on a CNF formula F and a pair
of overlapping objectives OI and OD for which OI∩OD ̸= ∅ with Minimize-Inc instantiated
as MSU3 or OLL. Let Act be the set of active literals of OI as maintained by Minimize-Inc.
Lazy building of Tot(OD) refers to only having (OD \OI) ∪ (Act ∩OD) as input to the

C. Jabs, J. Berg, A. Niskanen, M. Järvisalo 12:9

totalizer (incrementally extending the totalizer as the set Act grows), and assuming the
value of each literal l ∈ (OD ∩ OI) \ Act to 0 in each SAT call made during invocations
of Solution-Improving-Search. The soundness of doing so follows by an argument very
similar to the one we made in Proposition 6.

Lazy building of Tot(OD) requires a minor adaption to the termination criterion of
BiOptSat (i.e., Algorithm 1). As the totalizer maintained by Solution-Improving-Search
might not have all literals of OD as inputs, the algorithm does not have a (straight-forward)
way of checking if there exists a solution τ for which OD(τ) < bD. However, the lack of
further Pareto-optimal solutions is instead detected in the next call to Minimize-Inc by the
SAT solver returning a core that only contains the assumption used for bounding the value
of OD.

Domain-Specific Solution Blocking. If multiple representatives of the same Pareto point
are of interest, the procedure EnumSols needs to block all obtained solutions. While this
can be done in a straight-forward manner on the CNF-level, we will in later sections give
examples of how domain-specific knowledge can be used in order to derive stronger clauses
that block not only a specific solution obtained, but also other, symmetric solutions.

Refinements to Core-Guided Variants. Our implementation of the variants BiOptSat
with MSU3 or OLL make use of refinements commonly used in core-guided MaxSAT solving.
More specifically, we employ core minimization [23] (either exact or heuristic) and core-
exhaustion [23, 4]. Given a core As returned by the SAT solver, heuristic core minimization
refers to reinvoking the SAT solver with {¬l | l ∈ As} as the assumptions hoping that the
solver returns a smaller set of assumptions. Exact core minimization refers to iteratively
finding a minimal unsatisfiable subset by attempting to remove each assumption separately.
Core exhaustion is an OLL specific technique that seeks to improve the lower bound of each
totalizer being added.

4 Experiments

We implemented all variants and refinements of BiOptSat described in Section 3 in C++.
The open-source implementation and empirical data are available at https://bitbucket.
org/coreo-group/bioptsat. Our implementations of MSU3 and OLL were inspired by their
implementations in Open-WBO [36], the other variants were implemented from scratch. We
used CaDiCaL v1.5.2 [12] as the internal SAT solver. We also reimplemented the competing
approaches P -minimal and Seesaw (see Sect. 4.2), since no reference implementations were
available. For ParetoMCS, we used the publicly-available Sat4j-based [11] implementation
from https://gitlab.ow2.org/sat4j/moco. We evaluate the relative runtime performance
of the BiOptSat variants against these two competing approaches, as well as the impact of
the specific refinements (recall Section 3.3; employed as applicable, by default with heuristic
core minimization) to BiOptSat on their runtime performance. As a parametric detail, in
its default MSHybrid is configured to switch between MSU3 and SAT-UNSAT once 70% of the
literals in OI have been added to Tot(Act). In preliminary experiments we observed that
this threshold is low enough to prevent the MSU3 search phase from behaving like UNSAT-SAT.
Furthermore, varying the threshold slightly does not have significant impact on performance.
All experiments were run on 2.60-GHz Intel Xeon E5-2670 machines with 64-GB RAM in
RHEL under a 1.5-hour per-instance time and 16-GB memory limit.

SAT 2022

https://bitbucket.org/coreo-group/bioptsat
https://bitbucket.org/coreo-group/bioptsat
https://gitlab.ow2.org/sat4j/moco

12:10 MaxSAT-Based Bi-Objective Boolean Optimization

4.1 Benchmarks
For the experiments, we consider two bi-objective optimization problems as benchmark
domains: learning of interpretable decision rules and the bi-objective set covering problem.

Learning Interpretable Decision Rules (LIDR). Recently, a variety of SAT and MaxSAT-
based approaches have been developed for learning interpretable classifiers from data [22,
30, 40, 21, 51, 52, 24]. The two objectives of minimizing size (“the smaller, the more
interpretable”) and classification error (when there is no perfect classifier, as typical for
real-world data) are conflicting, hence giving naturally rise to bi-objective optimization
problems. Here we consider learning of interpretable decision rules as a representative
benchmark domain from this line of work, building on the encoding presented in [30]. In
short, here a decision rule is a binary classifier in the form of a CNF formula over Boolean
features. In [30] a linear combination of the two objectives, using a parameter λ ≥ 0, was
proposed in order to directly apply a MaxSAT solver to find decision rules under a pre-fixed
value for λ. While this allows for finding a Pareto-optimal decision rule under a specific
value of λ, MaxSAT solving multiple times under different choices of λ does not guarantee
finding a representative Pareto-optimal decision rule for each Pareto point [31]. In contrast,
here we address directly the problem of computing all Pareto-optimal solutions wrt the two
objectives. For a given set of n data samples over m features, the encoding uses two sets of
variables: sj

l for l = 1, . . . , k, j = 1, . . . , m and ηi for i = 1, . . . , n for a specific number k of
clauses in the decision rules to be learned, with the interpretation that sj

l = 1 iff the jth
feature is included in the lth clause of the decision rule, and ηi = 1 if the ith data sample is
misclassified.

We represent the sample with index i with a Boolean class yi and the Boolean features xj
i

where j = 1, . . . , m. With this, the encoding is ¬ηi → (yi ↔
∧k

l=1
∨m

j=1(xj
i ∧sj

l)). We use this
encoding, literals sj

l as OI and literals ηi as OD. This corresponds to finding Pareto-optimal
solutions wrt the size of the decision rule as the total number of literals and its classification
error. (In preliminary experiments we observed that using the classification error as the
increasing objective leads to worse performance.) Since decision rules in CNF contain many
symmetric solutions obtained by changing the order of clauses, we add additional clauses
to the encoding to break these symmetries by enforcing a lexicographic ordering on the
bit-strings representing the clauses; see Appendix A for details.

As the basis of benchmark instances, we used 24 standard UCI [14] and Kaggle datasets
used in [30]; see Appendix B for details. We randomly and independently sampled subsets
of n ∈ {50, 100, 1000, 5000, 10000} data samples from the datasets, four of each size (when
applicable), resulting in a total of 372 datasets. All experiments on these datasets were run
with the encoding from [30] configured to learn CNF decision rules consisting of two clauses.

When enumerating multiple solutions corresponding to the same Pareto point, the blocking
clauses for BiOptSat (as well as the P -minimal approach compared to in the experiments)
can be strengthened to find solutions mapping to distinct rules: blocking over the variables
sj

l is sufficient and blocks multiple symmetric solutions that only differ in the assignment to
auxiliary variables. Furthermore, making use of the algorithm-specific fact that BiOptSat is
guaranteed to enumerate Pareto-optimal solutions in order of increasing size, for BiOptSat
it is sufficient to block a solution over all sj

l that are assigned to false.

Bi-Objective Set Covering. In the set covering problem, given a collection S of subsets of
a set of elements {1, . . . , n}, the task is to find a smallest possible subset C of the elements
{1, . . . , n} such that C covers all sets in S, i.e., C∩S ̸= ∅, ∀S ∈ S. In the weighted bi-objective

C. Jabs, J. Berg, A. Niskanen, M. Järvisalo 12:11

set covering problem we consider here, two integer weights ce
1 and ce

2 are associated with
each element e. The two objectives are to minimize

∑
e∈C ce

1 and
∑

e∈C ce
2. When encoding

bi-objective set covering in propositional logic, every set S ∈ S forms one clause in the
encoding, i.e., the clauses are {le | e ∈ S} with le being a literal representing if element e

is in C. Furthermore, the integer values for the cost ce associated with element e can be
represented by adding le to the objective set ce times. Note that multi-objective set covering
was also used originally in an empirical evaluation of the P -minimal approach [47].

We generated two types of bi-objective set covering problem instances: (i) using a fixed
probability p for an element appearing in a set (SetCovering-EP), and (ii) using fixed set
cardinality s, with elements in a set chosen uniformly at random without replacement
(SetCovering-SC). We generated both types of instances using combinations of the following
parameters: number of elements n ∈ {100, 150, 200}, number of sets m ∈ {20, 40, 60, 80},
element probability p ∈ {0.1, 0.2} and set cardinality s ∈ {5, 10}. For each combination, we
generated five instances, leading to 120 instances of each type. The integer cost values c for
the two objectives were chosen uniformly at random from the range c ∈ [1, 100]. We note
that—since both objectives are randomly generated by the same process—the two objectives
can be swapped without a noticeable impact on overall runtime performance of solvers when
run on many instances.

The blocking clauses used in BiOptSat for enumerating all Pareto-optimal solutions
can be strengthened also for set covering. Due to the fact that BiOptSat is guaranteed
to enumerate the Pareto-optimal solutions so that one of the objectives will monotonically
decrease, it is enough to block in BiOptSat the solution over all le that are assigned to true.

4.2 Competing Approaches
We consider in our experiments two competing SAT-based approaches for enumerating
Pareto-optimal solutions.

P -minimal. The approach perhaps closest to ours is solving multi-objective constraint
optimization problems by enumerating so-called P -minimal solutions [47, 28]. We were
unable to obtain an implementation of the approach from the authors. For a fair comparison
with BiOptSat, we hence reimplemented the approach similarly as BiOptSat. In more
detail, the P -minimal approach corresponds to enumerating the solutions of F W = F ∧
Tot(OI) ∧Tot(OD) that are subset-minimal wrt the set of outputs of the totalizers. More
precisely, if P is the set of output literals of Tot(OI)∧Tot(OD), then the goal is to enumerate
solutions τm such that no other solution τ has {b | b ∈ P ∧τ(b) = 0} ⊊ {b | b ∈ P ∧τm(b) = 0}.
The procedure for enumerating such solutions (detailed in [28]) works by (i) using a solver to
obtain any solution τ of F W, (ii) iteratively minimizing the subset of variables of P set to
true by the solution, and, once a minimal solution τm has been found, (iii) adding the clause
(⟨OI < k1⟩ ∨ ⟨OD < k2⟩) containing the output variables corresponding to the lowest index
set to true by τm.

▶ Example 9. Consider the CNF formula F and two objectives OI and OD from Figure 1.
P -minimal starts by building two totalizers Tot(OI) and Tot(OD) and invoking the SAT
solver on F W = F ∧ Tot(OI) ∧ Tot(OD). The query is satisfiable, assume the first
solution obtained is τ c

1 = {i1, i2, i3, d1, d2, d3}. In order to subset-minimize τ c
1 , the clause

(⟨OI < 3⟩ ∨ ⟨OD < 3⟩) is added to the SAT solver, and the solver is invoked again under the
assumptions {⟨OI ≤ 3⟩, ⟨OD ≤ 3⟩}. The added clause blocks τ c

1 and all solutions dominated by
τ c

1 from the search space. Assume the next solution obtained is τ c
5 = {d1, d3, i1, i3,¬d2,¬i2}.

SAT 2022

12:12 MaxSAT-Based Bi-Objective Boolean Optimization

Again, a clause (⟨OI < 2⟩ ∨ ⟨OD < 2⟩) is added, and the SAT solver is queried with
assumptions {⟨OI ≤ 2⟩, ⟨OD ≤ 2⟩}. The query is satisfiable. Assume the solution obtained
is τo

2 = {i1, i3, d2,¬i2,¬d2,¬d3}. P -minimal then adds the clause (⟨OI < 2⟩ ∨ ⟨OD < 1⟩)
and invokes the solver again under the assumptions {⟨OI ≤ 2⟩, ⟨OD ≤ 1⟩}. The query is
unsatisfiable, which proves that τo

2 is Pareto-optimal. To find a next Pareto-optimal solution,
the solver is queried without any assumptions for a new solution to start the minimization
process from.

Note that P -minimal has no guarantee on the order that the solutions are enumerated in.
Intuitively, when an intermediate solution τ is found, the following SAT solver call either
provides another solution that dominates τ , or proves that τ is Pareto-optimal.

In our implementation we extended P -minimal to the task of enumerating all solutions
on the Pareto front. Specifically, we add a new relaxation variable r to the clause added in
each iteration for use as an assumption to enumerate all solutions at that Pareto point in
a standard way. If the next call provides a solution that dominates the previous one, we
harden the clause added in the previous iteration by adding ¬r as a unit clause. Also, once
all solutions for a Pareto point are enumerated, the clause is hardened.

Seesaw [26] was recently proposed as a framework for bi-objective optimization as a
generalization of the so-called implicit hitting set approach [13, 25, 45, 19, 44]. In contrast to
our work, a main ingredient in Seesaw is the idea of treating one of the objectives as a black
box. This allows for—but also requires—problem-specific instantiations of the black box; no
generic Seesaw implementation applicable generally to bi-objective optimization is available.
That said, to enable a comparison with (an instantiation of) Seesaw, we instantiated the
approach for the LIDR problem. (For bi-objective set covering, both objectives are monotone
over the chosen cover. As such, instantiating Seesaw is not feasible because the refined core
extraction method from [26] cannot be used, resulting in Seesaw enumerating all possible
solutions of the input formula.)

While the original paper presents Seesaw in general terms, in our context the Seesaw
algorithm computes Pareto-optimal solutions of a CNF formula F by maintaining a collection
C of subsets of OI that are called cores. Informally speaking, every solution τ that improves
on OD needs to assign at least one literal from each core to 1. The algorithm works iteratively
by computing a hitting set hs ⊂ OI, i.e., a subset-minimal set of literals of OI that intersects
with each core in C, and then a solution τ that sets τ(o) = 1 for each o ∈ hs and τ(o) = 0
for each o ∈ OI \ hs and for which OD(τ) is the smallest possible value for all such solutions
if one exists. The iteration then extracts a new core that hs does not intersect with. The
Pareto-optimal solutions of F are identified by the size of the hitting set increasing. More
precisely, if the hitting set is found to increase from size |hs| to size |hs2| with |hs2| > |hs|,
the solution τ found with a hitting set of size |hs| that has the smallest minimal value OD(τ)
is Pareto-optimal [26].

We instantiated Seesaw for LIDR by using misclassifications as the objective over which
cores are extracted and the integer programming solver CPLEX v20.10 for computing a
hitting set hs over these cores. In the second step, the number of literals in the smallest rule
misclassifying the examples in hs or a subset of it is found. This function is implemented as
a solution-improving search in CaDiCaL. This instantiation was chosen because finding the
smallest rule misclassifying hs is an anti-monotone function and the refined version of core
extraction presented in [26] can therefore be used, making Seesaw feasible in the first place.

Note that, in contrast to BiOptSat and P -minimal, extending Seesaw as it is presented
in [26] to support the enumeration of all Pareto-optimal solutions seems non-trivial. For

C. Jabs, J. Berg, A. Niskanen, M. Järvisalo 12:13

0 50 100 150
0

1

2

3

4

5

·103

223

5.4

instances solved

cp
u
ti
m
e
(s
)

MSHybrid

SAT-UNSAT

MSU3

UNSAT-SAT

OLL

P -minimal

Seesaw

ParetoMCS

210 215 220
0

1

2

3

4

5

·103

223

5.4

instances solved

Figure 2 Runtime comparison of variants of BiOptSat and competitors for LIDR; the plot on
the right shows a magnification for comparing the best-performing approaches.

a non-formal intuition note that, while Seesaw is guaranteed to find at least one solution
obtaining the objective values of each Pareto-optimal point, the non-deterministic hitting set
computation might steer the algorithm past other solutions that obtain the same values.

ParetoMCS. In [49, 48, 50] an approach for computing Pareto-optimal solutions via so-
called Pareto-minimal correction sets (ParetoMCSes) was proposed. Using our notation, the
approach works by enumerating all subsets S ⊂ (OI∪OD) for which (i) F ∧

∧
l∈(OI∪OD)\S(¬l)

is satisfiable and (ii) F ∧
∧

l∈(OI∪OD)\S′(¬l) is unsatisfiable for all S′ ⊊ S. Let S be the
collection of all such sets. The computation of S corresponds to MCS enumeration to which
numerous algorithms have been proposed [10, 39, 42]. The Pareto-optimal solutions are
obtained by extracting the solutions satisfying F ∧

∧
l∈(OI∪OD)\S(¬l) for all S ∈ S and

removing the dominated ones [49]. The ParetoMCS approach to multi-objective optimization
is approximative in that it can only guarantee that a solution is Pareto-optimal once the full
set S has been computed. In contrast, every minimal solution found during the P -minimal
approach of [47] and every solution returned by the EnumSols subroutine of Algorithm 1 is
immediately known to be Pareto-optimal.

▶ Example 10. Consider the CNF formula F and two objectives OI and OD from Example 1.
The ParetoMCS enumeration procedure will return the solution τ = {d1, d3, i1, i3,¬d2,¬i2}
since no solution τs of F has {x ∈ OI ∪OD | τs(x) = 1} ⊊ {d1, d3, i1, i3}. The fact that the
solution τ is not Pareto-optimal can only be discovered when a solution that dominates it is
enumerated. However, there are no guarantees on when such a dominating solution is found.
This means that τ is guaranteed to be Pareto-optimal only after all solutions in S have been
enumerated.

We refer to this approach of enumerating Pareto-optimal solutions as ParetoMCS for
short and only consider an instance solved once all MCSes have been enumerated and the
solutions therefore have been proven optimal.

4.3 Results
We start with a comparison of the runtime performance of different variants of BiOptSat,
P -minimal and (for LIDR) Seesaw. For LIDR, Figure 2 shows the number of instances

SAT 2022

12:14 MaxSAT-Based Bi-Objective Boolean Optimization

Table 1 Solved instances by approach and benchmark family.

Instance Type SAT-UNSAT UNSAT-SAT MSU3 OLL MSHybrid P -minimal

single all single all single all single all single all single all

Decision Rules 223 215 223 215 223 215 222 213 223 215 219 213
SetCovering-EP 77 75 71 71 71 70 58 58 83 81 71 68
SetCovering-SC 35 35 29 29 36 36 34 34 40 40 38 26

solved (x-axis) for different per-instance time limits (y-axis) for the task of computing a
single representative solution for each Pareto point. The best-performing approaches are
the BiOptSat variants MSHybrid, SAT-UNSAT, UNSAT-SAT and MSU3 solving 223 instances,
while P -minimal solves 219 instances. All variants of BiOptSat outperform P -minimal
to some extent. Seesaw and ParetoMCS, solving only 123 and 34 instances, respectively,
within the resource constraints, are clearly outperformed by BiOptSat. Figure 3 shows
a similar comparison for the two variants of bi-objective set covering. Here MSHybrid is
the best-performing variant of BiOptSat, outperforming P -minimal: P -minimal solved 71
(resp. 38) fixed element probability (resp., fixed set cardinality) instances, whereas MSHybrid
solved 83 (resp. 40) instances. ParetoMCS did not solve a single one of the set covering
instances while Seesaw cannot be feasibly instantiated for this benchmark domain. Similar
plots for the task of enumerating all solutions on the Pareto front are provided in Appendix C.

The numbers of solved instances for the well-performing approaches are summarized
in Table 1, both for enumerating a single representative solution per Pareto point and
for enumerating all Pareto-optimal solutions. MSHybrid is the best-performing BiOptSat
variant overall, outperforming P -minimal in all cases. The performance difference is greater
when enumerating all Pareto-optimal solutions. For more details, Figure 4 (left) shows a
per-instance runtime comparison between MSHybrid and P -minimal. We note that P -minimal
did not solve a single instance that was not solved by MSHybrid. In general, MSHybrid was
outperformed by P -minimal on only 31 instances while MSHybrid solved 297 instances in less
time. Both BiOptSat and our implementation of P -minimal make fully incremental use of

0 20 40 60
0

1

2

3

4

5

·103

83

5.4

instances solved

cp
u
ti
m
e
(s
)

SetCovering-EP

MSHybrid

SAT-UNSAT

MSU3

UNSAT-SAT

P -minimal

OLL

0 10 20 30 40
0

1

2

3

4

5

·103
5.4

instances solved

SetCovering-SC

Figure 3 Runtime comparison of variants of BiOptSat and competitors
for bi-objective set covering problem.

C. Jabs, J. Berg, A. Niskanen, M. Järvisalo 12:15

the SAT solver, never resetting it during search. This suggests that the advantage BiOptSat
has over P -minimal lies in the search of BiOptSat being more structured. Figure 4 (right)
shows a runtime comparison between enumerating a single representative solution per Pareto
point and enumerating all Pareto-optimal solutions with MSHybrid. Overall, the approach
scales well also for the latter task, although there understandably is an overhead when the
number of solutions required to be enumerated grows significantly; this is the case for LIDR
where some instances have more than 10, 000 solutions per Pareto point. This is in contrast
to the set covering instances, which tend to have only a single (or few) solutions per Pareto
point.

Finally, we evaluated the impact of the proposed refinements on the runtime efficiency
of the best-performing approach, MSHybrid. Figure 5 shows the impact of lazily building
Tot(OD) (left) and exact vs heuristic core minimization (right). Lazily building Tot(OD)
has no evident impact on LIDR, as expected (the literals from OD do not appear in OI and
Tot(OD) can therefore not be lazily built). For fixed set cardinality set covering, however,
we see a strong positive effect. Heuristic core minimization appears to have a positive
effect on LIDR as well as on harder set covering instances, although the difference to exact
minimization is smaller than that of lazily building Tot(OD).

5 Related Work

We overview other most closely related approaches proposed for multi-objective constraint
optimization.

There is earlier work on SAT-based lexicographic optimization [18, 6, 32]. Given a CNF
formula F and two objectives O1 and O2, a solution τ dominates another solution τs in
the lexicographic sense if (a) O1(τ) < O1(τs), or (b) O1(τ) = O1(τs) and O2(τ) < O2(τs).
Informally speaking, in contrast to Pareto-optimality, lexicographic optimization imposes an
explicit preference over the objectives and asks to compute a solution that minimizes O1 using
O2 as a tie-breaker. The problem is closely related to the so-called multi-level optimization
problem. In particular, both can be cast as a single objective weighted optimization problem
and solved with a MaxSAT solver [6, 32]. In fact, many modern MaxSAT solvers exploit
multilevel properties of input instances in order to improve search efficiency [41, 3].

100 1 000

100

1 000

30 5 400
30

5 400

P -minimal (s)

M
S
H
y
b
r
i
d
(s
)

SetCovering-EP

SetCovering-SC

Decision Rules

100 1 000

100

1 000

30 5 400
30

5 400

single representative (s)

a
ll
re
p
re
se
n
ta
ti
v
es

(s
)

Figure 4 Left: Runtime comparison between P -minimal and BiOptSat in the MSHybrid variant.
Right: Runtime comparison between enumerating a single representative vs all solutions per Pareto
point with MSHybrid.

SAT 2022

12:16 MaxSAT-Based Bi-Objective Boolean Optimization

100 1 000

100

1 000

30 5 400
30

5 400

with lazy Tot(OD) building (s)

w
it
h
o
u
t
la
zy

T
o
t
(O

D
)
b
u
il
d
in
g
(s
)

SetCovering-EP

SetCovering-SC

Decision Rules

100 1 000

100

1 000

30 5 400
30

5 400

heuristic core minimization (s)

ex
a
ct

co
re

m
in
im

iz
a
ti
o
n
(s
)

Figure 5 Instance runtime comparisons for the two refinements lazily building the totalizer for
the decreasing objective (left) and exact core minimization (right).

Beyond SAT-based approaches, multi-objective optimization has been studied in other
declarative optimization paradigms. For example, in constraint programming, a filtering
algorithm for the bi-objective Pareto constraint was proposed [20]. The resulting search
algorithm is similar to ParetoMCS in that it maintains a set S of solutions that do not
dominate each other. When a new solution is found, any solution it dominates is removed
from S. Multi-objective optimization has also been studied in the context of mixed integer
programming (see, e.g., [43, 29, 46, 1]). Our focus in this work was to develop MaxSAT-based
bi-objective optimization problems, especially suited for problems naturally represented in
propositional logic, such that the ones we employed in our empirical evaluation.

6 Conclusions

We proposed an approach to bi-objective optimization based on tightly integrating algorithmic
ideas from the realm of MaxSAT solving, allowing for instantiations through the integration
of different MaxSAT solving algorithms. The approach allows for provably finding all Pareto-
optimal solutions. Search in the approach is performed in an ordered way along the Pareto
front, which allows for, e.g., employing tighter blocking of earlier found solutions. The
approach is generally applicable to bi-objective optimizations which allow for propositional
encodings. As examples of such problems, we empirically evaluated several variations and
refinements of the approach on two different types of bi-objective optimization problem
domains, namely, learning interpretable decision rules from data and bi-objective set covering.
Going beyond variants based on well-known MaxSAT solving algorithms, we proposed a
hybrid variant of the approach employing both core-guided and solution-improving search.
We showed empirically that the hybrid variant achieves the best performance, surpassing
also the efficiency of two recent competing approaches.

References

1 Maria João Alves and João C. N. Clímaco. A review of interactive methods for multiobjective
integer and mixed-integer programming. European Journal of Operational Research, 180(1):99–
115, 2007. doi:10.1016/j.ejor.2006.02.033.

https://doi.org/10.1016/j.ejor.2006.02.033

C. Jabs, J. Berg, A. Niskanen, M. Järvisalo 12:17

2 Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub. Unsatisfiability-
based optimization in clasp. In Agostino Dovier and Vítor Santos Costa, editors, Technical
Communications of the 28th International Conference on Logic Programming, ICLP 2012,
September 4–8, 2012, Budapest, Hungary, volume 17 of LIPIcs, pages 211–221. Schloss Dagstuhl
— Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.ICLP.2012.211.

3 Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving SAT-based
weighted MaxSAT solvers. In Michela Milano, editor, Principles and Practice of Constraint
Programming — 18th International Conference, CP 2012, Québec City, QC, Canada, October
8–12, 2012. Proceedings, volume 7514 of Lecture Notes in Computer Science, pages 86–101.
Springer, 2012. doi:10.1007/978-3-642-33558-7_9.

4 Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving WPM2 for
(weighted) partial MaxSAT. In Christian Schulte, editor, Principles and Practice of Constraint
Programming — 19th International Conference, CP 2013, Uppsala, Sweden, September 16–20,
2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 117–132. Springer,
2013. doi:10.1007/978-3-642-40627-0_12.

5 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial MaxSAT
through satisfiability testing. In Oliver Kullmann, editor, Theory and Applications of Satisfiab-
ility Testing — SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 –
July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science, pages 427–440.
Springer, 2009. doi:10.1007/978-3-642-02777-2_39.

6 Josep Argelich, Inês Lynce, and João P. Marques Silva. On solving boolean multilevel
optimization problems. In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st
International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11–
17, 2009, pages 393–398, 2009. URL: http://ijcai.org/Proceedings/09/Papers/073.pdf.

7 Jasbir S. Arora. Multiobjective optimum design concepts and methods. In Jasbir S. Arora,
editor, Introduction to Optimum Design (Second Edition), pages 543–563. Academic Press,
San Diego, second edition edition, 2004. URL: https://www.sciencedirect.com/science/
article/pii/B9780120641550500173.

8 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum satisfiability. In Handbook
of Satisfiability, volume 336 of FAIA, chapter 24, pages 929–991. IOS Press, 2021. doi:
10.3233/FAIA201008.

9 Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of boolean cardinality con-
straints. In Francesca Rossi, editor, Principles and Practice of Constraint Programming —
CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 – October 3,
2003, Proceedings, volume 2833 of Lecture Notes in Computer Science, pages 108–122. Springer,
2003. doi:10.1007/978-3-540-45193-8_8.

10 Jaroslav Bendík and Ivana Cerna. Rotation based MSS/MCS enumeration. In Elvira Albert and
Laura Kovács, editors, LPAR 2020: 23rd International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, Alicante, Spain, May 22–27, 2020, volume 73 of EPiC
Series in Computing, pages 120–137. EasyChair, 2020. doi:10.29007/8btb.

11 Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7(2–3):59–6, 2010. doi:10.3233/sat190075.

12 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proceed-
ings of SAT Competition 2020 — Solver and Benchmark Descriptions, volume B-2020-1 of
Department of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

13 Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving.
In Christian Schulte, editor, Principles and Practice of Constraint Programming — 19th
International Conference, CP 2013, Uppsala, Sweden, September 16–20, 2013. Proceedings,
volume 8124 of Lecture Notes in Computer Science, pages 247–262. Springer, 2013. doi:
10.1007/978-3-642-40627-0_21.

SAT 2022

https://doi.org/10.4230/LIPIcs.ICLP.2012.211
https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-642-40627-0_12
https://doi.org/10.1007/978-3-642-02777-2_39
http://ijcai.org/Proceedings/09/Papers/073.pdf
https://www.sciencedirect.com/science/article/pii/B9780120641550500173
https://www.sciencedirect.com/science/article/pii/B9780120641550500173
https://doi.org/10.3233/FAIA201008
https://doi.org/10.3233/FAIA201008
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.29007/8btb
https://doi.org/10.3233/sat190075
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.1007/978-3-642-40627-0_21

12:18 MaxSAT-Based Bi-Objective Boolean Optimization

14 Dheeru Dua and Casey Graff. UCI machine learning repository, 2021. URL: http://archive.
ics.uci.edu/ml.

15 Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science, 89(4):543–560, 2003. doi:10.1016/S1571-0661(05)
82542-3.

16 Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1–4):1–26, 2006. doi:10.3233/sat190014.

17 Matthias Ehrgott. Multicriteria Optimization (2. ed.). Springer, 2005. doi:10.1007/
3-540-27659-9.

18 Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliography of mul-
tiobjective combinatorial optimization. OR Spectrum, 22(4):425–460, 2000. doi:10.1007/
s002910000046.

19 Katalin Fazekas, Fahiem Bacchus, and Armin Biere. Implicit hitting set algorithms for
maximum satisfiability modulo theories. In Didier Galmiche, Stephan Schulz, and Roberto
Sebastiani, editors, Automated Reasoning — 9th International Joint Conference, IJCAR 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14–17, 2018,
Proceedings, volume 10900 of Lecture Notes in Computer Science, pages 134–151. Springer,
2018. doi:10.1007/978-3-319-94205-6_10.

20 Renaud Hartert and Pierre Schaus. A support-based algorithm for the bi-objective pareto
constraint. In Carla E. Brodley and Peter Stone, editors, Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27–31, 2014, Québec City, Québec, Canada,
pages 2674–2679. AAAI Press, 2014. URL: http://www.aaai.org/ocs/index.php/AAAI/
AAAI14/paper/view/8337.

21 Hao Hu, Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Learning optimal
decision trees with MaxSAT and its integration in AdaBoost. In Christian Bessiere, editor,
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI 2020, pages 1170–1176. ijcai.org, 2020. doi:10.24963/ijcai.2020/163.

22 Alexey Ignatiev, João Marques-Silva, Nina Narodytska, and Peter J. Stuckey. Reasoning-based
learning of interpretable ML models. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19–27 August 2021, pages 4458–4465. ijcai.org, 2021. doi:10.24963/ijcai.2021/608.

23 Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an efficient MaxSAT
solver. Journal on Satisfiability, Boolean Modeling and Computation, 11(1):53–64, 2019.
doi:10.3233/SAT190116.

24 Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and João Marques-Silva. A SAT-based
approach to learn explainable decision sets. In Didier Galmiche, Stephan Schulz, and Roberto
Sebastiani, editors, Automated Reasoning — 9th International Joint Conference, IJCAR 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14–17, 2018,
Proceedings, volume 10900 of Lecture Notes in Computer Science, pages 627–645. Springer,
2018. doi:10.1007/978-3-319-94205-6_41.

25 Alexey Ignatiev, Alessandro Previti, Mark H. Liffiton, and João Marques-Silva. Smallest
MUS extraction with minimal hitting set dualization. In Gilles Pesant, editor, Principles and
Practice of Constraint Programming — 21st International Conference, CP 2015, Cork, Ireland,
August 31 – September 4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer
Science, pages 173–182. Springer, 2015. doi:10.1007/978-3-319-23219-5_13.

26 Mikolás Janota, António Morgado, José Fragoso Santos, and Vasco M. Manquinho. The
Seesaw algorithm: Function optimization using implicit hitting sets. In Laurent D. Michel,
editor, 27th International Conference on Principles and Practice of Constraint Programming,
CP 2021, Montpellier, France (Virtual Conference), October 25–29, 2021, volume 210 of
LIPIcs, pages 31:1–31:16. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.CP.2021.31.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.3233/sat190014
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/s002910000046
https://doi.org/10.1007/s002910000046
https://doi.org/10.1007/978-3-319-94205-6_10
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8337
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8337
https://doi.org/10.24963/ijcai.2020/163
https://doi.org/10.24963/ijcai.2021/608
https://doi.org/10.3233/SAT190116
https://doi.org/10.1007/978-3-319-94205-6_41
https://doi.org/10.1007/978-3-319-23219-5_13
https://doi.org/10.4230/LIPIcs.CP.2021.31
https://doi.org/10.4230/LIPIcs.CP.2021.31

C. Jabs, J. Berg, A. Niskanen, M. Järvisalo 12:19

27 Yaochu Jin and Bernhard Sendhoff. Pareto-based multiobjective machine learning: An
overview and case studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C,
38(3):397–415, 2008. doi:10.1109/TSMCC.2008.919172.

28 Miyuki Koshimura, Hidetomo Nabeshima, Hiroshi Fujita, and Ryuzo Hasegawa. Minimal
model generation with respect to an atom set. In Nicolas Peltier and Viorica Sofronie-
Stokkermans, editors, Proceedings of the 7th International Workshop on First-Order Theorem
Proving, FTP 2009, Oslo, Norway, July 6–7, 2009, volume 556 of CEUR Workshop Proceedings.
CEUR-WS.org, 2009. URL: http://ceur-ws.org/Vol-556/paper06.pdf.

29 Kuan Lu, Shinji Mizuno, and Jianming Shi. A new mixed integer programming approach for
optimization over the efficient set of a multiobjective linear programming problem. Optimization
Letters, 14(8):2323–2333, 2020. doi:10.1007/s11590-020-01554-7.

30 Dmitry Malioutov and Kuldeep S. Meel. MLIC: A MaxSAT-based framework for learning
interpretable classification rules. In John N. Hooker, editor, Principles and Practice of
Constraint Programming — 24th International Conference, CP 2018, Lille, France, August
27–31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science, pages 312–327.
Springer, 2018. doi:10.1007/978-3-319-98334-9_21.

31 R. Marler and Jasbir Arora. Survey of multi-objective optimization methods for engin-
eering. Structural and Multidisciplinary Optimization, 26:369–395, 04 2004. doi:10.1007/
s00158-003-0368-6.

32 João Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce. Boolean lexicographic
optimization: algorithms & applications. Annals of Mathematics and Artificial Intelligence,
62(3–4):317–343, 2011. doi:10.1007/s10472-011-9233-2.

33 Joao Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers.
In Handbook of Satisfiability, volume 336 of FAIA, chapter 4, pages 133–182. IOS Press, 2021.
doi:10.3233/FAIA200987.

34 João Marques-Silva and Jordi Planes. On using unsatisfiability for solving maximum satisfiab-
ility. Computing Research Repository, abs/0712.1097, 2007. arXiv:0712.1097.

35 Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce. Incremental cardinality
constraints for MaxSAT. In Barry O’Sullivan, editor, Principles and Practice of Constraint
Programming — 20th International Conference, CP 2014, Lyon, France, September 8–12,
2014. Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 531–548. Springer,
2014. doi:10.1007/978-3-319-10428-7_39.

36 Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT
solver. In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing

— SAT 2014 — 17th International Conference, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14–17, 2014. Proceedings, volume 8561 of Lecture Notes in
Computer Science, pages 438–445. Springer, 2014. doi:10.1007/978-3-319-09284-3_33.

37 Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022. URL: christophm.github.
io/interpretable-ml-book/.

38 António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided MaxSAT with soft
cardinality constraints. In Barry O’Sullivan, editor, Principles and Practice of Constraint
Programming — 20th International Conference, CP 2014, Lyon, France, September 8–12,
2014. Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 564–573. Springer,
2014. doi:10.1007/978-3-319-10428-7_41.

39 António Morgado, Mark H. Liffiton, and João Marques-Silva. MaxSAT-based MCS enumeration.
In Armin Biere, Amir Nahir, and Tanja E. J. Vos, editors, Hardware and Software: Verification
and Testing — 8th International Haifa Verification Conference, HVC 2012, Haifa, Israel,
November 6–8, 2012. Revised Selected Papers, volume 7857 of Lecture Notes in Computer
Science, pages 86–101. Springer, 2012. doi:10.1007/978-3-642-39611-3_13.

40 Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and João Marques-Silva. Learning optimal
decision trees with SAT. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh Interna-

SAT 2022

https://doi.org/10.1109/TSMCC.2008.919172
http://ceur-ws.org/Vol-556/paper06.pdf
https://doi.org/10.1007/s11590-020-01554-7
https://doi.org/10.1007/978-3-319-98334-9_21
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1007/s10472-011-9233-2
https://doi.org/10.3233/FAIA200987
https://arxiv.org/abs/0712.1097
https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1007/978-3-319-09284-3_33
christophm.github.io/interpretable-ml-book/
christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/978-3-642-39611-3_13

12:20 MaxSAT-Based Bi-Objective Boolean Optimization

tional Joint Conference on Artificial Intelligence, IJCAI 2018, July 13–19, 2018, Stockholm,
Sweden, pages 1362–1368. ijcai.org, 2018. doi:10.24963/ijcai.2018/189.

41 Tobias Paxian, Pascal Raiola, and Bernd Becker. On preprocessing for weighted MaxSAT.
In Fritz Henglein, Sharon Shoham, and Yakir Vizel, editors, Verification, Model Checking,
and Abstract Interpretation — 22nd International Conference, VMCAI 2021, Copenhagen,
Denmark, January 17–19, 2021, Proceedings, volume 12597 of Lecture Notes in Computer
Science, pages 556–577. Springer, 2021. doi:10.1007/978-3-030-67067-2_25.

42 Alessandro Previti, Carlos Mencía, Matti Järvisalo, and João Marques-Silva. Improving MCS
enumeration via caching. In Serge Gaspers and Toby Walsh, editors, Theory and Applications
of Satisfiability Testing — SAT 2017 — 20th International Conference, Melbourne, VIC,
Australia, August 28 – September 1, 2017, Proceedings, volume 10491 of Lecture Notes in
Computer Science, pages 184–194. Springer, 2017. doi:10.1007/978-3-319-66263-3_12.

43 L.M. Rasmussen. Zero—one programming with multiple criteria. European Journal of
Operational Research, 26(1):83–95, 1986. URL: https://www.sciencedirect.com/science/
article/pii/037722178690161X.

44 Paul Saikko, Carmine Dodaro, Mario Alviano, and Matti Järvisalo. A hybrid approach to
optimization in answer set programming. In Michael Thielscher, Francesca Toni, and Frank
Wolter, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the
Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October – 2 November 2018,
pages 32–41. AAAI Press, 2018. URL: https://aaai.org/ocs/index.php/KR/KR18/paper/
view/18021.

45 Paul Saikko, Johannes Peter Wallner, and Matti Järvisalo. Implicit hitting set algorithms for
reasoning beyond NP. In Chitta Baral, James P. Delgrande, and Frank Wolter, editors, Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International
Conference, KR 2016, Cape Town, South Africa, April 25–29, 2016, pages 104–113. AAAI
Press, 2016. URL: http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812.

46 Marianna De Santis, Gabriele Eichfelder, Julia Niebling, and Stefan Rocktäschel. Solving
multiobjective mixed integer convex optimization problems. SIAM Journal on Optimization,
30(4):3122–3145, 2020. doi:10.1137/19M1264709.

47 Takehide Soh, Mutsunori Banbara, Naoyuki Tamura, and Daniel Le Berre. Solving mul-
tiobjective discrete optimization problems with propositional minimal model generation. In
J. Christopher Beck, editor, Principles and Practice of Constraint Programming — 23rd Inter-
national Conference, CP 2017, Melbourne, VIC, Australia, August 28 – September 1, 2017,
Proceedings, volume 10416 of Lecture Notes in Computer Science, pages 596–614. Springer,
2017. doi:10.1007/978-3-319-66158-2_38.

48 Miguel Terra-Neves, Inês Lynce, and Vasco M. Manquinho. Enhancing constraint-based
multi-objective combinatorial optimization. In Sheila A. McIlraith and Kilian Q. Weinberger,
editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2–7, 2018, pages 6649–6656. AAAI Press, 2018. URL: https:
//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17227.

49 Miguel Terra-Neves, Inês Lynce, and Vasco M. Manquinho. Multi-objective optimization
through pareto minimal correction subsets. In Jérôme Lang, editor, Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13–19,
2018, Stockholm, Sweden, pages 5379–5383. ijcai.org, 2018. doi:10.24963/ijcai.2018/757.

50 Miguel Terra-Neves, Inês Lynce, and Vasco M. Manquinho. Stratification for constraint-based
multi-objective combinatorial optimization. In Jérôme Lang, editor, Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13–19,
2018, Stockholm, Sweden, pages 1376–1382. ijcai.org, 2018. doi:10.24963/ijcai.2018/191.

51 Jinqiang Yu, Alexey Ignatiev, Pierre Le Bodic, and Peter J. Stuckey. Optimal decision lists
using SAT. Computing Research Repository, abs/2010.09919, 2020. arXiv:2010.09919.

https://doi.org/10.24963/ijcai.2018/189
https://doi.org/10.1007/978-3-030-67067-2_25
https://doi.org/10.1007/978-3-319-66263-3_12
https://www.sciencedirect.com/science/article/pii/037722178690161X
https://www.sciencedirect.com/science/article/pii/037722178690161X
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812
https://doi.org/10.1137/19M1264709
https://doi.org/10.1007/978-3-319-66158-2_38
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17227
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17227
https://doi.org/10.24963/ijcai.2018/757
https://doi.org/10.24963/ijcai.2018/191
https://arxiv.org/abs/2010.09919

C. Jabs, J. Berg, A. Niskanen, M. Järvisalo 12:21

52 Jinqiang Yu, Alexey Ignatiev, Peter J. Stuckey, and Pierre Le Bodic. Computing optimal
decision sets with SAT. In Helmut Simonis, editor, Principles and Practice of Constraint Pro-
gramming — 26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September
7–11, 2020, Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 952–970.
Springer, 2020. doi:10.1007/978-3-030-58475-7_55.

SAT 2022

https://doi.org/10.1007/978-3-030-58475-7_55

12:22 MaxSAT-Based Bi-Objective Boolean Optimization

A Symmetry Breaking in the Decision Rule Encoding

To not enumerate multiple decision rules that only differ in the order of their clauses,
we added the following symmetry breaking clauses to the encoding from [30]: The idea
behind the symmetry breaking is that the bit-strings τ(s1

l)τ(s2
l) . . . τ(sm

l) are forced to be
in lexicographic ordering. In addition to the s variables, we introduce variables ej

l for
j = 1, . . . , m and l = 2, . . . , k that represent whether the bit-strings of the clauses with
index (l − 1) and l are equal for the first j bits. The semantics of this representation are
encoded as follows: e1

l ↔ (s1
l−1 ↔ s1

l) and ej
l ↔ (ej−1

l ∧ (sf
l−1 ↔ sj

l)) for j = 2, . . . , m. The
lexicographic ordering is then enforced by adding the constraints ¬e1

l → (s1
l−1 ∧ ¬s1

l−1) and
(ej−1

l ∧ ¬ej
l)→ (sj

l−1 ∧ ¬sj
l) for j = 2, . . . , m, enforcing that the bit with the smallest index

in which the clauses differ should be 1 in the clause with index (l − 1) and 0 in the clause
with index l.

B Details About the Datasets Used for Decision Rule Learning

Table 2 summarizes the datasets used in the empirical evaluations, including their origin
and statistics, as well as the sizes of CNF formulas obtained from them with the encoding
from [30]. The original files were downloaded from the UCI Machine Learning Repository [14]
and from Kaggle (https://www.kaggle.com). Links to the original datasets as well as the files
we used will are available with the implementation. We randomly and independently sampled
subsets of n ∈ {50, 100, 1000, 5000, 10000} data samples from the datasets, four of each size
(when applicable), resulting in a total of 372 datasets, and discretized the data as in [30]:
categorical features are one-hot encoded, continuous features discretized by comparing to a
collection of thresholds.

In addition to the name and the source of the datasets, the table shows the number of
data samples as well as the number of features before and after discretization. The last two
columns give some statistics on the formulas generated with the encoding from [30] for two
clauses based on the full datasets. We report both the number of clauses and the number of
variables in these formulas.

For the decision rule instances, the instance that took the longest time to solve that did
not time out for the MSHybrid variant was a subset of 100 examples of the Connect 4 dataset.
The CNF formula for this dataset has 678 variables and 4152 clauses. The largest instance
in terms of the number of examples that our algorithm was able to find a representative
for every Pareto point for was a subset of the Travel Insurance dataset with 10000 samples.
When looking at the number of features, the largest solvable dataset was a subset of the
Twitter dataset with 50 examples and 1511 discretized features.

C Additional Empirical Detail

Figure 6 shows how many instances could be solved for a specific time limit for the decision
rule learning benchmarks. In this case, all approaches (except for Seesaw) enumerate all
solutions for each Pareto point. Figure 7 shows the same for the set covering benchmarks.

https://www.kaggle.com

C. Jabs, J. Berg, A. Niskanen, M. Järvisalo 12:23

Ta
bl

e
2

T
he

da
ta

se
ts

us
ed

in
th

e
de

ci
si

on
ru

le
ex

pe
rim

en
ts

an
d

su
m

m
ar

y
st

at
is

tic
s

on
th

em
an

d
th

e
C

N
F

fo
rm

ul
as

ge
ne

ra
te

d
fr

om
th

em
.

D
at

as
et

So
ur

ce
#

sa
m

pl
es

#
fe

at
ur

es
#

di
sc

.
fe

at
.

#
cl

au
se

s
(1

03
)

#
va

rs
(1

03
)

A
du

lt
U

C
I

32
56

1
14

14
4

63
5

98
.1

B
an

k
M

ar
ke

tin
g

U
C

I
45

21
1

16
88

13
29

13
6

B
an

kn
ot

e
A

ut
he

nt
ic

at
io

n
U

C
I

37
2

4
16

6.
67

4.
16

C
on

ne
ct

4
U

C
I

67
55

7
42

12
6

20
52

20
3

D
ef

au
lt

of
C

re
di

t
C

ar
d

C
lie

nt
s

U
C

I
30

00
0

23
11

0
87

8
90

.3
D

ot
a

2
G

am
es

R
es

ul
ts

U
C

I
92

65
0

11
5

34
5

11
16

4
27

9
FI

FA
20

18
M

an
of

th
e

M
at

ch
K

ag
gl

e
12

8
26

10
6

3.
00

0.
70

8
H

ea
rt

D
is

ea
se

K
ag

gl
e

30
3

13
31

3.
72

1.
00

In
di

an
Li

ve
r

Pa
tie

nt
D

at
as

et
U

C
I

58
3

10
14

6.
67

1.
79

Io
no

sp
he

re
U

C
I

35
1

33
14

4
9.

90
1.

49
Ir

is
U

C
I

15
0

4
11

1.
08

0.
48

3
M

A
G

IC
G

am
m

a
Te

le
sc

op
e

U
C

I
19

02
0

10
79

27
3

57
.3

M
ed

ic
al

H
os

pi
ta

lR
ea

dm
is

si
on

s
K

ag
gl

e
25

00
0

64
12

5
16

41
75

.4
M

us
hr

oo
m

U
C

I
81

24
22

11
5

19
0

24
.7

Pa
rk

in
so

ns
U

C
I

19
5

22
51

2.
81

0.
73

8
P

im
a

In
di

an
s

D
ia

be
te

s
K

ag
gl

e
76

8
8

30
7.

25
2.

39
Sk

in
Se

gm
en

ta
tio

n
U

C
I

24
50

57
3

11
9

74
5

73
6

T
ic

-T
ac

-T
oe

E
nd

ga
m

e
U

C
I

95
8

9
27

7.
75

2.
96

B
uz

z
in

So
ci

al
M

ed
ia

(T
om

s
H

ar
dw

ar
e)

U
C

I
28

17
9

96
91

0
37

12
87

.3
B

uz
z

in
So

ci
al

M
ed

ia
(T

w
itt

er
)

U
C

I
49

99
9

77
15

11
54

06
15

5
B

lo
od

Tr
an

sf
us

io
n

Se
rv

ic
e

C
en

te
r

U
C

I
74

8
4

6
4.

39
2.

26
Tr

av
el

In
su

ra
nc

e
K

ag
gl

e
63

32
6

10
21

1
11

88
19

1
W

is
co

ns
in

D
ia

gn
os

tic
B

re
as

t
C

an
ce

r
U

C
I

56
9

30
88

20
.7

1.
97

R
ai

n
in

A
us

tr
al

ia
K

ag
gl

e
10

76
96

16
14

1
29

52
33

9

SAT 2022

12:24 MaxSAT-Based Bi-Objective Boolean Optimization

100 150
0

1

2

3

4

5

·103

70 215

5.4

instances solved

cp
u
ti
m
e
(s
)

UNSAT-SAT

MSU3

MSHybrid

SAT-UNSAT

P -minimal

OLL

195 205 215
0

1

2

3

4

5

·103
5.4

instances solved

Figure 6 Runtime comparison of P -minimal and variants of BiOptSat for LIDR on the task of
enumerating all solutions on the Pareto front.

0 20 40 60 80
0

1

2

3

4

5

·103
5.4

instances solved

cp
u
ti
m
e
(s
)

SetCovering-EP

MSHybrid

SAT-UNSAT

MSU3

UNSAT-SAT

P -minimal

OLL

0 10 20 30 40
0

1

2

3

4

5

·103
5.4

instances solved

SetCovering-SC

Figure 7 Runtime comparison of P -minimal and variants of BiOptSat for bi-objective set
covering problem on the task of enumerating all solutions on the Pareto front.

	1 Introduction
	2 Preliminaries
	3 The Approach
	3.1 Overview of the Algorithm
	3.2 Approaches to Minimizing the Increasing Objective
	3.3 Refinements

	4 Experiments
	4.1 Benchmarks
	4.2 Competing Approaches
	4.3 Results

	5 Related Work
	6 Conclusions
	A Symmetry Breaking in the Decision Rule Encoding
	B Details About the Datasets Used for Decision Rule Learning
	C Additional Empirical Detail

